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Thermal properties of molybdenum disulfide (MoS2) have recently attracted attention related to
fundamentals of heat propagation in strongly anisotropic materials, and in the context of potential
applications to optoelectronics and thermoelectrics. Multiple empirical potentials have been devel-
oped for classical molecular dynamics (MD) simulations of this material, but it has been unclear
which provides the most realistic results. Here, we calculate lattice thermal conductivity of single-
and multi-layer pristine MoS2 by employing three different thermal transport MD methods: equi-
librium, nonequilibrium, and homogeneous nonequilibrium ones. We mainly use the Graphics Pro-
cessing Units Molecular Dynamics (GPUMD) code for numerical calculations, and the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) code for crosschecks. Using different
methods and computer codes allows us to verify the consistency of our results and facilitate compar-
isons with previous studies, where different schemes have been adopted. Our results using variants
of the Stillinger-Weber potential are at odds with some previous ones and we analyze the possible
origins of the discrepancies in detail. We show that, among the potentials considered here, the
reactive empirical bond order (REBO) potential gives the most reasonable predictions of thermal
transport properties as compared to experimental data. With the REBO potential, we further find
that isotope scattering has only a small effect on thermal conduction in MoS2 and the in-plane ther-
mal conductivity decreases with increasing layer number and saturates beyond about three layers.
We identify the REBO potential as a transferable empirical potential for MD simulations of MoS2

which can be used to study thermal transport properties in more complicated situations such as in
systems containing defects or engineered nanoscale features. This work establishes a firm foundation
for understanding heat transport properties of MoS2 using MD simulations.

I. INTRODUCTION

Atomically thin molybdenum disulfide (MoS2) is a
layered material which has attracted enormous inter-
est due to its electronic and optical properties1–3. In
electronic device applications such as transistors based
on MoS2, device self-heating4 could limit the saturation
velocity, which ultimately limits device performance5.
On the other hand, the large, tunable Seebeck coeffi-
cient (thermopower)6 and power factor7 of MoS2 make
it a promising candidate for thermoelectric applications.
Knowledge of the thermal transport properties of MoS2

is crucial in both types of applications.

There have been several studies of thermal trans-
port properties of MoS2 both experimentally8–18 and
theoretically19–26. Experimentally, the measured in-
plane thermal conductivity values in bulk natural crystal
are about 100 W m−1 K−19–11, while those in exfoliated
or synthesized single- and multi-layer MoS2 are typically

lower12–18, varying from 13.3 ± 1.4 to 84 ± 17 W m−1

K−1. The measured through-plane thermal conductivity
values in bulk MoS2 are more than one order of magni-
tude smaller8–11, ranging from 2.0± 0.3 to 4.75± 0.32 W
m−1 K−1. Theoretically, Li et al.19 first calculated the
in-plane thermal conductivity of single-layer MoS2 using
the Boltzmann transport equation (BTE), with the third-
order anharmonic force constants obtained from quan-
tum mechanical density functional theory (DFT) calcu-
lations. The thermal conductivity of naturally occurring
MoS2 was calculated to be about 108 W m−1 K−1 for
a 10-µm-long sample19. Using similar method, Gu et
al.20 found that the in-plane thermal conductivity of 10-
µm-long samples in layered, naturally occurring MoS2

monotonically reduces from 138 W m−1 K−1 to 98 W
m−1 K−1 when the thickness increases from one to three
layers.

While the BTE approach is widely used in predict-
ing the thermal conductivity of materials, and a handful
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of computer codes27–31 are available for the calculations,
the method has its limitations. First, it is based on per-
turbation theory and it is usually assumed that fourth-
and higher-oder phonon-phonon interactions are unim-
portant, which is not valid at high temperatures. Sec-
ond, since the computational cost of the BTE approach
increases rapidly with the supercell size, it is impractical
for studying spatially complex structures such as those
with defects, grain boundaries or engineered nanostruc-
tures.

The above limitations for the BTE approach can be
overcome by classical molecular dynamics (MD) meth-
ods, which are nonperturbative and scale linearly with
the simulation cell size. Nevertheless, predictions from
classical MD simulations are sensitive to the empiri-
cal potential used. A few works23–26 have employed
MD simulations to study heat transport in suspended
MoS2, using the Stillinger-Weber (SW) potential32 mod-
ified and parameterized by Jiang et al.33 or Kandemir
et al.25. While many insights have been gained from
previous MD simulations23–26, there is an apparent in-
consistency between two types of thermal conductivity
calculations, namely the equilibrium (Green-Kubo) and
nonequilibrium methods, that has not been resolved. Us-
ing nonequilibrium MD simulations and the potential by
Jiang et al.33, Ding et al.23 obtained an in-plane ther-
mal conductivity of κ = 19.76 W m−1 K−1 for pristine
single-layer MoS2, but a very different value of κ = 116.8
W m−1 K−1 has been obtained by Jin et al.24 using the
equilibrium method with the same potential. Because the
equivalence between the equilibrium and the nonequilib-
rium MD methods is well established both theoretically
and in properly executed MD simulations34, it is impera-
tive to examine this inconsistency in detail for the present
case.

On the other hand, MoS2 is widely used as a solid
lubricant35 and a sophisticated empirical potential based
on the proven framework of the Abell-Tersoff-Brenner
potentials36–38 has already been developed by Liang et
al.39,40 to simulate friction between MoS2 layers. To our
knowledge the potential by Liang et al. has only been
used for heat transport applications in Ref.41 and there
is, so far, no detailed comparison between the above-
mentioned potentials regarding thermal transport. In
view of the importance of the quality of the empirical
potential in MD simulations, it is of great interest to
evaluate these potentials through a careful comparison
of the simulation results to the available experimental
data.

To this end, we study here heat transport in single-
layer, multi-layer, and bulk MoS2 using extensive MD
simulations. Apart from the equilibrium and nonequilib-
rium MD methods mentioned above, we used an efficient
homogeneous nonequilibrium MD method42,43, recently
generalized44 to many-body potentials. All methods were
implemented in the Graphics Processing Units Molecular
Dynamics (GPUMD) code45–47, which is the main com-
puter code we used for this work. For crosscheck pur-

poses, we also used the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) code48,49, in
which only the equilibrium and nonequilibrium MD
methods are available. First, we examine the consistency
between various MD based methods for heat transport
and compare our results closely with previous works23–26.
Then, we benchmark our MD results against the available
experimental data8–18, evaluating the performance of the
empirical potentials we considered and rationalizing the
theoretical and experimental results. This work estab-
lishes a firm foundation for understanding heat transport
properties of MoS2 using MD simulations.

This paper is organized as follows: Section II A in-
troduces the simulation model of this work, which we
base the discussion of the various empirical potentials
on in Sec. II B. In Sec. II C, we introduce three differ-
ent MD methods for thermal conductivity calculations.
After presenting our thermal conductivity calculation re-
sults for single-layer MoS2 in Sec. III A, we make detailed
comparisons with previous MD works in Sec. III B. In
Sec. III C, we evaluate the performance of empirical po-
tentials from various perspectives and compare our MD
results to experimental data. Section IV summarizes and
concludes our work.

II. MODELS AND METHODS

A. Atomistic model of molybdenum disulfide

Figure 1 shows the atomistic structure of a multi-layer
MoS2 system in the trigonal prismatic H phase with
hexagonal symmetry. Each layer of MoS2 consists of a
Mo sublayer in the middle sandwiched by two S sub-
layers. The in-plane lattice constant is35 a ≈ 3.16 Å,
which is the equilibrium nearest neighbor Mo-Mo (or S-
S) distance. The intralayer distance of the S sublayers
is c1 ≈ 3.24 Å and the nearest interlayer distance of
the S sublayers is c2 ≈ 2.90 Å. In single layers, each Mo
atom with trigonal prismatic coordination links to the six
nearest S atoms. The equilibrium Mo-S bond length is
d ≈ 2.42 Å. For two-dimensional materials, the thickness
must be specified to calculate the effective system volume
needed for calculating the effective thermal conductivity
in three dimensions. In this work, we follow the conven-
tion in literature to set the thickness of n-layer MoS2 to
6.15× n Å.

B. Empirical interatomic potentials for
molybdenum disulfide

We consider multiple, widely used empiri-
cal interatomic potentials for MD simulations of
MoS2

25,33,39,40,50. We implement all the potentials in
the open source GPUMD package45–47 and confirm that
GPUMD and the LAMMPS package48,49 give consistent
forces for all potentials. For the LAMMPS code, we have
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FIG. 1. A schematic illustration of the atomistic structure of multi-layer MoS2 in the trigonal prismatic H phase. For simplicity,
a two-layer system is shown in (a). Each layer of MoS2 consists of three sublayers, including a middle Mo sublayer (in black),
a top S sublayer (in red), and a bottom S sublayer (in blue). The shortest Mo-Mo pairs (in black), S-S pairs (in red), and
Mo-S bonds (in green) have equilibrium distances a, a, and d, respectively. The intralayer and interlayer distances of two S
sublayers are shown by c1 and c2, receptively. (b) Single-layer MoS2 viewed from the top. There is a zigzag-shaped edge in the
x direction and an armchair-shaped edge in the y direction. (c) A side view for single-layer MoS2. Experimental values are35:
a ≈ 3.16 Å, d ≈ 2.42 Å, c1 ≈ 3.24 Å, c2 ≈ 2.90 Å.

used the 16-Mar-2018 release. For the GPUMD code, all
the calculations can be performed using GPUMD-v1.8
or newer.

1. REBO-LJ potential for Mo-S systems

Liang et al.39,40 developed a potential in 2009 combin-
ing a REBO (reactive empirical bond-order) potential (a
version of the Abell-Tersoff-Brenner potentials36–38) and
a Lennard-Jones (LJ) potential for Mo-S systems. We
call it the REBO-LJ potential from here on. Stewart and
Spearot50 have slightly modified this potential and made
an open source implementation51 within LAMMPS. Here
we present the version by Stewart and Spearot50.

For the REBO part, the total potential energy U of
the system can be written as a sum of the site potentials
Ui:

U =
∑
i

Ui. (1)

The site potential takes the form:

Ui =
1

2

∑
j 6=i

fC(rij) [fR(rij)− bijfA(rij)] , (2)

where fC(rij) is the Tersoff cutoff function37, fA(rij) and
fR(rij) are respectively the attractive and the repulsive
functions. The bond order function bij is

bij = (1 + ζij)
−1/2

, (3)

where

ζij =
∑
k 6=i,j

fC(rik)g(cos θijk) + P (Ni). (4)

Here, g is an analytical function of the bond angle θijk
formed by the ij and ik bonds, and P is an analytical
function of the coordination number Ni defined as50

Ni =
∑
j 6=i

fC(rij). (5)

Apart from the REBO part, a nonbonded LJ potential is
also included to account for the van der Waals interac-
tions. A cubic spline is constructed to smoothly reduce
the LJ potential to zero at the inner cutoff distance of
the REBO part.

All material-specific parameters can be found in Ref.
50. The Lennard-Jones parameter ε for the S-S pair is
set to 0.01386 eV in Ref. 50 and to 0.020 eV in Refs. 40.
We choose the value in Refs. 40 because it is motivated
by room temperature (300 K) applications whereas Ref.
50 was motivated by zero temperature applications.

2. Original SW potential

Before introducing the SW potentials for MoS2, we
review the original SW potential proposed in 198532. The
total potential energy for the SW potential consists of a
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two-body part and a three-body part. The site potential
is

Ui =
1

2

∑
j 6=i

V2(rij) +
1

2

∑
j 6=i

∑
k 6=i,j

hijk, (6)

where

V2(rij) =Aijεij

[
Bij

(
σij
rij

)4

− 1

]

× exp

(
1

rij/σij − aij

)
(7)

and

hijk =εijλijk exp

[
γij

rij/σij − aij
+

γik
rik/σik − aik

]
× (cos θijk − cos θ0ijk)

2
. (8)

Here, Aij , Bij , εij , σij , aij , λijk, γij , and cos θ0ijk are
material-specific parameters. Parameters with two in-
dices depend on a pair of atoms i and j (sometimes i and
k); parameters with three indices depend on a triplet ijk
of atoms i, j, and k, where i is the central atom of the
triplet. The parameter εij is redundant and can be ab-
sorbed into Aij and λijk. For each pair of atom types,
there is a cutoff σijaij for the interactions.

3. SW13 and SW13E potentials for molybdenum disulfide

Jiang et al.33 developed an SW potential in 2013 based
on the standard SW potential and an extra requirement
that there is no interaction in Mo-S-S triplets where the
S-S distance is larger than the cutoff distance of 3.78
Å for the S-S pairs (such as the Mo-S1-S5 triplet in
Fig. 1). The cutoff distance for the three-body part only
extends to nearest neighbors (i.e., excluding Mo-Mo-Mo
and S-S-S triplets), while that for the two-body part ex-
tends to next nearest neighbors (i.e., including Mo-S, Mo-
Mo, and S-S pairs). However, the source code provided
by Jiang et al. (the file tagged with pair_sw.cpp in
the supplementary material of Ref. 33) is incorrectly im-
plemented such that all the three-body interactions are
excluded. It is likely that this incorrect implementation
has been used in some previous works on MoS2. We call
the potential as described in Ref. 33 (i.e, with the error
in the source code fixed) the SW13 potential and that
with the error in the source code unfixed the SW13E po-
tential. All the material-specific parameters can be found
in Ref. 33.

4. SW16 potential for molybdenum disulfide

Kandemir et al.25 developed another SW potential for
MoS2 in 2016, which we call the SW16 potential. This

potential differs from the SW13 potential in that the Mo-
S-S three-body interaction, for the case where the two S
atoms are in the same sublayer (such as the Mo-S1-S2

triplet in Fig. 1), is taken to be different from the case
where the two S atoms are in different sublayers (such
as the Mo-S1-S4 triplet in Fig. 1). Similar to SW13,
interactions in triplets such as Mo-S1-S5 in Fig. 1 are
excluded. All the material-specific parameters can be
found in Ref. 25.

5. Time steps for integration

By testing energy conservation in the NVE ensem-
ble, we determined that a time step of 1.0 fs is suffi-
ciently small for the SW potentials but too large for the
REBO-LJ potential, which requires a time step of 0.5
fs to achieve good energy conservation. The need for a
smaller time step for the REBO potential originates from
the Tersoff-like cutoff function adopted in the REBO-LJ
potential, which is only continuous up to the first deriva-
tive.

C. Methods for thermal conductivity calculations

There are multiple MD-based methods for heat trans-
port calculations, including the equilibrium MD (EMD)
method which is based on a Green-Kubo relation43 and
the nonequilibrium MD (NEMD) method which is based
directly on Fourier’s law of heat conduction. When the
simulation parameters (e.g. system size, simulation time,
linear response) are properly chosen the two methods
above are guaranteed to give consistent thermal con-
ductivity results34 in the diffusive regime. Additionally,
there is a homogeneous nonequilibrium MD (HNEMD)
method42,43 which has been recently generalized44 such
that it works for general many-body potentials, including
the REBO and SW potentials considered in this work.
When studying diffusive transport, the HNEMD and
NEMD methods are the most and least computationally
efficient, respectively52. The HNEMD method is superior
to the EMD and NEMD methods in terms of computa-
tional efficiency only, not in terms of the actual calculated
thermal conductivity values or physical insight. When
used properly, all the three methods give consistent ther-
mal conductivity values in the diffusive limit34,44,52–54.
More physical insight regarding the heat transport can
be gained by decomposing the total thermal conductiv-
ity into a single-particle component and a collective one,
as discussed in Ref. 55 in terms of the EMD method, but
this decomposition is not the focus in our current study
and we thus do not consider it. In this work, we mainly
use the HNEMD method, but also employ the other two
methods to crosscheck some results. We briefly review
these methods below.
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1. The HNEMD method

In this method, the system is driven out of equilibrium
by an external force44:

F ext
i = EiF e +

∑
j 6=i

(
∂Uj
∂rji

⊗ rij

)
· F e, (9)

where rij = rj − ri, ri being the position of particle i,
Ei is the total energy of atom i and ⊗ denotes tensor
product. When the parameter F e (of dimension inverse
length) is small enough such that the system is in the lin-
ear response regime, a nonequilibrium heat current 〈J〉ne,
which is linear in F e, will be induced. The linear relation
between them can be expressed as

〈Jµ(t)〉ne
TV

=
∑
ν

κµν(t)F νe , (10)

where T is the system temperature, V is the system vol-
ume and κµν is the thermal conductivity tensor. For a
many-body potential, the heat current J is given by56

J =
∑
i

viEi +
∑
i

∑
j 6=i

rij

(
∂Uj
∂rji

· vi
)
. (11)

Due to the hexagonal symmetry, the in-plane heat trans-
port in MoS2 is essentially isotropic. In this case, the
in-plane thermal conductivity tensor reduces to a scalar
κ and can be expressed as

κ(t) =
〈J(t)〉ne
TV Fe

. (12)

In practice, we redefine κ(t) as the cumulative average of
the above quantity44:

κ(t) =
1

t

∫ t

0

〈J(s)〉ne
TV Fe

ds, (13)

and check how κ(t) converges. More theoretical and tech-
nical details for the HNEMD method can be found from
Ref. 44.

The simulation protocol in the HNEMD method is as
follows. First, we equilibrate the system for 1 ns in the
NPT ensemble with a target temperature of 300 K and
a target in-plane pressure of zero. Second, we make a
production run in the NVT ensemble (realized by us-
ing the Nosé-Hoover chain thermostat57), measuring and
outputting the average heat current for every 1000 steps.
As we will see, the thermal conductivities we calculate
using the SW potentials are much larger than what we
calculate using the REBO-LJ potential. Therefore, the
production time for the SW potentials also needs to be
much larger. We use a production time of 2 ns for the
REBO-LJ potential and a production time of 15 ns for
the SW potentials. Accordingly, the driving force pa-
rameter Fe needs to be smaller for the SW potentials.

With some tests, we determined the following appropri-
ate parameters: Fe = 0.2 µm−1 for the REBO-LJ po-
tential and 0.05 µm−1 for the SW potentials. Last, as
this method has small finite-size effects (because there
is no boundary scattering), a relatively small simulation
cell with periodic boundary conditions in the xy plane
can be used. In the Appendix, we show that a simula-
tion cell of size 24× 24 nm2 (N = 20250 atoms) is large
enough to eliminate the finite-size effects in the HNEMD
simulations. The same conclusion applies to the EMD
method introduced below. In all our HNEMD and EMD
simulations discussed in the main text, we used a 32×32
nm2 simulation cell (N = 36000 atoms). We performed
10 independent runs and calculated the error bounds in
terms of the standard error (standard deviation divided
by the square root of the number of independent runs).

2. The EMD method

In the EMD method, one first calculates the ensemble
(time) average 〈· · · 〉 of the heat current autocorrelation
function 〈J(t)J(0)〉 and then performs a numerical inte-
gration to get the (running) thermal conductivity κ(t)
according to the following Green-Kubo relation43,57:

κ(t) =
1

kBT 2V

∫ t

0

dt′〈J(t′)J(0)〉, (14)

where kBT is the thermal energy and V is the volume
of the system. In practice, one needs to check the time
convergence of the running thermal conductivity. This is
called the EMD method because the heat current here is
sampled in equilibrium state (in the NVE ensemble).

We only used the EMD method to crosscheck some
results obtained by using the SW potentials. The sim-
ulation protocol is as follows. First, we equilibrate the
system for 1 ns in the NPT ensemble with a target tem-
perature of 300 K and a target in-plane pressure of zero.
Second, we make a production run of 50 ns in the NVE
ensemble, sampling the instant heat current every 10
steps. Third, we calculate the heat current autocorrela-
tion function using the saved heat current data and then
calculate the running thermal conductivity according to
the Green-Kubo relation Eq. (14). We performed 50 to
100 independent runs and calculated the error bounds in
terms of the standard error.

3. The NEMD method

The NEMD method can be used to calculate the ther-
mal conductivity κ(L) of systems with finite length L
according to Fourier’s law:

κ(L) =
Q

|∇T |
, (15)

where Q is an externally generated heat flux and ∇T is
the resulting temperature gradient in steady state. There
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are many flavors of the NEMD method and we chose the
following setup: we fix the two ends of the system in the
transport direction and generate the heat flux by main-
taining the temperatures in the local atomic groups close
to the left and the right ends at 330 K (heat source) and
270 K (heat sink), respectively, using the Nosé-Hoover
chain method57. The heat flux is calculated based on
energy conservation between the system and the baths.

Again, here we only used the NEMD method to cross-
check some results obtained using the SW16 potential.
The simulation protocol is as follows: First, we equili-
brate the system for 1 ns in the NPT ensemble with a
target temperature of 300 K and a target in-plane pres-
sure of zero. Second, we make a production run of 10
ns with local thermal baths, sampling the local temper-
atures and the accumulated energy exchanged between
the system and the thermal baths. Third, we use the
data within the last 6 ns of the production stage (where
we checked that steady state has been achieved) to deter-
mine the temperature gradient ∇T , the energy exchange
rate dE/dt, and the heat flux Q = dE/dt/S, where S
is the cross-sectional area. The thermal conductivity is
then calculated according to Eq. (15). We keep the width
of the system at 10 nm and vary the length from 200 nm
to 1000 nm. Periodic boundary conditions are applied
to the width direction. For each length, we performed
three independent runs and calculated the error bounds
in terms of the standard error.

III. RESULTS AND DISCUSSION

A. HNEMD results for single-layer molybdenum
disulfide

The accumulative averages of the in-plane thermal con-
ductivity in suspended single-layer MoS2 calculated us-
ing the HNEMD method [cf. Eq. (13)] with the various
potentials are shown in Fig. 2. Here, we have decom-
posed the thermal conductivity into an in-plane compo-
nent and an out-of-plane component, κ = κin + κout,
which corresponds to the following decomposition of the
heat current53:

J = J in + Jout; (16)

J in =
∑
i

∑
j 6=i

rij

(
∂Uj
∂xji

vxi +
∂Uj
∂yji

vyi

)
; (17)

Jout =
∑
i

∑
j 6=i

rij
∂Uj
∂zji

vzi . (18)

We note that the out-of-plane component κout is not the
thermal conductivity in the cross-plane direction of the
MoS2 layer, but the in-plane thermal conductivity contri-
bution from out-of-plane phonon modes. It is interesting

to note that, for all the potentials, the thermal conductiv-
ity is dominated by the in-plane component. This is simi-
lar to black phosphorous52, but opposite to graphene53,58

and h-BN54. In planar 2D materials such as graphene
and h-BN, the out-of-plane modes correspond exactly
to the flexural modes and there is a symmetry selection
rule58 that excludes three-phonon scattering processes in-
volving an odd number of flexural phonons. This leads
to much larger relaxation times for the flexural phonon
modes which are consequently the major heat carriers
in these materials. Because MoS2 is not a strictly pla-
nar (one-atomic-thick) crystal, the symmetry selection
rule does not apply, which leads to relatively stronger
phonon-phonon scattering rates and a relatively smaller
thermal conductivity contribution from the out-of-plane
modes59.

We report the converged thermal conductivity values
for the various potentials from the HNEMD method in
Table I. The large thermal conductivity values computed
using the SW13 and SW16 potentials are clearly un-
physical as compared to experimental data, while that
computed using the REBO-LJ potential is very reason-
able. Note that our HNEMD predictions using the SW
potentials differ significantly from those from previous
works23–26; see Table II. We give the detailed compar-
isons next.

TABLE I. Thermal conductivity values (in units of W m−1

K−1) for single-layer MoS2 at 300 K and zero pressure from
the HNEMD simulations.

Potential κin κout κ

REBO-LJ 91 ± 2 26 ± 1 117 ± 3

SW13 391 ± 14 116 ± 3 507 ± 17

SW13E 139 ± 11 54 ± 3 193 ± 14

SW16 229 ± 19 46 ± 3 275 ± 22

B. Comparison with previous MD results

1. Comparison with previous MD results using the
SW13/SW13E potential

Our HNEMD values for the SW13 and SW13E poten-
tials are 507±17 and 193±14 W m−1 K−1, respectively.
In comparison, Ding et al.23 obtained a value of 19.76
W m−1 K−1 using the NEMD method and Jin et al.24

obtained a value of 116.8 W m−1 K−1 using the EMD
method. Unfortunately, it is not clear whether they have
used the SW13 or the SW13E potential. In any case, the
results by Ding et al.23 can be understood by noticing
that they have used very short system lengths in their
NEMD simulations, which has been demonstrated34,60

to be inadequate for making a reliable extrapolation to
the limit of infinite length.
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different potentials.

The EMD results by Jin et al.24 differ from our
HNEMD results obtained with both the SW13 and the
SW13E potentials. To resolve this discrepancy, we per-
formed EMD simulations using both the GPUMD code
and the LAMMPS code with these two potentials. For
the SW13E potential, we find that the thermal conduc-
tivity converges to similar values at 209±22 W m−1 K−1

and 208 ± 13 W m−1 K−1 for GPUMD and LAMMPS
respectively (Figs. 3(a) and (b) respectively). As dis-
cussed in Sec. II B 3, the SW13E potential excludes all
of the three-body interactions. Under this circumstance,
the heat current calculations for GPUMD and LAMMPS
are the same and an identical thermal conductivity be-
tween the codes is expected. Our EMD values are also
consistent with our HNEMD value for the SW13E poten-

tial.

With the SW13 potential, three-body interactions are
included and the heat current calculations in GPUMD
and LAMMPS are different56. We find these differences
to be substantial as the thermal conductivity is calcu-
lated to be 531± 53 W m−1 K−1 using GPUMD and the
(incorrect) LAMMPS simulations do not converge up to
a correlation time of 10 ns (Figs. 3(c) and (d) respec-
tively). Among the four combinations of software pack-
ages and the SW13E/SW13 potentials, we do not obtain
results that are consistent with those in Ref. 24, leaving
the discrepancy unresolved. Again, our EMD value us-
ing GPUMD is consistent with our HNEMD value for the
SW13 potential. We also note that the HNEMD method
is more than an order of magnitude more efficient than
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The thin gray lines represent the results of independent simulations with different initial velocities (50 for each plot), the red
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the EMD method, as has been demonstrated for many
other systems44,52,54.

2. Comparison with previous MD results using the SW16
potential

Our HNEMD thermal conductivity for the SW16 po-
tential, 275± 22 W m−1 K−1, is much larger than those
in Refs. 25 and 26 [about 100 W m−1 K−1; cf. Table II].
They have used the EMD, the NEMD, and the Einstein-
relation61 methods and it seems that their results agree
with each other very well. To understand the discrepan-
cies, we performed EMD and NEMD simulations using
this potential.

Figures 4(a) and 4(b) show the EMD results obtained
by using the GPUMD code and the LAMMPS code, re-
spectively. Similar to the case of the SW13 potential, the
convergence of κ(t) with respect to t is very slow, indi-
cating the inadequate crystal anharmonicity represented
by this potential. The converged thermal conductivity
using GPUMD is κ = 280 ± 32 W m−1 K−1, which is
consistent with our HNEMD prediction. The converged
thermal conductivity using LAMMPS is κ = 231± 16 W
m−1 K−1, which is smaller than the GPUMD value, but
much larger than the EMD value by Hong et al.26. It has

been found that the heat current formula in LAMMPS
leads to significantly underestimated thermal conduc-
tivity for various two-dimensional materials described
by many-body potentials, including graphene56, h-BN54,
and black phosphorous52. Here, the difference between
our GPUMD and LAMMPS results is small, which might
be related to the fact that the SW potentials for MoS2

contain a large portion of the two-body component, as
explained in Sec. II B.

Because we failed to reproduce the EMD results by
Hong et al.26 using the LAMMPS code, we further tried
the NEMD method. Using this method and the GPUMD
code, we calculated the thermal conductivity κ(L) of
MoS2 with the length L varying from 200 nm to 1000 nm.
The data are listed in Table III and shown in Fig. 4(c).
For the case of L = 200 nm, we have used both GPUMD
and LAMMPS and got identical results. To see how κ(L)
converges with increasing L, we plot 1/κ(L) against 1/L
in Fig. 4(d). Usually, it is assumed62 that 1/κ(L) is
linear in 1/L, but in most cases 1/κ(L) is a nonlinear
function of 1/L34,60 due to the frequency dependence of
the phonon mean free path λ(ω). Our NEMD data can
be well fitted by a quadratic function [the solid line in
Fig. 4(d)]:

1

κ(L)
=

1

κ0

(
1 +

λ

L
+

α

L2

)
, (19)
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where λ ≈ 1370 nm is the effective (average) phonon
mean free path and α is a (negative) parameter char-
acterizing the nonlinearity caused by the frequency de-
pendence of the phonon mean free path. The thermal
conductivity in the infinite-length limit κ0 is fitted to
be 262 ± 28 W m−1 K−1. This is close to but slightly
smaller than our HNEMD and EMD predictions. This
is because the maximum length (1000 nm) we have con-
sidered in our NEMD simulations is still shorter than
λ and is not long enough34,60 to fully capture the non-
linearity between 1/κ(L) and 1/L. We think this could
explain why Hong et al.26 obtained a much smaller value
(110.30 ± 2.07 W m−1 K−1) using NEMD simulations.
Their NEMD data actually exhibit nonlinear dependence
between 1/κ(L) and 1/L, but they still have used a lin-
ear fit to their data up to a length of 400 nm. Actually,
by fitting our data up to the same length using a linear
function (cf. the dashed line in Fig. 4(d)), we get an
extrapolated value of κ0 = 137± 7, which is close to the
value reported by Hong et al.26.

The developers of the SW16 potential25 have calcu-
lated the thermal conductivity of single-layer MoS2 us-
ing the so-called Einstein-relation method61. They ob-
tained a value of 95±5 W m−1 K−1, which is significantly

smaller than ours. No details regarding the method and
the time convergence in their calculations were presented,
and we do not know the origin of the discrepancy. How-
ever, we note that the Einstein-relation method consis-
tently underestimated the thermal conductivity of some
other materials: it gives a value of 160.5 ± 10.0 W m−1

K−1 for silicon at 300 K (using the Tersoff potential63)
against a value of 250±10 W m−1 K−1 using the standard
EMD method34; it gives a value of 400 W m−1 K−1 for
single-layer h-BN at 300 K (using the Tersoff potential64)
against a value of 670 ± 30 W m−1 K−1 using both the
EMD and the HNEMD method54.

C. Comparison among the empirical potentials and
with experiments

In this subsection, we give detailed comparisons be-
tween our simulation results and available experimen-
tal data, as summarized in Table IV. Experimentally
measured in-plane thermal conductivities from various
sources are typically smaller than 100 W m−1 K−1. Only
the prediction by the REBO-LJ potential is close to
these; the SW potentials significantly overestimate the
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TABLE II. Thermal conductivity values (in units of W m−1

K−1) for single-layer MoS2 at 300 K and zero pressure as
calculated in this work and from previous works using the
SW potentials.

Reference Potential Method κ
23 SW13/SW13E NEMD 19.76
24 SW13/SW13E EMD 116.8

Here SW13 HNEMD 507 ± 17

Here SW13 EMD (GPUMD) 531 ± 53

Here SW13 EMD (LAMMPS) Diverged

Here SW13E HNEMD 193 ± 14

Here SW13E EMD (GPUMD) 209 ± 22

Here SW13E EMD (LAMMPS) 208 ± 13
25 SW16 Einstein relation 95 ± 5
26 SW16 EMD 108.74 ± 6.68
26 SW16 NEMD 110.30 ± 2.07

Here SW16 HNEMD 275 ± 22

Here SW16 EMD (GPUMD) 280 ± 32

Here SW16 EMD (LAMMPS) 231 ± 16

Here SW16 NEMD 262 ± 28

TABLE III. Thermal conductivity values (in units of W m−1

K−1) calculated with different packages for systems with dif-
ferent lengths L (in units of nm) in the NEMD simulations
using the SW16 potential. The number of atoms in each sys-
tem is denoted as N .

L N κ package

200 72162 42 ± 0.6 LAMMPS

200 72162 43 ± 1.2 GPUMD

300 108186 57 ± 2.2 GPUMD

400 144324 65 ± 1.5 GPUMD

500 180384 75 ± 1.8 GPUMD

600 216486 86 ± 1.9 GPUMD

700 252510 92 ± 2.1 GPUMD

800 288648 100 ± 4.1 GPUMD

1000 360810 115 ± 3.4 GPUMD

thermal conductivity due to the underestimated phonon
anharmonicity, as evidenced from the extraordinarily
slow convergence of the running thermal conductivity
(see Fig. 3(c) and Fig. 4(a)). In contrast, both the
time scale and the thermal conductivity value from the
REBO-LJ potential are very reasonable (see Fig. 2(a)).

A proper description of thermal transport without an
adequate description of phonon dispersion is impossible.
To this end, we also calculated the phonon dispersions
of MoS2 as described by the empirical potentials using
the finite displacement method as implemented in the
PHONOPY65 package and compared with experiment

TABLE IV. In-plane thermal conductivity values for sus-
pended and bulk MoS2 at 300 K from experiments and our
predictions using the HNEMD method with the REBO-LJ
potential. Isotope scattering is considered in the HNEMD
calculations.

Ref. Sample or method Layers κ (W m−1 K−1)
17 CVD 1 30 ± 3.3; 35.5 ± 3
16 CVD 1 13.3 ± 1.4
16 CVD 2 15.6 ± 1.5
12 CVD 11 52
16 CVD 12 43.4 ± 9.1
14 Exfoliated 1 34.5 ± 4
15 Exfoliated 1 84 ± 17
15 Exfoliated 2 77 ± 25
18 Exfoliated 4 34 ± 5; 31 ± 4
13 Exfoliated 4 44 − 50
13 Exfoliated 7 48 − 52
9 Natural crystal bulk 85 − 110
10 Natural crystal bulk 105
11 Natural crystal bulk 80 ± 17

Here HNEMD (REBO-LJ) 1 110 ± 4

Here HNEMD (REBO-LJ) 2 92 ± 4

Here HNEMD (REBO-LJ) 3 81 ± 3

Here HNEMD (REBO-LJ) 4 78 ± 3

Here HNEMD (REBO-LJ) 5 80 ± 3

Here HNEMD (REBO-LJ) bulk 83 ± 3

data66 determined by inelastic X-ray scattering. The re-
quired harmonic force constants are calculated by using
a 8× 5 rectangular supercell (240 atoms), which is large
enough to take care of the long-range LJ potential in the
REBO-LJ potential. The SW potentials do not need a
supercell as large as this but we have used this super-
cell uniformly for all the potentials. Before generating
the displacements, the supercell has been optimized at
zero temperature for each potential. Phonon dispersion
curves in the Brillouin zone corresponding to the primi-
tive cell were obtained by unfolding67 those correspond-
ing to the supercell.

The calculated phonon dispersions are shown in Fig. 5.
By comparing with the experimental data66, we see that
all the three potentials (REBO-LJ, SW13, and SW16)
describe the low-frequency acoustic phonons fairly well.
The SW13E potential does not lead to reasonable de-
scription of the phonon dispersion, which is expected as
it is an incorrect implementation of the SW13 potential.

From the comparisons above between the various po-
tentials, in terms of thermal conductivity and phonon
dispersion of single-layer MoS2, we conclude that the
REBO-LJ potential stands out. The REBO-LJ potential
has two other advantages: First, it is more transferable
because it was fitted by considering various Mo-S struc-
tures with diverse coordination numbers. An evidence
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66.

for its high transferability comes from a very satisfac-
tory reproduction68 of the formation energies of point
defects in MoS2, as compared to those obtained using
DFT calculations69. In contrast, the SW potentials25,33

were fitted by considering only some equilibrium prop-
erties such as bond lengths and elastic constants. The
implementations of these SW potentials also involve an
ad hoc modification to the LAMMPS source code, which
is problematic when the structure is away from the equi-
librium MoS2 structure; the intention of this modifica-
tion was to exclude the interactions in triplets such as
Mo-S1-S5 in Fig. 1, but it will lead to excluding the S-
Mo-Mo triplet interactions when the Mo-Mo distance is
larger than the S-S cutoff distance and smaller than the
Mo-Mo cutoff distance, which is unreasonable. Second,
there is an intrinsic van der Waals part in the REBO-
LJ potential, which is important for describing multi-
layer systems. This part was not included in the SW
potentials. From here on, we only use the REBO-LJ po-
tential and the efficient HNEMD method, focusing on
comparisons with experiments8–18 and results from BTE
approach combined with DFT calculations19,20.

In our previous simulations, we have only considered
isotopically pure systems. As the experimental samples
have not been isotopically purified, we include isotope ef-

fect on heat transport by considering a uniformly random
spatial distribution of the atomic masses according to the
isotopic abundances of Mo and S elements compiled in
table 1 of Ref. 70. The calculated in-plane thermal con-
ductivity of suspended monolayer is 110±4 W m−1 K−1,
which is nearly unchanged compared to that of isotopi-
cally pure MoS2. This is similar to the finding by Li et
al.19 obtained by using the BTE method combined with
DFT calculations. The small effect of isotope scattering
on the thermal conductivity is expected as the mass mis-
match between Mo and S is only slightly affected by the
inclusion of naturally occurring isotopes.

Experimental measurements are available not only for
single-layer MoS2, but also for multi-layer and bulk
MoS2. We calculated the thermal conductivity of
bulk MoS2 (represented as six-layer MoS2 with periodic
boundary conditions in all directions) as well as two- to
five-layer MoS2, with isotope disorder included. The rele-
vant results are presented in Table IV and also visualized
in Fig. 6. The layer dependence of thermal conductiv-
ity is very similar to that obtained by Gu et al.20 based
on BTE calculations; the thermal conductivity decreases
with increasing layer number n and saturates at n = 3. It
has been suggested that both the change of phonon dis-
persion and the thickness-induced anharmonicity associ-
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ated with the breakdown of a mirror symmetry in single-
layer MoS2 are responsible for the reduction of thermal
conductivity with increasing layer number20.

TABLE V. Through-plane thermal conductivity κz of bulk
MoS2 at 300 K from experiments and our calculations using
the HNEMD method with the REBO-LJ potential. Isotope
scattering is considered in the HNEMD calculations.

Ref. κz (W m−1 K−1)
8 ∼ 2.3
9 2.0 ± 0.3
10 2.0
11 4.75 ± 0.32

Here 2.0 ± 0.2

Apart from bulk MoS2, our MD predicted values are
consistently larger than experimental values, which how-
ever show large variations. Variations in the experimen-
tal results could be due to differences in the quality of
each sample, measurement calibration, and the presence
of thermal contact resistance. Indeed, some experimental
samples12,16,17 were grown by chemical vapor deposition
(CVD), which are usually polycrystalline, consisting of
grains separated by grain boundaries. It has been re-
cently shown that dense grain boundaries can heavily
reduce71 the thermal conductivity of MoS2. Even for
exfoliated samples, there are defects and possibly rough
edges18 which can also reduce the thermal conductivity.
Nevertheless, our MD results for single-layer and bi-layer
MoS2 are close to those measured by Zhang et al.15 on
exfoliated samples. In the other limit of bulk MoS2, our
MD predicted value agree well with those measured on

natural crystals (with high purity)9–11. Moreover, our
calculated through-plane thermal conductivity κz is also
close to the experimental values, as can be seen from Ta-
ble V. Based on all these comparisons, we conclude that
the REBO-LJ potential has predictive power in terms of
thermal transport properties in Mo-S systems and can be
used for more spatially complex structures than pristine
MoS2, where the BTE-based method is less applicable.
We leave these applications to future work.

IV. SUMMARY AND CONCLUSIONS

In summary, we have employed extensive classical MD
simulations to study heat transport in single-layer, multi-
layer, and bulk MoS2. We considered three existing em-
pirical many-body potentials for MoS2 in the literature:
the REBO-LJ potential39,40,50, the SW13 potential by
Jiang et al.33, and the SW16 potential by Kandemir et
al.25. To calculate the thermal conductivity, we mainly
used the highly efficient HNEMD method for many-body
potentials44 and used the EMD and NEMD methods to
check the consistency of our data. Most of the MD simu-
lations were done using the efficient GPUMD code45–47,
but the LAMMPS code48,49 was also used in some cases
to double-check. For each empirical potential used, we
have obtained consistent results between the different
MD methods by using the GPUMD code. However, our
results differ significantly from some previous studies in
the literature. While we can understand the NEMD re-
sults by Ding et al.23 and Hong et al.26, we failed, despite
extensive efforts, to reproduce the EMD results by Jin et
al.24, Hong et al.26, and Kandemir et al.25.

Based on our results for single-layer MoS2, we found
that both the SW13 and the SW16 potentials do not
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describe the phonon anharmonicity of MoS2 properly:
they lead to very slow convergence of the running ther-
mal conductivity in the Green-Kubo relation, indicating
the existence of phonon modes with very long relaxation
times or very large mean free paths. In contrast, both
the time scale and the thermal conductivity value from
the REBO-LJ potential are very reasonable.

Finally, we took isotope scattering into account and
evaluated the thermal conductivities of single-layer,
multi-layer and bulk MoS2 using the REBO-LJ poten-
tial and compared closely with predictions obtained from
the BTE approach as well as available experimental data.
We found that the thermal conductivity decreases with
increasing layer number n and saturates at n = 3, which
agrees with the prediction by Gu et al.20 from BTE cal-
culations. Our predicted thermal conductivity values
agree well with those measured on samples with rela-
tively high quality9–11,15. We also compared the phonon
dispersion curves calculated using the empirical poten-
tials with available experimental data66. From all these
comparisons, we identify the REBO-LJ potential as a
transferable empirical potential for MoS2 that can be
applied to study thermal transport properties of MoS2

in more complicated situations such as systems with the
presence of defects, grain boundaries or specifically en-
gineered nanoscale features, where the BTE approach is
less practical. Such applications will be considered in fu-
ture studies. This work establishes a firm foundation for
understanding heat transport properties of MoS2 using
MD simulations.
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Appendix A: Demonstratration of the small
finite-size effects in HNEMD simulations

In the HNEMD and EMD methods, there is no bound-
ary in the transport direction and the system is ho-

mogeneous in terms of temperature distribution. Peri-
odic boundary conditions are applied in the transport
direction and when the periodic simulation cell is large
enough, the calculated thermal conductivity can be con-
sidered as that of an infinitely long system. When the
simulation cell is too small, there might be finite-size
effects. However, the finite-size effects in EMD and
HNEMD methods are usually quite small. The simu-
lation cell size does not need to be comparable to the
phonon mean free path of the studied material. The cell
size in these methods only needs to be large enough to
accommodate the major phonon wavelengths, which are
of the order of 10 nm in MoS2.
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FIG. 7. Thermal conductivity of isotopically pure single-layer
MoS2 at 300 K calculated by using the HNEMD method with
the REBO-LJ potential as a function of the number of atoms
in the periodic simulation cell.

From Fig. 7, we see that the thermal conductivity from
the HNEMD method barely changes when the number of
atoms exceeds 20 000, or when the linear size exceeds 24
nm. Similar results can be obtained by using the EMD
method. The small finite size effects have been repeat-
edly reported in the literature. For example, a cubic cell
with a side length of a few nanometers is large enough
for bulk silicon crystal34 and a rectangular cell with a
side length of 25 nm is large enough for two-dimensional
graphene53. These cells are one to two orders of mag-
nitude smaller than the typical phonon mean free paths
in these materials. Small finite-size effects are the very
advantage of the HNEMD and EMD methods over the
NEMD method.
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