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Mechanical resonators with high quality factors are widely used in precision experiments, ranging
from gravitational wave detection and force sensing to quantum optomechanics. Beams and mem-
branes are well known to exhibit flexural modes with enhanced quality factors when subjected to
tensile stress. The mechanism for this enhancement has been a subject of debate, but is typically
attributed to elastic energy being “diluted” by a lossless potential. Here we clarify the origin of
the lossless potential to be the combination of tension and geometric nonlinearity of strain. We
present a general theory of dissipation dilution that is applicable to arbitrary resonator geometries
and discuss why this effect is particularly strong for flexural modes of nanomechanical structures
with high aspect ratios. Applying the theory to a non-uniform doubly clamped beam, we show
analytically how dissipation dilution can be enhanced by modifying the beam shape to implement
“soft clamping”, thin clamping and geometric strain engineering, and derive the ultimate limit for
dissipation dilution.

I. INTRODUCTION

Mechanical resonators with high quality factors are of
both fundamental and applied interest. They are em-
ployed in gravitational waves detectors [1], cavity op-
tomechanics [2], quantum [3] and classical [4] signal con-
version, tests of wavefunction collapse models [5] and
numerous sensing applications [6, 7]. In all these en-
deavors, dissipation can be a limiting factor. As known
from the fluctuation-dissipation theorem [8], dissipation
introduces noise, which limits force sensitivity, frequency
stability and results in decoherence of quantum states.
Reduction of mechanical dissipation is practically chal-
lenging, however, because intrinsic and surface loss mech-
anisms are often not well understood or not possible to
control. The quality factor, Q, of a mechanical resonator
typically does not exceed the inverse of the material loss
angle, φ, characterizing the delay between stress and
strain. Flexural modes of beams and membranes under
tension are notable exceptions to this rule: they can have
Qs far in excess of 1/φ due to a phenomenon known as
dissipation dilution.

The origin of dissipation dilution has been a subject
of debate. The concept was introduced in the gravita-
tional wave community when, to explain the enhanced
Q of test mass suspension wire, Gonzalez et. al. [9, 10]
reasoned that the lossy elastic energy of the wire was “di-
luted” by the conservative gravitational potential of the
test mass. A decade later, similar behavior was observed
in nanometric strings and membranes made of highly-
strained materials (most notably, silicon nitride [11–13]);
however, the lack of an external potential in this case
necessitated a rethinking of the physical model. In later
works the quality factors of flexural modes of uniform
beams [14] and membranes [15] were calculated from a
structural mechanics perspective and shown to be much
greater than 1/φ—in excellent agreement with experi-
ments [14–17]. These results partially demystified dissi-
pation dilution, but due to their lack of generality, the
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FIG. 1. A) Dissipation dilution factors for vibrational modes
of a 3D resonator, doubly clamped to two quarter-sphere pads
(hatched gray) and subjected to tension. The total length is
20 µm, the block size is 8.5 × 7 × 4 µm, the bridge diameter
is 100 nm and the material pre-strain is 0.4%. B) Distri-
bution of effectively lossless elastic energy in a thin bridge
during flexural vibration. C) Schematic illustrating how the
cycle-averaged dynamic strain 〈∆ε〉 can be non-zero due to
geometric nonlinearity.

understanding of this effect remains incomplete. It is still
not fully clear what causes dissipation dilution to emerge
in a resonator (aside from the mere presence of tensile
strain), whether any non-flexural modes experience dilu-
tion and to what extent it can be engineered to produce
practical high-Q resonators.

Very recently, dissipation dilution has attracted signif-
icant interest as it enabled nanomechanical resonators, in
the form of patterned membranes and beams, to achieve
exceptionally high Q factors [18, 19]. In particular, by
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localizing a beam mode away from its supports with a
phononic crystal (the “soft clamping” approach intro-
duced by Tsaturyan et al. [18, 20]) and using geometric
strain engineering [21] to enhance strain in the beam con-
striction, Q factors as high as 8×108 were demonstrated
at room temperature [19]—surpassing even the highest
values measured in macroscopic sapphire bars [22]. These
advances suggest that a more detailed understanding of
dissipation dilution may be beneficial for optimizing ex-
isting designs and finding new ones, in addition to an-
swering the open questions mentioned above.

Here we address these questions with a general and
consistent theory which does not resort to the concept of
an a priori lossless potential. We derive the dissipation
dilution factors for modes of a mechanical resonator of
arbitrary geometry. We identify geometric nonlinearity
of strain in deformations to be a key component which,
together with static strain, enables dissipation dilution.
We extend the classic treatment of Q dilution in flexural
vibrations of a doubly-clamped beam to the case where
the beam has a non-uniform width. Using this theory we
show how a non-uniform width can be used to enhance
Q with three strategies: mode localization with phononic
crystals [18], both alone and in combination with adia-
batic tapering [19] and “thin clamping”, introduced here.
We show that in a number of cases engineering dissipa-
tion dilution is related to geometric strain engineering
[23, 24]. We also derive the ultimate limit of dissipation
dilution set by the material yield strain. Our numerical
analysis of beams is based on the one-dimensional Euler-
Bernoulli equation and is in excellent agreement with a
full 3D treatment. The numerical routines for nanobeam
Q factor calculations are implemented in a freely avail-
able Mathematica package [25].

II. GEOMETRIC ORIGIN OF DISSIPATION
DILUTION

Dissipation dilution is commonly illustrated by a har-
monic oscillator subjected to an external lossless poten-
tial [9], as in the case of optically-trapped mirrors [26, 27]
or massive pendula in a gravitational field [9]. If ωint is
the oscillator natural frequency, φ is its loss angle [28]
and ωdil is the frequency of motion in the lossless poten-
tial, then the oscillator Q factor is increased compared to
the intrinsic value Qint ≡ 1/φ by the “dilution factor”,

DQ ≡
Q

Qint
=
ω2

int + ω2
dil

ω2
int

. (1)

For flexural vibrations of tensioned beams or membranes,
the Q enhancement takes place similarly to Eq. 1 with
the important distinction that here the potential energy
is stored only as elastic energy. Instead of introducing
an external potential, the elastic energy is divided into
lossy “bending” and lossless “tension” parts [14, 15], re-
lated to the curvature and gradient of the mode shape,
respectively. It is not evident a priori, however, how to

make this separation in a general case and under which
conditions the lossless part of energy is non-zero. Here
we answer both questions and show that the effectively
lossless elastic energy emerges if two conditions are sat-
isfied: a) static strain is non-zero in the resonator and b)
the average of strain variation over the oscillation period
is non-zero, i.e. the geometric nonlinearity of strain is
significant.

We now derive the dissipation dilution factor of a
generic vibrational mode. For this we compute the Q fac-
tor as the ratio of the elastic energy stored by the mode to
the energy dissipated per vibrational period. We assume
that static deformation is present in the structure along
with a part oscillating at the frequency ωn. Denoting the
total deformation field as Ũi(x, y, z, t) (i = x, y, z), the
strain tensor ẽij [29] is given by

ẽij =
1

2

(
∂Ũi
∂xj

+
∂Ũj
∂xi

+
∂Ũl
∂xi

∂Ũl
∂xj

)
, (2)

where summation over repeating indices is implied. The
last term in Eq. 2 is nonlinear in the displacement and
can be identified as the geometric nonlinearity. We em-
phasize here that this nonlinearity is not due to a nonlin-
ear stress-strain relation and is not always negligible for
infinitesimally small vibrations.

The strain tensor can be split into static eij and time-
dependent ∆eij(t) contributions

ẽij(t) = eij + ∆eij(t). (3)

For brevity, when treating the 3D case we present a sim-
plified model where Poisson’s ratio, ν, is neglected, so
that the stress-strain relation is given by

σ̃ij [ω] = Ee−iφẽij [ω]. (4)

A full treatment accounting for Poisson’s ratio can be
found in the Supplementary Information[30] and it is in-
cluded below when treating flexural modes of beams.

We find the time-averaged elastic energy density stored
by the mode as

〈∆wel(t)〉 = E
〈ẽij(t)ẽij(t)〉

2
− Eeijeij

2
=

E

(
eij〈∆eij(t)〉+

〈∆eij(t)∆eij(t)〉
2

)
, (5)

and the dissipated power density pdiss as

pdiss = 〈σ̃ij(t) (ẽij)
′
t(t)〉 = ωn φE〈∆eij(t)∆eij(t)〉. (6)

The dilution factor of the vibrational mode is given by
the ratio of the resonator quality factor to Qint as

DQ = 1 +

∫
2eij〈∆eij(t)〉dV∫
〈∆eij(t)∆eij(t)〉dV

. (7)

Eq. 7 reveals the peculiar effect of static strain eij
on dissipation. If the static strain is zero then DQ =
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Q/Qint = 1 irrespective of the mode shape (we empha-
size that corrections due to the imaginary part of Pois-
sons ratio are here neglected). In contrast, DQ can be
higher (or lower) than unity if eij 6= 0 and 〈∆eij(t)〉 6= 0,
the latter being possible due to geometric nonlinearity in
Eq. 2.

Comparing Eq. 7 to Eq. 1, one recognizes

〈Wdil(t)〉 ≡ E
∫
eij〈∆eij(t)〉dV (8)

as an effectively lossless potential that generalizes the
“tension energy” in treatment of beams and membranes
[10, 15]. The lossy part of the energy is given by

〈Wlossy(t)〉 ≡ E

2

∫
〈∆eij(t)∆eij(t)〉dV, (9)

which generalizes the “bending energy” [10, 15] and cor-
responds to ω2

int in Eq. 1. Unlike the toy model, how-
ever, Wlossy in general depends on the static strain, which
implies that the intuitive picture that tension increases
stored energy without affecting dissipation is not correct
in general.

To give an example, we apply Eq. 7 (more precisely, its
counterpart accounting for ν given by Eq. SI13 in Sup-
plementary Information[30]) to a clamped 3D resonator
made of pre-strained material shown in Fig. 1A and cal-
culate dilution factors for a few representative modes
from different families. It can be seen that among these
modes only the flexural ones experiences dissipation di-
lution, whereas the torsional and longitudinal modes do
not. A visualization of lossless energy density 〈wdil(t)〉 in
Fig. 1B shows that the lossless potential is concentrated
in thin bridges between the blocks. This is explained
by a) static strain concentration in constrictions and b)
relatively large geometric nonlinearity of strain in flexu-
ral deformations, as opposed to torsional or longitudinal
deformations.

Strong dissipation dilution of flexural modes in high-
aspect-ratio beams and membranes [12, 14] is thus due
to the combination of tension and a large geometrically
nonlinear contribution to the dynamic strain. The latter
can be illustrated by considering flexural deformation of
an idealized infinitely thin beam shown in Fig. 1C. If the
beam is oriented along the x-axis and vibrates along the
z-direction with magnitude u, only the diagonal compo-
nent ẽxx ≡ ε̃ is relevant and the dynamic variation of
strain is quadratic (i.e. fully nonlinear) in the displace-
ment magnitude:

∆ε(x, t) = (ũ′x(x, t))2/2. (10)

Recognizing the role of geometric nonlinearity provides
a warning: it is not correct to assume that the mere
presence of tensile strain in a mechanical resonator in-
creases its Q—for example, torsional modes of the same
structures that have high-Q flexural modes usually do
not experience any appreciable dissipation dilution (see
Fig. 1A).

Although it does not seem straightforward to come up
with a general recipe how to optimally exploit dissipation
dilution in an arbitrary structure, in part because the
static strain distribution and vibrational mode shape are
both affected by resonator geometry, two trends can be
nevertheless identified. First, since the nonlinear part
of strain tensor is only non-negligible when the linear
part is small, dissipation dilution does not typically take
place for modes in which the directions of deformation
and dynamic strain coincide. To give an example, for a
purely dilatational wave propagating in x-direction Eq. 2
yields

ẽxx =
∂Ũx
∂x

+
1

2

(
∂Ũx
∂x

)2

. (11)

Here the geometrically nonlinear part is always negligi-
ble, unless the static elongation exx is greater than one,
which greatly exceeds the yield strains for most con-
ventional materials. Secondly, a mechanical resonator
of strongly non-uniform shape has a strongly inhomoge-
neous strain distribution with peak values greatly exceed-
ing the average. This limits the acceptable average strain
as the peak needs to stay below the material yield value.
Therefore unless the vibrational mode is confined inside
a region of locally high strain, an overly strong inhomo-
geneity of the resonator shape is always disadvantageous.
This is even more true for the case where the resonator is
patterned from a material with fixed pre-strain, as here
the average relaxed strain is reduced more for highly non-
uniform shapes.

III. DISSIPATION DILUTION OF BEAM
RESONATORS

For the rest of the paper we consider in detail the flex-
ural modes of beams, as extreme dissipation dilution is
achievable in this case and at the same time a number
of analytical results are possible to obtain in addition to
those reported in earlier works [10, 16]. Applying Eq. 7
we arrive at a dilution factor given by

DQ = 1 +

∫
2ε〈∆ε(t)〉dV∫
〈∆ε(t)2〉dV

, (12)

where ε is the static strain along the beam, terms pro-
portional to ε〈∆ε(t)〉 and 〈∆ε(t)2〉 correspond to the loss-
less “tension” and lossy “bending” energy, respectively
[10, 15]—both are of elastic origin. Note that while Eq. 7
neglects Poisson’s ratio, Eq. 12 does not, and is formally
exact in the 1D case.

So far we have not made any assumptions about the
beam cross-section, but in the following we focus on ge-
ometries directly accessible by nanofabrication. Specifi-
cally, we assume that the beams are made of a suspended
film with thickness h and pre-strain exx = eyy = εfilm

(which redistributes upon suspension). The beam width
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FIG. 2. Geometry, strain distribution and DQ in micropat-
terned beams, illustrating the concepts of soft-clamping, thin
clamping and strain-engineering. Dilution factors (DQ) are
calculated assuming beam length l = 3 mm and thickness
h = 20 nm. A) Beams with thin (above) and thick (be-
low) clamps, resulting in enhanced and reduced dissipation
dilution, respectively. DQ,max is maximum over modes. B)
Strain (top) and localized mode displacement field (bottom)
in a tapered phononic crystal beam.

w(x) is in general non-uniform and its variation can be
used to improve vibrational quality factors.

For modes of a uniform rectangular beam evaluation
of Eq. 12 yields the well-known result [10, 16]

DQ,n =
1

2λ+ π2n2λ2
. (13)

Here n is mode number and λ is defined as [15, 16]

λ2 =
1

12εavg

h2

l2
, (14)

where εavg is the volume-averaged static tensile strain
and l is the beam length.

The derivation of Eq. 13 is based on a key insight:
the flexural modes of a beam contain two vastly differ-
ent length scales [9, 10]. Away from the clamping points
(clamps), modes form standing waves with wavelengths
on the order of 2l/n, while near the clamping points they
experience sharp bending at the length scale of λl, which
is responsible for fulfilling the clamped boundary con-
ditions u′ = 0. As a result, the majority of the elastic
energy is distributed over the mode away from the clamp-
ing points, while the small regions around them make
a large (dominant for lowest-frequency modes) contribu-
tion to the intrinsic losses [14, 15]. These losses, although
originating from the clamped resonator boundary, should
not be confused with losses due to modal coupling to the
supporting frame [31–33] or acoustic radiation [17, 34].

In the following, we refer to intrinsic loss occurring
away from the clamps as the ”distributed contribution”
to separate these losses from the losses due to bending
around the clamps.

We now generalize the multi-length scale approach for
the case of non-uniform beams and derive the dissipation
dilution factors as (see details in SI)

DQ,n =
1

2αnλ+ βnΩ2
nλ

2
, (15)

where we introduced dimensionless frequency of n-th
mode Ωn given by

Ω2
n =

ρl2ω2
n

εavgE
, (16)

and beam shape-dependent clamping and distributed loss
coefficients αn and βn are found as

αn =

√
vcl(u

′
cl,n)2

2Ω2
n

(∫ 1

0
v(s)un(s)2ds

) , (17)

βn =

∫ 1

0
v(s)3un(s)2ds∫ 1

0
v(s)un(s)2ds

. (18)

Here s = x/l is the scaled coordinate along the beam,
un(s) is the mode shape, v(s) = w(s)/wavg is the beam
width variation normalized to its average width and
quantities with subscript “cl” are computed near the
clamps (see SI).

Dissipation dilution of a non-uniform beam can be dis-
cussed entirely in terms of the reduction of the αn and
βn coefficients by varying the beam shape w(x); however,
some results are more intuitively interpreted from the
perspective of geometric strain engineering [19, 23, 24],
a technique that exploits the relaxation of a suspended
film to locally enhance the strain. Formally, the treat-
ment in terms of the transverse beam shape, w(x), or the
static strain distribution along the beam, ε(x), is equiv-
alent as these quantities are uniquely related as (see SI
for details)

ε(x)/εavg = wavg/w(x), (19)

through the condition that the tension force must be con-
stant along the beam.

IV. DISSIPATION DILUTION LIMIT

Before showing how dissipation dilution can be en-
hanced in a non-uniform beam, we derive a rigorous up-
per bound for DQ. This bound is set by the yield strain,
material parameters, beam thickness and the vibration
frequency, but does not depend on the beam length nor
the mode order. The bound is obtained by assuming the
clamping contribution to intrinsic loss to be negligible
(αn = 0) and evaluating the distributed loss coefficient
βn using the strain-width relation (Eq. 19) and the condi-
tion that the maximum strain in the beam cannot exceed
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the yield strain εyield. As a result we obtain (see SI for
details)

βn ≥
(
εavg

εyield

)2

, (20)

and thus the ultimate dissipation dilution bound is given
by

DQ ≤
12Eε2yield

ρh2ω2
. (21)

Interestingly, while being a rigorous and general result,
Eq. 21 has a simple and intuitive interpretation: dissi-
pation dilution cannot exceed the value for an idealized
clampless uniform beam strained to the yield point.

V. NON-UNIFORM BEAMS WITH ENHANCED
DISSIPATION DILUTION

We consider three beam designs which produce vibra-
tional modes with enhanced dissipation dilution com-
pared to a uniform beam—phononic crystal (PnC)
beams, beams with thin clamps and tapered PnC beams.
We first analytically estimate the attainable DQs with
these designs and then numerically calculate them by
solving the Euler-Bernoulli equation [25] (see SI). Nu-
merical calculations of dissipation dilution and quality
factors are presented in Fig. 3 for beams with length
l = 3 mm and thickness h = 20 nm. DQ factors ap-
ply to beams made of any material with given pre-strain

(0.46% in the figure), whereas the absolute Q factors are
calculated assuming parameters typical to stoichiometric
Si3N4 films[17, 35] (E = 250 GPa, ν = 0.23, σfilm = 1.14
GPa, Qint = 1.4× 103 for h = 20 nm), a well-established
material for strained nanomechanics [16]. Note that with
these extreme parameters the maximum dilution factor
is large (DQ > 104) even for a uniform beam.

The first strategy we consider is soft clamping [18,
19]—suppression of intrinsic loss around the clamps by
localizing a flexural mode in a phononic crystal. A 1D
phononic crystal can be formed by periodically modu-
lating the beam width [17] (with wmax = 2wmin for the
design in Fig. 3). Localized modes of a PnC beam can
closely approach the performance of idealized clamp-less
beams with purely sinusoidal mode shapes, which would
have dilution factors given by

DQ =
12Eε2film

(1− ν)2ρh2ω2
. (22)

Here Poisson’s ratio accounts for relaxation of film stress
in transverse direction upon suspension. Importantly,
the strong suppression of mechanical mode amplitude
near the clamps requires a large number of PnC unit
cells and thus a high order n of the localized mode. For
high-order modes, distributed losses increase as n2 due
to increased bending curvature for shorter acoustic wave-
lengths and at some point exceed the suppressed intrinsic
loss from around clamps. These trends can be seen in
Fig. 3, where the DQ factor of the localized mode is plot-
ted versus frequency. DQ can be optimized by changing
the localized mode order n while keeping all the param-
eters fixed except for the unit cell length (which changes
approximately as l/n). The amplitude of a localized
mode decays exponentially with the distance from the
defect, such that the coefficient for intrinsic loss around
clamps can be estimated as αn = e−(n−1)/nL , where nL
is the mode amplitude decay length in units of acous-
tic half-wavelengths. Optimization of DQ in Eq. 15 with
respect to n, yields

DQ,max ≈
1

π2n2
maxλ

2
, (23)

where nmax is the optimum localized mode order, which
increases only logarithmically slowly with 1/λ (see SI for
the explicit expression). This result demonstrates that
patterning a beam with a phononic crystal can provide an
improvement in DQ by a factor of ∼ 1/(n2

maxλ) compared
to a uniform beam of the same size. Note that the maxi-
mum attainable DQ is far below 1/λ2—the enhancement
expected from the suppression of the clamping contribu-
tion to intrinsic loss for a fundamental mode—as nmax

is in practice much greater than 1. It also follows from
Eq. 23 that in order for soft clamping to provide an in-
creased quality factor, λ needs to be much smaller than
1, i.e. dissipation dilution factors needs to be high even
for non-localized modes.

The second strategy we consider is reduction of the
beam width near the clamps, vcl = w(0)/wavg, in order to
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create local strain enhancement in the clamping regions
(see Fig. 2A top). Eq. 17 shows that αn is proportional
to
√
vcl and thus can be reduced by thinning down the

clamps (u′cl,n and Ωn are almost unaffected by vcl as long

as the clamping region length is small). This can be
interpreted as an effective decrease of λ over the clamping
region to

λcl =
√
h2/12εcll2, (24)

where εcl = εavg/vcl is the local strain. The dissipation
dilution of beams with thin clamps is thus given by

DQ,n ≈
1

2λcl + (nπ)2λ2
. (25)

In contrast to the PnC approach, thin-clamping beams
are predicted to have improved quality factors for low-
order beam modes, including the fundamental mode (see
Fig. 3, green points).

One caveat needs to be mentioned when considering
the effect of local strain on dissipation dilution: geo-
metric concentration of strain in one region unavoid-
ably results in the reduction of strain elsewhere. To im-
prove dilution factors beyond those of a uniform beam,
the region(s) of enhanced strain must overlap with the
region(s) which dominate dissipation in the vibrational
mode, in this case the clamps. A common beam geome-
try which does not satisfy this requirement, a beam with
filleted (thick) clamping points, is shown in the bottom of
Fig. 2A. This result is at odds with recently reported en-
hanced Qs in trampoline membranes with filleted tethers
[36].

In both uniform PnC and thin-clamped beams, the
clamping contribution to intrinsic loss is reduced, but
the distributed contribution is not. The latter can be
addressed by co-localization of both the flexural mode
and the strain away from the clamps as shown in Fig. 2B.
Following the strategy described in [19], here the width
of the PnC is changed cell-wise according to

wcell,i ∝ 1− (1− a) exp(−i2/i20), (26)

where i = 0, 1 ... is the cell index starting from the beam
center, a and i0 respectively define the transverse and
longitudinal sizes of the waist region. Importantly, the
PnC cell lengths must also be scaled proportional to
1/
√
wcell in order to compensate for the bandgap fre-

quency shift due to the non-uniform strain distribution.
An estimate of DQ for the tapered PnC is obtained by

assuming that the mode is localized in the waist region
of width vwaist and that the clamping contribution to
intrinsic loss is negligible:

DQ,n ≈
1

Ω2
waistλ

2
waist

, (27)

where

Ωwaist =
√
ρl2ω2/(εwaistE), (28)

λwaist =
√
h2/(12εwaistl2), (29)

and εwaist = εavg/vwaist. It follows that by increasing the
waist strain to the yield value, the ultimate limit of dis-
sipation dilution (Eq. 21) is attainable with tapered PnC
beam designs, in contrast to the previous two methods.

A practical limitation for dissipation dilution enhance-
ment by strain concentration in this case originates from
the tradeoff between εwaist and the waist length. Substan-
tially increased strain is only achievable over a small frac-
tion of the beam length, therefore only short-wavelength
and high-frequency modes can benefit from such global
geometric strain engineering. In Fig. 3 we plot DQ versus
frequency for localized modes of tapered beams, where
the taper waist has been adjusted to match the wave-
length of the localized mode. It can be seen that as the
mode frequency increases, its dilution is progressively en-
hanced relative to conventional soft-clamped modes (red
points).

VI. THERMAL NOISE LIMITS FOR
FREQUENCY AND FORCE MEASUREMENTS

The quality factor of a mechanical resonator deter-
mines the uncertainty in frequency and force measure-
ments due to the resonator’s Brownian motion[28, 37, 38].
Therefore dissipation dilution directly improves these
fundamental sensitivity limits. In the case of force mea-
surements, a nanobeam is a particularly advantageous
kind of resonator due to its low mass. For the highest-
Q nanobeams that were experimentally demonstrated at
room temperature[19], with a Q of 8 · 108 at 1.3 MHz (in
agreement with the theory presented here within 30%)
and effective mass of 11 pg, the thermal noise limit is

δFth =
√

4kBTmΓn = 1.4 aN/
√

Hz (30)

at T = 300 K. Here Γn = ωn/Q is the resonance
linewidth. For the highest-Q soft-clamped mode in
Fig. 3 (ωn/(2π) = 1.3 MHz, Q = 3.3 · 108), assuming
a beam center width of 400 nm, the force sensitivity is
δFth = 2.1 aN/

√
Hz. These low numbers are not only

a consequence of high Q, but also of the mode localiza-
tion by the phononic crystal. Modes of a beam with thin
clamping points (green points in Fig. 3) have three times

higher thermal noise, δFth = 6.6 aN/
√

Hz for the mode
with Q = 1.1 · 108 at ωn/(2π) = 1 MHz assuming the
same beam width. The mode of a uniform beam of the
same dimensions at the same frequency has quality factor
Q = 3.3 · 107 and force sensitivity δFth = 12 aN/

√
Hz.

The thermal noise limit for an oscillator frequency
measurement is more ambiguous to define in absolute
terms, since here the resolution in general depends on
the amplitude of the drive[37, 39] which is typically lim-
ited by the onset of nonlinearity. For flexural modes of
thin beams and membranes the dominant source of non-
linearity at large amplitudes is not material but geomet-
ric nonlinearity[40], the same which creates dissipation
dilution. Therefore we can estimate the contribution of
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Brownian motion to oscillator frequency noise by assum-
ing that the amplitude of driven motion is such that the
nonlinear part of the energy is of the same order of mag-
nitude as the linear part. This is equivalent to the condi-
tion that the average kinetic energy approaches the static
elastic energy, 〈Wkin〉 = Wel.stat.,

meffω
2
n〈X2

osc〉 ' Veffε
2
avg/E. (31)

Here meff and Veff = meff/ρ are the effective resonator
mass and volume, respectively, X is the oscillator po-
sition and 〈X2

osc〉 is the magnitude of driven motion.
The frequency noise spectrum due to Brownian motion
is given by[39]

Sωω[ω] = 2
〈X2

th〉
〈X2

osc〉
Γn

ω2

ω2 + (Γn/2)2
, (32)

where 〈X2
th〉 is the magnitude of the thermal fluctuations.

Using Eq. 31, we estimate the minimum frequency noise
(at ω � Γ) as

Sωω '
kBT

Wel.stat.
Γn. (33)

From Eq. 33, we see that static strain reduces Brow-
nian frequency noise in two ways—by reducing the res-
onator linewidth and by increasing the driving amplitude
threshold at which nonlinearity comes into play. Plug-
ging in numbers from Fig. 3 we find that the highest-
Q soft-clamped mode has minimum frequency noise√
Sωω/(2π) ' 4 · 10−7 Hz/

√
Hz. If converted to phase

noise, this is equivalent to −230 dBc/Hz at 20 kHz offset,
which is an extremely low level.

Practically, other factors than Brownian motion al-
most always limit the frequency stability of mechanical
resonators, in particular of silicon nitride nanobeams[40].
On the other hand, in nanobeams extraneous frequency
noises of different modes are highly correlated, which
made it possible to demonstrate Brownian-noise limited
frequency measurements with moderate-Q resonators us-
ing feedback[39]. Therefore the attainability of the Brow-
nian noise limit in frequency measurements using ultra-
high Q beams remains an open question.

VII. CONCLUSIONS AND OUTLOOK

We have presented a theoretical framework to analyze
the quality factors of strained mechanical resonators of

arbitrary three dimensional geometry and shown that a
lossless contribution to the elastic energy, giving rise to
Q-enhancement by dissipation dilution, emerges in the
presence of static strain and geometric nonlinearity. High
aspect ratio beams and membranes can produce partic-
ularly large dissipation dilution, though it is not impos-
sible that other geometries can do it as well.

For the specific case of variable cross-section beams
subjected to axial tension we presented an analytical
model. We showed that by corrugating the beam it is
possible to create modes with quality factors enhanced
by more than an order of magnitude compared to a uni-
form beam. We interpret the Q enhancement in terms
of the suppression of clamping contribution to intrinsic
loss and local strain engineering, deriving the limits of
each approach, and estimating practically achievable ab-
solute Q factors for devices made of high-stress Si3N4 .
In order to perform numerical calculations for beams we
developed a freely available Mathematica package[25].

We note that while Si3N4 is currently the most popular
material for strained nanomechanics — particularly for
applications in optomechanics [41–44] — the principles
described here apply to resonators made of any material
under strain, whether produced by external force [45],
lattice mismatch (e.g. during epitaxial growth) [46, 47]
or mismatch of thermal expansion coefficients [48].
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