
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quench dynamics and zero-energy modes: The case of the
Creutz model

R. Jafari, Henrik Johannesson, A. Langari, and M. A. Martin-Delgado
Phys. Rev. B 99, 054302 — Published 11 February 2019

DOI: 10.1103/PhysRevB.99.054302

http://dx.doi.org/10.1103/PhysRevB.99.054302


Quench dynamics and zero-energy modes: the case of the Creutz model

R. Jafari,1, 2, 3, ∗ Henrik Johannesson,3, 2, † A. Langari,4, ‡ and M. A. Martin-Delgado5, 6, §

1Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
2Beijing Computational Science Research Center, Beijing 100094, China

3Department of Physics, University of Gothenburg, SE 412 96 Gothenburg, Sweden
4Physics Department, Sharif University of Technology, Tehran 11155-9161, Iran
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In most lattice models, the closing of a band gap typically occurs at high-symmetry points in the
Brillouin zone. Differently, in the Creutz model − describing a system of spinless fermions hopping
on a two-leg ladder pierced by a magnetic field − the gap closing at the quantum phase transition
between the two topologically nontrivial phases of the model can be moved by tuning the hopping
amplitudes. We take advantage of this property to examine the nonequilibrium dynamics of the
model after a sudden quench of the magnetic flux through the plaquettes of the ladder. For a quench
to one of the equilibrium quantum critical points we find that the revival period of the Loschmidt
echo − measuring the overlap between initial and time-evolved states − is controlled by the gap
closing zero-energy modes. In particular, and contrary to expectations, the revival period of the
Loschmidt echo for a finite ladder does not scale linearly with size but exhibits jumps determined
by the presence or absence of zero-energy modes. We further investigate the conditions for the
appearance of dynamical quantum phase transitions in the model and find that, for a quench to
an equilibrium critical point, such transitions occur only for ladders of sizes which host zero-energy
modes. Exploiting concepts from quantum thermodynamics, we show that the average work and
the irreversible work per lattice site exhibit a weak dependence on the size of the system after a
quench across an equilibrium critical point, suggesting that quenching into a different phase induces
effective correlations among the particles.

I. INTRODUCTION

Recent progress in the studies of ultra-cold atoms
trapped in optical lattices provide a new framework for
investigating the nonequilibrium dynamics of quantum
critical phenomena1–3. While there are many ways to
drive a physical system out of equilibrium, the sim-
plest controllable scheme is arguably that of a quantum
quench. Here a system is prepared in a well-defined
initial state and then taken out of equilibrium by a
change of a Hamiltonian parameter4,5 or by a projec-
tive measurement6. The nonequilibrium dynamics of a
quenched quantum system can be described and char-
acterized in many different ways. In the case of a
sudden quench, a very efficient approach is to employ
the notion of the Loschmidt echo (LE)7 − the mod-
ulus of the Loschmidt amplitude (LA) − which mea-
sures the overlap of the initial quantum state with its
time-evolved state controlled by the post-quench Hamil-
tonian. In fact, the LE has been explored for a va-
riety of problems connected directly or indirectly to
quench dynamics, including quantum chaos8–10, quan-
tum speed limit time11, quantum decoherence12–18, equi-
librium quantum phase transitions13,19–26, dynamical
quantum phase transitions22,27–38, work statistics26,39,40

and entropy production23.

Concentrating on quantum criticality, a central prob-
lem has been to link the salient features of quench
dynamics to equilibrium quantum phase transitions
(QPTs)13,20–23,40,41. The LE has here been used to pin-

point how distinct signatures of an equilibrium QPT are
manifested in the dynamics when a system is quenched
to a quantum critical point13,20,21,42 as compared to a
quench across a quantum critical point22,23,26,40. An
early analytical result for the dynamics of the one-
dimensional transverse field Ising model13 suggested that
the LE characteristically exhibits an accelerated decay
followed by periodic revivals when quenched to a crit-
ical point20,21 − a finding later noted also for other
models20,21. However, more recent studies show that a
periodic Loschmidt revival may or may not appear for
this case. What matters is that the specific modes which
contribute to the LE are massless, a property, which is
not guaranteed to materialize at a QPT43,44.

The LE has also turned out to be useful for identi-
fying nonanalyticities in the time evolution of a system
out of equilibrium − a.k.a. a dynamical quantum phase
transition (DQPT)45–47. Important recent results22 sug-
gested that such nonanalyticities, calculated from the
LE, are generically linked to a quench across an equi-
librium quantum critical point. Subsequent studies, also
employing the concept of an LE, have revealed that a
quench across a critical point does not necessarily im-
ply a DQPT, and that such a transition may instead oc-
cur when quenching to the critical point within the same
phase of the system48–50.

Yet another application of the LE to the problem of
quantum critical dynamics has been to extract the work
distribution function of a system39. Notably, it has been
shown that the irreversible work and irreversible entropy
production signal the presence of a QPT26,39,40. Recently
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the irreversible work was found to lay bare also the crit-
ical properties of quantum impurity QPTs51.

Despite numerous attempts to provide a bridge be-
tween QPTs and the quench dynamics encoded in the
LE, a general principle joining the two notions is still
missing. To make progress, more studies are needed so
as to obtain a “critical mass” of results from which a
theory can be built. Exactly solvable models here play a
particularly important role.

In this article we try to contribute to this program
by studying the quench dynamics of the exactly solv-
able Creutz model52 − describing a system of spinless
fermions hopping on a two-leg ladder pierced by a mag-
netic field − using the concept of the LE as a main tool.
As the magnetic field is varied, the model exhibits a quan-
tum phase transition between two insulating phases with
topologically distinct configurations of the induced local
charge current53. Depending on the choice of hopping
amplitudes for the fermions, the insulating gap may close
at the quantum critical point already for a finite ladder
provided that its number of sites is commensurate with
the wave number defining the gap closing point, as de-
termined by the finite-size quantization condition. More-
over, the location in the Brillouin zone of the associated
zero-energy quasiparticle excitations can be moved by
tuning the hopping amplitudes53. This is reminiscent of
systems with movable accidental or symmetry-enforced
spectral degeneracies protected by a local54 or global55

topological charge, respectively. We take advantage of
this property to explore how the gap-closing zero-energy
modes govern the quench dynamics of a finite-size Creutz
ladder when quenched to a critical point. Specifically,
by changing the hopping amplitudes, we can pinpoint
how the zero-energy gap-closing modes control the re-
vival period of the Loschmidt echo. If these modes are
not present in a given finite-size ladder, the revival period
is instead determined by that of the nearest commensu-
rate ladder, which contains these modes (with the precise
notion of “commensurate” to be detailed below). Differ-
ent from results obtained for other models20,21,56,57, this
implies that the revival period for a finite Creutz ladder
does not scale linearly with size but exhibits jumps deter-
mined by the presence or absence of zero-energy modes.
Carrying over our results to the quench dynamics of the
transverse field Ising chain explains the intriguing pe-
riod doubling of the Loschmidt echo revivals reported
by Häppölä et al.21 when the model is subject to peri-
odic boundary conditions. To emphasize the important
role of zero-energy modes also in DQPTs, we analyze a
quench to an equilibrium quantum critical point of the
Creutz ladder and find that a DQPT in this case hap-
pens only if there are zero-energy modes present. We
expect this result to hold quite generally. Concentrating
on the case of a sudden magnetic flux quench, we also
use concepts from quantum thermodynamics58 to inves-
tigate how the work statistics play out when quenching
to a critical point as compared to quenching across the
same point. The fact that the quantum critical points
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phase of the system [48–50].

Yet another application of the LE to the problem of
quantum critical dynamics has been to extract the work
distribution function of a system [39]. Notably, it has
been shown that the irreversible work and irreversible
entropy production signal the presence of a QPT [26, 39,
40]. Recently the irreversible work was found to lay bare
also the critical properties of quantum impurity QPTs
[51].

Despite numerous attempts to provide a bridge be-
tween QPTs and the quench dynamics encoded in the
LE, a general principle joining the two notions is still
missing. To make progress, more studies are needed so
as to obtain a “critical mass” of results from which a
theory can be built. Exactly solvable models here play a
particularly important role.

In this article we try to contribute to this program
by studying the quench dynamics of the exactly solv-
able Creutz model [52] − describing a system of spin-
less fermions hopping on a two-leg ladder pierced by a
magnetic field − using the concept of the LE as a main
tool. As the magnetic field is varied, the model exhibits a
quantum phase transition between two insulating phases
with topologically distinct configurations of the induced
local charge current [53]. Depending on the choice of
hopping amplitudes for the fermions, the insulating gap
may close at the quantum critical point already for a
finite ladder provided that its number of sites is com-
mensurate with the wave number defining the gap clos-
ing point, as determined by the finite-size quantization
condition. Moreover, the location in the Brillouin zone
of the associated zero-energy quasiparticle excitations
can be moved by tuning the hopping amplitudes [53].
This is reminiscent of systems with movable accidental
or symmetry-enforced spectral degeneracies protected by
a local [54] or global [55] topological charge, respectively.
We take advantage of this property to explore how the
gap-closing zero-energy modes govern the quench dynam-
ics of a finite-size Creutz ladder when quenched to a crit-
ical point. Specifically, by changing the hopping ampli-
tudes, we can pinpoint how the zero-energy gap-closing
modes control the revival period of the Loschmidt echo.
If these modes are not present in a given finite-size lad-
der, the revival period is instead determined by that of
the nearest commensurate ladder, which contains these
modes (with the precise notion of “commensurate” to be
detailed below). Contrary to expectations drawn from
earlier works [20, 21, 56, 57], this implies that the revival
period for a finite ladder does not scale linearly with size
but exhibits jumps determined by the presence or ab-
sence of zero-energy modes. Carrying over our results to
the quench dynamics of the transverse field Ising chain
explains the intriguing period doubling of the Loschmidt
echo revivals reported by Häppölä et al. [21] when the
model is subject to periodic boundary conditions. To
emphasize the important role of zero-energy modes also
in DQPTs, we analyze a quench to an equilibrium quan-
tum critical point of the Creutz ladder and find that a
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FIG. 1. (Color online) The Creutz ladder with periodic
boundary conditions and magnetic flux θ/π per plaquette.
Horisontal, vertical, and diagonal bonds are marked with the
corresponding hopping amplitudes Jh, Jv, and Jd respectively.

DQPT in this case happens only if there are zero-energy
modes present. We expect this result to hold quite gen-
erally. Concentrating on the case of a sudden magnetic
flux quench, we also use concepts from quantum ther-
modynamics [58] to investigate how the work statistics
play out when quenching to a critical point as compared
to quenching across the same point. The fact that the
quantum critical points that we probe define topological
phase transitions adds to the interest of our analysis.

The article is organized as follows. In Sec. II we
present the model and review its exact solution. Sec.
III is dedicated to an analysis of the LE of the model
and the periodic revival structure for a quench to the
critical point. In Sec. IV the appearance of a dynamical
quantum phase transition in the model is explored for
both a quench to one of the equilibrium quantum critical
points and a quench across the same point. In Sec. V
we examine the average work and the irreversible work
performed on the system by a quench. Sec. VI contains
some concluding remarks.

II. CREUTZ MODEL

The Creutz model describes the dynamics of a sys-
tem of spinless fermions on a two-leg ladder, depicted in
Fig. 1, and governed by the Hamiltonian [52]

H = −
N∑
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FIG. 1. (Color online) The Creutz ladder with periodic
boundary conditions and magnetic flux θ/π per plaquette.
Horisontal, vertical, and diagonal bonds are marked with the
corresponding hopping amplitudes Jh, Jv, and Jd respectively.

that we probe define topological phase transitions adds
to the interest of our analysis.

The article is organized as follows. In Sec. II we
present the model and review its exact solution. Sec.
III is dedicated to an analysis of the LE of the model
and the periodic revival structure for a quench to the
critical point. In Sec. IV the appearance of a dynamical
quantum phase transition in the model is explored for
both a quench to one of the equilibrium quantum critical
points and a quench across the same point. In Sec. V
we examine the average work and the irreversible work
performed on the system by a quench. Sec. VI contains
some concluding remarks.

II. CREUTZ MODEL

The Creutz model describes the dynamics of a sys-
tem of spinless fermions on a two-leg ladder, depicted in
Fig. 1, and governed by the Hamiltonian52

H = −
N∑

n=1
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Here p (q) labels the lower (upper) leg of the ladder, with

c
p/q†
m and c

p/q
m the corresponding fermion creation- and

annihilation operators respectively, and with c
p/q
N+1 = c

p/q
1

given periodic boundary conditions. The magnitude of
the hopping amplitudes for horizontal bonds are assumed
to be the same for the lower and upper legs and de-
noted by Jh. Similarly, for vertical (diagonal) bonds (cf.
Fig. 1), the uniform hopping amplitude is Jv (Jd), both
taken to be positive and real. The presence of the gauge-
dependent Peierls-type complex phases in (1), here at-
tached to hopping along the legs of the ladder, mimics
the presence of a magnetic field which pierces the lad-
der and supplies a magnetic flux θ/π per plaquette (in
natural units, cf. Fig. 1).

Introducing the spinor Γ† = (cq†k c
p†
k ), the Fourier

transformed Hamiltonian can be expressed as H =
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FIG. 2. (Color online) Quasiparticle spectra ε̃αk and ε̃βk versus
wave number k and flux θ/π for J = Jv = 1.

∑
k≥0 Γ†H(k)Γ, with

H(k) = −




εqk εqpk

εqpk εpk


 , (2)

where εqk = 2Jh cos(k − θ), εpk = 2Jh cos(k + θ), and
εqpk = 2Jd cos(k) + Jv. Here k is quantized, taking values
k=kj=2πj/N with j=0, ..., N − 1. Using a Bogoliubov
transformation59,

cqk = cos(γk/2)αk + sin(γk/2)βk,

cpk = − sin(γk/2)αk + cos(γk/2)βk,
(3)

with

tan(γk)=2εqpk /(ε
q
k − ε

p
k), (4)

and with αk and βk quasiparticle operators, we can
then write the Hamiltonian on diagonalized form, H =∑
k(εαkα

†
kαk + εβkβ

†
kβk), where

εαk (θ)=−2Jhcos(k)cos(θ)−
√

(εqpk )2+(2Jhsin(k) sin(θ))2

εβk(θ)=−2Jhcos(k)cos(θ)+
√

(εqpk )2+(2Jhsin(k) sin(θ))2

(5)

with corresponding quasiparticle eigenstates

α†k|V 〉 = cos(
γk
2

)cq†k |0〉 − sin(
γk
2

)cp†k |0〉,

β†k|V 〉 = sin(
γk
2

)cq†k |0〉+ cos(
γk
2

)cp†k |0〉,
(6)

where |V 〉 and |0〉 are vacuum states of the quasiparti-
cle and fermion respectively. In what follows we restrict
our analysis to the case of Jh = Jd = J , with redefined

quasiparticle energies ε̃
α/β
k ≡εα/βk −Jv.

For vertical hopping Jv < 2J , the model is known to
have second order quantum phase transitions at θ = θc =

0, π52,53, with the band gap ∆ε̃k(θc) = ε̃βk(θc) − ε̃αk (θc)
closing at wave numbers k±c = π ± arccos(Jv/2J). Con-
sidering the quantization condition on k, and choosing
values of Jv and J such that arccos(Jv/2J) = (p/q)π
with p/q ∈ Q+, the vanishing of the gap for a finite sys-
tem is seen to require that the number of sites N on each

leg of the ladder is a multiple of 2q/(q−p) and 2q/(q+p),
i.e.

N =
2q

q±p m
±, m± ∈ N. (7)

If these conditions are not satisfied when
arccos(Jv/2J) = (p/q)π, the gap closes only asymptot-
ically in the thermodynamic limit N → ∞. Obviously,
the distinction between the two cases is immaterial in
an experimental realization of the Creutz model with
large N . However, as we shall see, it holds the key to
understanding the general LE revival structure − and
with that, the quantum dynamics − after a sudden
quench to one of the quantum critical points θc = 0, π.
To uncover the full revival structure we shall exploit an
expedient feature of the Creutz model: the movability of
the gap-closing modes in the Brillouin zone, controllable
by tuning the hopping amplitudes Jv or J.

Before concluding this section, let us briefly recall some
basic facts about the ground state phase diagram of the
Creutz model. The critical points θc = 0, π for Jv < 2J
separates two topologically nontrivial insulating phases
characterized by a Zak phase γ=πmod 2π, and with op-
posite circulations of the local charge current around a
lattice plaquette60. When θ = ±π/2, there is an emer-
gent chiral symmetry of the model, which, considering
the broken time-reversal symmetry from the magnetic
flux, puts the system in the AIII Altland-Zirnbauer sym-
metry class53,61,62. Cutting open the ladder, the topo-
logically nontrivial phases support zero-energy boundary
states at its edges (“zero modes”, not to be mixed up with
the gap-closing zero-energy bulk modes discussed in this
article). Importantly, the inversion symmetry present for
any value of θ protects the topological phases also when
chiral symmetry is absent63. A topological phase tran-
sition occurs at Jv = 2J for any value of the flux θ/π,
with the insulating phase for Jv > 2J being topologically
trivial, with γ = 053.

III. LOSCHMIDT ECHO REVIVALS

A sudden quench of a quantum system is convention-
ally carried out by instantaneously changing a parameter
in its Hamiltonian H(θ1), with θ1 denoting the value(s)
of the parameter(s) to be changed. (For an alterna-
tive protocol, a measurement quench, see Ref. 6.) In
the case of the Creutz model, θ1 can be taken as the
Peierls phase appearing in the horizontal hopping am-
plitudes in Eq. (1), representing the θ1/π magnetic flux
through a square plaquette of the Creutz ladder (Fig.
1). If the system is initially prepared in an eigenstate
|Ψm(θ1)〉 of H(θ1) and θ1 is suddenly changed to θ2 at
time t = 0, the time evolution of the system becomes gov-
erned by the post-quench Hamiltonian H(θ2) according
to |Ψm(θ1, θ2, t)〉 = exp(−iH(θ2)t)|Ψm(θ1)〉. Choosing
the initial state as the ground state of the system, call it
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FIG. 3. (Color online) Oscillation amplitude Ak in the mode
decomposition of the LE, Eq. (9), versus k/π and θ/π when
J = Jv = 1.

|ΨG(θ1)〉, the LE7 takes the form of a return probability,

L(θ1, θ2, t) = |〈ΨG(θ1)| exp(−iH(θ2)t)|ΨG(θ1)〉|2, (8)

and can be interpreted as a dynamical version of the
ground-state fidelity, providing a measure of the distance
between the time-evolved state |ΨG(θ1, θ2, t)〉 and the ini-
tial state |ΨG(θ1)〉.

To calculate the LE for the Creutz model we imag-
ine that the system is initially prepared in the ground
state |ΨG(θ1)〉, obtained by filling up the negative-energy
quasiparticle states (cf. Eqs. (5) and (6)), |ΨG(θ1)〉 =∏
k α
†
k|V 〉, assuming that the Fermi level is chosen at zero

energy. A straightforward but lengthy calculation yields
the complete set of eigenstates of the model from which
an expression for the LE can be extracted. Quenching
the Peierls phase from θ1 to θ2 at t=0 one obtains

L(θ1, θ2, t)=
∏

k

Lk(θ1, θ2, t)=
∏

k

[1−Aksin2(
∆ε̃kt

2
)](9)

where

∆ε̃k = ε̃βk(θ2)− ε̃αk (θ2)=2
√

(εqpk )2 + (2Jh sin(k) sin(θ2))2,

Ak = sin2(2ηk), 2ηk = γk(θ1)− γk(θ2).

(10)

It is worth mentioning that if we had instead consid-

ered
∏
k β

(0)
k |V 〉 as the initial state of the system, the LE

would still have been governed by Eq. (9).
The LE decays in a time Trel (relaxation time)

from unity to an average value around which it then
fluctuates64. Revivals show up in the LE as distinct de-
viations from the average value, forming local maxima21.
When quenching to a quantum critical point in a fi-
nite system there is an expectation that the LE re-
laxation rate becomes faster compared with a non-
critical quench12,13,65–69 and that the revivals show a
periodicity12,13,20,21. Studies have also found a linear

scaling of the periodicity of revivals with system size for
both sudden20,21,56 and slow57 quenches. In fact, a peri-
odic revival structure has frequently been used as a di-
agnostic of criticality, following results in Refs. [13] and
[12]. However, recent work has revealed that a quench
to a quantum critical point is neither a necessary nor a
sufficient condition for periodic revivals43,44.

We now show how revivals in the LE can be derived
from Eq. (9). The appearance of a revival requires a
large contribution from all modes in the product of Eq.
(9), equivalent to a small contribution from the oscillat-
ing part of each mode. A numerical analysis shows that
the amplitude Ak of an oscillation term is strongly sup-
pressed except close to the critical points θ2 =θc=0, π in
the neighborhoods of the wave numbers k±c of the gap-
closing modes (cf. Fig. 3 for the case θ2 = 0). Thus, re-
vivals are controlled by those k-modes {k±j }j=1,2,... with

large oscillation amplitudes Ak which cluster around k±c :
The first revival time Trev is the first time instance at
which the corresponding oscillating terms vanish. In or-
der to pinpoint Trev, however, one must carefully distin-
guish the case where the gap closes already in the finite
system (with N sites on each leg of the ladder) from the
case where the gap closing occurs only asymptotically as
N →∞. Let us begin by discussing the first case.

When N is finite, the gap closes at the wave numbers
k±c = π ± arccos(Jv/2J), ∆ε̃k|k±c = 0, provided that the

quantization condition k±c =2πj±c /N is satisfied for some
integers j±c . Inspection of Eq. (9) shows that a revival
will appear if the conditions

∆ε̃k|k±c −jδk t/2 = 0 modπ, j = 1, 2, ... (11)

are satisfied, with δk = 2π/N the difference between two
neighboring modes in the large-amplitude cluster with
wave numbers {k±j }j=1,2,.... Using that ∆ε̃k|k±c = 0, a

first-order Taylor expansion of ∆ε̃k|k±c −jδk at k = k±c ,

∆ε̃k|k±c −jδk ≈ −jδk ∂∆ε̃k/∂k|k±c , manifests that modes

near k±c contribute to the revival whenever t is a multiple
of N/|vg| where vg = ∂∆ε̃k/∂k|k±c (provided that t is not
too large, in case higher-order terms in the expansion
may add corrections). The group velocity vg is that of
the quasiparticle excitations in the vicinity of k±c , and is
the same at k+

c and k−c due to the time-reversal invariance
at the critical points θc = 0, π. It follows that, on short

and intermediate time scales, the revival period T
(N)
rev for

a Creutz ladder with N sites on each leg is given by

T (N)
rev ≈

N

|vg|
. (12)

To summarize: For a finite system with gap-closing
modes k±c , periodic revivals occur when oscillation terms
with large amplitudes in the mode expansion of the LE,
Eq. (9), vanish simultaneously with the k±c -terms (which
are the ones with the largest amplitudes).

In Fig. (4a) the time evolution of the LE following on
a quench from θ1 = 0.0016π to the critical point θ2 = 0
has been plotted for different system sizes, choosing Jv =
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FIG. 4. (Color online) Variation of the LE of the Creutz model versus time t for a quench from θ1 = 0.0016π to the quantum
critical point θc = 0 for different system sizes and for hopping amplitudes (a) Jv = 1, J = 1; (b) Jv =

√
3, J = 1; and (c)

Jv = −1 +
√

3, J =
√

2.

J = 1. For this choice of hopping amplitudes, |vg| = 2
√

3
and the gap-closing modes are at k±c = π ± π/3. An
analysis of the data in Fig. (4a) shows that the revivals
are governed by Eq. (12) only when N is divisible by
3 (solid lines in Fig. (4a)). This confirms our analysis
in Sec. II: Eq. (12) is conditioned on the existence of
a gap-closing mode, which in turn is conditioned on the
satisfiability of Eq. (7) with p = 1, q = 3 (given that
k±c = π ± π/3), thus implying that N must be divisible
by 3.

This poses the question: How to understand the longer
periods of the LE revivals for the systems in Fig. (4a)
when N 6= 3m,m ∈ N (dashed-dotted lines in the fig-
ure)? For these values of N the system does not contain
the gap closing modes k±c and hence Eq. (12) does not
apply. Still, as seen in Fig. (4a), the revivals are periodic.
What then governs these revivals? To answer this ques-
tion, let us go back to Eq. (9) and recall that periodic
revivals occur when its oscillation terms with large am-
plitudes vanish simultaneously with the k±c terms. Since
now ∆ε̃k|k±c 6= 0, Eq. (11) must be extended to in-

clude also the (would be) gap-closing modes k±c (when
N →∞):

∆ε̃k|k±c −jδk t/2 = 0 modπ, j = 0, 1, 2, ..., (13)

with δk = 2π/N . Considering that none of the modes in
Eq. (13) satisfy the quantization conditions for the given
system size and hence are not allowed, we must instead
aim attention at the allowed k-modes which are closest
to these modes.

For concreteness, let us consider the case N = 100,
with the LE displayed in Fig. (4a). The nearest large-
amplitude oscillation mode to k−c = 2π/3 can be written,
in obvious notation,

k
(100)
33 =

2π

100
× 33 =

2π

300
× 100− 2π

300

= k
(300)
99 = k−c − δk(300).

(14)

It is clear from Eq. (11) that T
(300)
rev satisfies

∆ε̃k|k(300)99
T (300)

rev /2 = 0 modπ. (15)

As follows from Eq. (13) (with k−c replaced by the near-

est allowed mode k
(100)
33 ), the first revival time T

(100)
rev is

obtained from

∆ε̃k|k(100)33 −jδk(100)T
(100)
rev /2 = 0 modπ, (16)

with j = 0, 1, 2, ... as before indexing the wave num-
bers in the corresponding large-amplitude cluster. By
inspection, Eqs. (15) and (16) are fulfilled simultaneously

whenever T
(100)
rev is a multiple of T

(300)
rev , where, according

to (12),

T (300)
rev ≈ 300

|vg|
, (17)

with |vg| = 2
√

3. Generalizing to an arbitrary finite sys-
tem with N 6= 3m,m ∈ N, it follows that the revival
period of the LE for a Creutz ladder with Jv = J = 1 is
given by the same expression as in Eq. (12) but with N

replaced by N
′
, the least common multiple (LCM) of 3

and N ,

T (N 6=3m)
rev ≈ N

′

|vg|
, N

′
= LCM(3, N), m ∈ Z+. (18)

Table I displays the revival periods for different system
sizes obtained from Eq. (18) (valid for short and inter-
mediate time scales), showing excellent agreement with
the numerical data in Fig. (4a).

Let us examine two additional cases. Figs. (4b) and
(4c) exhibit numerical data for the same quench as be-
fore, from θ1 = 0.0016π to the critical point θ2 = 0,
but now for the Creutz ladder with hopping amplitudes
Jv =

√
3, J = 1 and Jv = −1 +

√
3, J =

√
2, respectively.

In the first case, carrying out the same analysis as above,
the revival period of the LE when N = 12m (m = 1, 2, ...)
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TABLE I. First revival time for different system sizes when
Jv = J = 1. The values of N correspond to the dashed-dotted
lines in Fig. (4a).

N T
(N)
rev T

(Simulation)
rev

100 T
(300)
rev = 300/vg = 300/2

√
3 ' 86.60 86.58

400 4T
(300)
rev = 1200/vg = 1200/2

√
3 ' 346.41 345.89

500 5T
(300)
rev = 1500/vg = 1500/2

√
3 ' 433.0 432.33

1000 10T
(300)
rev = 3000/vg = 3000/2

√
3 ' 866.0 865.44

TABLE II. First revival time for different system sizes when
Jv =

√
3, J = 1. The values of N correspond to the dashed-

dotted lines in Fig. (4b).

N T
(N)
rev T

(Simulation)
rev

100 T
(300)
rev = 300/vg = 300/2 ' 150.00 149.22

400 4T
(300)
rev = 1200/vg = 1200/2 ' 600.00 599.69

500 5T
(300)
rev = 1500/vg = 1500/2 ' 750.00 751.00

1000 10T
(300)
rev = 3000/vg = 3000/2 ' 1500.00 1499.97

TABLE III. First revival time for different system sizes when
Jv = −1 +

√
3, J = 1. The values of N correspond to the

dashed-dotted lines in Fig. (4c).

N T
(N)
rev T

(Simulation)
rev

100 T
(600)
rev = T

(1200)
rev /2 = 600/vg ' 109.80 109.39

300 T
(600)
rev = T

(1200)
rev /2 = 600/vg ' 109.80 109.70

400 2T
(600)
rev = T

(1200)
rev = 1200/vg ' 219.61 219.27

500 5T
(600)
rev = 5T

(1200)
rev /2 = 3000/vg ' 549.03 549.38

1000 5T
(600)
rev = 5T

(1200)
rev /2 = 3000/vg ' 549.03 549.30

is predicted to be given by Eq. (12) with |vg| = 2, while

for N 6= 12m, T
(N 6=12m)
rev = N

′
/|vg|, N

′
= LCM(12, N).

Similarly, in the second case, where vg = 2
√

4 + 2
√

3,
the revival period is again predicted to be given by
Eq. (12) when N = 24m (m = 1, 2, ...), now with

|vg| = 2
√

2(2 +
√

3), while for N 6= 24m, T
(N 6=24m)
rev =

N
′
/|vg|, N

′
= LCM(24, N). Again, the agreement with

the numerical data (solid [dashed-dotted] lines in Figs.
4(b) and 4(c) for commensurate [incommensurate] sys-
tem sizes) is excellent, as can be read off from the
tabulated incommensurate revival periods in Tables II
(N 6= 12m) and III (N 6= 24m). Yet other choices of
hopping amplitudes − implying other zero-energy modes
and hence other commensurability conditions for the sys-
tem size − produce equally satisfying agreement between
theory and numerical data.

In summary, the revivals of the LE for finite Creutz
ladders after a quench to one of the equilibrium quan-
tum critical points do not scale linearly with the size
of the system, contrary to what has been found for the
post-quench LE of other models20,21,56,57. It has been
shown that the revivals are controlled by the modes in
the neighborhood of the gap-closing zero-energy modes

for which the oscillation amplitudes in the mode decom-
position of the LE are the largest. Since information
propagates through the system via the wave packets of
quasiparticles, the revival times can thus be identified as
the time instances at which quasiparticles associated with
large LE oscillation amplitudes are synchronized with the
zero-energy modes. We would here like to direct atten-
tion to a result by Häppölä et al.21, showing that the
odd-numbered revivals in the LE of the transverse field
Ising chain subject to antiperiodic boundary conditions
do not appear when instead periodic boundary condi-
tions are used. In other words, the periodicity of revivals
when using periodic boundary conditions is twice that
for the case when antiperiodic boundary conditions are
imposed. This feature may be explained by our find-
ing in this paper. It is straightforward to show that in
the case of antiperiodic boundary conditions (which is
the proper boundary condition to impose when analyzing
the model with an even number of sites using fermioniza-
tion, as done in Ref.21), the system contains a zero-energy
mode at k = 0, while for periodic boundary conditions
(to be used when the number of sites is odd) there is no
zero-energy mode. Thus, carrying over our result for the
Creutz model to the transverse field Ising model mapped
onto a fermionic model as in Ref.21, the expression for the

revival time T
(N)
rev in the case of periodic boundary con-

ditions (odd number of sites N) is seen to be given by
TNrev = LCM(2, N)/|vg|, with vg the quasiparticle group
velocity in the neighborhood of k = 0. This explains
the period-doubling compared to the case of antiperi-
odic boundary conditions. It is worthwhile to mention
that, the connection between dynamic finite-size scaling
and critical exponents has been recently studied in Ref.70

for both continuous and first-order quantum transitions,
which could be interesting to be applied on Creutz model
in future studies.

IV. DYNAMICAL QUANTUM PHASE
TRANSITIONS

As discussed in the Introduction, there has recently
been a growing interest in the study of dynamical
phase transitions (DQPTs), probing non-analyticities in
the complex time plane of the dynamical free energy
density71 of a quenched system45,46. An early result
for a DQPT following a sudden quantum quench in the
one-dimensional transverse field Ising model, reported
by Heyl et al.22, suggested that DQPTs occur only if
the quench is performed across an equilibrium quantum
critical point. Further studies, however, revealed that
DQPTs can occur following a quench also within the
same phase48–50. Other theoretical works have explored
DQPTs in topological and mixed phases72–76 and also
after slow quenches (“ramps”)77–79.

The concept of a DQPT draws on the similarity be-
tween the canonical partition function of an equilibrium
system Z(β) = Tre−βH and the boundary quantum par-
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tition function Z(z) = 〈ψ0|e−zH |ψ0〉 with |ψ0〉 a bound-
ary state and z ∈ C80,81. When z = it, the bound-
ary quantum partition function becomes equivalent to
a Loschmidt amplitude (LA), L(t) = 〈ψ0|e−iHt|ψ0〉,
the modulus of which defines a Loschmidt echo L(t)
(cf. Eq. (8)). Using our notation for the Creutz lad-
der, the LA given by L(t) = 〈ΨG(θ1)|e−iH(θ2)t|ΨG(θ1)〉
is the overlap amplitude of the initial quantum state
|ΨG(θ1)〉 with its time-evolved state controlled by the
post-quench Hamiltonian H(θ2), and where the ground
state |ΨG(θ1)〉 stands in for a boundary state. Defin-
ing the free energy density f(z) in the complex time
plane as f(z) = − limN→∞ lnZ(z)/N , with N the num-
ber of degrees of freedom, f(z) [Z(z)] is frequently re-
ferred to as the dynamical free energy density [parti-
tion function]46,71. In the spirit of classical equilib-
rium statistical mechanics82,83, one then searches for non-
analyticities in f(z), or zeros of Z(z) (known as Fisher
zeros84), now interpreted as signals of DQPTs22,46. Addi-
tionally, these DQPTs are imprinted as nonanalyticities
in the rate function l(t) of the Loschmidt echo22,48,50,85,
with l(t) defined as

l(t) = − lim
N→∞

lnL(t)/N. (19)

It is straightforward to show that the dynamical par-
tition function corresponding to the ground state of the
Creutz model is given by

Z(z)=
∏

k

e−zε̃
α
k (θ2)

(
cos2(ηk)+sin2(ηk)e−z∆ε̃k(θ2)

)
(20)

with ε̃αk defined after Eq. (6), and ηk and ∆ε̃k defined in
Eq. (10). The zeros of the LA in the complex plane form
a family of lines labeled by an integer n,

zn(k) =
1

∆ε̃k

[
iπ(2n+ 1) + ln(tan2(ηk))

]
. (21)

A plot of lines of Fisher zeros is depicted in Fig. 5(a) for
a quench from θ1 = 0.25π to θ2 = −0.25π. This quench is
performed across the equilibrium quantum critical point
θc = 0, with the lines of Fisher zeros crossing the imagi-
nary axis in the complex time plane. The main quantity
that controls the dynamical free energy is tan2(ηk), which
depends on the parameters of the initial (”pre-quench”)
and final (”post-quench”) Hamiltonian (with the initial
state being the ground state of the pre-quench Hamil-
tonian). As seen from Eq. (21), the lines of Fisher ze-
ros cross the imaginary axis only when there is a mode
k∗ that satisfies tan2(ηk∗) = 1. Using the expression
2ηk = γk(θ1)− γk(θ2) and Eq. (4), this condition can be
rewritten as

(2Jcos(k∗)+Jv)
2 =−(4J sin(k∗))2sin(θ1) sin(θ2).(22)

This equation can be fulfilled only when sin(θ1) sin(θ2)
is negative semidefinite. In other words, the non-
analyticities in the LA exist only when the quench is
performed across one of the critical points θc = 0, π or to
θc = 0 or θc = π. Given Eq. (21) with zn = it, it follows

that the rate function l(t) of the LE shows a periodic se-
quence of real-time nonanalyticities for quenches across
or to one of the critical points θc = 0, π at times

tn = t∗(n+
1

2
), t∗ =

2π

∆ε̃k∗
. (23)

This result is in agreement with the numerical data
shown in Fig. 5(b), obtained for a quench from θ1 =
0.25π to θ2 = −0.25π. Cusps in l(t) are clearly visible
as signs of DQPTs. It is important to note that as the
imaginary axis is crossed twice by the lines of Fisher ze-
ros there are two timescales in the dynamical free energy.
The cusps marked by circles in Fig. 5(b) correspond to
the shorter nonequilibrium scale.

To better understand the origin of the nonanalyticities
in l(t), let us take a closer look at the LE in Eq. (9). First
recall that the real-time nonanalyticities coincide with
the time instances at which the LE vanishes22,46. This
happens only if one factor in the mode decomposition
in Eq. (9) becomes zero, concurrent with the oscillating
part of the k∗-mode becoming equal to unity. An anal-
ysis shows that the oscillation amplitude Ak is small for
a quench within the same phase, while it takes its maxi-
mum possible value (Ak = 1) at k = k∗1 and k = k∗2 when
a quench crosses θc = 0 (Fig. 5(c)). Consequently, the
corresponding k∗1,2 modes can contribute destructively to
the LE only at time instances for which the associated
oscillating term is unity, i.e. Ak∗1,2 sin2(∆εk∗1,2t/2) = 1.

This requires that tn = (2n+ 1)π/∆εk∗1,2 = t∗1,2(n+ 1/2),

which is exactly the same condition as in Eq. (23). Let us
mention that the number of modes where the oscillation
amplitude takes its maximum possible value (Ak = 1)
can be shown to be equal to the number of time scales in
the DQPT86.

To highlight the important role of zero-energy modes
also in DQPTs, let us consider a DQPT in the Creutz lad-
der when quenching to (not across) the critical point θc=
0. In such a case, Eq. (22) is reduced to 2J cos(k)+Jv=0,
which is fulfilled only for system sizes that contain zero-
energy modes (cf. Eq. (10) with εqpk =2J cos(k) +Jv and
θ2 = 0). Thus, while a DQPT can occur in a finite-size
Creutz ladder under various circumstances, its appear-
ance after a quench to one of the critical points is con-
ditioned on the presence of zero-energy modes, possible
only if the system size is commensurate with the condi-
tion in Eq. (7). We expect that this conclusion applies
quite generally.

V. MAGNETIC FLUX QUENCH AND WORK
STATISTICS

The nonequilibrium dynamics of a quenched quantum
system can be expressed in many different ways, borrow-
ing ideas from equilibrium statistical mechanics. How-
ever, since a quench protocol takes the system out of
equilibrium, thermodynamic quantities get replaced by
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FIG. 5. (Color online) (a) Lines of Fisher zeros for a quench across the equilibrium quantum critical point θc = 0 from
θ1 = 0.25π to θ2 = −0.25π. The different lines correspond to different values of n in Eq. (21); (b) Cusps in the return rate l(t),
defined in Eq. (19) indicate DQPTs after the quench from θ1 = 0.25π to θ2 = −0.25π. Insets zoom in on shorter nonequilibrium
timescales. (c) The amplitude Ak in Eq. (10) versus wave number k for the quench from θ1 = 0.25π to θ2 = −0.25π. In all
figures (a), (b), and (c), J = Jv = 1, and N = 9000.
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FIG. 6. (Color online) (a) Average work 〈W 〉, (b) difference of ground-state energies ∆F = Eg(θ2)−Eg(θ1), and (c) irreversible
work Wirr versus θ2/π for a quench from θ1 = 0.25π to θ2 for different system sizes when Jv = J = 1.

stochastic variables. A case in point is the work W per-
formed by the quench, with W now described by a prob-
ability distribution function58,

p(W ) =
∑

m

|〈E′m|E0〉|2δ [W−(E′m−E0)] . (24)

Here |E0〉 [|E′m〉] with corresponding energy E0 [E′m]
is the ground state [m:th eigenstate] of the pre-quench
[post-quench] Hamiltonian. The work probability distri-
bution function in (24) is an experimentally accessible
quantity87,88 from which the average work is obtained as

〈W 〉 =

∫
Wp(W )dW. (25)

Given the average work 〈W 〉, the Jarzynski
fluctuation-dissipation relation89 makes it possible
to define the so called irreversible work

Wirr = 〈W 〉 −∆F ≥ 0, (26)

where ∆F is the difference between the free energies after
and before the quench. At zero temperature (which we
assume here), ∆F reduces to the difference between the

ground-state energies of the post- and pre-quench Hamil-
tonians: ∆F = ∆Eg = Eg(θ2)−Eg(θ1). The irreversible
work quantifies the amount of energy which has to be
taken out from the quenched system so that it relaxes
to its new equilibrium state − at zero temperature, the
ground state of the post-quench Hamiltonian.

Case studies39,40,51 suggest that the irreversible work
Wirr of a quenched system serves as a marker of equilib-
rium quantum phase transitions. Here we explore this
notion when the equilibrium phase transition is topolog-
ical, using the Creutz model as a test case.

Let us begin by writing down a general formula for the
average work after a sudden quench39 using our previ-
ously defined notation for the Creutz model,

〈W 〉=〈ΨG(θ1)|H(θ2)|ΨG(θ1)〉 − Eg(θ1), (27)

with Eg(θ1) the ground-state energy of the initial Hamil-
tonian. It is straightforward to translate this into an
explicit expression,

〈W 〉=
∑
k

(
ε̃αk (θ2) cos2(ηk)+ε̃βk(θ2) sin2(ηk)−ε̃αk (θ1)

)
,(28)

assuming as before that the Fermi level is at zero energy.
By combining Eqs. (26), (27), and (28), it follows that
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the irreversible work after a quench is given by

Wirr =
∑
k

(
ε̃αk (θ2) cos2(ηk)+ε̃βk(θ2) sin2(ηk)−ε̃βk(θ2)

)
.(29)

In Fig. 6 the average work 〈W 〉, the change of the
ground-state energy ∆F , and the irreversible work Wirr

have been plotted against θ2 for different system sizes,
for a quench from fixed θ1 = 0.25π to θ2. Recalling that
θc = 0 is a quantum critical point, the numerical data
in Fig. 6(a) show that 〈W 〉 is overall small for a quench
within the same phase. Positive [negative] values of 〈W 〉
reveal a quench by which the magnetic flux is increased
[decreased]. Thus, as expected, 〈W 〉 = 0 corresponds to
the case of no quench at all. For a quench crossing the
critical point θ2 = θc = 0, 〈W 〉 takes positive and large
values and increases with the system size.

As seen in Fig. 6(b), the change of the ground-state
energy of the post-quench Hamiltonian is symmetric with
respect to the critical point θ2 = 0 where it takes its min-
imum. The change of the ground-state energy is positive
when quenching the system to a point where |θ2| is larger
than |θ1|. In contrast, it becomes negative for quenching
the magnetic flux to values smaller than |θ1|.

Fig. 6(c) shows that when the quench is confined to
the same phase as the initial state, the irreversible work
vanishes away from the critical point, indicating that
the process is fully reversible. This is to be compared
to a quench into the neighborhood of the critical point
within the same phase where Wirr takes small nonzero
values. Differently, the irreversible work becomes quite
large when the quench crosses the critical point, mak-
ing manifest the irreversibility of the process, with Wirr

increasing with system size.
The average work per particle 〈W 〉/N , change of

ground-state energy per particle ∆F/N , and irreversible
work per particle Wirr/N are depicted in Fig. 7. As
is evident from figures 7(a) and (c) (cf. bottom inset),
〈W 〉/N and Wirr/N are independent of system size for
quenches within the same phase. In other words, for
these cases 〈W 〉 and ∆F are clearly extensive, as ex-
pected for a noninteracting system. Remarkably, when
quenching the system through the quantum critical point
θc = 0, curves for different system sizes do not exhibit
perfect data collapse. Although the violation is small and
visible only in the fine structure of the curves (top insets
in Figs. 7(a) and (c)), it is indicative of correlations com-
ing from quenching the system into a different phase. It
remains to explain the mechanism by which this happens.
In this context, note that the change of ground-state en-
ergy ∆F remains extensive also for quenches across the
quantum critical point θc = 0, where ∆F/N also takes
on its minimum (Fig. 7(b)).

Summarizing this section, we have shown that the
average work and irreversible work associated with a
sudden quench of the magnetic flux across the quantum
critical point θc = 0 faithfully signals the QPT, with
both quantities displaying a jump at θc = 0. It is
interesting to compare this finding to that in Ref.40

where work statistics after a quantum quench was also
employed to probe equilibrium criticality, but in the
Lipkin-Meshkov-Glick model. Whereas the irreversible
work also there signalled a QPT when quenching
across the critical point, different from our result the
average work showed no sensitivity to criticality. The
reason for this difference remains to be understood.
The fact that the QPT in the Creutz model is topo-
logical while that in the Lipkin-Meshkov-Glick model
is not, is not likely to explain this intriguing dissimilarity.

VI. SUMMARY

In this article we have studied the quench dynamics of
the Creutz model52 − describing spinless fermions hop-
ping on a two-leg ladder pierced by a magnetic field.
To highlight the important role of the gap-closing zero-
energy modes appearing at the quantum phase transi-
tions between the two topologically nontrivial phases of
the model, we have taken advantage of the property that
the location of these modes in the Brillouin zone can be
moved by tuning the hopping amplitudes. When quench-
ing the magnetic field (or, equivalently, the magnetic flux
through a plaquette of the ladder) to one of the quantum
critical points, the revival period of the Loschmidt echo
in a finite-size ladder, which does not contain the zero-
energy modes is found to be multiple of that of a commen-
surate finite-size ladder, which does contain these modes.
As transpires from our analysis, since information prop-
agates through the system via the wave packets of quasi-
particles, the revival times can be identified as the time
instances at which quasiparticles associated with large
oscillation amplitude in the mode decomposition of the
Loschmidt echo are synchronized with the zero-energy
modes.

In addition, our analysis shows that for a quench to
one of the quantum critical points, a dynamical quan-
tum phase transition of a finite-size ladder can occur
only when the system size allows for the presence of zero-
energy modes, i.e. when the gap closes completely at a
wave number allowed by the finite-size quantization con-
dition. Again, this dramatically points to the crucial
role of the zero-energy modes in the quench dynamics.
Whereas the most pronounced revivals in the Loschmidt
echo happen when two conditions are satisfied − large
oscillation amplitudes in the mode decomposition of the
Loschmidt echo and the presence of zero-energy modes
synchronized with the other modes with non-negligible
oscillation amplitude (provided by quenching the system
exactly to the quantum critical point where quasipar-
ticles are massless43) − the occurrence of a dynamical
quantum phase transition for a quench crossing the crit-
ical point) only needs large oscillation amplitudes with
maximum possible value. The occurrence of a dynamical
quantum phase transition for a quench to one of the crit-
ical points needs both zero-energy mode and oscillation
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FIG. 7. (Color online) (a) Average work per particle 〈W 〉/N , (b) change of ground-state energy per particle ∆F/N , and (c)
irreversible work per particle Wirr/N versus θ2 for a quench from θ1 = 0.25π to θ2 for different system sizes when Jv = J = 1.
The insets zoom in on the fine structure of the corresponding curves.

amplitudes with maximum possible value. We notice in
passing that our analysis of the role of the LE in dy-
namical quantum phase transitions in the Creutz ladder
may be extended to topological superconductors like the
Kitaev chain90.

We have also investigated the quench dynamics of the
Creutz model by employing tools from quantum thermo-
dynamics. We find that different dynamics emerge when
the quench is performed across a critical point as com-
pared to a quench to a critical point restricted to the same
phase as the initial state. As expected, when quenching
across a critical point, the irreversibility of the dynamics
(as measured by the irreversible work) increases signifi-
cantly. This is reflected in the different scaling with par-
ticle number of the average work and irreversible work
associated with a quench across a quantum critical point
as compared to a quench within the same phase − a
relevant piece of information when using work statistics
as a diagnostic tool for pinpointing equilibrium quantum
critical points.

The results obtained add substantially to the picture
how equilibrium quantum phase transitions influence
nonequilibrium dynamics in a quantum many-body sys-

tem, in particular how the quantum critical zero-energy
modes govern Loschmidt echo revivals and the appear-
ance of dynamical quantum phase transitions. More re-
sults − on the quench dynamics of the Creutz model as
well as on other models− are expected to further advance
our understanding of the intriguing connections between
equilibrium and nonequilibrium many-body physics.

VII. ACKNOWLEDGMENTS

H. J. acknowledges support from the Swedish Re-
search Council through Grant No. 621-2014-5972. A.
L. would like to thank Sharif University of Technology
for financial support under grant No. G960208. M. A.
M. D acknowledges financial support from the Spanish
MINECO grants FIS2012- 33152, FIS2015-67411, and
the CAM research consortium QUITEMAD+, Grant No.
S2013/ICE-2801. The research of M. A. M. D. has been
supported in part by the U.S. Army Research Office
through Grant No. W911N F-14-1-0103.

∗ jafari@iasbs.ac.ir, rohollah.jafari@gmail.com
† henrik.johannesson@physics.gu.se
‡ langari@sharif.edu
§ mardel@miranda.fis.ucm.es
1 I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

2 A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalat-
tore, Rev. Mod. Phys. 83, 863 (2011).

3 J. Dziarmaga, Advances in Physics 59, 1063 (2010).
4 M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch, Na-
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72 S. Vajna and B. Dóra, Phys. Rev. B 91, 155127 (2015).
73 J. C. Budich and M. Heyl, Phys. Rev. B 93, 085416 (2016).
74 J. C. Budich and M. Heyl, Phys. Rev. B 96, 180304 (2017).
75 U. Bhattacharya, S. Bandyopadhyay, and A. Dutta, Phys.

Rev. B 96, 180303 (2017).
76 U. Bhattacharya and A. Dutta, Phys. Rev. B 96, 014302

(2017).
77 S. Sharma, U. Divakaran, A. Polkovnikov, and A. Dutta,

Phys. Rev. B 93, 144306 (2016).
78 U. Divakaran, S. Sharma, and A. Dutta, Phys. Rev. E 93,

052133 (2016).
79 T. Puskarov and D. Schuricht, SciPost Phys. 1, 003 (2016).
80 A. LeClair, G. Mussardo, H. Saleur, and S. Skorik, Nucl.

Phys. B 453, 581 (1995).
81 L. Piroli, B. K. Pozsgay, and E. Vernier, J. Stat. Mech.

2017, 023106 (2017).
82 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).
83 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).
84 M. E. Fisher, Phys. Rev. Lett. 40, 1610 (1978).
85 F. Pollmann, S. Mukerjee, A. G. Green, and J. E. Moore,

Phys. Rev. E 81, 020101 (2010).
86 R. Jafari, H. Johannesson, A. Langari, and M. A. Martin-

Delgado, unpublished (2018).

http://dx.doi.org/10.1103/PhysRevA.76.030304
http://dx.doi.org/10.1103/PhysRevA.76.030304
http://dx.doi.org/10.1103/PhysRevA.75.062312
http://dx.doi.org/10.1103/PhysRevA.75.062312
http://stacks.iop.org/0295-5075/111/i=1/a=10007
https://link.aps.org/doi/10.1103/PhysRevA.82.062119
https://link.aps.org/doi/10.1103/PhysRevA.82.062119
https://link.aps.org/doi/10.1103/PhysRevE.86.021101
https://link.aps.org/doi/10.1103/PhysRevA.85.032114
https://link.aps.org/doi/10.1103/PhysRevA.85.032114
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRevLett.110.135704
https://link.aps.org/doi/10.1103/PhysRevLett.109.160601
https://link.aps.org/doi/10.1103/PhysRevA.85.060101
http://stacks.iop.org/1751-8121/49/i=18/a=185004
http://dx.doi.org/10.1103/PhysRevLett.109.015701
http://dx.doi.org/10.1103/PhysRevLett.109.015701
http://dx.doi.org/10.1103/PhysRevLett.115.140602
http://dx.doi.org/10.1103/PhysRevLett.119.080501
https://www.nature.com/articles/s41567-017-0013-8
http://dx.doi.org/10.1103/PhysRevB.95.075143
http://dx.doi.org/10.1103/PhysRevB.95.075143
http://dx.doi.org/ 10.1103/PhysRevB.97.064304
http://dx.doi.org/ 10.1103/PhysRevB.97.064304
http://dx.doi.org/10.1103/PhysRevB.96.035139
http://dx.doi.org/10.1103/PhysRevB.96.134427
http://dx.doi.org/10.1103/PhysRevB.96.134427
http://dx.doi.org/10.1103/PhysRevE.96.062118
http://dx.doi.org/10.1103/PhysRevE.96.062118
http://dx.doi.org/10.1103/PhysRevB.96.104436
http://dx.doi.org/10.1103/PhysRevLett.121.130603
http://dx.doi.org/10.1103/PhysRevLett.121.130603
http://dx.doi.org/10.1103/PhysRevB.97.174401
http://dx.doi.org/10.1103/PhysRevB.97.174401
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevB.94.184403
http://dx.doi.org/10.1103/PhysRevB.87.195104
http://dx.doi.org/10.1103/PhysRevB.87.195104
http://dx.doi.org/10.1103/PhysRevB.96.014305
http://dx.doi.org/10.1103/PhysRevB.96.014305
http://dx.doi.org/10.1103/PhysRevLett.118.015701
http://dx.doi.org/10.1103/PhysRevLett.118.015701
http://dx.doi.org/10.1103/PhysRevB.96.224302
http://dx.doi.org/10.1103/PhysRevB.96.224302
https://doi.org/10.1063/1.4969869
http://dx.doi.org/10.1088/1361-6633/aaaf9a
http://dx.doi.org/10.1103/PhysRevB.89.054301
http://dx.doi.org/10.1103/PhysRevB.89.054301
http://dx.doi.org/10.1103/PhysRevB.92.104306
http://dx.doi.org/10.1103/PhysRevB.92.104306
http://dx.doi.org/10.1103/PhysRevB.89.161105
http://dx.doi.org/10.1103/PhysRevB.89.125120
http://dx.doi.org/10.1103/PhysRevB.89.125120
https://link.aps.org/doi/10.1103/PhysRevB.93.201106
https://link.aps.org/doi/10.1103/PhysRevB.93.201106
http://dx.doi.org/10.1103/PhysRevLett.83.2636
http://dx.doi.org/10.1103/PhysRevLett.102.135702
http://stacks.iop.org/1367-2630/9/i=9/a=356
https://link.aps.org/doi/10.1103/PhysRevB.94.195109
https://link.aps.org/doi/10.1103/PhysRevB.94.195109
http://dx.doi.org/10.1103/PhysRevLett.112.220401
http://stacks.iop.org/1742-5468/2018/i=7/a=073105
http://stacks.iop.org/1742-5468/2018/i=7/a=073105
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/PhysRevB.92.085118
http://dx.doi.org/10.1103/PhysRevLett.112.130401
http://dx.doi.org/10.1103/PhysRevLett.112.130401
https://link.aps.org/doi/10.1103/RevModPhys.88.035005
https://link.aps.org/doi/10.1103/PhysRevB.88.075142
https://link.aps.org/doi/10.1103/PhysRevB.88.075142
http://dx.doi.org/10.1103/PhysRevLett.107.010403
https://link.aps.org/doi/10.1103/PhysRevA.79.012305
https://link.aps.org/doi/10.1103/PhysRevA.79.012305
https://link.aps.org/doi/10.1103/PhysRevA.75.032333
http://iopscience.iop.org/article/10.1088/1751-8113/40/28/S12/meta
http://iopscience.iop.org/article/10.1088/1742-5468/2012/08/P08005/meta
http://iopscience.iop.org/article/10.1088/1742-5468/2012/08/P08005/meta
https://link.aps.org/doi/10.1103/PhysRevE.90.032138
http://dx.doi.org/10.1103/PhysRevE.97.052148
http://dx.doi.org/10.1103/PhysRevE.97.052148
https://arxiv.org/pdf/1308.0277.pdf
http://dx.doi.org/10.1103/PhysRevB.91.155127
http://dx.doi.org/10.1103/PhysRevB.93.085416
http://dx.doi.org/10.1103/PhysRevB.96.180304
http://dx.doi.org/10.1103/PhysRevB.96.180303
http://dx.doi.org/10.1103/PhysRevB.96.180303
http://dx.doi.org/10.1103/PhysRevB.96.014302
http://dx.doi.org/10.1103/PhysRevB.96.014302
http://dx.doi.org/10.1103/PhysRevB.93.144306
http://dx.doi.org/10.1103/PhysRevE.93.052133
http://dx.doi.org/10.1103/PhysRevE.93.052133
http://dx.doi.org/10.21468/SciPostPhys.1.1.003
https://www.sciencedirect.com/science/article/pii/055032139500435U?via%3Dihub
https://www.sciencedirect.com/science/article/pii/055032139500435U?via%3Dihub
http://dx.doi.org/10.1088/1742-5468/aa5d1e
http://dx.doi.org/10.1088/1742-5468/aa5d1e
http://dx.doi.org/10.1103/PhysRev.87.404
http://dx.doi.org/10.1103/PhysRev.87.410
http://dx.doi.org/10.1103/PhysRevLett.40.1610
http://dx.doi.org/10.1103/PhysRevE.81.020101


12

87 R. Dorner, S. R. Clark, L. Heaney, R. Fazio, R. J. Goold,
and V. Vedral, Phys. Rev. Lett. 110, 230601 (2013).

88 L. Mazzola, G. De Chiara, and M. Paternostro, Phys. Rev.
Lett. 110, 230602 (2013).

89 C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
90 A. Bermudez, L. Amico, and M. A. Martin-Delgado, New

Journal of Physics 12, 055014 (2010).

https://link.aps.org/doi/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230602
http://dx.doi.org/10.1103/PhysRevLett.110.230602
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://stacks.iop.org/1367-2630/12/i=5/a=055014
http://stacks.iop.org/1367-2630/12/i=5/a=055014

	Quench dynamics and zero-energy modes: the case of the Creutz model
	Abstract
	Introduction 
	Creutz model 
	Loschmidt Echo Revivals
	Dynamical Quantum Phase Transitions 
	Magnetic flux quench and work statistics 
	Summary 
	Acknowledgments 
	References


