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We analyze heat and charge transport through a single-level quantum dot coupled to two BCS
superconductors at different temperatures to first order in the tunnel coupling. In order to describe
the system theoretically, we extend a real-time diagrammatic technique that allows us to capture
the interplay between superconducting correlations, strong Coulomb interactions and nonequilibrium
physics. We find that a thermoelectric effect can arise due to the superconducting proximity effect
on the dot. In the nonlinear regime, the thermoelectric current can also flow at the particle-hole
symmetric point due to a level renormalization caused by virtual tunneling between the dot and
the leads. The heat current through the quantum dot is sensitive to the superconducting phase
difference. In the nonlinear regime, the system can act as a thermal diode.

I. INTRODUCTION

Understanding, manipulating and managing heat flows
at the nanoscale is of crucial importance for modern elec-
tronics where Joule heating constitutes a major nuisance
in the operation of computer chips. Heat transport can
occur via electrons [1], phonons [2] and photons [3, 4]. A
promising direction to achieve control over thermal trans-
port by electrons is phase-coherent caloritronics [5, 6]
in superconducting circuits. Phase-coherent caloritron-
ics is based on the observation that not only the charge
current depends on the phase difference across the junc-
tion via the Josephson effect [7] but that also the heat
current is sensitive to the phase difference [8–14]. The
phase-dependent contribution to the heat current arises
from Andreev like processes where an incident electron-
like quasiparticle above the superconducting gap is re-
flected as a holelike quasi particle and vice versa.

Recently, phase-coherent heat transport in supercon-
ducting circuits has been observed experimentally [15].
The possibility to control heat currents via magnetic
fields has led to a number of proposals for phase-coherent
caloritronic devices such as heat interferometers [16, 17]
and diffractors [18, 19], thermal rectifiers [20–23], tran-
sistors [24, 25], switches [26] and circulators [27], ther-
mometers [28, 29] as well as heat engines [30–32] and
refrigerators [33, 34]. Experimentally, heat interferom-
eters [15, 35, 36], the quantum diffraction of heat [37],
thermal diodes [38] and a thermal router [39] have been
realized so far. Apart from potential applications in
caloritronic and thermal logic [40], phase-coherent heat
transport can also serve as a diagnostic tool that allows
one, e.g., to probe the existence of topological Andreev
bound states [41].

So far, the theoretical and experimental investigation
of phase-coherent heat transport has been restricted to
systems such as tunnel barriers and point contacts where
the effects of electron-electron interactions can be ne-
glected. While such setups already offer a lot of inter-
esting physics, this raises the question of how Coulomb
interactions can affect phase-dependent heat currents. In

FIG. 1. Schematic sketch of our setup. A single-level quantum
dot is tunnel coupled to two superconducting electrodes at
temperatures TL and TR.

this paper, we address this important question by analyz-
ing phase-coherent heat and charge transport through a
thermally biased hybrid structure consisting of a strongly
interacting single-level quantum dot tunnel coupled to
superconducting electrodes, cf. Fig. 1.

Superconductor-quantum dot hybrids have received a
lot of attention, see Ref. [42] and [43] for recent re-
views on experiments and theory, respectively. In par-
ticular, there are investigations of the Josephson effect
through quantum dots [44–49], multiple Andreev reflec-
tions [50–55], the interplay between superconducting cor-
relations and the Kondo effect [56–61], the generation
of unconventional superconducting correlations in quan-
tum dots [62–65], Cooper pair splitting [66–71] and the
generation of Majorana fermions [72–75]. Thermoelec-
tric effects in superconductor-quantum dot hybrids have
been studied in the absence of Coulomb interactions [76].
Here, we use a superconductor-quantum dot hybrid as a
playground to investigate the interplay between super-
conductivity, strong Coulomb interactions and thermal
nonequilibrium. Compared to tunnel junctions, quan-
tum dots offer additional tunability of their level position
by gate voltages. We extend a real-time diagrammatic
approach [77–82] to describe thermally-driven transport
which allows us to treat Coulomb interactions exactly
and to perform a systematic expansion in the tunnel cou-
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pling between the dot and the superconducting leads. It
allows for a treatment of superconducting correlations in-
duced on the dot via the proximity effect and captures
renormalization effects due to virtual tunneling which af-
fect transport already in lowest order of perturbation
theory. We evaluate charge and heat currents both in
linear and nonlinear response. In particular, we find a
thermoelectric effect in the vicinity of the particle-hole
symmetric point which arises from the proximity effect.
Furthermore, our device can act as an efficient thermal
diode in nonlinear response.

The paper is organized as follows. In Sec. II, we intro-
duce the model of our setup. The real-time diagrammatic
transport theory used to investigate transport is intro-
duced in Sec. III. We present the results of our analysis
in Sec. IV A for the linear and in Sec. IV B for the nonlin-
ear transport regime. Conclusions are drawn in Sec. V.

II. MODEL

We consider a single-level quantum dot weakly tunnel
coupled to two conventional superconducting electrodes.
Both superconductors are kept at the same chemical po-
tential µ = 0 but at different temperatures TL and TR
resulting in a nonequilibrium situation. The system is
described by the total Hamiltonian

H =
∑
η=L,R

(Hη +Htun,η) +Hdot, (1)

where η denotes the left (L) and right (R) superconduc-
tor. The superconducting leads are characterized by the
mean-field BCS Hamiltonian

Hη =
∑
kσ

εηka
†
ηkσaηkσ + ∆ηe

iφη

∑
k

aη−k↑aηk↓ + H.c.,

(2)

where a†ηkσ (aηkσ) denotes the creation (annihilation) op-
erator of an electron with momentum k, spin σ and ki-
netic energy εηk in lead η. The second term on the right-
hand side of Eq.(2) describes the BCS pair interaction
on a mean-field level. The two superconducting order
parameters are characterized by their absolute value ∆η

and their phase φη. The temperature dependence of ∆η is
determined by the solution of the self-consistency equa-
tion for the order parameter which can be found only
numerically. However, it can be approximated with an
accuracy of better than 2% by

∆η(Tη) = ∆0 tanh

(
1.74

√
Tc
Tη
− 1

)
, (3)

in the whole temperature range from 0 to the criti-
cal temperature Tc. The latter is connected to the su-
perconducting order parameter at zero temperature via
kBTc ≈ 0.568∆0.

The single-level quantum dot is described by the
Hamiltonian

Hdot =
∑
σ

εc†σcσ + Uc†↑c↑c
†
↓c↓. (4)

While the first term describes the energy of the dot level ε
that can be tuned by applying a gate voltage, the second
term denotes the Coulomb interaction that has to be sup-
plied in order to occupy the dot with two electrons at the
same time. We remark that the dot spectrum is particle-
hole symmetric at ε = −U/2. For later convenience, we
introduce the detuning δ = 2ε+U from the particle-hole
symmetric point.

The tunneling Hamiltonian which couples the dot to
the superconducting leads is given by

Htun =
∑
ηkσ

tηa
†
ηkσcσ + H.c. (5)

Here, tη denotes a tunnel matrix element which we as-
sume to be energy and momentum independent. It is
connected to the tunnel coupling strength Γη = 2π|tη|2ρη
where ρη denotes the density of states of lead η in the
normal state.

III. REAL-TIME DIAGRAMMATIC
TRANSPORT THEORY

In order to describe transport through the quantum-
dot setup, we make use of a real-time diagrammatic
technique [77–80] for systems with superconducting leads
with a finite gap [81, 82]. It allows us to treat nonequi-
librium physics, superconducting correlations and strong
Coulomb interactions exactly while performing a system-
atic expansion in the dot-lead couplings. In the following,
we are going to extend this diagrammatic framework to
allow for the calculation of thermally-driven charge and
heat currents through quantum dot-superconductor hy-
brids on equal footing.

The central idea of the diagrammatic approach is to
integrate out the noninteracting leads and to describe
the remaining quantum dot system by its reduced den-
sity matrix. The reduced density matrix ρred has matrix
elements Pχ1

χ2
= 〈χ1|ρred|χ2〉. For the system under in-

vestigation, the nonvanishing density matrix elements are
given by the probability to find the quantum dot empty,
P0, occupied with a single electron with spin σ, Pσ, or
doubly occupied, Pd. Furthermore, the coupling to the
superconductors gives rise to finite off-diagonal density
matrix elements P d0 and P 0

d that describe the coherent
superposition of the dot being empty and occupied with
two electrons. The generation of these coherent super-
positions is a hallmark of the superconducting proximity
effect on the quantum dot.

The time evolution of the reduced density matrix is
given by the generalized master equation which in the
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stationary limit reads

0 = −i(Eχ1 − Eχ2)Pχ1
χ2

(t) +
∑
χ′
1χ

′
2

W
χ1χ

′
1

χ2χ′
2
P
χ′
1

χ′
2

(t), (6)

where Eχ is the energy of the many-body dot state χ.
The first term describes the coherent evolution of the
dot states. The second term arises due to the dissipa-
tive coupling to the superconductors. The generalized

transition rates W
χ1χ

′
1

χ2χ′
2

are obtained from irreducible self-

energy diagrams of the dot propagator on the Keldysh
contour [81, 82], cf. also Appendix A for a detailed ex-
planation of the connection between diagrams and phys-
ical processes. By expanding both the density matrix
elements as well as the generalized transition rates up to
first order in the tunnel couplings, we find that the coher-
ent superpositions P 0

d and P d0 are finite to lowest order in
Γη only if the empty and doubly occupied dot state are
nearly degenerate, δ . Γη [83]. For this reason, we are
going to restrict ourselves to the analysis of transport in
the vicinity of the particle-hole symmetric point to first
order in the tunnel coupling in the following.

The generalized master equation can be brought into a
physically intuitive form by introducing the probabilities
to find the dot occupied with an even and odd number
of electrons,

P =

(
Pe

Po

)
=

(
P0 + Pd
P↑ + P↓

)
, (7)

as well as a pseudospin degree of freedom that character-
izes the coherences between empty and doubly occupied
dot and, thus, the superconducting proximity effect on
the quantum dot

Ix =
P 0
d + P d0

2
, (8)

Iy = i
P 0
d − P d0

2
, (9)

Iz =
P0 − Pd

2
. (10)

The generalized master equation can be decomposed
into one set of equations that arises from the time evo-
lution of the dot occupations and another set due to the
pseudospin. The former is given by

0 =
∑
η

[(
−Z−η Z+

η

Z−η −Z+
η

)
P +

(
4X−η
−4X−η

)
I · nη

]
, (11)

where

X±η = ±Γη
~

∆ηΘ(U/2−∆η)√
(U/2)2 −∆2

η

fη(±U/2), (12)

Z±η =
Γη
~
UΘ(U/2−∆η)√

(U/2)2 −∆2
η

fη(±U/2), (13)

with the Fermi function fη(ω) = [exp(ω/(kBTη)) + 1]−1.
nη = (cosφη, sinφη, 0) denotes a unit vector whose direc-
tion is determined by the phase of the superconducting
order parameters. Interestingly, in Eq. (11) the dot occu-
pations are coupled to the pseudospin degree of freedom.
This is in direct analogy to the case of a quantum dot
weakly coupled to ferromagnetic electrodes where the dot
occupations are linked to the spin accumulation in the
dot [84, 85]. The second set of equations is given by a
Bloch-type equation for the pseudospin,

0 =

(
dI

dt

)
acc

− I

τrel
+ I×B. (14)

The first term,(
dI

dt

)
acc

=
∑
η

(
X−η Pe +X+

η Po

)
nη, (15)

describes the accumulation of pseudospin on the dot due
to tunneling in and out of electrons. The second term
characterizes the relaxation of the pseudospin due to elec-
tron tunneling on a time scale given by τ−1rel =

∑
η Z
−
η .

Finally, the last term gives rise to a precession of the
pseudospin in an effective exchange field,

B = BLnL +BRnR + δez, (16)

which arises from virtual charge fluctuations on the dot
as well as from a detuning away from the particle-hole
symmetric point. The exchange field contribution from
the two leads is given by

Bη =
2Γη
π~

∫ ′
dω

∆ηΘ(|ω| −∆η)√
ω2 −∆2

η

fη(ω)

ω + U/2
signω, (17)

where the prime indicates the principal value. The in-
tegral can be solved analytically as an infinite sum over
Matsubara frequencies, see Appendix B for details. The
interplay of pseudospin accumulation, pseudospin relax-
ation and pseudospin precession in the exchange field
leads to a nontrivial pseudospin dynamics on the dot
which acts back on the dot occupations via Eq. (11).
It is this nontrivial pseudospin behavior that gives rise
to interesting transport properties of the system under
investigation.

The charge on the quantum dot is related to the z
component of the pseudospin via Qdot = e(1−2Iz). This
allows us to connect the time evolution of Iz directly to
the charge current flowing between the dot and lead η
via

Ieη = −2e(Z−η Iz − IxBη,y + IyBη,x). (18)

We remark that the real-time diagrammatic approach
conserves charge currents automatically. Therefore, we
define Ie = IeL = −IeR in the following. In analogy
to the charge, we can relate the average dot energy to
the probability to find the dot with an odd occupation,
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Edot = −UPo/2, to derive for the heat current between
the dot and lead η

Ihη = −U
2

(
Z+
η Po − Z−η Pe + 4X−η I · nη

)
. (19)

We remark that in the absence of any bias voltage there
is no Joule heating and, hence, heat and energy currents
are equal to each other. This implies that heat currents
are conserved such that we can define Ih = IhL = −IhR.

IV. RESULTS

In this section, we are going to analyze the charge and
heat currents flowing through the system in response to
an applied temperature bias. We will first focus on the
linear-response regime and then turn to a discussion of
nonlinear transport.

A. Linear response

For the sake of concreteness, we consider on a sym-
metric quantum-dot setup. To this end, we define the
temperatures of superconducting leads as Tη = T + ∆Tη
with the reference temperature T and the temperature
bias ∆TL = −∆TR ≡ ∆T/2. The tunnel couplings are
chosen equal, ΓL = ΓR ≡ Γ/2. Furthermore, we assume
that the two superconducting order parameters have the
same absolute value, ∆L(T ) = ∆R(T ) = ∆, and set their
phases as φL = −φR ≡ φ/2.

To zeroth order in ∆T , i.e., in thermal equilibrium the
occupation probabilities of the dot are given by Boltz-

man factors P
(0)
χ ∝ e−Eχ/kBT . At the same time, the

pseudospin accumulation on the dot vanishes exactly. In
consequence, there is no charge and heat current flow-
ing through the system. Since we consider only tunnel
events that are first order in the tunnel coupling, there
is no supercurrent through the quantum dot [81]. The
latter would manifest itself as a phase-dependent equi-
librium contribution to the charge current. It requires,
however, the coherent transfer of Cooper pairs through
the dot and, hence, higher order tunnel processes.

A finite temperature bias ∆T generates a finite pseu-
dospin accumulation on the dot. To first order in ∆T
the accumulation is along the direction nL − nR, i.e.,

a finite pseudospin component I
(1)
y is generated due to

nonequilibrium tunneling of electrons. The magnitude
of the pseudospin accumulation is limited by the pseu-
dospin relaxation term −I/τrel. In addition, the effec-
tive exchange field B gives rise to a precession of the
accumulated pseudospin and leads to finite pseudospin

components I
(1)
x and I

(1)
z . According to Eq. (18), the

pseudospin accumulation leads to a finite charge current
given by

Ie = −e 2B0X
−
1 Z
−
0 sin2 φ

2

Z−0
δ
~ + 2[(Z−0 )2 +B2

0 cos2 φ2 ] tanβ

∆T

T
. (20)

0 0.5 1 1.5 2
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∆
T T

φ = π
φ = 3π

4

φ = π
2

φ = π
4

FIG. 2. Linear-response charge current Ie as a function of
(a) phase difference φ and (b) detuning δ. Parameters are
U = 4kBT and ∆ = 1.75kBT .

Here, we introduced the expansions

X±η = X±0 +X±1
∆Tη
T

+O(∆T 2
η ), (21)

Z±η = Z±0 + Z±1
∆Tη
T

+O(∆T 2
η ), (22)

Bη = B0 +B1
∆Tη
T

+O(∆T 2
η ), (23)

as well as the angle β = arctan(I
(1)
y /I

(1)
x ) which can be

written as

tanβ =
2~
δZ−0

[
(Z−0 )2 − 4(X−0 )2 cos2

φ

2

]
. (24)

The thermoelectric charge current Eq. (20) arises in the
vicinity of the particle-hole symmetric point. It relies
crucially on the superconducting proximity effect and the
resulting pseudospin accumulation on the dot because the

Fermi functions in the generalized transition rates W
χ1χ

′
1

χ2χ′
2

are evaluated at the particle-hole symmetric point δ = 0
and, therefore, do not lead to any thermoelectric effect.
It is, thus, the pseudospin accumulation that introduces a
nontrivial δ dependence into the master equation via the
effective exchange field B. In consequence, the thermo-
electric current vanishes for ∆ → 0, i.e., in the absence
of superconductivity in the leads.
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FIG. 3. Linear-response heat current Ih as a function of (a)
phase difference φ and (b) detuning δ. Parameters as in Fig. 2.

In Fig. 2 (a), the charge current is shown as a func-
tion of the phase difference φ. At zero phase difference,
the charge current vanishes independently of the detun-
ing δ because there is no pseudospin accumulation on the
quantum dot. In contrast, at φ = π the charge current
becomes maximal due to the strong pseudospin accumu-
lation on the dot. Figure 2 (b) shows the charge current
as a function of the detuning δ. For δ = 0 the charge
current vanishes due to particle-hole symmetry. For pos-
itive (negative) values of the detuning the charge current
takes positive (negative) values indicating electron (hole)
transport. The maximal current occurs for a phase dif-
ference of φ = π and detuning δ = ±2~Z−0 and takes
the value Ie = −(eB0X

−
1 ∆T )/(2Z−0 T ). The maximum

current is exponentially suppressed in U/kBT due to the
requirement of thermally excited quasiparticles. At the
same time, it is not enhanced by the divergence of the
superconducting density of states close to the gap. For
large detunings, the strong exchange field along the z di-
rection averages out the pseudospin accumulation along
the x and y direction. As a consequence, the charge cur-
rent tends to zero.

The heat current driven by a finite temperature bias
∆T is given by

Ih = −U
2

(
Z+
1 + 4I(1)y X−0 sin

φ

2

)
∆T

T
. (25)

It consists of two contributions. The first one is inde-
pendent of the phase difference φ and depends only on
the tunnel coupling Γ, the Coulomb interaction U and
the superconducting order parameter ∆. In contrast,
the second contributions is sensitive to the phase differ-
ence φ and, thus, gives rise to a phase-coherent flow of
heat which arises from the superconducting proximity ef-
fect on the dot. In consequence, it vanishes in the limit
∆ → 0. Interestingly, the phase-dependent part of the

heat current is proportional to I
(1)
y , i.e., it provides in

principle direct information about the pseudospin accu-
mulation on the dot. We remark that just like the charge
current the heat current is also exponentially suppressed
in U/kBT . At the same time, however, it is enhanced
by the increased superconducting density of states close
to the gap. Hence, for the system heat currents in units
of ΓU/~ tend to be much larger than charge currents in
units of eΓ/~.

The phase dependence of the heat current is shown in
Fig. 3(a). At φ = 0, the heat current is maximal and
takes the value Ih = −UZ+

1 ∆T/(2T ). The minimal heat
current occurs at φ = π since X0

− is negative while the

pseudospin accumulation I
(1)
y is positive. This φ depen-

dence of the thermal conductance differs from that of a
tunneling Josephson junction which exhibits a maximum
of the thermal conductance at φ = π [8, 9]. It rather
resembles the phase-dependent thermal conductance of
a transparent or topological Josephson junction which
also has a minimum at φ = π [13, 14, 41]. The ratio
between the minimal and maximal heat current is given
by 1 − 4∆2/U2, i.e., it can be maximized by tuning the
superconducting gap via the average temperature to be
close to the Coulomb energy U . At the same time, this
is also the regime where the relative modulation of the
heat current becomes largest.

The δ dependence of the heat current is depicted in
Fig. 3(b). The largest modulation of the heat current
occurs for δ = 0. In this case, the exchange field com-
ponent along the z axis vanishes which would otherwise

reduce I
(1)
y and thus the modulation amplitude. For the

same reason, the modulation of the thermal conductance
is strongly suppressed for large detunings δ � Γ.

B. Nonlinear response

We now turn to a discussion of transport in the non-
linear regime where a large temperature bias is applied
across the system. The resulting charge current is shown
as a function of phase difference and detuning in Fig. 4.
Interestingly, for a phase difference φ 6= 0, π, there is a
finite charge current at the particle-hole symmetric point
δ = 0.

This finite thermoelectric effect can be understood as
follows. If the dot is empty (doubly occupied), elec-
trons can virtually tunnel on (off) the dot and back.
These virtual tunneling events give rise to a renormal-
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FIG. 4. Charge current Ie in units of 10−3eΓ/~ as a function
of phase difference φ and detuning δ. The red line indicates
a vanishing charge current. Parameters are ∆0 = 2.32kBTL,
U = 5kBTL, ΓR = 4ΓL and TR = TL/2.

ization of the dot level energies which is captured by
the real-time diagrammatic technique. Importantly, in
the presence of Coulomb interactions, the renormaliza-
tion is different for the empty and doubly occupied state
and, thus, can break particle-hole symmetry effectively.
Hence, similarly to charge transport in quantum-dot spin
valves [84–86], thermoelectric effects in superconductor-
quantum dot hybrids constitute an important case where
interaction-induced renormalization effects have a dras-
tic impact on transport properties. Using Eq. (18) the
condition for a vanishing current can be cast into the
compact form

Z−L
Z−R

=
BL sin

(
ϕ− φ

2

)
BR sin

(
ϕ+ φ

2

) , (26)

where ϕ denotes the δ-dependent angle between the pseu-
dospin and the x axis. It illustrates the interplay between
spin relaxation and precession that influences the nonlin-
ear charge current in a nontrivial way and is indicated by
the red line in Fig. 4.

The nonlinear heat current behaves qualitatively simi-
lar to the linear-response case, i.e., it exhibits a minimum
at phase difference φ = π and detuning δ = 0. We re-
mark that the amplitude of the heat current oscillation is
reduced in the nonlinear regime because the heat current
at φ = π increases stronger with the temperature bias
than the heat current at φ = 0.

In the nonlinear regime, an asymmetric quantum-dot
setup with ΓL 6= ΓR can act as a thermal diode where
the heat currents in the forward and backward direc-
tion are different. To discuss this effect in more de-
tail, we introduce the asymmetry of tunnel couplings as
a = (ΓL−ΓR)/(ΓL+ΓR). The heat current in the forward
direction is given by Ih(a) while in the backward direc-
tion it is given by Ih(−a). This definition is equivalent
to denoting the forward (backward) direction as the one

−1 −0.5 0 0.5 1
a

0

0.05

0.1

0.15

0.2

0.25

I
h
/

Γ
U h̄

φ = π
φ = π/2
φ = 0

FIG. 5. Nonlinear heat current as a function of the asymmetry
a. Parameters are ∆0 = 2.32kBTL, U = 4.64kBTL, δ = 10Γ
and TR = 0.1TL.

for which TL > TR (TL < TR) at fixed tunnel couplings
as long as ∆0,L = ∆0,R.

Figure 5 shows the nonlinear heat current as a func-
tion of the asymmetry parameter a. For negative values
of a, the heat current increases with a while for posi-
tive values of a it has a pronounced maximum. This
nontrivial dependence on a is most pronounced when the
Coulomb energy is slightly larger than the superconduct-
ing gap. Since the heat current is not an even function of
a, the system can rectify heat with a large heat current
in the forward direction and a small heat current in the
backward direction. For the chosen parameters we find
that rectification efficiencies Ih(a)/Ih(−a) ≈ 50 can be
achieved at the maximum forward heat current.

In order to understand the mechanism behind the ther-
mal rectification, let us first consider the case of a single-
level quantum dot coupled to two normal metal elec-
trodes. At the particle-hole symmetric point, the heat
current depends on the tunnel couplings via ΓLΓR/(ΓL +
ΓR). Hence, the heat current is an even function of the
asymmetry a, Ih(+a) = Ih(−a), such that thermal rec-
tification does not occur.

For the superconducting system, the dependence of the
heat current on the tunnel barriers is modified by the
BCS density of states and is given by

ΓLΓR

ΓL

√
U2 − 4∆2

R + ΓR

√
U2 − 4∆2

L

. (27)

Hence, due to the temperature dependence of the su-
perconducting gap the heat current exhibits a nontrivial
dependence on the asymmetry a which forms the basis
of the heat rectification mechanism. In addition, the co-
herent pseudospin dynamics of the dot can enhance the
thermal diode effect for a finite phase difference φ. As can
be seen in Fig. 5 it can increase the rectification efficiency
by nearly a factor of 4 if the tunnel coupling asymmetry
is adjusted to maximize the heat current in the forward
direction. We remark that the enhancement of the recti-
fication efficiency comes at the price of a slightly reduced



7

heat current in the forward direction compared to the
case φ = 0.

V. CONCLUSIONS

We have analyzed thermally-driven transport through
a superconductor-quantum dot hybrid in the sequential
tunneling regime. We find that in linear response a fi-
nite thermoelectric effect can be generated close to the
particle-hole symmetric point due to the superconduct-
ing proximity effect on the dot. In addition, there is a
phase-dependent heat current through the quantum dot
which in linear response is sensitive to the pseudospin
accumulation in the dot, i.e., it provides direct access to
information about the proximity effect on the dot. In
nonlinear response, an interaction-induced level renor-
malization due to virtual tunneling gives rise to a finite
thermoelectric response at the particle-hole symmetric
point. Furthermore, the system can act as a thermal
diode which is based on the temperature-dependence of
the superconducting gap as well as the superconducting
proximity effect.

Finally, we comment on potential experimental re-
alizations of our proposal. For superconducting elec-
trodes based on Al, the zero-temperature gap is given by
0.17 meV, while the critical temperature is 1.2 K. Hence,
the device should be operated at temperatures around
500 mK while the Coulomb interaction should be of the
order of 0.5 meV. Assuming furthermore tunnel couplings
of the order of 1 Ghz, we estimate charge currents of the
order of 0.1 pA and heat currents of the order of 1 pW
which are both within the reach of present experimental
technology [35, 39, 87].
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Appendix A: Real-time diagrammatics

In this Appendix, we discuss the connection between
real-time diagrams and the underlying physical processes.
For a details on the diagrammatic theory for supercon-
ducting systems we refer the reader to Ref. [82].

Real-time diagrams consist of horizontal lines describ-
ing the forward and backward propagation of the quan-
tum dot along the Keldysh contour. Dots on the Keldysh

d

d

σ

σ

(a)
d

d

d

d

σ(b)

σ

σ

d

0

(c)
d

d

0

d

σ(d)

FIG. 6. Diagrams corresponding to different transitions in our
setup system. Horizontal lines describe the forward and back-
ward propagation of the dot on the Keldysh contour. Dots
indicate tunneling vertices. Dashed lines correspond to tun-
neling lines which arise from Wick contractions of reservoir
operators. Due to the presence of superconducting leads there
are both normal (a), (b) and anomalous (c), (d) tunneling
lines.

contour correspond to tunneling vertices where an elec-
tron is created (annihilated) on the dot and annihilated
(created) in one of the superconductors. When we in-
tegrate out the noninteracting lead degrees of freedom,
pairs of tunneling vertices get connected by tunneling
lines. In superconducting systems, two different types of
tunneling lines arise (i) normal lines which connect a ver-
tex that creates an electron on the dot with a vertex that
annihilates a dot electron and (ii) anomalous lines where
to vertices that both annihilate (create) a dot electron are
connected. The anomalous lines arise because the BCS
Hamiltonian is diagonalized by Bogoliubov quasipartices
which are superpositions of electrons and holes. Phys-
ically, they describe Andreev reflection processes where
two electrons on the dot are created (annihilated) while
a Cooper pair in the superconductor is annihilated (cre-
ated).

Let us now focus on first order diagrams as depicted
in Fig. 6. Diagrams such as the one in Fig. 6(a) describe
the transition between two diagonal density matrix el-
ements. They correspond to the usual transition rates
that are obtained via Fermi’s golden rule in conventional
rate equation approaches. Diagrams such as shown in
Fig. 6(b) yield the diagonal elements of the rate matrix.
While in rate equation approaches they are typically set

by hand to be Wχ,χ
χ,χ = −∑χ′ 6=χW

χ′,χ
χ′,χ in order to ensure

the conservation of probability, they appear naturally in
the diagrammatic framework and, thus, provide an addi-
tional consistency check of the results.

In superconducting systems, additional diagrams in-
volving anomalous tunneling lines such as the ones de-
picted in Fig. 6(c) and (d) appear. They give rise to
finite off-diagonal density matrix elements describing co-
herent superpositions of the dot being empty and doubly
occupied and, hence, capture the superconducting prox-
imity effect on the quantum dot. We emphasize that
the proximity effect occurs already in first order in the
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tunnel coupling via these diagrams as they give rise to
the coherent transfer of a Cooper pair between the dot
and the superconductor. However, the proximity effect
on the dot does not give rise to a supercurrent through
the system in first order. A finite supercurrent relies on
the coherent coupling between the two superconducting
leads which for our setup can occur only in second- and
higher-order processes. This is different in the case of a
simple superconducting tunnel junctions where a finite
supercurrent occurs already in first order [7]. Diagrams
such as Fig. 6(d) give rise to a level renormalization of the
empty and doubly occupied state relative to each other

and, thus, contribute to the exchange field in Eq. (17).

Appendix B: Exchange field integral

The integral appearing in the expression for the ex-
change field (17) can be solved analytically by perform-
ing the substitution ω signω = ∆ coshα. Subsequently,
the residue theorem can be applied to the rectangle with
corner points (−R,R,R+ 2πi,−R+ 2πi) and taking the
limit R → ∞. While the contribution from the vertical
edges vanishes, the top and bottom edge yield identical
contributions. This allows us to express the exchange
field integral as the infinite sum

Bη =

∞∑
n=0

8ΓηkBTη
U

[4(2n+ 1)2π2kBT 2
η + U2]

∆η√
(2n+ 1)π2kBT 2

η + ∆2
η

. (B1)

For our numerical results, we have evaluated the sum by taking into account the first 10.000 summands.
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