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Abstract

We experimentally show that the angular distribution of diffusely transmitted light from highly

scattering dense media, such as photonic glasses, deviates significantly from Fresnel’s law. We

model a system of a photonic glass on a substrate by introducing an optical boundary layer that

is sandwiched between the bulk effective medium and the substrate. Based on the model, we

calculate the extrapolation length ratio, the photon transport/scattering mean free paths, and the

angular distribution of transmitted light intensity. The internal reflectance of the photonic glass is

accurately determined by considering the diffuse scattering in the boundary layer. The modeling

results agree well with the experimentally measured angular distribution and transport mean free

path. Our modeling also reaffirms that the real physical process of light scattering near the interface

between photonic glass and the substrate cannot be simply described as internal reflection from a

flat surface. The extrapolation length ratio of a photonic glass calculated from our boundary layer

model is considerably larger than that from Fresnel’s law. This indicates that the transport mean

free paths determined in other reported experiments for highly scattering dense media may have

included significant errors and that the boundary layer analysis could be a good replacement to

accurately describe the internal reflectance for photonic glasses.
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Diffusion approximation is a popular theoretical approach to describe light propagation

in random media [1]. Only two characteristic length scales are used in this approach for the

bulk: transport mean free path ( l∗ ) and scattering mean free path ( ls ). l∗ is a length over

which the photon propagation direction is randomized and ls is an average distance between

scattering events. For dimensionally finite media, another characteristic length, known as

extrapolation length, is introduced to describe light propagation near the boundary. The

extrapolation length is a fictitious length over which the diffuse photon density decays to

zero outward from the boundary, and it is strongly governed by internal reflection of photons

near the boundary [2, 3]. This internal reflection also affects experimentally measured bulk

properties, such as l∗ [4, 5]. Because of this influence on l∗ , an accurate determination

of internal reflectance is crucial for experimental characterization of light propagation in

random media.

In 1991, Zhu, Pine, and Weitz (ZPW) introduced a simple method to quantitatively de-

termine the extrapolation length from internal reflectance at a boundary [2]. Since then, the

method has been almost ubiquitously used in the diffusion approximation. In this method,

one treats the scattering media as a homogeneous material with an effective refractive index

and calculates the boundary reflectance by Fresnel’s law. This approximate treatment was

shown to be accurate when l∗ is much greater than mean inter-particle distance or the fill

fraction ( f ) of the particles is close to 0 or 1 [2, 6]. However, even when these conditions

are not satisfied, which is the case for highly scattering dense media, this method has been

widely used to obtain the extrapolation length. The dense media include popular random

structures and materials, such as photonic glasses (i.e., randomly packed monodisperse mi-

crospheres) [7, 8], porous networks [9, 10], fibrillar networks [11], white paint pigments [12],

and foams [6]. While the ZPW method is an elegant way to determine the extrapolation

length, it has been standardly applied to highly scattering dense media without rigorous

testing.

In this study, we reexamine the physics of internal reflection near the boundary of highly

scattering dense media. Specifically, we investigate internal reflection in photonic glasses

by introducing a boundary layer concept to interrogate the region near the surface. The

boundary layer is modeled as a monolayer of microspheres in an array (see Fig. 1). Errors

due to the assumption of the array structure are negligible when the optical field is dominated

by Mie resonances rather than optical diffractions from the array. When optical diffraction
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effects are significant, the model can be modified by constructing a large unit cell that

contains disordered microspheres. Our computational investigation reveals that, for photonic

glasses, internal reflection cannot occur at the boundary, but rather it occurs in the boundary

layer. We also observe that experimentally measured angular dependence of transmitted

light cannot be described by Fresnel’s law but by internal reflection in the boundary layer.

By properly treating the internal reflection in dense media, we calculate the extrapolation

length that can be used to accurately determine l∗ .

Consider a silica photonic glass on a substrate of refractive index ne (Fig. 1). The bulk

of the photonic glass is modeled by a homogeneous medium of refractive index ni , which

is given by the Maxwell-Garnett effective medium theory. The boundary layer borders the

photonic glass on top and the substrate at the bottom. Ideally, the boundary layer thickness

is on the order of l∗ or larger. The microspheres in the boundary layer are arranged in

a square lattice with a lattice constant of as , which is the same as the boundary layer

thickness. The monolayer has the same effective refractive index n = 1.234 and fill fraction

f = 0.55 as those of the bulk medium. To satisfy this requirement, the microspheres in the

model are slightly merged with each other.

We extend the theory in Ref. [6] to our model system in Fig. 1 for the angular distribution

of diffusely transmitted light. The probability P (Ωe)|dΩe| that incident photons from the

top are scattered into a solid angle dΩe in the substrate is given by [4, 6]

P (Ωe)|dΩe| ∝
∑

j

∫ r=∞

r=0

[

(ze + a+ µj
ir)r

2dr|dΩj
i |
]

×
µj
i

4πr2
e−rT (Ωe,Ω

j
i ), (1)

where ze is the extrapolation length, a is the lattice constant, and r is the distance

from an origin located at the top of the boundary layer, all normalized by l∗ . Ωj
i is

the j th solid angle of the incident photons that are diffracted into Ωe , T (Ωe,Ω
j
i ) is the

transmittance of such photons through the boundary layer, and µj
i is cosine of the polar

angle θji corresponding to Ωj
i . The term in the square bracket is proportional to the number

of photons in a differential volume element, µj
i/(4πr

2) is the fraction of the photons in the

differential volume traveling toward a unit-area surface at the origin, and e−r is the fraction

of such photons that arrive at the unit-area surface without being scattered. An important

difference of Eq. (1) from Ref. [6] is that T (Ωe,Ω
j
i ) is for the boundary layer and not the
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boundary. This difference enables us to investigate internal reflection near the boundary,

which significantly deviates from Fresnel’s law.

Let k
j

||i and k||e be the wavevector components parallel to the boundary corresponding

to Ωj
i and Ωe , respectively (Fig. 1). From the relation between the parallel wavevectors

and the polar angles θji and θe , we have

dµj
i

dµe

=
n2

eµek
j

||idk
j

||i

n2

iµ
j
ik||edk||e

=
n2

eµek
j

||i

n2

iµ
j
ik||e

k̂
j

||i · k̂||e, (2)

where µe = cos θe and ˆ denotes unit vectors. Because of conservation of the parallel

wavevectors, they can be written as k
j

||i = kBZ + g
j
i and k||e = kBZ + ge , where kBZ is

the parallel wavevector in the 1st Brillouin zone. g
j
i and ge are reciprocal lattice vectors

corresponding to k
j

||i and k||e , respectively. Accordingly, differential azimuthal angles can be

expressed in terms of the parallel wavevectors as dϕj
i = |dkBZ|/k

j

||i and dϕe = |dkBZ|/k||e .

From these relations and Eq. (2), we have

dΩj
i

dΩe

=
dµj

idϕ
j
i

dµedϕe

=
n2

eµe

n2

iµ
j
i

k̂
j

||i · k̂||e. (3)

Substituting Eq. (3) into Eq. (1) and performing the integral in Eq. (1), we obtain

P (Ωe) ∝
∑

j

(ze + a+ µj
i )
n2

e

n2

i

µeT (Ωe,Ω
j
i )|k̂

j

||i · k̂||e|. (4)

For isotropic random structures, due to azimuthal rotation symmetry, Eq. (4) can be inte-

grated over ϕe to give

P (µe)

µe

∝
∑

j

∫

2π

0

(ze + a+ µj
i )T (Ωe,Ω

j
i )|k̂

j

||i · k̂||e|dϕe. (5)

P (µe) is normalized by
∫

1

0
P (µe)dµe = 1 . As a → 0 , j assumes a single value, the film

transmittance approaches T (µi) given by Fresnel’s law, and k̂
j

||i · k̂||e → 1 . In this case, we

recover P (µe)/µe ∝ (ze + µi)T (µi) which is the result of Ref. [6].

The incident angles in our calculations were the combinations of µ̃i = 0.1, 0.2, · · · , 1

and ϕ̃i = 0◦, 15◦, 30◦, 45◦ using the C4v symmetry of the monolayer structure, where the

tilde indicates angles used in the calculations. To find angular distribution of transmitted

light from Eq. (5), T (Ωe,Ω
j
i )|k̂

j

||i · k̂||e| needs to be determined for a given Ωe . In practice,

however, the Ωj
i ’s that correspond to the given Ωe can be different from the calculated

incident angles Ω̃j
i . To estimate T (Ωe,Ω

j
i )|k̂

j

||i · k̂||e| at a desired Ωe , we take the average
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of T (Ω̃l
e, Ω̃

j,l
i )|k̂j,l

||i · k̂
l
||e| at 4 calculated incident angles Ω̃j,l

i that are closest to Ωj
i , where

l = 1, 2, 3, 4 . The solid angles Ω̃l
e can be represented by (µ̃l

e, ϕ̃
l
e) in polar coordinates.

Weighting factors for the average are proportional to 1/dl where dl is the distance between

(µe, ϕe) and (µ̃l
e, ϕ̃

l
e) in the polar coordinate system.

For experimental validation of our model, we prepared photonic glass films consisting of 2-

µm -diameter solid silica microspheres precipitated out of a colloidal solution by instability

[8, 13]. The films were deposited on 150-µm -thick borosilicate glass slides as shown in

Fig. 2(b) inset. The roughness of the top surface was less than microsphere diameter

unlike in Ref. [13], indicating that gravity affected the deposition process significantly

for our silica microspheres while their random arrangement is attained. Because of the

relative flatness of the top surface, we can compare the experimentally measured angular

distribution of light emerging from the top surface with the calculation results. The effect

of a small polydispersity of the microspheres (relative standard deviation < 10 %) on light

propagation is deemed negligible based on the fact that the experimentally determined

resonance amplitudes in l∗ are close to those of theoretical prediction for monodisperse

microspheres [8]. To measure the refractive index n of silica microspheres, we dispersed

them in a liquid mixture of toluene and cyclohexane at varying ratios. When the specular

transmittance is maximized, the refractive index is matched between the microspheres and

the liquid mixture. At a wavelength of λ = 654 nm , we have determined that n = 1.453.

l∗ was obtained from transmittance through thick films. Diffusion theory gives a solution

for the transmittance as T = (1 + ze)/(L/l
∗ + 2ze) , where L (≫ l∗ ) is the film thickness.

Linear regression to the plot of 1/T vs L gives the slope of 1/ [l∗(1 + ze)] . From the slope

and knowledge of ze , we experimentally determined l∗ as 4.6 µm at λ = 654 nm . The

method to calculate ze will be explained later in Eq. (7).

We applied mean field theory [8, 14] to our photonic glass and obtained l∗ as 3.8 µm ,

which is reasonably close to the experimental value. l∗ can also be calculated from a

model system, where the boundary layer is sandwiched between same two effective media of

photonic glasses. In this case, ne = ni . ls is obtained from the 0th order transmittance T0 =

exp(−as/ls) for normal incidence on the monolayer. To find l∗ , we calculate the average

of µe by 〈µe〉 =
∑

k Tkµ
T
k +Rkµ

R
k , where Tk and Rk are the k th order transmittance and

reflectance for normally incident light. µT
k and µR

k are µe ’s that correspond to Tk and

Rk , respectively. l∗ is obtained by l∗ = ls/(1 − 〈µe〉) as 4.9 µm . This is even closer to
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the experimental value (4.6 µm ) than the mean field theory result (3.8 µm ). Whereas the

boundary layer that we chose is thinner than l∗ , the calculated l∗ is accurate enough. We

use this l∗ = 4.9 µm in all of our calculations in this work.

ze is calculated by equating the flux of photons that are internally reflected in the

boundary layer, not at the boundary, to the flux of incoming photons from outside:
∫

2π

0

∫

1

0

∫ ∞

0

(ze + a+ µir)
µi

r2
e−rR(µi, ϕi)r

2drdµidϕi

= 2π

∫

1

0

∫ ∞

0

(ze + a− µir)
µi

r2
e−rr2drdµi, (6)

where R(µi, ϕi) is the total reflectance for an incident angle given by (µi, ϕi) . From Eq.

(6), we find ze as

ze =
2

3

1 +RBL,2

1− RBL,1

− a, (7)

where RBL,n =
∫

2π

0

∫

1

0
(n+1)µn

i R(µi, ϕi)dµidϕi/(2π) is the n th moment of reflectance from

the boundary layer. As a → 0 , R(µi, ϕi) tends to boundary reflectance governed by

Fresnel’s law, and ze is reduced to ZPW’s standard formula [2].

Using the calculated ze and l∗ in Eq. (5), we find the angular distribution of light

transmitted into the substrate. Figures 2 (a) and (b) show experimentally measured and

calculated P (µe)/µe when the substrate refractive index ne is 1 (air) and 1.515 (borosilicate

glass), respectively. For a borosilicate glass substrate with flat top and bottom surfaces, the

transmitted intensity can be measured only for µe > 0.75 due to total internal reflection

in the substrate. To cover the full range of µe , we used a hemispherical borosilicate glass

(N-BK7 Half-Ball Lens, Edmund Optics) with its flat surface glued to the substrate bottom

surface with an index matching gel [Fig. 2(b) inset]. The calculated angular distribution

(red solid line) has small fluctuations due to the periodic structure in the boundary layer.

More specifically, the fluctuations stem from the fact that the intensity of light diffracted

from the periodic structure in the boundary layer is integrated over the azimuthal angles

[Eq. (5)]. The calculation agrees well with the experiment (black circle) even though the

boundary layer thickness (2 µm ) was chosen to be smaller than l∗ (4.9 µm ). When

reflectance at the boundary is calculated from Fresnel’s law with the assumption of isotropy

in the scattering form factor [2, 6] (blue dashed line, ZPW), the deviation from experiment

is notably pronounced especially for ne = 1.515 .
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The deviation for blue dashed line may result from the assumption of isotropic scatter-

ing since the description of photon diffusion near the boundary should include anisotropic

scattering [15]. Popescu et al. developed a model that considers anisotropic scattering,

approximated by the Henyey-Greenstein formula, to calculate ze [15, 16]. This model result

(green dash-dotted line in Fig. 2) shows even larger deviations from the experiment than

the ZPW model (blue dashed line) where the light scattering near the boundary is assumed

to be isotropic. The large errors are due to the inaccuracy of the Henyey-Greenstein formula

in Popescu’s model. In comparison, our model accounts for the anisotropic scattering more

accurately by explicitly calculating the anisotropic scattering in the boundary layer.

We also note that appreciable transmission into the substrate exists in the angular range

µe ≤ 0.58 ( cos−1 µe > 55◦ ) for ne = 1.515 based on the experiment [Fig. 2(b) and its

inset]. Fresnel’s law forbids transmission in this range for the photonic glass, independent

of whether isotropic or anisotropic scattering is considered. In comparison, our model does

not assume Fresnel’s law but considers internal reflection occurring in the boundary layer,

which accurately tracks experimental results. This extended transmission is not limited to

photonic glasses. Similar angular distribution has been observed for light scattering from a

shaving foam into water [6].

The disagreement between Fresnel’s law and our experiment may give an impression that

light reflection occurs at the boundary and that the reflection is inadequately described by

the law due to slight scattering at the boundary. However, our model calculations show

that the boundary reflection itself is unphysical for photonic glasses. Let Tne
and Tni

be

transmittance for light incident from the effective medium on the boundary layer when the

layer is on a substrate of refractive index ne and ni , respectively. Tni
represents the

case when the substrate refractive index matches that of photonic glass. The boundary

reflectance RB for a substrate of refractive index of ne can be calculated by

RB(µ) = 1−

∑

j Tne
(k|| + gj)

∑

j Tni
(k|| + gj)

, (8)

where k|| is the parallel component of incident wavevector, gj is the j th reciprocal lattice

vector that satisfies µ =
√

1− |k|| + gj |2/(nik0)2 with k0 being the free space wavevector,

and µ is the cosine of the incident angle on the boundary. In Eq. (8), the numerator

and denominator are proportional to the intensity transmitted through and incident on the

boundary, respectively, when the substrate index is ne . The average of RB near normal
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incidence over 0.8 ≤ µ ≤ 1 ( 0◦ ≤ cos−1 µ ≤ 37◦ ) is shown in Fig. 3 (a) as a function of

ne/ni for 1 (air) ≤ ne ≤ 2 (flint glass). The average RB calculated from Eq. (8) is very

different from Fresnel’s law, and it assumes negative values for ne < ni , confirming that the

boundary reflection is unphysical for photonic glasses. If reflection happens at the boundary

with slight scattering, such large deviation from Fresnel’s law would not be observed.

The results in Fig. 3(a) suggest that ze should be calculated not from the unphysical

boundary reflectance but from the boundary layer reflectance that has given good agree-

ment with experiment for angular distribution of transmitted light. Figure 3 (b) compares

ze calculated from boundary layer reflectance and Fresnel’s law with isotropic/anisotropic

scattering. Our boundary layer calculations, which are comparatively accurate, yield larger

ze ’s than Fresnel’s law for the photonic glass. Incidentally, when ne = 1 (thus ne/ni ≃ 0.8 ),

which is the case for most experiments in the past, ze calculated from Fresnel’s law with

isotropic scattering (blue dashed line), i.e. ZPW’s method, closely matches our calculations.

However, the deviation from our accurate calculations is large for other values of ne . For

example, when ne = 2, the deviation in ze is 43 %, which would translate to significant

errors in l∗ in experimental measurements [3–5, 8, 9]. Specifically, when l∗ is determined

from transmittance of thick films [4, 8, 9], the error in l∗ due to the inaccurate ze would

be as large as (1 + ze)∆ [1/(1 + ze)] = 34 % . A correction by considering anisotropic scat-

tering through the Henyey-Greestein formula (green dash-dotted line) does not significantly

improve the accuracy. The large errors in the results from diffusion theory that incorporates

Fresnel’s law are due to the incorrect assumption of boundary reflection. We also note that

the minimum value of ze ≃ 1.1 at ne = ni calculated from our model is larger than both

the diffusion theory solution with boundary reflection ( ze = 2/3 ) and the Milne solution

( ze = 0.7104 ) [2, 17].

In conclusion, we have demonstrated that, for highly scattering dense media such as pho-

tonic glasses, the widely used assumption of boundary reflection is invalid and should be

replaced with a model that carefully considers boundary layer reflection. We have developed

methods to calculate the photon transport/scattering mean free paths, the angular distri-

bution of transmitted light, and the extrapolation length ratio, based on a boundary layer

that consists of periodic structures. Our calculations indicate that experimentally deter-

mined transport mean free paths in other studies may have included significant errors when

Fresnel’s law was used, or a boundary reflection was assumed. Furthermore, our model
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enables calculations of scattering parameters in dense media for any scatterer shape. This

is a unique advantage going beyond the spherical geometry considered in other calculation

methods, which are extensions based on the Mie theory [14, 18].
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FIGURES

FIG. 1. Illustration of our boundary layer model for photonic glasses (left). Definitions of wavevec-

tors and the angles of incident and scattered light (right). The boundary layer is a part of the

photonic glass and modeled as a monolayer array of microspheres. The bulk of the photonic glass is

treated as a homogeneous medium of effective refractive index ni . Light incident on the boundary

layer from the effective medium is scattered into a semi-infinite substrate of index ne or back into

the medium.
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FIG. 2. Angular distribution of light transmitted through a photonic glass and scattered into (a) air

and (b) borosilicate glass, obtained from experiment (black circle), boundary layer calculations (red

line), and Fresnel’s law with isotropic (blue dashed line) and anisotropic (green dash-dotted line)

scattering. The photonic glass consists of randomly packed 2- µm -diameter silica microspheres,

and the incident wavelength is 654 nm . For the experiment, the thickness of the photonic glass film

was ∼ 80 µm , and the roughness of both top and bottom surfaces was less than the microsphere

diameter. Bottom of (b) inset is a picture of transmitted light emerging from a hemispherical

glass attached to the glass substrate, showing appreciable intensities over Fresnel-forbidden angles

cos−1 µe > 55◦ .
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FIG. 3. (a) Boundary reflectance averaged over 0.8 < µ < 1 calculated from Eq. (8) (red square)

and Fresnel’s law (black dashed line) as a function of substrate refractive index relative to ni . (b)

Extrapolation length ratio as a function of refractive index contrast obtained from boundary layer

calculations (red circle) and Fresnel’s law with isotropic (blue dashed line) and anisotropic (green

dash-dotted line) scattering.
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