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The values of material parameters required for quantitative electrothermal modeling of nanoscale
structures typically differ strongly from those of the bulk material. In this work we apply a simple
experimental technique that allows us to estimate values for thermal conductivity of both a metal
nanowire and its insulating substrate by measuring the increase in resistance due to small amounts of
DC self-heating. We measure gold nanowires with widths between 24 and 55 nm using this technique,
and extract relevant material parameters as a function of temperature. Electrical resistivities of our
nanowires are width-dependent and much higher than bulk gold values, and enhanced temperature-
dependence of the resistivity indicates a depressed Debye temperature due to significant phonon
softening. The fit thermal conductivity versus temperature of our 21 nm SiO2 on Si substrate is
highly consistent with literature values for oxide thin films. We find the thermal conductivity of the
nanowires increases rapidly with temperature and width and is well below the value for bulk gold,
which can be qualitatively explained by the dominance of structural scattering. The Lorenz number
is relatively constant over temperature, as in the Wiedemann-Franz theory, but it is significantly
lower than reported values for bulk gold and exhibits some width dependence.

I. INTRODUCTION

The continual scaling down of device structures and
the rise of nanostructured materials has created a need
to characterize and understand electrothermal properties
at the nanoscale. It has been well established that electric
and thermal conduction in metal nanostructures is gener-
ally suppressed relative to bulk metals due to the increas-
ing influence of surface and grain boundary scattering1–3.
Electrical conductivity is straightforward to measure and
has been thoroughly characterized for a wide variety of
metal nanowires4–7, while the thermal conductivity of
these systems has proven much more challenging to as-
sess.

Measurements of thermal conductivity of individual
metal nanowires have previously taken pains to eliminate
all parasitic heat sinking, and consequently restricted
measurements to wire geometries and microstructures
which can be fabricated as fully suspended8–12. Here
we demonstrate that by incorporating substrate coupling
into the thermal model and varying nanowire length as
an experimental parameter, it is possible to measure top-
down substrate-coupled wires and fit values for both the
substrate and nanowire thermal conductivity.

For studies that measure both electrical and thermal
conductivity we may compute the Lorenz Ratio L := κ

σT ,
with κ the thermal conductivity, σ the electrical conduc-
tivity, and T the temperature. The Wiedemann-Franz
(WF) law asserts that L should be constant across all
metals and temperatures, and equal to L0 = 2.44e-8 W·Ω
/ K2 within the Sommerfeld theory of metals13. The ba-
sic observation underlying WF is that electrons are the
primary carriers of both charge and thermal energy, and
that scattering of those carriers identically impedes their
ability to transport both quantities. This simple rela-
tionship holds surprisingly well, but L for many bulk
metals exhibits temperature-dependent deviations from

L0 due to phonon-mediated thermal current and inelastic
electron-phonon scattering14, both of which are neglected
in the WF derivation.

A more careful statement of WF is that the ratio of
the electronic thermal conductivity to the electrical con-
ductivity is constant: Le := κe

σT = L0. Consequently if
phonon contributions to the thermal current, κph, cannot
be neglected then the experimentally measured L ratio
can be higher than the theoretical L0 value15. On the
other hand, this expression for Le still neglects the ef-
fect of electron-phonon inelastic scattering processes with
low energy phonons - a process which tends to lower the
L ratio. When electrons exchange energy with small-q
phonons they are scattered through only a small angle
and the thermal current is relaxed more effectively than
the drift momentum of the electrons is randomized. Thus
κe is suppressed disproportionately to σ when small-angle
scattering is dominant14,16, which typically occurs below
the Debye temperature wherein only small-q modes are
occupied. As the temperature rises and high-q phonon
modes with much larger density of states become occu-
pied, fully-randomizing large-angle scattering dominates
and Le is expected to approach L0.

Systems with significant electron-electron scattering
can also have reduced L values,17,18 as normal scattering
processes can randomize thermal energy between hot and
cold electrons while the total net momentum of the elec-
tron gas remains unchanged. However electron-electron
interactions are typically considered negligible in metallic
systems in the temperature range of interest19. Recently
an order of magnitude suppression of Le was observed
in metallic vanadium oxide beyond its metal-insulator
transition20 and explained by the absence of quasiparti-
cles in a highly correlated electron fluid.

Both the κph and the small-angle scattering effects can
help explain deviations of Lbulk values from the theo-
retical L0, and may also help explain deviations of L
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in nanoscale metal structures from their corresponding
Lbulk values. In the temperature range between 95 and
300 K a suppressed value of L relative to Lbulk has been
reported for individual Pt9 and Ag11 nanowires, while
other works have instead found increased L for nanowires
and thin films8,10,21,22. Recently it has been proposed
that non-negligible thermal contact resistance in a two-
terminal measurement configuration may artificially in-
flate measured L values12. Our results suggest that for
highly granular, ultrathin gold nanowires on a substrate
the Lorenz ratio is roughly constant over the range from
95 to 260 K although its value is significantly depressed
compared to bulk, and appears to exhibit some wire
width dependence.

Semiconducting nanowires also exhibit suppressed
thermal and electrical conductivity relative to the bulk
material, however in this case the primary heat carri-
ers (phonons) and charge carriers (electrons) are differ-
ent; thus the WF relation does not apply and the two
conductivities are not as strongly coupled as in metals.
Consequently semiconductor wires are attractive for ther-
moelectric applications like clean energy conversion23,
where the figure of merit (ZT) can be improved by se-
lectively decreasing κ relative to σ. In contrast to metal
nanowires, the mechanisms for suppression of κ in semi-
conductor nanowires include enhanced phonon surface
and defect scattering24,25 and modified phonon disper-
sion due to confinement effects26. Measurements of κ in
semiconductor nanowires employ many of the same meth-
ods as for metal nanowires, including the DC self-heating
approach which is expanded upon in this work27.

II. METHODS

A. Device Design and Fabrication

Using an electron-beam lithography process, we fabri-
cate top-down, ultrathin (22 nm) gold nanowires with no
adhesion layer atop a very thin (22 nm) high quality ther-
mal SiO2 plus thick Si handle. Wire widths range from
approximately 20 to 60 nm and lengths range from 600
to 1500 nm, as estimated by high-resolution SEM. As il-
lustrated by the schematic and SEM characterization in
Fig. 1, in the active region of each device a thin gold
nanowire or nanoconstriction is bookended by large tri-
angular contact areas, which are overlapped by a 100 nm
thick Ti/Au contact layer that rapidly tapers out to the
wide on-chip vias. Because we omit an adhesion layer for
the gold nanowire structure, the deposition parameters
of the thin metal and the temperature of all subsequent
processing must be very carefully controlled.

B. Thermal Model for Self-Heating

We utilize an anlytical model formulated by Hunley
et al.28 for the temperature increase under DC Joule

j

100 nm Ti/Au

22 nm Au

22 nm SiO2 on Si

T(x)
W = 40 nm

FIG. 1. Schematic of the wire geometry with DC self-heating
conceptualized (left) and SEM of the active region of devices
for a series of nanowire lengths and fixed width (right).

self-heating in metal nanowires, which incorporates both
thermal coupling to the wire’s underlying substrate29 and
heat spreading into a finite contact region. Due to the
thermal conductivity of the inert gas being much lower
than that of the nanowire metal and even the oxide
substrate, as well as the relatively short lengths of the
wires employed in our work, convective heat losses to the
gaseous environment are neglected9,30,31 .

The physical model comprises a narrow metal wire con-
nected to much larger pad regions, defined on a thermally
insulating layer atop a thermally conductive back gate at
the bath temperature (the thick Si handle of our chips).
We define the following quantities: W , τn and ` are the
wire width, thickness and length (between the two con-
tact pads), κn and κox are the thermal conductivities of
the nanowire and oxide, and d is the thickness of the ox-
ide. The nanowire sustains a uniform current density of
J and resistivity of ρ. The x̂ axis points along the length
of the nanowire, which is centered around x=0.

Hunley et al.28 have derived an approximate heat equa-
tion governing the excess temperature, Te, in the wire:

∇2Te(x)−m2
1Te(x) = − Q

κn
, (1)

m2
1 =

κoxπ

Wτnκn ln
(

d
W (2 + π) + e−

2d
W

) ,
Q = J2ρ.

For our application of very small self-heating, we assume
the resistivity of the nanowire in an environmental tem-
perature T0 can be well approximated as a constant ρ(T0)
everwhere, despite the non-uniform temperature profile
along the length of the wire. We also assume that under
such small heating there is negligible heat spreading into
the contacts and they act as perfect heat sinks clamped
at T0, so that Te(`/2) = Te(−`/2) = 0. With these
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boundary conditions the solution to Eq. (1) becomes

Te = A cosh
(√

λ
κn
x
)

+
Q

λ
,

λ =
πκox

Wτn ln
(
d
W (2 + π) + exp(−2d/W )

) ,
A = −Q

λ
cosh−1

(√
λ
κn

`
2

)
.

The composite parameter λ quantifies how effectively
heat can be sunk to the substrate: it is large if κox is
large, or if the cross-sectional area of the wire is small so
that the perimeter to cross-sectional area ratio is large, or
if the insulating substrate is thin relative to the width of
the wire so that the wire is well coupled to the conductive
back gate.

The average increase in temperature over the length of
the wire due to this heating is

∆T =
1

`

∫ `/2

−`/2
Tedx =

Q

λ

[
1− tanh(γ)

γ

]
.

Here γ =
√

λ
κn

`
2 is a dimensionless tuning parameter that

quantifies the relative efficacies of the two heat sinking
mechanisms (substrate versus along-wire), and dictates
how the temperature rise will depend on the material
parameters embodied in λ and κn. When substrate heat
sinking is negligible compared to heat transfer along the
nanowire (λ is very small or κn is very large or ` is very

short) then γ is small. In that case tanh(γ)
γ ≈ 1 − 1

3γ
2

and the expression reduces to that used in Refs. 8 and
9, which depends on κn but not λ. If instead substrate
heat sinking dominates the heat diffusion path along the

nanowire, then γ grows large and tanh(γ)
γ ≈ 1/γ � 1, so

that the average temperature rise depends on λ but not
κn. Specifically, the two limiting behaviors are

∆T ≈ Q`2

12κn
for γ � 1 (wire heat sinking),

∆T ≈ Q

λ
for γ � 1 (substrate heat sinking).

This temperature rise due to self-heating induces a cor-
responding change in the resistance of the wire due to
the temperature-dependence of electrical resistivity. The
change in resistance per small unit of I2 can be found as
follows

∆R =
dR

dT
∆T =

`

A

dρ

dT
· Q
λ
·
[
1− tanh(γ)

γ

]

=⇒ dR

d(I2)
≈ ∆R

∆(I2)
=
dρ

dT

ρ`

λA3
·
[
1− tanh(γ)

γ

]
(2)

We see that the resistance should increase linearly with
I2, where the self-heating slope m = dR

d(I2) depends on

the material and geometrical properties of the wire. Fig-
ure 2 demonstrates this concept with room temperature
measurements of R vs. I2 for three different prototyp-
ical structures. The large on-chip via structures have
effectively zero self-heating, the bowtie structures which
are extremely well coupled to the contact pads have only
moderate self-heating slopes, while the longer wires have
the most significant self-heating slopes.

bowties

controls

wires

FIG. 2. Comparison of the resistance increase due to self-
heating for three different geometries at room temperature.
Several devices are measured for each geometry, and for each
device multiple repeated traces are plotted (points) together
with the linear fit (dashed lines). All devices conform ex-
tremely well to the thermal model of resistance increasing
linearly with I2.

The relationship embodied in Eq. (2) supports a sim-
ple experimental technique for extracting temperature-
dependent nanowire material parameters. Over a range
of environmental temperatures we measure R vs. I2 for
a set of nanowires of varying length but fixed width. The
zero-bias resistances allows us to compute ρ(T ) and thus
also estimate the temperature dependence dρ/dT . The
measured self-heating slope as a function of length at
each temperature can then be used to fit values for κox
and κn at that temperature.

Because κox(T ) does not depend on wire width, it only
needs to be estimated once by the above method. We
can then supply κox(T ) as a known parameter for all
other widths of wires and simply compute κn(T ) from
the measured self-heating slope, obviating the need to
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measure a set of different lengths for each width.
We note in closing this section that the two extreme

cases of very small and large γ predict a very different
wire length dependence for the self-heating slope m =
dR
d(I2) at a given fixed width: proportional to `3 in the

case of small γ, and only proportional to ` in the other
extreme. No clear width-dependence under fixed length
can be derived because ρ, dρ/dT , and κn will all have
nontrivial width dependence.

C. Measurement Setup

We use a Keithley 2400 SMU to source a current while
monitoring the voltage with source readback enabled. To
minimize error we program a 50 ms source-measure delay,
integrate for several power line cycles for each reading,
and repeat our voltage sweep 8 times in order to obtain
a more robust estimate of dR

d(I2) . To minimize the offset

error of the reading we implement a protocol of first set-
ting the sourced current to zero through the device and
measuring the voltage ten times; the average zero bias
voltage is then subtracted from all values in the subse-
quent sweep. Testing our protocol on macroscopic re-
sistors which experience effectively zero self-heating con-
firms that the systematic error in ∆R is less than 50 mΩ
over the relevant current range.

Our variable temperature measurements employ a Ja-
nis Research SuperVariTemp (SVT) cryostat with a
high-throughput sample probe, incorporating a resistive
wound heater and thermometry on the sample mount.
Prior to the experiments a temperature calibration exper-
iment was performed in order to obtain a mapping from
the probe thermometry readings to the true chip sur-
face temperature during active heating with the wound
heater. Figure 3a shows the experimentally measured
self-heating curves obtained at different environmental
temperatures for an example wire device; the changing
slope stems from changes in ρ, κox and κn with temper-
ature. Figure 3b shows the corresponding self-heating
slope and zero-bias device resistance extracted at each
temperature.

III. EXPERIMENTAL

A. Estimates of Resistivity

Our devices are fabricated with large, temperature-
dependent on-chip series resistance (long, narrow vias),
and they do not have a four-terminal configuration that
would allow us to interrogate only the nanowire resis-
tance. Therefore to estimate nanowire ρ(T ) we first mea-
sured a test structure containing only the on-chip vias
and cryostat leads to obtain an estimate of R(T ) for the
series resistance. Additionally, for one width (W = 40
nm) we were able to measure total resistance for a set
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FIG. 3. Measurements of self-heating curves at different envi-
ronmental temperatures (a) and the corresponding extracted
zero-bias resistance and self-heating slope (b) for an example
W=40 nm device. In (b), error bars giving standard error
of the mean from 8 consecutive traces are smaller than the
plotted data points for both quantities.

of wires with varying length, and then fit a straight line
to R vs. L. These fitted intercepts at different temper-
atures provide an alternative estimate of R(T ) for the
series resistance, which agrees within 4% with the direct
measurement of the test structure. For all analyses we
used an average of these two measurements as our full
estimate of R(T ) for the series resistance, and we sub-
tract this from the total measured resistance to isolate
the nanowire contribution.

The ρ(T ) curves obtained with this procedure were
highly linear for all the wire widths. The extrapolated
room temperature resistivities, shown in Fig. 4a, are
much higher than bulk values and have a strong width
dependence, especially for the smallest 24 nm width. Un-
der Matthiessen’s rule the total resistivity is the sum of
contributions from all structural scattering (ρ0) on grain
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boundaries, interfaces and impurities, and the electron-
phonon scattering. The electron-phonon component is
commonly modeled by the Bloch-Gruneisen expression
from semi-classical Boltzmann transport theory for met-
als so that

ρ(T ) = ρ0 +Kel-ph

(
T

Θ

)5 ∫ Θ/T

0

x5

(ex − 1)(1− e−x)
dx.

(3)

Here θD is the Debye temperature and Kel−ph is the
electron-phonon coupling constant. This curve takes the
form of a plateau at low-T , which reveals the limiting
ρ0 value, transitioning rapidly into a linear temperature-
dependence.

We do not have measurements down to sufficiently low
T to reveal the limiting structurally-induced resistivity.
However we can roughly estimate these values by extrap-
olating our linear resistivity curves down to a tempera-
ture at which the ρ0 plateau is typically achieved in sim-
ilar systems. We take this value as T = 25 K7,32 and
estimate that the ρ0 component accounts for 75% and
83% of the total resistivity at T = 250 K for our largest
(53 nm) and smallest (24 nm) wires, respectively. Thus
we confirm that structural scattering dominates in our
wires even near room temperature.

The values for dρ/dT , plotted in Fig. 4b, do not show
a strong width dependence. This is consistent with
the temperature-dependent component of the resistiv-
ity deriving from phonon occupancy rather than struc-
tural scattering. As also observed by previous works on
nanowires8,33 and nanofilms7, the values of dρ/dT are all
significantly higher than bulk gold. This is thought to re-
flect a softening of the phonon modes due to an increased
fraction of dangling bonds on external and internal (grain
boundary) surfaces, which lowers the Debye temperature
and enhances the temperature-dependence of the phonon
occupancy and resultant scattering32,34,35 .

Under the Bloch-Gruneisen model the slope of resistiv-
ity with temperature in the linear regime, dρ/dT , can be
used to solve for the Debye temperature. Previous work
has shown that the electron-phonon coupling constant,
Kel−ph, is effectively constant for monocrystalline metal
nanowires from 15 to 200 nm wide7 and for polycrys-
talline gold films from 12 to 46 nm thick35. We therefore
use a literature value of Kel−ph = 6.23e-8 Ω·m for a 25
nm thick gold nanofilm35 and solve numerically to ob-
tain θD for three nanowire widths. The values, listed in
Table I, are all vastly lower than the bulk Debye tem-
perature, with the deviation increasing as the wire width
shrinks. Note that solving at values of T = 95 K ver-
sus 250 K results in only a 1 degree variation θD, and
estimates in the table are computed at T = 200 K.

B. Estimate of Oxide Thermal Conductivity

We measured the self-heating slope at variable tem-
peratures in the cryostat and at room temperature for a
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FIG. 4. Extrapolated room-temperature resistivities (a) and
slope of resistivity with temperature (b) for a selection of
wire widths. Horizontal error bars denote standard deviation
of the SEM width measurements, while vertical error bars
denote standard error of the mean.

TABLE I. The width (W ), extrapolated room temperature
resistivity (ρ(298 K)), slope of resistivity with temperature
( dρ
dT

), and Debye Temperature (θD) as calculated with the
Bloch-Gruneisen model, for a set of thin Au nanowires. Lit-
erature values for bulk gold are given in the last row.

W (nm) ρ(298 K) (µΩ· cm) dρ
dT

(µΩ· cm / K) θD (K)
24.0 42 0.0027 58.9
40.3 25 0.0024 64.7
52.6 21 0.0022 71.7
Bulk 2.4 0.0008 165

set of devices of varying length and fixed width (W = 40
nm). This data set enabled us to fit a value for our oxide
substrate thermal conductivity, κox(T ), at each temper-
ature point. The fitting procedure takes as an input the
average measured values of ρ and dρ/dT for this geom-
etry. Some devices were discarded from the procedure
due to anomalous slope or resistance values. The aver-
age measured self-heating slope versus wire length, with
error bars representing standard error of the mean, and
the prediction of the fitted model are shown in Fig. 5a
for the set of temperature points in the experiment. Note
that the vertical error bars do not represent the full un-
certainty in the fitted data because they neglect error in
ρ and dρ/dT .

Figure 5b shows our fit κox(T ) for 22 nm thick ox-
ide (red data points) together with the result of previous
work from Ref. 36. As compared to bulk oxide, thin ox-
ide films can have significantly decreased effective ther-
mal conductivities due to the higher defect density and
potentially less ordered microstructure36,37. Addition-
ally, the contribution from thermal contact resistance on
both sides of the thin oxide becomes significant relative
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500

FIG. 5. Fitting the self-heating slope versus length (at fixed
width) to extract κox and κn at different temperatures (a) and
our resulting estimate of κox(T ) together with other thin-film
silicon dioxide thermal conductivity estimates from Ref. 36
(b). Some components of the figure in (b) are reprinted with
permission from the authors.

to the intrinsic thermal conductivity.

As noted by Lee et al.36, for thin films the κox ver-
sus temperature curves on log-log scale seem to have the
same shape, but shifted downward by some fixed amount
for each thickness. Indeed, we see that our fit oxide ther-

mal conductivity curve is very well described by the curve
for bulk Au simply translated downward (dashed green
line). For the following analyses we evaluate κox(T ) be-
tween 95 and 300 K by a simple spline fit to our data
(red dashed line).

C. Thermal Conductivity and Lorenz Number of
Nanowires

For another set of wire widths, each with a fixed length,
we made measurements of self-heating slope at tempera-
tures ranging from 95 to 260 K. For each width we mea-
sured multiple devices in this fashion obtaining slope, ρ
and dρ/dT , then the estimate of κn versus temperature
is taken as the average of the κn(T ) values computed
for individual devices using splined κox(T ) values. The
model does not permit a closed-form expression for κn,
so the values were obtained using a numerical solver for
the transcendental relationship of Eq. (2).

The results of the thermal conductivity calculation are
shown in Fig. 6a with error bars representing standard
error of the mean. Compared to bulk gold, the nanowire
thermal conductivity is more than an order of magni-
tude smaller and increases by almost 100% between 100
and 300 K, while kbulk decreases very slightly with in-
creasing temperature. Similar general behavior for ther-
mal conductivity in this temperature range has been
seen across several prior studies of nanowires8,10,22 and
nanofilms21,38,39.

In nanoscale metal systems structural scattering
strongly degrades the electron thermal current and thus
globally depresses κn at all temperatures relative to the
bulk value. The temperature dependence of κn can
be elucidated by considering the diffusive, free electron
approximation13

κe =
1

3
ceνfλ =

1

3

mν2
f

ne2

ce
ρ
,

dκe
dT
∝ −ce

1

ρ2

dρ

dT
+

1

ρ

dce
dT

, (4)

where m is the electron mass, νf is the Fermi velocity,
n is the free electron density, λ is the electron mean free
path, and ce is the electronic specific heat per unit vol-
ume. In this temperature regime ce increases linearly13

and the two terms of Eq. (4) compete in determining
the sign of the derivative. In the bulk system the frac-
tional change in the resistivity, dρ

dT /ρ, is large, and the
first term dominates, yielding a decreasing thermal con-
ductivity with temperature. Due to the vastly ehanced
structural scattering in our nanowires, ρ is much larger
and the fractional change in the resistivity and mean free
path (MFP) is much smaller than in bulk, so that the first
term is suppressed more strongly than the second term
and the sign of dκe/dT is reversed. Assuming that νf , n
and ce do not differ substantally between the bulk and
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FIG. 6. Estimates of nanowire thermal conductivity (a) and
calculated Lorenz ratio (b) versus temperature for several wire
widths. Literature bulk gold values for the same are given by
the solid gold lines (Lbulk from Ref. 40 and κbulk from Ref.
41). Also shown are Wiedemann-Franz predictions for our 40
nm wires using L0 (dashed pink line) and Lc corrected for
small-angle scattering (dotted teal line).

nanowire, and supplying values from Table I, we find for
the weakest case (W = 52 nm) that the first term in
Eq. (4) is only 4% of the bulk value while the second
term is 11% of the bulk value.

This hypothesis is consistent with our observed trend
of decreasing κ with decreasing width, and with our esti-

mation in Section III A that structural scattering appears
dominant even up to 250 K. If we assume the WF Law
holds, then for our wires in the regime of linear resistiv-
ity we expect κe = L0

T
dρ
dT T+ρ0

: this is plotted on Fig. 6a

(dashed pink line) using our measured values for dρ/dT
and ρ0 for the 40 nm wires. We see the general shape
is similar to our findings, but the values are significantly
higher, implying the value of L0 is too large to correctly
describe our data within WF.

For all the nanowire widths the calculated Lorenz ra-
tios L = ρκ/T , shown in Fig. 6b, are relatively constant
over temperature but are substantially depressed rela-
tive to bulk gold, particularly for the smallest width. A
theoretical expression for a corrected Lorenz factor, Lc,
which takes into account the effect of small-angle scat-
tering within the Debye phonon model is given by14,16

Lc = L0

[
1 +

3

π2

(
2

Z

)2/3

·
(
θD
T

)2]−1

, (5)

where Z is the metal valence and θD is the Debye temper-
ature. This correction should be increasingly unimpor-
tant as temperature increases relative to θD, due to heav-
ily populating the higher energy phonon modes which
give large-angle scattering. The T -dependent Lc and
the corresponding predicted κn for our 40 nm wires are
shown by the teal dotted lines in Fig. 6 (Lc computed
with Z = 1 and the estimated θD for W = 40 nm).

Our inferred Lorenz ratios are still significantly lower
than predicted by the small-angle correction, and further-
more they exhibit no strong T -dependence. This may
suggest that in our system small angle inelastic scatter-
ing is significant relative to large angle scattering even
up to 250 K, or some additional physical process sup-
presses electronic thermal current much more strongly
than charge current.

We expect that the vibrational density of states for our
structures is significantly distorted relative to bulk, and it
may be the case that the population of small wave-vector
phonons is disproportionately enhanced and small-angle
scattering is much more prominent. In gold nanoparti-
cles and nanocrystalline films, for instance, the presence
of low-frequency, spatially confined, vibrations known as
Lamb Modes have been theoretically predicted and ex-
perimentally observed42–44. Because we do not use an
adhesion layer for our ultrathin gold on oxide the re-
sulting deposited layer is highly granular, and we limit
the temperature in all subsequent fabrication steps and
chip handling to prevent any thermal annealing. It is
possible that our ultrathin gold layer might support lo-
calized Lamb-like vibrations, which could participate in
small-angle inelastic scattering with electrons while not
contributing significantly to the phonon thermal current.

Finally, we illustrate how important it is to correctly
incorporate substrate heat sinking in the thermal model
by comparing the estimated curves for L derived by our
full substrate-coupled model versus the model used in
Refs. 8 and 9 for suspended wires. We also include a
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comparison to a third estimation method which ignores
the temperature dependence of κox and uses just a single
experimentally-determined value for room temperature,
κox(T = 293 K). The results from applying the three dif-
ferent methods to the data for W = 52 nm wires are com-
pared in Fig. 7. We note that in addition to being most
physically correct, our method incorporating an approx-
imation to κox(T ) gives Lorenz number behavior most
similar to other metallic systems: relatively constant over
temperature and having a value nearest to bulk gold.
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FIG. 7. Comparison of Lorenz ratio calculated under three
different estimation methods: our full thermal model with
substrate heat sinking (blue circles), assuming zero substrate
heat sinking (violet downward triangles) and assuming a
temperature-independent oxide thermal conductivity (beige
triangles)

IV. CONCLUSION

Analysis of the temperature-dependent resistivity of
our devices reveals the following picture of ultrathin,
adhesion-layer-free, polycrystalline gold nanowires: The
significantly increased granularity and surface area to vol-
ume ratio results in a strongly softened phonon disper-
sion as indicated by Debye temperatures as low as 35%
of the bulk value. Despite the increased ease of ther-
mal phonon occupancy, strong structural (grain bound-
ary, surface and impurity) scattering still dominates the
electron MFP even up to 250 K, contributing 75% of the
total resistivity in the weakest case.

Consequent to this dominant structural scattering, the
resistivity (and corresponding electron MFP) exhibits
only a slight fractional change with temperature, which
leads to a thermal conductivity whose temperature-
dependence reflects primarily the linearly increasing ele-
cronic heat capacity. This is in sharp contrast to the
crystalline bulk metal, where the heat capacity effect is
outweighed by the fractional decrease in MFP due to
enhanced electron-phonon scattering. However, within
standard WF theory, the global decrease of MFP due to
the structural scattering is not alone sufficient to explain
how low the observed κn values are.

The failure of conventional WF to explain our sup-
pressed κn is revealed by the anomalously low values
computed for Lorenz ratio, which are much less than
Lbulk and imply some physical process that relaxes the
electronic thermal current much more effectively than
the charge current. Small-angle scattering with low-
q phonons has this effect in bulk metals at low tem-
peratures, but incorporating this temperature-dependent
scattering in the expression for L within the Debye
phonon model cannot explain the full extent of the de-
crease in L for our wires. We posit that the highly gran-
ular, interface-dominated nature of our gold nanowires
results in a vibrational density of states with greatly en-
hanced presence of localized, low-q modes, which are fully
occupied over the temperature range of our experiments.
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