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Negative Viscosity and Eddy Flow of Imbalanced Electron-Hole Liquid in Graphene
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We present a hydrodynamic theory for electron-hole magnetotransport in graphene incorporating
carrier-population imbalance, energy, and momentum relaxation processes. We focus on the electric
response and find that the carrier and energy imbalance relaxation strongly modify the shear viscos-
ity so that an effective viscosity can be negative in the vicinity of charge neutrality. We predict an
emergent eddy flow pattern of swirling currents and explore its manifestation in nonlocal resistivity
oscillations in a strip of graphene driven by a source current.

I. INTRODUCTION

In hydrodynamics an eddy phenomenon is a particular
large-scale turbulent-like motion of the fluid with the dis-
tinct swirling pattern of the flow velocity. It is often dis-
cussed in conjunction with the concept of negative viscos-
ity, synonymously called eddy or turbulent viscosity, that
has its roots going back to the early studies of Reynolds [1].
In contrast to kinematic shear viscosity, which describes
the physical properties of the fluid, the eddy viscosity de-
scribes the properties of the flow itself. For that reason
it is sign-indefinite and could be negative, unlike the shear
viscosity which is strictly positive as dictated by the second
law of thermodynamics for irreversible processes [2]. The
negative viscosity effects are counterintuitive. The classical
text of Starr [3] contains a number of essays summarizing
some empirical facts and describes the spectacular mani-
festations of eddies in geophysical context of Earth’s atmo-
sphere and oceanic streams, Sun’s photosphere, and spi-
raling galaxies. In analytical models, perhaps the simplest
hydrodynamic system exhibiting a negative viscosity ef-
fect is the so-called Kolmogorov flow: the two-dimensional
flow of a viscous liquid induced by a unidirectional external
force field periodic in one of the coordinates [4]. Stability of
such flows has been extensively investigated taking into ac-
count higher-order gradient and nonlinear terms in Navier-
Stokes equations and by the direct numerical modeling [5].
An emergent regime of negative viscosity was also found in
magnetohydrodynamics of tokamak plasmas [6], ferrofluids
[7], and in the description of Rossby wave turbulence [8].

Is it possible to have an analogue of these effects in
the strongly correlated electron systems? The idea that
electrons in solids can flow hydrodynamically was put on
the firm footing by Gurzhi [9]. It took however sev-
eral decades for the manifestations of electronic viscous
effects to be observed in macroscopic transport experi-
ments [10,11]. The reason has to do with the fact that
typically the low-temperature transport in usual materi-
als is dominated by disorder which is incompatible with
the hydrodynamic picture as electron-impurity scattering
quickly relaxes momentum. Raising the temperature leads
to a shorter electron-electron scattering time and thus suf-
ficiently fast equilibration of the electron liquid, however
at elevated temperatures electron-phonon scattering be-
gins to dominate leading to both momentum and energy
relaxation. As a consequence, hydrodynamic regime can
be only expected in an intermediate range of temperatures

in very clean samples where electronic equilibration occurs
on length scales that are short compared to those of mo-
mentum and energy relaxation. This is in practice difficult
to realize in most materials. A wealth of transport data
extracted from measurements on two dimensional electron
systems in high mobility semiconductor devices with low
electron densities is presented in the review [12], where
arguments were put forward that multiple observed fea-
tures can be understood by invoking hydrodynamic effects.
Recently various signatures of hydrodynamic flow, such
as current whirlpools and anomalous thermal conductiv-
ity and thermopower, have been observed and explained
in monolayer graphene [13-18] and palladium cobaltate
[19]. Monolayer graphene (MLG) on hexagonal boron ni-
tride (hBN) represents essentially a unique system where
due to its purity electrons can be brought into the hydro-
dynamic regime over a fairly wide range of temperatures,
from 50 K to practically a room temperature, and further-
more, the electron-electron scattering length can be con-
trolled by tuning the carrier concentration using a gate
electrode. In this work we report on a possibility of an
eddy pattern formation in imbalanced electron-hole liquid
in graphene and develop a corresponding microscopic the-
ory. A special attention is paid to determining the region
in the density-temperature-field phase diagram where this
effect is strongest. We discuss experimentally relevant ge-
ometry and give concrete predictions for the manifestations
of Dirac fluid eddies in the nonlocal magnetotransport mea-
surements.

The rest of the paper is organized as follows. In Sec. II
we formulate generic hydrodynamic transport theory ap-
plicable to electron-hole liquid in MLG subject to external
magnetic field. An additional details for this section are
also provided in the Appendix A. We analyze linearized
hydrodynamic equations in Sec. III with the microscopic
coefficients and relaxation rates computed from the under-
lying kinetic theory, which is sketched in Appendix D. In
Sec. IIT A we derive stream function equation for the hy-
drodynamic flow and solve it by a Fourier transform in Sec.
ITIB to reveal the regime of eddy flow. In Appendix E we
present the same computation but carried out for different
boundary conditions. We summarize our findings in Sec.
IV with an angle on the recently published related work
and perspectives for future studies.



II. HYDRODYNAMIC EQUATIONS

Assuming fast equilibration of electron-hole plasma due
to strong e-e(h) inelastic Coulomb collisions, we express
the carrier current densities and energy-momentum tensor
in terms of local thermodynamic functions, hydrodynamic
velocity, and dissipative deviations from local equilibrium.
The resulting hydrodynamic equations [20-23]:

Op+divy =0, On+divP =TI, (1a)

(h/v}) (O +u-V)u=-VP+1+f—-V-0, (1b)

T{8t5+div(su—%p+;;j)} =w-—u-f—-vl

v

+£[L+TV(%)} -j—Tv(T)-p—é:Vu, (1c)

include the charge and carrier continuity, Navier-Stokes,
and entropy production equations (throughout the paper
we use units of i = kg = 1). Here vp is the Fermi ve-
locity, e > 0 is the elementary charge, p, n, h, and s are
the proper charge, carrier number, enthalpy, and entropy
density. Finally, u, v, and T are, correspondingly, the rela-
tive chemical potential, imbalance chemical potential, and
temperature. The total pressure P satisfies the equation
of state P = h/3, that is a consequence of relativistic scale
invariance. In Eq. (1), the charge current density J and
carrier current density P are parametrized as J = pu + j,
and P = nu + p, where u is the fluid velocity, j and p are
the dissipative fluctuations, 6 describes the dissipative part
of the stress tensor manifesting the viscous effects. We have
assumed the limit u?/v% < 1 and ensured that the proper
densities receive no dissipative corrections so that the dis-
sipative fluctuations are orthogonal to the fluid velocity
(see Appendix A for additional details). In consequence
the Lorentz force density on charge flow, Il = pE +J x B,
decomposes intol = pL/e+jx B, and L = e (E + u x B),
where E is an in-plane electric field and B = Bz a trans-
verse magnetic field. The carrier imbalance flux Z captures
the electron-hole generation/recombination processes due
to higher-order Coulomb collisions [21-24] and electron-
optical phonon scatterings [25]. The dissipation power den-
sity w and friction force density f describe the energy and
momentum relaxations induced by phonon and impurity
scatterings. We assume that phonons are infinitely large
bath and define the global equilibrium while the carrier
temperature fluctuations are allowed due to finite cooling.

IIT. LINEAR TRANSPORT THEORY

Within the linear response, the entropy production equa-
tion (1lc) implies that the thermodynamic forces {L +
TV(u/T), TV (v/T),v, 0T, u, Vu} determine the conjugate
dissipative fluxes {j,p,Z, w, f, é} via the linear matrix re-
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FIG. 1. Phase diagram of the effective viscosity. (a) The sign of
Cqz as a function of the effective Drude resistivity 6p, magne-
toresistivity gp, and imbalance-viscosity ratio 7. The red curve
&p(0m;r) indicates Crr = 0, with the maximum &7, at g5. The
blue line indicates the lower bound of the Drude conductivity
67 estimated by the inelastic scattering time 7ee and minimum
charge density pmin. (b-d) 6p and 63 as functions of temper-
ature T and residual charge density pmin. For comparison, we
took several different values for the fine structure constant «,
and the effective electron-phonon coupling a,n whose range is
shown in the inset of (b) and (c). To obtain phase diagram (d)
we used a = 0.6 and apn = 2.2. The black dash line indicates
the puddle temperature Thin. Panels (e) and (f) show sign of
Czz as a function p, T, and B. The curves indicates Cyr = 0
and the low-density region C,, > 0. We take the residual charge
density |pmin| = 5 x 10° e/cm? (Twmin = 135K). (e) The sign of
Czz as a function p, T for various B. The red and black dash
lines indicate the puddle temperature Ty, and the Fermi tem-
perature T, respectively. (f) The sign of Cy, as a function p,
B for various T.
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(&)= (o oy (oo™ e

(5) = () (37) o
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6 =—n(Vu+Vu') —I(¢ - n)divu. (2d)

The Onsager’s reciprocity enforces the symmetry of the ki-
netic coefficients: oo = 0gq, @, 8 € {0,1}, and Ayp =
Aga, @, B € {1,2}. In Eq. (2a) the electric conductivi-
ties {0’,1[3} arise solely due to Coulomb collisions, that are

functions of the dimensionless variables { &, %} Particle-
hole symmetry requires that the diagonal and off-diagonal
elements are even and odd functions of the relative chem-
ical potentials, respectively, oo5(—p) = (=1)* Pos(p).
This implies that at local charge neutrality o¢1(0) = 0. In
Egs. (2b) the parameters { Ao} characterize the efficiency
of electron-hole generation/recombination and energy re-
laxation processes. In Eq. (2¢) the friction force density is
determined by the momentum relaxation time 7, caused
by impurities and phonons. In Eq. (2d) n and ¢ are re-
spectively the shear and bulk viscosities. These kinetic
coefficients can be computed via microscopic quantum ki-
netic equations [21-26]. In particular, we compute matrix
\ in Eq. (2b) along with impurity- and phonon-mediated
relaxations in the Appendix D. We note that {Z,w, f}
are present already at the level of the ideal hydrodynam-
ics that omits the dissipative fluctuations. In contrast, the
conductivities and viscosities {oag,n, (} require solving the
kinetic equations in first order in 7ee on. In what follows we
assume that the response coefficients in Eq. (2) are spa-
tially uniform and magnetic-field-independent. These sim-
plifications are justified in the linear response regime and
for weak magnetic field wpTee ch < 1, where the cyclotron
frequency of a quasiparticle is wg = v&enB/h.

For discussing the general linear response we define the
heat current density: Q = hu — vP + £J, that substi-
tutes for the fluid velocity u as an independent flow mode,
and the electrochemical potential fluctuations §V° through
—VoV = € = E4+Vou/e, where ju denotes the local chem-
ical potential fluctuations. Combining Eqgs. (1) and (2) we
obtain the transport equations for steady flows in the form

V- -¥,= _)\aﬂ¢ﬂ7 (3a)
ﬂaﬁ Wy — Hog VW5 = —Z,5V 5. (3h)
Here &, {5 15T} are the hydrodynamic poten-

tials and \I' € {J eP, TQ} the conjugate currents,
with a € {0, 1 2} labeling the corresponding charge, car-
rier, and thermal modes, respectively. In Eq. (3a) the co-
efficients A\og are the relaxation parameters in Eq. (2b)
complemented by Ay = 0 for @ or 8 = 0 (charge conserva-
tion). We have neglected the nonlinear Joule and viscosity-
induced heating terms in the thermal continuity equa-
tion. In Eq. (3b), the bulk transport coefficients are given

by af = [ (h/v%:Te) Xa X5 + QMAM;AM] I+ Bag]B% Here

{Lh 0 eh}’ Oap = [&_ }Oéﬁ for avﬁ € {071} and
gaﬁ = 0 for a or 8 = 2, encoding the electric conductivities
in Eq. (2a), and Aag = dap + Xads with dg € {p, en,O}.
The magnetic field effects are described by the last term,
where B = Bé with € being the two-dimensional Levi-
Civita symbol and B,g = Bgaa, with Boo = X0(2 + Xo0p),
Boz = x2(1 + xo0p), Ba2 = (x2)?p, and Bag = 0 for
« = 1. The shear and bulk viscous effects are respectively
described by Hag = nXaX8, and Zag = 0ap + (XaXyAyB-

A. Stream function of the charge flow

We focus on the electric response of the system. For that
purpose we introduce the stream function for the charge
flow ¢(r) via (Jz,Jy) = (9y, —0z)¢ to solve the charge
conservation. Eliminating the carrier and thermal modes,
we cast Eq. (3) to the form of Ohm’s law together with the
stream function equation,

Rm.’cVQQD =0, (4)

E=TR- J, R = ﬁoo - QOa/@abﬁbo,

where the summation of mode indices spans only {a,b} €
{1 2} Eaﬁ = HaB — BHV gab = £ ab — ZabD
where D = VV being the gradlent gradlent tensor, and
Zob = 5ac[ b + ¢XaXb, and [IC Ny = G.,, that is an
analogue of the propagator in carrier-thermal-mode space.
We note that the second term in the resistivity operator
R encodes the thermoelectric and imbalance-electric ef-
fects, through which the imbalance relaxation and bulk
viscous processes proliferate. In practice one first solves
the boundary value problem for the streamfunction ¢(r)
so as to obtain the charge flow J(r). The relative voltage
between two space points r; and ry takes the integral form
OV (ry) —6V(ry) = [ dl- R - J, where “¢” denotes a path
from r; to ro and dl an mﬁmtesmlal vector element of the
path. It is obvious that the viscosities and imbalance re-
laxation processes contribute to the electrochemical field
only if the charge flow is inhomogeneous.

The charge conservation imposes important constraints
to electric responses. (i) Finite imbalance relaxation and
bulk viscosity encoded in Z,y, contribute only to the magne-
toresponses, unlike the shear viscosity that contributes at
B = 0. (ii) The resistivity operator R is effectively a func-
tion of the Laplacian V2 even though D involves more types
of derivative operations. (iii) Ruw = Ryy and Rwy —Rya
are even and odd function of the magnetic field B, respec-
tively. These properties can be readily proved by formally
expanding R i in a Dyson series of D and applying the con-
straints that D-J =0 and Dé-J = V2e-J (see Appendix
B for further details).

We benchmark our theory in two limits. The first
is Ohmic flow. For inviscid and post-balanced fluids,

n,¢, A= = 0, the re51st1V1ty operator in Eq. (4) reduces
to the bulk resistances, R — R, and the stream function
satisfies the harmonic equation VZ¢ = 0 and no vertex
is allowed. The second is the Stokes flow considered in
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FIG. 2. Charge current distributions in a strip of monolayer graphene for various resistivity-to-viscosity-imbalance ratios ¢ and
lead sizes 7. We take the strip width w = 1. (a)-(d) are for point-like leads v = 0 and (a’)-(d’) for finite-size leads v = 0.1. For
Q < Q" the amplitudes of vortices decay rapidly with distance to leads. Moreover, only the first pair of vortices survive for finite
lead width. For @ > Q™ the vortices form eddy flows that are stable against finite lead width.

Refs. [17] and [18]. At zero field B = 0 and in the shear-
viscosity-dominant regime, the resistivity operator reduces
to Laplacian R ~ V2 and the stream function satisfies the
biharmonic equations V4p = 0.

For weak inhomogeneity we expand the resistivity op-
erator up to first order in V2, R ~ R + 6R + O(V*)
(see Appendix C for the intermediate steps of calcula-
tion), where the imbalance-viscosity corrections read 6R =
(szﬁ+ Cry€)V?. The stream function equation reduces to

Ry V20 + Cry Vip =0, (5)

where R,.(B) = o7 Y1 + co(B)] and p*C,.(B) =
—c1(B)n+ c2(B)(n+(+¢5): ¢ = 0g + op is the hydro-
dynamic conductivity, with g = oo and op = U%Telp2/ h
being the minimal and Drude conductivity, respectively;
g = Hal'ibj\;bl, with k, € {en - p%%,%}, representing
the effective viscosity induced by imbalance relaxation pro-
cesses. The dimensionless functions c¢o(B) = ogos/=,
c1(B) = (Ryz0p)?, and c3(B) = opop/=?, where E =
(1+o0p/og)*+0opop and o = vi7a B?/h being the mag-
netoresistivity at neutrality. At zero field ¢g(0) = ¢2(0) =0
and ¢;(0) =op/o.

Equation (5) is characterized by the effective resistivity-
to-viscosity ratio @ = Ry, /Cy.. We note that the sign of
Q@ is not fixed by any fundamental reason. In particular,
at neutrality p = 0, Cpr = (n+( +5) (vVi7aB/h)? > 0.
In contrast, for op/og > 1, Cpe = —n/p* < 0. The
C,, remains positive at low charge density for moder-
ate strength of momentum relaxation scattering as cap-

tures by 7. As shown in Fig. 1(a), the critical line
Crz = 0 gives the equation for three effective quantities
op(l +p + 0B)> = (1 + r)op, where 6p = op/og,
0 = ogos, and 7 = (¢ + ¢)/n being the dimension-
less Drude resistivity, magnetoresistivity, and imbalance-
viscosity ratio, respectively. The C,, > 0 regime is acces-
sible as long as 673 < op < 0, where the upper bound
6 =Kr+2-1)/2 at g5 = (vV/r+2+1)/2, determined
by the imbalance-viscosity ratio r, and the lower bound
G5~ v4p2 . Tee/h, estimated by the inelastic scattering
time Tee(en) and the residual charge density pmin-

For high-quality hBN graphene close to neutrality, we
numerically calculate the imbalance relaxation coefficient
¢ and the scattering time 7, by the kinetic theory in
Appendix D and estimate n ~ 0.4572/via? [27-29),
7ot & T [20 and 23], o ~ (0.79 + 9.13) /o [25], and
001,( = 0. We take the fine structure constant o = 0.6
and the effective electron-phonon coupling o, = 2.2 [25].
In Fig. 1 we show 6}, and 67, as functions of tempera-
ture T and residual charge density pmin and observe that
7% ~ 10463 for T > Tyin, where the puddle tempera-
ture Tinin =~ Tr(pmin) With Tr(p) = vpy/7|p|/e being the
Fermi temperature. We further show the sign of C,; in p,
T, and B space. We take |pmin| = 5.0 x 10% e/cm? [13] so
that Tmin = 135K and observe that about B ~ 0.1 T and
T > Tin, we access the Cpy > 0 region for |pmin| S || S
10 e/cm?.
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FIG. 3. Effective nonlocal resistivity R(z)/Rzs in a strip of monolayer graphene corresponding to the current patterns in Fig. 2.
The blue and red dash curves are bulk-resistivity Ro(z) and viscosity-imbalance R;(x) contributions, respectively. We note that

finite lead size strongly modifies the local resistivity R(0) and, moreover, Ro(0) > 0, R;(0) < 0, and R(0) <

0. (&) For Q < Q~,

R(x) exhibits a couple of sign-reverses and decays rapidly as x increasing. (b’)-(d’) For Q > Q*, R(z) oscillates about zero as x

increasing.

B. Eddy pattern and nonlocal resistances

We study the nonlocal response in the strip geometry
defined by the area 0 < y < w with transverse charge cur-
rent I injected and drained through a pair of contacts at
x = 0. We solve the streamfunction equation (5) analyt-
ically with the no-slip boundary condition dy¢|y=0.w = 0
and —0;¢|y=0,w = IW, where v > 0 describes the
size of the contacts,

o(x,y) —f/k‘

where g(k,y;Q) = [f(q,k,y) — f(k.a,9)]/[f(q,k,0) —

f(k,q,0)] w th f(k ¢,y) = ksinh(kw/2) coshlq(y — 1/2)]
and ¢ = k2 —Q for k2 > Q and ¢ = i\/Q — k2 for
k? < Q. We note that the dimensionless parameter Q =
Qu? fully determines the flow and when Q > Q* ~ 37.01,
g(k, @) processes simple poles and the integral (6) takes
Cauchy principal values. The nonlocal resistivity is deter-
mined by the voltage across the width of the layer as a func-
tion of the = coordinate, R(z) = [0V (z,0) — 6V (x,w)]/1,
and does not depend on the Hall coefficients R, and Cy,.
We show the charge flows for various Q > 0 and lead sizes ~y
in Fig. 2. For Q < Q*, the amplitudes of vortices decay ex-
ponentially with distance to leads, In |J| ~ —/Q* — Q|x|,
and are reduced for finite lead widths v > 0. For Q > Q¥,
the vortices form eddy flows that are stable against finite
lead width and possible different forms of boundary con-
ditions (e.g. mno-stress boundary layer considered in Ap-

"sin (ka)g(k,y; Q)dk,  (6)

pendix E). Moreover, alway from the leads we observe
that the number of vortices across the strip is odd 2n — 1,
where n is the number of poles of g(k) for k € [0,/Q*]. In
Fig. 3 we show the nonlocal resistivity R(x) corresponding
to the current patterns in Fig. 2. We draw two impor-
tant observations. (i) For Q < Q*, R(x) exhibits a couple
of sign-reverses and decays rapidly as z increasing, while
for Q > Q*, R(x) oscillates about zero as x increasing.
This coincides with the eddy picture. (ii) Finite lead size
~ > 0 modifies the local resistivity R(z ~ 0) and one has
Ry(0) >0, R;(0) <0, and R(0) <0

IV. DISCUSSION AND OUTLOOK

A few comments are in order in relation to the results
presented in this paper and in the context of recent related
studies. The first point concerns terminology. In this work
we adopted the concept of negative viscosity and used it in
the relation to the unconventional sign of the resistivity-
to-viscosity ratio parameter Q = R;,/Cy, in Eq. (5) that
determines the patter of the macroscopic flow through the
stream function. As is known from the previously studied
examples, the approximation based on introduction of a
single large-scale coordinate provides a successful descrip-
tion of the formation of regular eddy systems, see e.g. Fig.
(4) from Ref.?’. In the present case of electron liquid in
MLG, the underlying microscopic mechanism is completely
different, and comes from the coupling of charge modes to
particle number and temperature imbalance modes. How-



ever, it is in a sense analogous to the other historical find-
ings where fluid flows couple to e.g. magnetization modes”
or some other modes in the system, that gives rise to a
formation of stable vorticities via the effective negative vis-
cosity effect (in particular, see Ref.?! for a more detailed
review of 2D magnetohydrodynamic flows with negative
viscosity).

It has been shown in the recent work [32] that the in-
terplay between viscosity and fast recombination in a two-
component conductor (e.g. e-h plasma in MLG) leads to
the appearance of current counterflows. In the geometry of
the lateral transport current, the distribution of the edge
currents in the transverse direction was found to possess a
nontrivial spatial profile that consist of two stripelike re-
gions: the outer stripe carrying most of the current in the
direction of the external electric field and the inner stripe
with the counterflow. The functional form for the flow pro-
file is a periodic function whose oscillatory part and decay
part are controlled by the same scale (overdampded oscil-
lation). We make the same observations concerning the
importance of the interplay of viscous and relaxation ef-
fects but consider a different transport geometry and find
a more pronounced regime of oscillatory vortex response.

In addition, it has been proposed earlier in Ref. [33] that
vorticities in the preturbulent regime could be observed in
MLG provided relatively high Reynolds number (~ 10).
The Strouhal number that measures the vortex shedding
frequency was also estimated, with reasonable assumptions
on the conditions of possible experiments. However, we
discussed here a different kind of vortex response that cru-
cially relies on carrier imbalance and occurs already at the
level of linear hydrodynamics in a low Reynolds number
regime (Poiseuille flow). We expect that the observability
of eddies and related resistance oscillations should be ac-
cessible with existing high-quality hBN-MLG devices, but
we realize that this could be still challenging. The rea-
son being is that the typical time scale describing the gen-
eration/recombination processes is much longer than the
e-e(h) equilibration time. Indeed, due to kinematic con-
straints, imbalance relaxation time requires multiparticle
collisions. Close to neutrality the corresponding rate could
be estimated as Ti;i ~ o*T, up to some logarithmic fac-
tors In(1/«), which is clearly suppressed as compared to the
equilibration rate, 7o' ~ 2T, for the case of weak inter-
action a@ < 1. However, at moderately strong interactions
a ~ 1 the imbalance decay rate can be relatively high. In
addition, it is strongly sensitive to electron—optical-phonon
scattering (see Ref. [25] and estimates in Appendix D).
One should also keep in mind that the kinetic coefficient
¢, that in a way defines the imbalance-to-viscosity ratio
r, is not solely governed by imbalance relaxation but also
strongly dependent on energy relaxation processes via in-
verse of A\os [Eq. (2b)] that mixes sectors of carrier imbal-
ance and thermal modes and consequently favors higher
values of r.

As an outlook we wish to mention that the theory de-
veloped in this work may shed some light on the observed
sign-change of the Coulomb drag in a nonlocal measure-
ment setup of graphene double-layers [34] and the corre-

sponding analysis will be presented in a separate work [35].
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Appendix A: Hydrodynamic theory

We introduce the hydrodynamic equations of motion for
massless Dirac fermions in relativistically covariant nota-
tion,

0, J* =0, 0,P"=1I, 0,0 =—F"J,/vr+ f°,
(A1)

where summation over repeated space-time indices a,b €
{0,1,2} is assumed with 2 € {vpt,z,y}, 0, = 0/0z%, and
metric g% = diag{+1,—1,—1}. In Eq. (A1), J* and P®
denote the charge and quasiparticle three-current density,
respectively, ©% is the traceless energy-momentum tensor,
and the Faraday tensor

0 E E,
F*=|-E, 0 wpB]|, (A2)
—Ey —UFB 0

incorporating an in-plane electric fields E and a trans-
verse magnetic field B = Bz. The quasiparticle imbal-
ance flux Z describes the e-h generation/recombination
processes. The friction force density f¢ manifests the
energy-momentum relaxations. Assuming fast intralayer
equilibration of the carriers due to strong inelastic e-e and
e-h Coulomb collisions, we express the current densities and
energy-momentum tensor in terms of local thermodynamic
variables, hydrodynamic three-velocity U* = &(vp,u),
with u the fluid velocity and ¢ = (1 — u?/v%)~1/2 the
dilation factor, and dissipative derivations from local equi-
librium:

J* = pU%+ j*, P*=nU®+p?,

0" = h (U U /v} — g™ /3) + 6°, (A3)
where p, n, and h are the proper (rest-frame) electric
charge, carrier, and enthalpy density, respectively, and
4, p%, and % the dissipative fluctuations of the charge
current density, number current density, and energy-
momentum tensor, respectively. Ensuring that the proper
internal energy, electron and hole density receive no dissi-
pative corrections, the dissipative fluctuations are orthog-
onal to the fluid velocity: U,j* = 0, U,p® = 0, and
U,0% = 0. Applying the fluid velocity U, and the projec-
tor Py, = Uan/v% — gab toO the energy-momentum conti-
nuity equation in Eq. (Al), we obtain the energy evolution
equation along U, and the momentum evolution equation



perpendicular to it. Inserting the decomposition (A3) and
taking the limit u?/v% < 1, we obtain the Navier-Stokes
equation (1b) and entropy production equation (1c).

Appendix B: Properties of the resistivity operator

In Eq. (4) defining Ko, = /Cab(Z = 0) and decomposing
[: af = ﬁoaﬁﬂ—‘rﬁgage and Kb = Kodb]I+K2ab€ we

J

expand the resistivity operator in D and obtain

7?, J = [:00 -J = (ﬁoa — Zoa ) aao <6a0b + Z Zaoblﬁkblal Zalbzﬁf(bzag - Zan1bnﬁf(b"b> [‘be . J’
n=1

(ﬁoo — Loa abEbO) -J+ (ZOaﬁ - ﬁOalf(alazzaza> V2[(1 4 KoZV?)  Hans (Ko.a50L2.10 + Ko.a50L0.00) € - J,

where we have applied the identities due to the charge con-
servation, D-J = 0 and Dé-J = V2¢&.J. (i) For B =0, Ky =
[:2 = 0 so that 7@,(3 = 0) = ]I(»CO,OO - L:O,OaKO,ab»CO,bO)~ (11)
At neutrality p = 0, since Zgy = 0, pa gz = ﬁamm =0,
D (2) (3a00p2 + Ga2dpo)é,
we have R = 000 17 B2( ) eInge and R -J = Rayzd

where R, = 0o + B? ( ) ICQQ with [’C ]ab = Hab,zr +
(Hap + Zap) (—=V?).  (iii) In the absence of charge con-
servation, decomposing the double gradient operator as
D(A1,)3) = (V?/2)6° + X\10,0,6 + X3](02 — 82)/2]“3
where 6123 are the zy-space Pauli matrices, 6° = I, and
A1,3 = 1 being the auxiliary parameters. We write the
resistivity operator in the form

1 ~
HOO@w = Oqo >» and Ha,B Ty —

3

=Y Ri(B, A1, Xs) ®6

=0

7%/(Ba )\17 >\3) (B2)
Since the theory is invariant under the transforms B —
—B and z + y or B — Bandy—)—y, that are
represented by O‘lR< B, A1, —A3)6t = R(B A1, A3) or
A?”R( B, —)\1,23)6% = R(B, M1, \3), we readily have the

symmetries
Ro1(=B, A1, —A3) = Ro1(B, A1, A3),
Ros(—B, M\, —A3) = —Ra3(B, M, \3),
Ro3(—B, —A1,A3) = Ros(B, i, \s),

RI,Q(_Bv_)\la)\3) = _RI,Q(Ba)\la)\g)' (B3)

Furthermore, for Ay = 0 and A3 = 0, we respectively obtain
higher symmetry

Ro.3(—B,0,X3) = Ro3(B,0, A3),

'R1 2(—B,0,)3) = —Rl 2(B,0,As3),

R071( B, )\,0) = Rol(B A1,0),

7?,2’3( B, )1,0) = —R2’3(B,)\1, 0), (B4)

(B1)

(

Equations in (B4) imply that in the absence of the charge
conservation the longitudinal (Hall) components could in-
volve odd (even) powers of B induced by the imbalance-
effects (due to the transverse response Dy, = 9,0, ).

Appendix C: Derivation of the stream function
equation

For weak inhomogeneity we expand the resistivity op-
erator up to the first order in the differential operators
{V%, D}, R =R+ 6R+O(V* D?), where R are the resis-
tivity matrix for infinitely large homogeneous systems,

R = Tlog — MpaKapITho = Rupl + Ryyé, (C1)
with [R_ Jab = II,,. The 1nhom0genelty corrections have
two parts, SR =6R\ + 6R Defining Xa0 = KabeO and

its transpose XOa = HObea, we obtain the imbalance and
bulk viscosity corrections and shear viscosity corrections

SR, = —(Hool — HoaXao — XeoHao + X Hap X10) V2

= (Coll + CL6)V (C2)

SRy = (Zobl — XgoZa) X2 po V2 = (C1I+ C56) V2, (C3)
where we have assumed XaO = Xo’aO]AI + X5 a0€. Here

{Rm, Co, C’l} and {Rw, Cs, Cg} are even and odd func-
tions of B, respectively. Finally, we have

Rmm = Ryy = R:r:v + mev2a
Ruy = —Ryw = Ryy + Cpy V2, (C4)
where Cpr = Cy + C1 and C,, = C3 4+ C3. The stream

function equation reads then as Eq. (5) in the main text.



Appendix D: Carrier and energy relaxation
coefficients

We evaluate the relaxation coefficients A\ and 7o in
Eq. (4) by kinetic theory and the definition of colli-
sion integrals can be found in Ref. [25]. The carrier-
population imbalance relaxation Aj; are caused by both
optical phonon scattering and three-body Coulomb colli-
sions \;1 = )\ﬁ’il—i—)\fl and A12 21,22 by only optical phonons.
The optical phonon scattering leads to the carrier imbal-
ance and energy relaxation coefficients

oy = R g (o) [ Poa (1P
T 2T (277)4 2
(S(EP +€q — wA/)O;:}I’_l, /\12’21 2T )\Ifil,
war\2 pn . 2€2wd vEapn WA
dar = () MY+ = el (ﬁ)
d’pd’q (1-p-q
) —wa O, (D1)
[ (53 s —amen X
Here O,122 = (1/4)sech[B(ep, — s11)/2]sech[B(ep, — s2pt)/2].
The dimensionless effective electron-phonon scatter-

ing strength is app (2m)%B% s0/vEMwy , with
M 2.0 x 107%3g being the carbon atom mass,
5o = 2.62 A2 the area per carbon atom, A’ the A’ optical
phonon temperature, and 4/ the electron-phonon cou-
pling. We estimate the three-body collision contribution
X ~ 41n(2)ate®T? /rv2[23]. The momentum relaxation
scattering rate reads 7 Tu_nlp —‘rT};ll where the individual
rates due to impurities and optical-phonons scatterings
are

where Vi (p,a) = |puin/el(1 + B - @)|Uet (0, [p — al)|*/2
describes the Coulomb impurity scattering strength with
|pmin/€| being the charged impurity concentration and
Uett(w, q) the RPA screened Coulomb potential. In cal-
culation we take 84, = 10 eV/A and w4 = 1740 K, so that
apn &~ 2.2, and |pmin/e| =5 x 10%cm 2

Appendix E: Solution of the stream function equation
in a strip geometry

1. No-slip boundary condition

After the partial Fourier transform in z direction
o(x,y) = [Z or(y)e™™, Eq. (5) becomes

(05 = k)05 — a*)er(y)
Prly=0.w = il(k) [k, Oyprly=0w =0, (E1)

where ¢ = /k2 —Q for k? > Q and q = i\/Q — k2 for
k? < @ and I, = e "*. The general solution takes the
form

:O’

2mv% [ d*pdiq il (k)

-1 _ F sk s

Timp = Th / (2m)4 d(ep — €q)lP — q| Vimp (P § :Op,p’ Pr = k ;:i:l(ase Y 4 bse*) (E2)
v 20 72 AN

~~1 _ YrOph war\ [d’pd°q (1-Pp-q

A SCh(ZT) / (2r) ( 2

Zé sep — swar — s'eq)|sp — s'q|? Op,q ; (D2)

s,s’

Matching the boundary conditions, we determine the coef-
ficients by

S (aetb) =1, S (@ bty =1, 3 (shay +sgby) = 3 (skane + sqbyes™) =0, (E3)
s==+1 s==+1 s==1 s==1
Solving {as, bs} we obtain
P (e —1)q _ ekw(eqw —1)g — (1- ekw)k o et (1 — e’”“)k (FA)
Mk T Mg T Mk T Mk
where M (k,q) = (k — q)[1 — e*T9D%] 4 (k + ¢)(e?” — €**). The Fourier transform gives
< dkI(k)etk® 1 [ dkI(k)sin (kx)
ey = - [ FEEE—ag) = — [ TR ) (55)
gsinh (£%) cosh — )| — ksinh (%) cosh |q (y —
e g = 15 ) cosh [ (= 5] s () o o ( ~ )] -
q cosh ( ) sinh ( ) k sinh (7) cosh ( )
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FIG. 4. Schematic plots for the analytical properties of the function g(k, Q) in Eq. (E6). We take w = 1 and y = 0.2. (a) The
black curve indicates Q = k* and the red curves the singularities of g(k, Q). (b) g(k) for Q = 425 [along the white dash line in
panel (a)]. The singularities are simple poles.

In Fig. 4 we show the analytic properties of the integrand g(k, @) where we set w = 1. We find that, when Q > Q* ~
37.01, g(k, Q) processes simple poles and the integral (E5) takes Cauchy principal values. The voltage drops between
(z,0) and (z,w), AV;(z) =6V (z,0) — §V (z,w), reads

AV(x):/ dyé'y:/ dy (Raw + CoaV?) J,
0 0

__2 /Ooodk (Ryw — Cauk®) I(K) cos (kz)

s

Q@ sinh (%") sinh (%) /(kq) .
qcosh (%2) sinh (%) — ksinh (£2) cosh (4°)

(E7)

The nonlocal resistance is defined by R(z) = AV(x)/I. For point-like leads v = 0, in the Stokes and Ohm limit, we
obtain

z 1n 2
Ry = SEf@w), )= =2 [FanteGEmn O, R, <o, (E8)
2 Ry [0 dheos(bD) panh (B2) = Ry, 2 In|coth (22)],  Chy = 0.

2. No-stress boundary condition

For the no-stress boundary condition 6gcp|y:o,w =0 and —0;¢|y=0,w = I(z), we obtain

Z (as +bs) =1, Z (ase®FY 4 bgesiv) =1,

s=%+1 s=+1
Z (ask? 4+ bsq®) = Z (ask?e**™ 4 byq?e®1v) = 0. (E9)
s==+1 s==£1
Solving {as,bs} we obtain
_ Ko 1 o F-e 1 o, B B
o= Q 1tekw 77 Q 14ehw’ -'r_Ql—i—eqw7 T Q1l4eaw’
1 [*dkI(k)sin(kz) , scoshlgy —1/2)]  ,coshlk(y — 1/2)]
=—— ——g'(k k, k . E10
#lz,y) 7r/0 k gk Q), ¢kQ)= Q2 cosh(quw/2) 4 cosh(kw/2) (E10)

The analytical properties of ¢’(k, Q) [Eq. (E10)] is qualitatively identical to those of g(k, Q) [Eq. E6]: For Q > 72, ¢'(k, Q)
processes simple pole at k = k;, where k = \/Q — [(2n + 1)7]? for 0 <n < [(Q/m —1)/2] (w = 1). Hence the eddy flow
pattern is presumably robust against boundary conductlons
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