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Abstract

Asymmetry in a one-dimensional optical Fabry-Perot optical cavity is shown to produce a large

net pressure, the total on the two mirrors. Consequently, asymmetric cavity structures that are

formed in this manner can experience a net force that is greater than that resulting from the

excitation light illuminating a perfect mirror. The conditions for this to occur are a modest quality

factor regime, where some influence of the cavity is needed, but when the quality factor becomes

very large the enhancement diminishes. This result is used to illustrate how structuring a metal

surface, thereby forming a plasmonic cavity, can substantially increase the optical pressure over

that possible with a planar interface. It is shown that the force on one mirror in an asymmetric

arrangement can be increased relative to the other. Importantly, the sum of the pressures on both

mirrors increases through asymmetry and with quality factor, while adhering to conservation of

energy. Using cavity quality factor as a measure, the one-dimensional Fabry-Perot cavity pressure

results are related to pressure enhancement with a structured metal surface where a different type

of mode in an asymmetric cavity is excited, the lowest order metal-insulator-metal surface plasmon

mode. In principle, an optical cavity or cavity array formed with any material should display this

enhanced pressure phenomenon. The length scale of the resonant structures for visible light can be

as small as a few tens of nanometers, in the case of metals. With this understanding guiding the

design of structured metallic and dielectric materials, a many-fold increase in pressure over that

on a perfect mirror is possible. Consequently, the relatively weak optical force can become more

effective in a variety of scientific and technological applications.
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I. INTRODUCTION

Radiation pressure was theorized [1] and measured [2, 3] more than one century ago, and

optical force concepts developed since the advent of the laser have led to optical tweezers [4]

and extensive interest in optical traps and condensates [5]. There has been substantial work

done related to forces within optical cavities and on the cavity mirrors, primarily related

to sensitivity and cooling [6–9]. Also, the development of sensitive interferometers [10]

have allowed the detection of gravitational waves [11]. Generally, cavity dynamics concepts

are based on the mirror radiation pressure being P = 2~kI, with each photon carrying

a momentum ~k and I being the optical intensity measured in photons/(m2s), given P in

N/m2, and the factor of two is from the assumption of perfect reflection [12]. This is entirely

consistent in the appropriate limit with the classical picture from Maxwell [1], where with

a free space background the pressure is

P =
S(1 + |Γ|2)

c
, (1)

where Γ is the field reflection coefficient at the mirror, S is the time-averaged Poynting vector

magnitude (the incident time-average power density), and c is the speed of light. Clearly,

increasing I or the Poynting vector within the cavity by increasing the cavity quality factor

(Q) will increase the pressure on each mirror. However, |Γ| = 1 leads to a maximum value

of P = 2S/c in this widely-held picture.

The force density in homogenized media can be obtained from the field solution, and

this leads to a means to calculate the force on a medium [13, 14], the pressure on a slab

[15, 16], and with photonic crystal mirrors [17]. With such an approach involving a numerical

solution for the fields in the material, leading to the force density and hence pressure, the

possibility of increasing the pressure by more than an order of magnitude over 2S/c with

a nanostructured Au surface has been presented [18]. This result could be profoundly

important in applications, but the physical basis of the effect has remained unclear. Here,

we present an understanding based on results for an asymmetric 1D Fabry-Perot cavity

and explain how the the sum of the pressures on each mirror can exceed that on a perfect

mirror. This cavity mode basis leads to a means to achieve pressure enhancement with

a variety of dielectric and metallic materials for remote control, propulsion, and cavity

optomechanics applications. The resulting change in the mathematical picture of pressure
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[1] should therefore provide a basis for new directions in optomechanics for the physical

sciences.

We explain optical pressure enhancement on a surface by considering the mirror pressures

in the 1D Fabry-Perot cavities shown in Figs. 1(a) and (b), which we relate to cavity Q and

the metal-insulator-metal (MIM) cavity mode in Figs. 1(c) and (d), all in a free space

background. Figure 1(a) shows a symmetric cavity containing two identical slab mirrors

(M1 and M2) with thickness t, and a cavity length d, defined as the mirror separation.

Figure 1(b) shows an asymmetric cavity with M1 having thickness t and the semi-infinite

M2 placed a distance d away from M1. Figure 1(c) shows a nanostructured slot cavity array

in metal and the profile of each slot is shown in Fig. 1(d). With an incident field having Hz,

the lowest order MIM waveguide mode (Ex, Ey, Hz) can be excited, by virtue of the metal

dielectric constant (ǫ = ǫ′ + iǫ′′ with ǫ′ < −1, assuming a free space background) [19]. The

coupled surface plasmon waveguide mode has a wavelength that reduces with decreasing

slot width (Σ), allowing for resonant cavities in gold (Au) where the slot depth (D) and Σ

are just a few tens of nanometers. The cavity in Fig. 1(d) has differing reflection coefficients

at the top and bottom of the slot, resulting in asymmetry. We present radiation pressure

simulation results for 1D cavities in Figs. 1(a) and (b) and use these to build physical insight

into the influence of structures like Figs. 1(c) and (d) to enhance the pressure.

II. ASYMMETRIC CAVITY PRESSURE

The separable problems in Figs. 1(a) and (b) can be solved analytically, and we do

so for excitation with a single, normally incident plane wave from the left, allowing the

force densities in the mirrors and hence the pressure to be obtained. Using impedance

transformation, the field reflection coefficient, S11 (with scattering parameter notation),

can be found at the left interface of M1 [20]. We choose reflected fields rather than those

transmitted because some cavities of interest have no transmission. Using the recursive from

of the field transmission matrix, the fields are found in the cavity and within the mirrors [20].

The fields in the mirrors lead to the force density and hence the pressure. The force density

expression we utilize here, originally from Einstein and Laub [21], has been derived and

used by others [13, 14, 16, 22], and was also used to present the idea of enhanced pressure

in structured material [18]. We assume that no magnetic material response exists in the
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source-free case. Consequently, the time-averaged force density within the material media

assuming exp (−iωt) is

〈f〉 = (ê× ĥ)
µ0ǫ0ω

2
ℑ{χEE(r)H∗(r)}+

ǫ0
2
ℜ{(χEE(r)ê · ∇)(êE∗(r))}, (2)

where ê and ĥ are unit vectors indicating the direction of the electric and magnetic field

phasors, E and H , at position r, respectively, χE is the electric susceptibility, ℜ{·} is the

real part and ℑ{·} the imaginary part, µ0 is the free space permeability, and ǫ0 is the free

space permittivity. We define the time-averaged force density due to the first term in (2) as

〈fR〉, where the nomenclature implies that this is the radiation pressure for a planar surface

with normal incidence, the usual mirror picture, and the other term due to the gradient of

the field as 〈fG〉. We note that application of (2) for normally incident light on a planar Au

mirror and integration over depth produces a pressure for visible wavelengths that is very

close to 2S/c. Conservation of momentum is inherent in use of (2) because this kinetic force

density is formed with use of the classical field momentum [13, 21, 23].

We relate the radiation pressure to the cavity Q for the 1D cavities in Figs. 1(a) and (b).

With the linear and isotropic relationships D = ǫ0ǫE and B = µ0H, in frequency domain

and where D is the electric flux density and B the magnetic flux density, it is possible

to separate electromagnetic field energy into stored and lost components [24]. Under the

assumption that dispersion can be neglected, so ∂ǫ/∂ω = 0, the time-averaged stored energy

surface density (J/m2) is

W =
1

4

∫

l

[

ǫ′ǫ0|E(r)|2 + µ0|H(r)|2
]

dl, (3)

where l is the spatial variable perpendicular to the mirrors. Likewise, the time-averaged

power dissipation surface density (W/m2) is

Pd =
ω

2

∫

l

ǫ0ǫ
′′|E(r)|2dl. (4)

The integrations in (3) and (4) are over the mirrors and the intervening space (free space in

the situations of Figs. 1(a) and (b)), and for M2 in the asymmetric cavity case, the integral

in that mirror is over 20δ, with δ the skin depth (e−1 of the field at the surface).

The Q can be decomposed into unloaded (accounting for loss within the cavity, QU) and

loaded (describing the radiative loss contribution, QL) as

1

Q
=

1

QU
+

1

QL
, (5)
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where

QU = ω0
W0

Pd
and QL = ω0

W0

Sr + St
, (6)

with ω0 the resonant circular frequency, W0 the total (electric plus magnetic) energy in the

cavity at resonance from (3), Pd the power dissipated within the cavity at resonance from

(4), and Sr and St the reflected and transmitted Poynting vector magnitudes, respectively,

at resonance. With high cavity finesse and use of a Lorentzian line model [25, 26],

1− |S11(ω)|
2 =

1− |S11(ω0)|
2

1 + 4 (ω0−ω)2

∆ω2

, (7)

and an estimate of Q is

Qω =
ω0

∆ω
, (8)

where ∆ω is the half-power bandwidth and the subscript ω indicates this frequency response

measure (with a high Q approximation). Measuring S11 and use of (8) to determine Q

circumvents the need to artificially define cavity boundaries.

III. PRESSURE WITH A ONE-DIMENSIONAL ASYMMETRIC CAVITY

Figure 2 shows our pressure results for the 1D cavities of Figs. 1(a) and (b) at resonance.

We designate symmetric (Fig. 1(a)) and asymmetric (Fig. 1(b)) Fabry-Perot cavity cases

through the labels SFP and AFP, respectively. In all calculations, the magnitude of the

Poynting vector of the normally incident plane wave (Si) on the cavity is 1 W/m2, and the

free space wavelength is λ0 = 633 nm. The mirror dielectric constants used are presented

in Table I and based on Au. We vary only the material loss and thickness to adjust the

confinement and dissipation in the cavities. The shortest resonant cavity length was deter-

mined from the minimum |S11| as d is adjusted, and all results are for this condition. For

the 1D cavities, only 〈fR〉 contributes to the pressure. Positive pressure is in the direction of

the wave vector for the cavity excitation and the excitation Poynting vector. Consequently,

M1 has positive pressure due to excitation and negative pressure due to the cavity field, and

the latter dominates in the cases considered. The pressure on M2 is always positive. Our

central interest is in the sum of the pressures on the two mirrors.

Figure 2(a) shows the radiation pressure on M2, PM2
, as a function of Q, calculated from

(5), with use of (6), and the cavity energy determined from (3) and the power dissipation
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from (4). The various symmetric (SFP) and asymmetric (AFP) cavity parameters are given

in Table I. The Q is adjusted by varying the loss in M1 through ǫ′′M1
. Changing ǫ′′M1

has an

impact on the coupling between the incident wave and the cavity, so both QU and QL are

varied, and the stored energy in the cavity changes. The increase in PM2
with increasing

Q can be understood from the pressure presented by Maxwell [1] in (1) with |Γ| ∼ 1 and

the increasing forward power density (Sf). A fit (orange line) in Fig. 2(a) makes the linear

relationship between pressure and Q clear. Figure 2(b) shows PM2
as a function of Qω,

estimated from (8), which has a nonlinear relationship to pressure. However, the general

trend between pressure and both Q and Qω are consistent. The nonlinear character in

Fig. 2(b) appears at lower values of Qω and can be attributed to the breakdown of the

high-Q approximation. With high Qω, the results in Fig. 2(b) still differ a little from those

in Fig. 2(a) because the cavity boundaries were (artificially) described at the outside of

the mirror surfaces in determining both W0 and Q (in Fig. 2(a)), while use of the reflection

coefficient in (7) in determining Qω from (8) did not require a cavity boundary to be defined.

We conclude then that Qω provides a suitable measure to investigate cavity mirror pressure.

Figure 2(c) shows the net pressure on M1 and M2, PM1
+ PM2

= PM1+M2
, for SFP2 and

AFP3, the higher Q examples of symmetric and asymmetric cavities, respectively. When

a symmetric cavity is resonant, the forward and backward waves within the cavity have

approximately the same amplitude. Therefore, for the symmetric cavity, PM1
(< 0, the

sum of the excitation light pressure, which is positive, and the much larger negative cavity

pressure) is almost the same as PM2
(> 0), but in the opposite direction and hence a negative

number, causing PM1+M2
to be small. This can be observed from the blue diamond symbols

in Fig. 2(c), where the total pressure becomes small as Qω increases. On the other hand, with

the asymmetric mirror arrangement of Fig. 1(b), PM2
is slightly larger than PM1

, leading to

an increasing PM1+M2
with increase in Qω over the range considered, as evidenced by the

star symbols in Fig. 2(c). The dashed line in Fig. 2(c) shows the maximum pressure on a

perfect mirror based on (1) when S = 1 W/m2 and Γ = 1. From the AFP3 case in Fig. 2(c),

given by the blue stars, it is clear that PM1+M2
, enhanced by the cavity Q, can exceed the

maximum pressure on a perfect mirror (2S/c) by a factor of three (with the same power

density incident on the cavity).

Figure 2(d) shows the power flow for the asymmetric cavity case of Fig. 2(c), AFP3. Con-

servation of energy requires that the difference between the forward and backward Poynting
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vector magnitudes in the cavity and between the mirrors (Sf − Sb) be less than or equal

to (when the mirrors have no dissipative loss) the net power density exciting the cavity

(Si−Sr). Figure 2(d) shows that this is the case and energy is conserved. The Sf −Sb curve

approaches Si − Sr with increasing Q because the loss in M1 is being reduced. We can thus

understand the enhanced net pressure (PM1+M2
) as being regulated by asymmetric cavity

control of Sf − Sb and cavity Q, while maintaining conservation of energy and momentum.

It is interesting to note from the asymmetric cavity results of Fig. 2 that, at the first reso-

nance, PM1+M2
is largest when the reflection coefficient at the left of M1 (|S11|) is a minimum.

On the contrary, the maximum pressure based upon S(1 + |Γ|2)/c = 2S/c occurs when the

reflection coefficient is maximum. The idea that higher reflection produces larger pressure

has led to the use of highly reflecting surfaces achieved with distributed Bragg reflectors or

photonic crystals. Our results indicate, quite differently, that a resonant asymmetric cavity

can provide even larger pressure enhancement than the conventional limit.

To understand the pressure enhancement when the cavity supports even higher Q, we

calculate the net pressure, PM1+M2
, for symmetric and asymmetric Fabry-Perot cavities with

Qω larger than AFP3 in Fig. 2(c), finding the results in Fig. 3(a). The dielectric constants

of M1 and M2 are fixed to be ǫ′M1 = ǫ′M2 = −11.82 and ǫ′′M1 = ǫ′′M2 = 0.1. We adjust the

thickness of M1, t, to be 5, 10, 40, 50, 70, 80, 100, 130 and 150 nm to gradually increase cavity

quality factor, Qω. The symmetric cavities have identical thicknesses for M1 and M2. In

principle, the symmetric cavity pressure should approach the perfect mirror case, the dashed

line in Fig. 2(c), when M1 is very thick, to obtain high Q. This can be observed from the

diamond symbols. Note how PM1+M2
increases to approach the dashed line and the perfect

mirror situation, indicating that the internal cavity pressures cancel and the small cavity

coupling results in close to a perfect mirror for the excitation field at M1. For the asymmetric

cavities (star symbols), notice in Fig. 3(a) that PM1+M2
has a value below the perfect mirror

case and initially increases with increasing Qω, reaches a maximum, and then decreases

to the perfect mirror value. When t becomes large and cavity Q is very high, the cavity

behaves more like a symmetric cavity where the pressures on M1 and M2 due to Sb and Sf

cancel. The net pressure for high Q approaches that from the excitation wave on a planar

surface. We therefore learn by way of example and consideration of the underlying physical

mechanism that there is a regime with modestly high Q where pressure enhancement with

asymmetric cavities can occur.
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IV. CAVITY PRESSURE WITH MAXWELL’S PICTURE

In Fig. 2 we show calculated results for the pressure from a force density stemming from

work by Einstein and Laub [21] given in (2). Integration of the force density over the

material and normalization to surface area led to the pressure. For the 1D cavity problem

we treated and normal incidence, only the first term in (2) contributes. On the other hand,

a commonly used picture was proposed by Maxwell [1], where the radiation pressure is given

by (1) when there is no transmission through the mirror.

We compare the pressures on M1 and M2 in Fig. 1(b), PM1 and PM2, based on these two

approaches, i.e., with use of (1) and (2). In applying (1) to M1, we consider only the more

significant pressure from the cavity field and hence neglect that due to the excitation field on

this mirror. We choose AFP3 (the asymmetric cavity in Fig. 1(b) with the parameters given

in Table I) because of the larger pressure enhancement and higher Q among the Fabry-Perot

cavity examples in Fig. 2. The results for PM1, PM2 and the net pressure, PM1+M2, for AFP3,

are shown in Fig. 4. Changing the material in mirror M1 produces a change in cavity Q and

hence a change in the pressure. In Fig. 4, the black stars are from Maxwell’s picture in (1)

and the blue stars are calculated from (2).

We note that PM1 is in the opposite direction of PM2. By using (1) for PM1, we assume

that M1 provides high reflection and efficient absorption within the material. Therefore,

the results have the assumption that no transmission occurs through M1, causing a slightly

larger PM1. We can also observe the slight differences between the pressures calculated

from two approaches in Fig. 4(b) due to the influence of the finite penetration (20δ, with

δ the skin depth) into M2 in forming the pressure from (2). These small differences are

more evident for larger Qω because the scale is expanded in this regime and reduce with

increasing accuracy for the integration of the force density. The use of (1) for M1 produces

higher PM1 and hence a lower estimate for the net pressure, PM1+M2. This can be observed

in Fig. 4(c) with increasing Qω. With an increase of Qω, the loss of M1 reduces, causing

the larger differences between the two approaches when we use (1) for M1. However, the

enhanced pressure beyond that on a perfect mirror can still be observed when we apply

Maxwell’s picture. Generally, for this 1D problem, we note the excellent agreement between

the two approaches. Our conclusion is that either model would serve our purpose.

To confirm that we have the correct field solutions, Fig. 5 plots the magnitudes of the
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electric and magnetic fields through the cavity for the three AFP3 examples with the largest

Q (Qω = 135.84, 120, 107.67 when ǫ′′M1
= 0, 0.1, 0.2, respectively) in Fig. 4 where there is

significant pressure enhancement and high Q. The field values can be used to verify the

corresponding power flow points in Fig. 2(d) and the pressure enhancement for this case.

The magnitude of electric field in Fig. 5(a), (c) and (e) and magnetic field in Fig. 5(b),

(d) and (f) indicate the quasi-even electric field and quasi-odd magnetic field solutions for

the first resonant mode in the asymmetric cavity. These field solutions clearly satisfy the

boundary conditions and hence represent both the unique and exact field solution for this

particular situation. Consequently, the approximate pressures from (1) or the exact results

from (2) presented in Fig. 4(c) can be verified. We provide the numbers for power flow, Sf

and Sb, and the reflection coefficients at M1 and M2, |Γ1|
2 and |Γ2|

2, in the caption of Fig. 5,

and these produce the corresponding pressure points in Fig. 4.

V. ANALYTICAL DESCRIPTION OF ENHANCED CAVITY PRESSURE

Equation (1) provides a simple, approximate means to develop an analytical pressure

expression for the 1D cavity. We assume a backward power flow in the cavity given by

Sb = αQSi, (9)

where α is a constant that relates Q to Poynting vector magnitude. Upon neglecting the

influence of the transmission through Mirror 1 on pressure and assuming high Q, such that

the pressure due to the excitation light on Mirror 1 can be neglected, (1) yields

PM1
= −

Sb

c

(

1 + |Γ1|
2
)

(10)

= −
αQSi

c

(

1 + |Γ1|
2
)

. (11)

Similarly, the pressure on M2 can be written as

PM2
=

αQSi

c

(

1 + |Γ2|
2
)

. (12)

Summing (11) and (12), we have

PM1+M2
=

αQSi

c

[

|Γ2|
2 − |Γ1|

2
]

. (13)

Consider the case of an asymmetric cavity where |Γ2| = 1, so (13) becomes

PM1+M2
=

Si

c
αQ

[

1− |Γ1|
2
]

. (14)
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We note that Γ1 = f(Q) is smooth but nonlinear. This facilitates a local, linear approxima-

tion for a range of Q and hence a simple means to incorporate this dependence into (14).

Referring to (14), we set γ = 1− |Γ1|
2 and use the local linear relationship

Q = aγ + b. (15)

Substituting 1− |Γ1|
2 = γ = (Q− b)/a into (14), we have

PM1+M2
=

αSiQ

ac
[Q− b] , (16)

a quadratic equation in Q.

Using this simple, analytical picture, we can gain insight into the enhanced pressure

regime in Fig. 3(a) and where the maximum PM1+M2
occurs. Equation (16) assumes |Γ2|

2 = 1

and AFP3 in Fig. 2(a) uses |Γ2|
2 = 0.9955 ≈ 1. Therefore, we can use Fig. 2(a) to find Q

and hence α in (12). This procedure yields α = 0.2027. Because we calculate Qω and (16) is

a function of Q, we use the asymmetric cavity data point with t = 50 nm, which shows the

largest pressure enhancement in Fig. 3(a), to relate Qω to Q by Q = βQω. Note that this

point is also the one in AFP3 with the second largest Q (blue star in Fig.2(a)). Therefore,

with use of Fig. 2(a), we find β = 2.6073. We then write

Qω =
1

β
(aγ + b) (17)

= anγ + bn, (18)

where an = a/β and bn = b/β.

Figure 3(b) shows calculated points (t = 40, 50, 70 and 80 nm) for Qω as a function of

γ = 1−|Γ1|
2. The blue line in Fig. 3(b) is the least mean-square error fit to the points and is

selected as a line to determine Qω = anγ+ bn. We thus obtained the parameters an < 0 and

bn > 0 in (16), with an = −4.5350× 103 and bn = 407.3813. Equation (16) with either Q or

Qω, related by Q = βQω, can thus be used to find the local approximation to PM1+M2
, and

this is the (red) parabola plotted in Fig. 3(a). The local maximum of the enhancement occurs

when Qω is around 200. Notice that this simple, locally linear description nicely captures

the essence of the pressure enhancement. A series of such local solutions will provide the

set of perturbational solutions.
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VI. PRESSURE WITH A SLOT ARRAY IN A METAL FILM

To obtain the fields and the corresponding radiation pressure in the nanostructured slot

cavity in a metal film, shown in Fig. 1(c), we use a frequency domain finite element method

(FEM) to obtain the numerical field solutions [27]. Port boundaries are used in this 2-D

model to extract S11 and placed 5λ0 above and below the structure in Fig. 1(d). To avoid

singularities in the numerical simulations, the corners of each slot are rounded with radius

of 1 nm. The maximum mesh element size in the scattering material is λ0/200, sufficient

to ensure the accuracy of the force density solutions. The slot depth, D, and width, Σ, are

variables and the period is set to Λ = 400 nm and thickness to T = 200 nm. With a period

of Λ = 400 nm, only the zeroth-order (normal) scattered plane wave propagates. We fix Σ

and vary D to determine the resonant depth from the minimum of |S11|.

The results for the slot resonant D as a function of Σ, labeled by the (red) diamonds, are

shown on the right axes in Figs. 6(a) and (b). A reducing slot width results in a decreasing

slot depth for the first resonance. We apply (8) to estimate Qω for the slot cavity, and

the results are shown in Fig. 6(a) by the (black) triangles in conjunction with the left axis.

Note that Qω increases with decreasing Σ, which can be understood by the cavity reflection

coefficient at the top of the slot increasing as Σ is reduced, thereby increasing the lifetime of

the guided-wave resonance in the slot and hence QL. The numerical field solutions are used

in (2) to find the force density, and this is integrated over the support of the material within

the unit cell and divided by Λ to form the pressure, with the results given by the (black)

asterisks for each value of Σ in Fig. 6(b), as indicated on the left axis. The general trends

in Figs. 6(a) and (b) are that both Qω and pressure decrease with increasing slot width (at

resonance). The pressure results for the slot cavities in Fig. 6(b) are consistent with the

asymmetric 1D Fabry-Perot cavity results of Fig. 2(c) for AFP3, where the pressure increases

with Qω. The anomalous pressure result for the smallest Σ in Fig. 6(b) occurs because of the

small slot size and the reduced interaction between the field and the material. Figure 6(c)

shows the pressure as a function of Qω for the slot structures. Unlike the 1D Fabry-Perot

cavities, the gradient force term, 〈fG〉, contributes. We separate the contribution of 〈fG〉 from

the total pressure (black asterisks), and the results are plotted as the red circles in Fig. 6(c).

In general, the pressure is proportional to Qω and the relationship is linear for lower Qω.

Higher Qω supports a higher pressure contribution from 〈fG〉, associated with the reducing

11



slot width, although the total pressure reduces slightly at the highest Qω. The dashed line

is again the maximum pressure on a perfect mirror, from Fig. 2(c). Compared to the net

pressure for the AFP3 1D cavity case in Fig. 2(d), the slot cavity can provide a pressure

enhancement more than an order of magnitude higher than a perfect mirror with a relatively

low-Q cavity. The gradient of the total pressure in Fig. 6(c), dP/dQω, describes the efficacy

of the cavity in enhancing the pressure (per unit Q or stored energy). In Fig. 6(d), we plot

the linear fits passing through the origin for the total pressure and the pressure contributed

by 〈fG〉 as black and red dashed lines, respectively, using the first 8 points (linear region)

in Fig. 6(c). Linear fits to the pressure as a function of Qω for SFP1 and AFP1, which

involve similar (low) Qω to the slot cavity, are plotted for comparison as the red and blue

lines, respectively, in Fig. 6(d). The nanostructured slot cavity can provide larger pressure

enhancement on the target surface than that (on M2) for the 1D Fabry-Perot cavities we

considered when the cavities have the same Q. This is mainly due to the contribution of

the gradient force, 〈fG〉. Consequently, for an incident wave with time-averaged intensity S,

the nanostructured slot cavity can utilize the energy stored in the cavity more efficiently in

creating optomechanical pressure by drawing on both 〈fR〉 and 〈fG〉.

VII. CONCLUSION

We have shown that an asymmetric optical cavity can lead to a total pressure as the sum

of that on each mirror that exceeds the pressure on a perfect mirror. This net pressure is

substantial by virtue of the asymmetry and can be controlled by cavity Q. The enhanced

pressure for the nanostructured metal film results from both terms in (2), where the cavity

mode resonance influences the fields in the metal and hence the force density and pressure.

Generally, increasing the cavity Q can produce higher pressure in the metal film slot res-

onators. The kinetic force density in (2) is derived using conservation of momentum (see

[13], for example). Consequently, there is a rigorous basis for the pressure results shown.

The 1D cavity provides a simple vehicle to understand enhanced optical pressure, defined

as the sum of the pressure on both mirrors in a Fabry-Perot cavity. With planar mirrors

and the neglection of transmission, the simple pressure description from Maxwell in (1)

holds and provides a useful comparison and the basis for a mathematical picture of pressure

enhancement. We have provided a rigorous physical and mathematical pressure development
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and results. However, there is a consistent qualitative picture. Conservation of energy has

been demonstrated in our results (Fig. 2(d)). The large cavity fields and power flow imply

an accumulation of photons and a larger number of photons per unit time striking the

interior walls of the cavity than is the case for the external mirror surface through which

excitation occurred. The cavity could have been populated with photons by some other

means, such as an internal source. Regardless, with appreciable cavity field enhancement,

the pressures from inside dominates. With the introduction of asymmetry in the cavity

mirrors, the pressure on one mirror can exceed the other by an amount that is greater than

the equivalent excitation light applied to a perfect, planar mirror (Fig. 2(c) and Fig. 3(a)).

As we have shown, this can occur with satisfaction of energy and momentum conservation.

A surface plasmon is excited in the slot cavity in a metal film described, associated with

the lowest-order MIM mode that propagates for arbitrarily small slot width, allowing for very

small cavities. However, other cavity modes using other materials, including dielectrics, are

expected to also provide pressure enhancement. This is illustrated in the 1D cavity results

we showed, where a surface plasmon was not excited in the metal-like mirrors, and these

could have been replaced with dielectric counterparts with similar results.

There are convenient fabrication methods to form nanocavity arrays in metal, for exam-

ple, direct nanoimprinting [28]. With use of optimized, aperiodic structures, more control

and higher pressure should be possible [29], and regulation of the pressure as a function of

wavelength should be possible. The explanation for enhancement we have provided allows

design guidelines for applications that will benefit from enhanced and controllable optical

forces with structured material. For example, beads that are used in optical tweezers could

be structured [30]. Also, the efficacy of vehicle propulsion using structured materials should

improve. More generally, we suggest that there are new opportunities related to the in-

teraction of waves with structured, resonant materials and the generation of a mechanical

response.
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(a) (b)

(c) (d)

FIG. 1. Optical cavities that enhance the radiation pressure. (a) A symmetric Fabry-Perot cavity.

The mirrors M1 and M2 are two identical slabs with thickness t separated by d. (b) An asymmetric

Fabry-Perot cavity. M1 is a slab with thickness t and M2 is a semi-infinite mirror placed d away

from M1. (c) A nanostructured slot cavity array in a metal. (d) Profile of the nanostructured

slot cavity in (c). A normally-incident plane wave of wavelength 633 nm and Au with artificially

adjusted loss are assumed, as described in Table I.
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(a) (b)

(c) (d)

FIG. 2. (a) PM2
on M2 as a function of Q from (5), with a linear fit (orange line) for examples

of symmetric and asymmetric Fabry-Perot cavities with the parameters given in Table I. (b) PM2

as a function of Qω from (8). (c) Net pressure, PM1+M2
, on M1 and M2 as a function of Qω. The

dashed line shows the value of the maximum pressure on a perfect mirror when the magnitude

of the incident power density (Si) is 1 W/m2. A resonant asymmetric cavity can support larger

pressure enhancement than a perfect reflecting (anti-resonant) surface. (d) Forward (Sf ) and

backward (Sb) power density for the asymmetric cavity AFP3 (overlapping on this scale), along

with the difference (Sf − Sb), in comparison with the incident (Si) and the net incident (Si − Sr)

power densities. As Q increases due to reduced loss in M1, Sf −Sb approaches Si−Sb. This result

establishes conservation of energy.
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(a) (b)

FIG. 3. (a) The net pressure on M1 and M2, PM1+M2
, as a function of Qω for symmetric (diamonds)

and asymmetric (stars) Fabry-Perot cavities having ǫ′M1 = ǫ′M2 = −11.82 and ǫ′′M1 = ǫ′′M2 = 0.1.

We choose the thickness of M1, t, to be 5, 10, 40, 50, 70, 80, 100, 130 and 150 nm to regulate the

cavity quality factor, Qω, in the regime where enhancement occurs and beyond. The sub-figure

shows an expanded view of the dashed box region for small Qω. The dashed line shows the value

of the maximum pressure on a perfect mirror when the magnitude of the incident power density

(Si) is 1 W/m2, that used for the data points shown. For the symmetric cavities (diamonds), the

total pressure increases with increasing Qω, and then approaches the perfect mirror case. For the

asymmetric cavities (stars), note that the total pressure dips below that for Si incident on a perfect

mirror for low Qω. These results show that there is a design region for pressure enhancement. When

t becomes large, the cavity behaves more like a symmetric cavity where the pressures on M1 and

M2, due to Sb and Sf , approximately cancel. In this regime, the net pressure is roughly that from

the excitation wave on a planar surface. The red parabola is from the local linear estimation for the

asymmetric cavity data points with t = 40, 50, 70 and 80 nm and use of (16). (b) Calculated Qω(γ)

with γ = 1 − |Γ1|
2 (asymmetric cavity data points with t = 40, 50, 70, 80 nm). The blue line is a

fit to all points, yielding Qω(γ) = anγ + bn with an = −4.5350× 103 and bn = 407.3813. With use

of the point with t = 50 nm, which shows the largest enhancement in (a). and the corresponding

Q (blue star symbol with the second largest Q for AFP3) in Fig. 2(a), we find Q = βQω with

β = 2.6073. The an and bn provide local a and b values in (16) and the resulting parabolic curve in

(a). Note how well this local, linear picture (the red parabola) captures the pressure enhancement.
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(a) (b)

(c)

FIG. 4. The pressures on M1 and M2 in the cavity of Fig. 1(b) using the Einstein-Laub (2) and

Maxwell (1) descriptions, with varying loss for M1 (ǫ′′M1) and hence varying cavity quality factor,

Qω. ǫ′M1 = ǫ′M2 = −11.82 is fixed for both mirrors and ǫ′′M2 = 0.1. (a) Radiation pressure on

M1 in Fig. 1(b), |PM1
|, as a function of cavity quality factor, Qω, for the asymmetric Fabry-Perot

cavity having mirror M1 material properties described as AFP3 in Table I. Varying the mirror

material causes Qω to change and hence the pressure, and this relationship is presented. The black

stars are estimated from Maxwell’s picture in (1), assuming there is no transmission through the

mirror. The blue star symbols are calculated from the integral of the force density within the

scattering material using the Einstein-Laub description in (2). (b) PM2
from Maxwell’s picture in

(1) (black stars) and from the Einstein-Laub force density description in (2) (blue stars). (c) The

net pressure, PM1+M2
, from Maxwell’s picture in (1) (black stars) and from the Einstein-Laub force

density description in (2) (blue stars). The larger differences with increasing Qω between the two

approaches comes from the assumption of no transmission for M1. The dashed line shows the value

of the maximum pressure on a perfect mirror when the magnitude of the incident power density is

1 W/m2. The enhanced pressure can be observed in both approaches. Our conclusion is that both

theories present essentially the same mirror pressure results.
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. Calculated analytical fields in the asymmetric 1D cavity as a function of propagation

distance for the three AFP3 examples with the largest Q (Qω = 135.84, 120, 107.67 when ǫ′′M1
=

0, 0.1, 0.2, respectively) in Fig. 4. (a) Magnitude of the electric field and (b) magnitude of the

magnetic field as a function of axial position through the cavity and the mirror regions for ǫ′′M1
= 0.

The shaded area indicates the positions of M1 and M2. (c) Magnitude of the electric field and

(d) magnitude of the magnetic field as a function of axial position for ǫ′′M1
= 0.1. (e) Magnitude

of the electric field and (f) magnitude of the magnetic field as a function of axial position for

ǫ′′M1
= 0.2. The fields satisfy the boundary conditions and represent the unique solutions for

first resonance that is used to produce the corresponding data points in Fig. 4. From Fig. 2(d),

with Si = 1 W/m2, for ǫ′′M1
= 0, Sf = 81.17 W/m2, Sb = 80.80 W/m2 and |Γ1|

2 = 0.9610

(Qω = 135.84); for ǫ′′M1
= 0.1, Sf = 63.8 W/m2, Sb = 63.51 W/m2 and |Γ1|

2 = 0.9557 (Qω = 120);

for ǫ′′M1
= 0.2, Sf = 51.41 W/m2, Sb = 51.17 W/m2 and |Γ1|

2 = 0.9504 (Qω = 107.67). In all the

cases, |Γ2|
2 = 0.9955. The corresponding data points in Fig. 4(c) based on (1) are obtained with

these numbers (at least to the approximation neglecting the pressure of the excitation light and

transmission through M1).
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(a) (b)

(c) (d)

FIG. 6. Simulation results for the nanostructured slot cavity array in Au, and with reference

to Fig. 1(d): Λ = 400 nm, T = 200 nm, Σ is fixed, and D is varied to determine the resonant

depth D from the minimum of |S11|. (a) Qω (triangles) and resonant slot depth, D (diamonds),

as a function of slot width, Σ. (b) Radiation pressure (asterisks) along with the resonant D

(diamonds) as a function of Σ. In general, smaller Σ results in higher Qω and larger pressure,

consistent with the asymmetric 1D Fabry-Perot cavity results of Fig. 2(d), AFP3. (c) Radiation

pressure as a function of Qω, decomposed into total and gradient (〈fG〉) contributions. The dashed

line shows the maximum pressure on a perfect mirror. The nanostructured slot cavity supports a

pressure enhancement more than an order of magnitude higher than a perfect mirror. (d) Radiation

pressure as a function of Qω for the lower Q 1D cavities, from Fig. 2, in comparison with the slot

pressures from (c). The black line and red dashed line are the linear fits to the total pressure

and 〈fG〉, respectively from the first 8 points in (c). The blue and red lines are the linear fits

to PM2 for AFP1 and SFP1, which are low-Q Fabry-Perot cavities in the examples considered.

The nanostructured slot cavity is more efficient in delivering radiation pressure enhancement on a

target surface than the 1D Fabry-Perot cavity when the cavities have the same Q.
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TABLES
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tM1
ǫ′′M1

tM2
ǫ′′M2

SFP1 30 nm 0, 0.1, 0.2, · · · , 1 Same as M1

SFP2 50 nm and 1.23 (ℑ{ǫAu})

AFP1 30 nm Semi-infinite 1.23 (ℑ{ǫAu})

AFP2 50 nm

AFP3 50 nm 0.1

TABLE I. The cavity mirror material parameters used in the calculations related to Figs. 1(a) and

(b). Nomenclature: symmetric Fabry-Perot (SFP), cases 1 (SFP1) and 2 (SFP2), as in Fig. 1(a);

asymmetric Fabry-Perot (AFP), cases 1-3, as in Fig. 1(b). The dielectric constant assumed for Au

is ǫAu = −11.82 + i1.23 at a wavelength of 633 nm, and in all cases, ǫ′M1 = ǫ′M2 = −11.82. The

imaginary part of the dielectric constant for each mirror, ǫ′′M1 and ǫ′′M2, is varied as indicated to

adjust the confinement and dissipation in the cavities.
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