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Spin interactions of magnetic impurities mediated by conduction electrons is one of the most interesting and

potentially useful routes to ferromagnetism in condensed matter. In recent years such systems have received

renewed attention due to the advent of materials in which Dirac electrons are the mediating particles, with

prominent examples being graphene and topological insulator surfaces. In this paper we demonstrate that such

systems can host a remarkable variety of behaviors, in many cases controlled only by the density of electrons in

the system. Uniquely characteristic of these systems is an emergent long-range form of the spin stiffness when

the Fermi energy µ resides at a Dirac point, becoming truly long-range as the magnetization density becomes

very small. It is demonstrated that this leads to screened Coulomb-like interactions among domain walls, via a

subtle mechanism in which the topology of the Dirac electrons plays a key role: the combination of attraction

due to bound in-gap states that the topology necessitates, and repulsion due to scattering phase shifts, yields

logarithmic interactions over a range of length scales. We present detailed results for the bound states in a

particularly rich system, a topological crystalline insulator surface with three degenerate Dirac points and one

energetically split off. This system allows for distinct magnetic ground states which are either two-fold or six-

fold degenerate, with either short-range or emergent long-range interactions among the spins in both cases. Each

of these regimes is accessible in principle by tuning the surface electron density via a gate potential. A study of

the Chern number associated with different magnetic ground states leads to predictions for the number of in-gap

states that different domain walls should host, which we demonstrate using numerical modeling are precisely

borne out. The non-analytic behavior of the stiffness on magnetization density is shown to have a strong impact

on the phase boundary of the system, and opens a pseudogap regime within the magnetically-ordered region.

We thus find that the topological nature of these systems, through its impact on domain wall excitations, leads

to unique behaviors distinguishing them markedly from their non-topological analogs.

PACS numbers: 73.20.At,75.70.Rf,75.30.Gw

I. INTRODUCTION

The study of magnetism hosted by dilute impurities in a

non-magnetic metal has a long history in physics, both for its

fundamental interest and for possible applications such sys-

tems might host. The basic mechanism of magnetism in these

systems was first identified by Rutterman, Kittel, Kasuya, and

Yosida1–3, who demonstrated that magnetic impurity degrees

of freedom can effectively couple with one another through

the conduction electrons. Such “RKKY interactions” between

two magnetic impurities involves an induced, local spin po-

larization of the conduction electrons, due to short range ex-

change interactions with an impurity spin. The cloud of in-

duced spin density in the conduction electrons interacts with

the second impurity some distance R away, so that the spin

polarizations of the two impurities become effectively cou-

pled. This typically leads to an oscillating interaction with

wavevector 2kF , with kF the Fermi wavevector, contained

in an envelope that falls off as 1/R2 in two dimensions4,5.

Viewed differently, in this mechanism the interaction between

impurity spins is induced by how they impact the total elec-

tronic energy of the conduction electrons, which is sensitive

to the relative orientation of the two spins6.

Studies of RKKY interactions have enjoyed a significant

resurgence in recent years, since the advent of two dimen-

sional electron systems with low energy dynamics controlled

by a Dirac equation. Some examples include graphene, tran-

sition metal dichalcogenides, and surfaces of various three-

dimensional topological insulators. These systems host a

variety of topological properties which impact the coupling

among the impurities as well as the types of magnetic states

they host. Perhaps the simplest example is graphene7–18,

a two dimensional honeycomb lattice of carbon atoms, for

which the RKKY coupling between impurities i and j have

a Heisenberg form (Si · Sj), with equal magnitudes but of

opposing sign for impurity pairs on the same or opposite

sublattices. For doped graphene, when the impurity density

is sufficiently large compared to πk2F , and quantum fluctu-

ations are ignored, this leads to antiferromagnetic order at

zero temperature8. The antiferromagnetism in this system is

a consequence of the bipartite nature of the graphene lattice,

and contrasts with the ferromagnetic order expected in dilute

magnetic semiconductors19,20. When the system is undoped,

kF → 0 and the Fermi surface shrinks to two points, leading

to inter-spin coupling without oscillations and a faster decay

with distance (1/R3). Importantly, this 1/R3 behavior may be

understood as arising from non-analytic behavior in the static

spin susceptibility of graphene at small wavevector Q, which

approaches its Q = 0 value linearly with Q. This behavior is

actually rather generic for electronic systems controlled by a

Dirac Hamiltonian, and so applies to many systems of recent

interest beyond graphene.

Three dimensional topological insulators protected by time-

reversal symmetry (TIs)21 offer an interesting related situa-

tion. Because the bulk spectrum is gapped, electrons in the

volume of the system are ineffective at coupling spin impu-
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rities when the system is undoped. However, the topologi-

cal nature of the band structure necessarily introduces gap-

less states on their surfaces22,23. As with graphene, impurity

spins exchange-coupled to the surface electrons develop effec-

tive inter-impurity interactions with a long-range, monotonic

character (1/R3) when the Fermi surface is point-like. Un-

like graphene, this effective spin coupling is anisotropic due

to the strong spin-orbit interactions typically present in these

systems24–30. Depending on precisely how the impurities cou-

ple to the surface electrons this is thought to lead to ferromag-

netic ordering or spin-glass behavior. In the simplest cases,

a ferromagnetic groundstate should be stable, with the spin-

anisotropic interaction aligning the moments perpendicular to

the surface. From a mean-field perspective, ferromagnetism is

a natural outcome of the time-reversal symmetry-breaking it

entails, which gaps the surface spectrum and pushes the filled

electron states down in energy31.

Topological crystalline insulators (TCIs)32,33 offer per-

haps the richest of possible magnetic-dopant induced be-

haviors among these systems34. The paradigm of these are

(Sn/Pb)Te35–39 and related40–42 alloys. The gapless surface

states of these systems are protected by mirror symmetry35,

so that generic breaking of time-reversal symmetry will not

lead to lowering of the electronic surface state energy per

se43,44. However, ferromagnetic ordering with a spin compo-

nent in the mirror plane breaks this symmetry, again gapping

the spectrum and pushing down the energies of filled elec-

tron states. In most TCIs, the crystal symmetry that protects

the topology will dictate the presence of more than one Dirac

cone in the surface spectrum, and how this plays out depends

on the particular surface. For example, topological (Sn/Pb)Te

alloys host four Dirac points for both (100) and (111) surfaces,

but they are only fully degenerate in the first case; in the sec-

ond, one is energetically isolated while the remaining three

are degenerate (and related by three-fold rotations). Because

the system with such surfaces has a variety of mirror planes,

it can host more than just the two-fold degenerate ferromag-

netic groundstates found for the TI surface: for a (100) surface

one finds an eight-fold degenerate manifold of ferromagnetic

groundstates, while in the (111) case the system may be two-

fold (Ising-like) or six-fold degenerate34. Moreover, in this

latter case the system can be tuned to either of the two types

of ordering by controlling the surface electron density, in prin-

ciple controllable via an external gate.

An interesting aspect of the magnetically-doped TI and TCI

systems is that they admit low-energy topological excitations

in the form of domain walls (DW’s)24,45, linear regions sep-

arating different possible groundstates of the system. This is

the subject of our study. At low but finite temperature, the en-

ergy per unit length of these structures controls how fast the

magnetization decays with temperature, and the loss of any

net magnetization above a critical temperature may be under-

stood in terms of DW proliferation46,47. In typical ferromag-

nets, DW structure and energetics are determined by a balance

of the energetic cost of introducing gradients in the order pa-

rameter (favoring wide DW’s) and the energy associated with

the magnetization failing to point along a groundstate direc-

tion within the structure (favoring narrow DW’s.) Ignoring the

FIG. 1: (a) Illustration of length scale ξ over which impurity spins are

coupled in the two-dimensional systems we consider, which grows

faster than the distance between impurities as the impurity density

nimp becomes small. (b) Illustration of a pair of domain walls sepa-

rated by a distance d.

effects of disorder in the impurity distribution, which through-

out this work we will assume in a coarse-grained model is

qualitatively unimportant, a simple continuum model for a

surface Dirac cone coupled to a surface magnetization S(r)
is a modified sine-Gordon model. In writing this we assume

that a magnetization perpendicular to the surface is favored

(as for TI systems), implementing the gap-opening effect of

the magnetization. The energy functional takes the form48

E[S] = E2[S] + Eg[S], where E2[S] = −h
∫

d2rS2
z (r) en-

codes the energetically-favored ±ẑ spin directions, and the

gradient energy Eg is given by

Eg[S] =
ρs
2

∫

d2r
∑

µ,ν=x,y

∑

i,j

g̃ijµ,ν∂µSi(r)∂νSj(r).

Here the constants g̃ijµ,ν encode anisotropy that descends from

spin-orbit coupling in the conduction electrons. For a quali-

tative discussion we assume g̃ijµν = δijδµν . In such a model,

domain walls have an energy per unit length ε ∼
√
ρsh

48.

The importance of this energy scale shows up, for example, at

the thermal disordering transition, where from a balancing of

entropy and energy47 one expects the transition temperature

kBTc ∼ εℓ, where ℓ is a length scale over which the direction

of the DW wanders, which typically is the same as the DW

width ξ.

In what follows we will argue that this energy estimate for

DW’s works well when the Fermi energy cuts through the

Dirac cones of the surface energy spectrum, but fails when

it aligns directly with a surface Dirac point. The failure oc-

curs due to the simple form of the gradient energy Eg , which

we will see is not consistent with energetic estimates of the

energy cost to introduce a gradient in the spin. Indeed this is

anticipated by the 1/R3 interaction form one finds in the per-

turbative RKKY analysis when the Fermi energy is at a Dirac

point. Based on this one expects a long-wavelength gradient



3

functional of the form Eg → ELR
g , with

ELR
g [S] =

ρ̃s
2

∫

d2r1d
2r2

∑

µ,ν=x,y

∑

i,j

g̃ijµ,ν
∂µSi(r1)∂νSj(r2)

|r1 − r2|
.

(1)

This represents an effectively three-dimensional Coulomb in-

teraction among gradients on a two-dimensional plane. Since

DW’s by their nature support a finite rotation of the mag-

netization, such a term will lead to logarithmic interactions

within and among the DW’s. In what follows, we will demon-

strate that such long-range interactions do indeed appear in

these types of systems, albeit only up to a distance scale ξ
that diverges with vanishing net magnetization. For magne-

tization proportional to the impurity density nimp, ξ grows

faster than the average distance between impurities, as illus-

trated in Fig. 1 (a), so that increasingly many spins are cou-

pled together even as they are made more dilute. In situations

where the coupling between the magnetic impurities and con-

duction electrons is small, ξ can be quite large even in a mag-

netically ordered situation. (For example, in graphene, for an

exchange coupling J ∼ 5meV49, assuming a surface density

of impurities per unit cell area nimp/a
2
0 = 4%, it is of the

order (~vF /J)(a
2
0/nimp) ∼ 10µm, where vF is the electron

speed near the Dirac points. For the same coverage, estimates

of J for the TI Sb2Te3 with vanadium impurities50,51 yields a

length scale of ∼ 0.3µm, and for the TCI (Sn/Pb)Te with man-

ganese impurities52,53 yield ∼ 1.0µm. ) Beyond this distance

scale, we find that the gradient energy becomes non-analytic

in the amplitude of the magnetization. This anomalous behav-

ior presents itself both in systems where the electronic states

of two-component Dirac electrons have a spin-full character,

and in graphene, where there are separate Dirac spectra for

each spin flavor. The emergent long-range nature of the gradi-

ent energy impacts the DW energetics. For example, the non-

analytic behavior with magnetization amplitude at the longest

wavelengths should result in DW energies that scale linearly

with magnetization amplitude (adjustable via the density of

magnetic dopants). In a course-grained theory, the spins ap-

pearing in the Si · Sj coupling will each be proportional to

spin density, leading to energies that are quadratic in the mag-

netic impurity density for DW’s in systems governed by short-

range effective exchange interactions. This should be reflected

most directly in a critical temperature for thermal disorder-

ing that scales linearly rather than quadratically with impurity

density, as we explain below. Moreover, interactions between

DW’s separated by a distance d, as illustrated in Fig. 1 (b),

will have interaction energy that scales logarithmically with

d when d < ξ. In principle which of these behaviors is pre-

sented – critical temperature quadratic vs. linear in impurity

density – may be chosen by adjusting the density of conduc-

tion electrons on the surface, either via a gate or by intentional

doping. Thus such magnets may be tuned between rather dif-

ferent qualitative behaviors.

In systems where spin-orbit coupling is unimportant, such

as graphene, the magnetic degrees have a Heisenberg nature,

and one does not expect DW’s to form. Indeed, these systems

support gapless spin-wave modes around the ground state so

that magnetic order will not set in at any finite temperature54.

For short-range spin interactions these modes disperse lin-

early with wavevector55, but if the stiffness changes to the

long-range form above some wavevector scale, one expects a

crossover to Q1/2 behavior. Again, this crossover should oc-

cur only in these systems when the Fermi energy is adjusted

to be near the Dirac point energy, allowing for in-principle

tunable behavior.

The physics of DW’s becomes even richer in systems such

as TCI’s, in which there are multiple surface Dirac points. In

these systems the low-energy magnetization axis is different

for each Dirac point, leading to different possible numbers

of distinct ferromagnetic groundstate orientations. For exam-

ple, on the (111) surface of materials in the (Sn/Pb)Te alloys,

for an appropriately adjusted Fermi energy one finds six de-

generate groundstates34. The low energy excitations which

connect these orientations are DW’s. Using numerical model-

ing which we present below, one finds that the lowest energy

of these connect orientations related by inversion through the

origin, followed by a 120◦ rotation around the normal to the

surface. In this way, the lowest energy DW’s connect all the

different groundstate orientations into a six state clock model.

Thermal disordering in such a system should proceed in a two-

step fashion, in which long-range spin order is first lost as

DW’s proliferate, followed by a vortex proliferation transition

at higher temperature46. Both transitions are believed to lie

in the Kosterlitz-Thouless universality class. As in the Ising

case, we expect the emergent long-range interactions to im-

pact how the transition temperatures scale with impurity den-

sity, and a change in this behavior can in principle be observed

by adjusting the surface electron density. Beyond this, a fur-

ther adjustment will bring the Fermi energy close to that of an

energetically isolated Dirac point, yielding two-fold degener-

acy in the magnetization groundstates, with either short-range

or emergent long-range gradient energies needed to model the

DW energetics. Thus we expect four distinct behaviors for

this surface, each accessible by adjusting the Fermi energy to

an appropriate value. This is summarized in Fig. 2.

Another remarkable aspect of DW’s in these systems are

confined, conducting states that they host24,56–59. For a uni-

formly magnetized surface of a TI or a TCI, symmetries bro-

ken by this (time-reversal in the former, crystal symmetry in

the latter) generically induce a Berry’s curvature in the vicin-

ity of a surface Dirac point. Importantly, when multiple Dirac

points are involved, this will occur for each in which the mag-

netization opens a gap in the (local) energy spectrum. We will

see explicitly for the concrete example of a TCI that integrat-

ing the Berry’s curvature in the vicinity of such points yields

Chern numbers ±1/2, so that the change in Chern number

going across the DW is always integral. The numerical cal-

culations we present below demonstrate that one may under-

stand the number of conducting modes hosted by a given DW,

as well as their chirality, from the change in Chern numbers

summed over all the Dirac points on the surface.

The presence of such in-gap states in DW’s has interest-

ing consequences. Among them, as we demonstrate below, is

the fact their energetics, along with the effect of scattering by

the DW of unbound electrons, leads to emergent long-range

(logarithmic) interactions between them up to distance scales
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FIG. 2: Summary of different magnetization behaviors expected for

a (111) TCI surface. In (a) and (b), magnetization aligns in such a

way that the Dirac cone at the Γ̄ point develops a large gap. Filling

by electrons (red regions) in (a) yields emergent long-range interac-

tions, while in (b) they are short-range. This situation arises when the

Fermi energy resides near the Dirac point energy of the Γ̄ point. (c)

and (d) represent the analogous situations when the magnetization

aligns to create a large gap at one of the M̄ points, which is expected

when the Fermi energy is near these Dirac point energies. The ex-

pected of dependence on Tc on the magnetic impurity concentration

nimp will vary linearly or quadratically depending on whether there

are long- or short’- range spin-gradient interactions in the system.

Inset: Locations of Dirac points in the surface Brillouin zone.

that become arbitrarily large as the impurity density becomes

small. In this way, the topology of the electron system makes

its presence felt in the magnetic DW interactions, distinguish-

ing them from what would arise in electronic systems with

trivial topology, as might be the case if the spin-orbit cou-

pling were of the Rashba form. Moreover, the presence of

conducting states in the DW’s opens unique opportunities to

interrogate them. In principle they can be forced into a sys-

tem by pinning the direction of magnetization in opposite di-

rections at two ends of a sample at low temperature, or by

quenching to low temperature in zero magnetic field, freezing

in thermally generated DW’s. The DW’s could then be im-

aged, for example, via STM spectroscopy on the surface, or

detected indirectly by changes in the surface conductivity due

to their presence44,60–62. DW contributions to the dynamical

conductivity might also be detected via reflectance measure-

ments from the surface. Such measurements could also afford

a window on thermal disordering of the surface magnetism,

at which point the DW’s should proliferate. While we expect

the longest wavelength critical fluctuations as one approaches

thermal disordering to have a character consistent with short-

range gradient interactions63–65, there should exist a crossover

regime in which the DW lengths and widths are impacted by

the emergent long-range interactions. The existence of DW

in-gap states thus introduces a signal of the DW statistics that

is measurable in probes coupling to the surface electrons. In

this way, domain walls allow, in principle, direct access to

the interesting physics that emerges when magnetic degrees

of freedom are introduced at TI and TCI surfaces.

This article is organized as follows. We begin in Section

II by considering a simple Dirac electron model coupled to

a static magnetization, and compute the energy cost coming

from introducing gradients in the latter, with rather different

behavior resulting when the Fermi energy is at or away from

the Dirac point. A related analysis for graphene is presented

which yields results consistent with this, and we check this

behavior numerically to demonstrate that the physics remains

valid in a tight-binding model. We then turn in Section III to

energetic calculations of DW pairs, in which we demonstrate

the presence of an emergent logarithmic interaction that ap-

pears as the magnitude of the magnetization gets small. Two

analyses are presented. The first involves a transfer matrix

method for a continuum model of Dirac electrons analyzed

with a phase shift method, where one finds that the behavior

emerges from a near cancellation of the DW separation depen-

dence of the bound state energies, and the remaining spectral

dependence found in phase shifts of unbound electrons scat-

tered by the DW’s. This is followed by a numerical analysis

of a tight-binding “gapped graphene” model that supports the

result, demonstrating again the consistency of continuum and

microscopic models. We then turn our attention to a more de-

tailed study of DW’s in a TCI model in Section IV. We begin

with an outline of how we model these numerically, in par-

ticular explaining a technique for projecting the Hilbert space

into a set of surface states that allows us to focus on the effects

of magnetic moments near the surface. We then apply this

method to compute the Berry’s curvature and Chern numbers

in the vicinity of surface Dirac points which become gapped

in the presence of a uniform magnetization. This provides

us with general expectations for the number and chirality of

states appearing in these gaps when there are DW’s. We then

explain a method for numerically modeling DW’s in this sys-

tem, and present results for several realizations of DW’s. In

all cases we find that the number and chirality of bound states

within them are well-explained by the general expectations

arising from our Chern number calculations. We also use this

numerical method to demonstrate that in the six-state TCI sys-

tem, the lowest energy DW’s are generically those that con-

nect groundstates that are closest in orientation. This means

that the system is best described as a six-state clock model,

rather than two sets of three states separated by a larger bar-

rier. Finally, in Section V we summarize our results, provide

further discussion of their significance, and possibilities for

further exploration.
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II. MAGNETIZATION GRADIENT ENERGY

As discussed above, the unusual behavior of magnetic im-

purities coupled by Dirac electrons is manifest when one in-

troduces gradients in the magnetization. In this section we

demonstrate this within two models of such systems. The first

is a simple model for electrons in a surface system where spin-

orbit interactions are important, in which the electron wave-

functions involve two components, and the electron spin de-

gree of freedom is projected into these components. These

models arise in the context of TI’s and TCI’s31,34. The second

system we consider is graphene, for which spin-orbit coupling

is negligible. The wavefunctions describe amplitudes for elec-

trons to be present on one of two sublattices of the carbon

honeycomb structure, with either spin up or down, and are

thus four-component. While in real systems the impurities

are randomly located so that disorder is present in the system,

the relatively long-range of the effective spin-spin interactions

when kF is small or vanishing suggests one can coarse-grain

the magnetization field over a large area so that disorder ef-

fects become small, at least at long wavelengths31,34. For sim-

plicity we will ignore the effects of disorder in our analyses.

The underlying coupling between the impurity moments

and the electron spin in these models is the sd Hamiltonian,

Hsd = J
∑

i Si · s(ri), where Si is a spin degree of freedom

localized at position ri, and s(r) is the conduction electron

spin field66. These degrees of freedom may be deposited on

the surface of the material, but for TI’s and TCI’s they may

be present in the bulk as well. In the latter case, provided the

Fermi energy of the system is in the bulk gap, coupling among

the bulk impurities will be exceedingly small, so that we ex-

pect them to be disordered and for this reason negligible67,68.

The spin impurities are however coupled near the surface

where conduction electrons are present. Such models have the

attractive feature that the impurity atoms tend to enter as sub-

stitutional impurities at the same type of lattice site throughout

the crystal, so that there is considerable uniformity in the local

coupling between spins and conduction electrons34.

A. Spin-Orbit Coupled Systems

The coarse-graining approximation described above leads

to a continuum form for the coupling Hamiltonian, Hsd →

J̃
∫

d2rS(r) ·s(r), which then must be projected into the low-

energy sector of the electronic Hamiltonian. The latter con-

sists of one or more single particle Dirac Hamiltonians, which

with addition of the spin field S takes the generic form

H = vF

{

(−i
∂

∂x
− by)σ1 + (−i

∂

∂y
− bx)σ2 + bzσ3

}

,

(2)

where we have set ~ = 1, as we will throughout this pa-

per, except where otherwise noted. In this expression, σi,

i = 1, 2, 3 are the Pauli spin matrices, vF is the electron

speed, and the components of b(r) are proportional to pro-

jections of S(r) onto certain directions. For example, for TI

systems b3 is proportional to the component of S perpendic-

ular to surface31,69–71. In (Sn/Pb)Te-type TCI systems, it is

proportional to the spin component along a particular Γ-L di-

rection in the bulk band structure34. Note that more generally,

the electron speeds along the x̂ and ŷ directions in the plane

of the surface may be different, but as this introduces no qual-

itative effects we ignore it for simplicity.

Our goal is to assess the cost in energy to the system when

there is a spatial oscillation in b with some wavevectorQ, and

we proceed to do this in perturbation theory. For uniform b,

this Hamiltonian has the spectrum ±ε0(qx − by, qy − bx) =

±vF
√

(qx − by)2 + (qy − bx)2 + b2z. To this uniform b we

add a small oscillatory component δb with some definite

wavevector Q, so that b = bzẑ + δb cosQ · r. We then com-

pute the change in energy due to δb in perturbation theory, and

examine its Q dependence. Shifting the origin of coordinates

in momentum (q′x = qx− b2, q′y = qy − b1, with bx and by the

in-plane components of the uniform b-field) eliminates any

effect of the uniform bx,y contributions. The single-particle

states diagonalizing Eq. 2 then have the form

|q, s〉 = 1√
Ω

eiq·r

[q′2 + (sε0(q′)/vF − bz)2]
1/2

(

q′x − iq′y
s
vF

ε0(q
′)− bz

)

,

(3)

where Ω is the surface area of the system, and s = ±1 labels

the particle- and hole-like states.

1. Fermi Energy in the Gap

We first consider the situation where the Fermi energy is in the gap of unperturbed energy spectrum. The change in the total

energy of electrons is, to leading non-vanishing order,

∆E = −
∑

q

∑

p

|〈q,−|δh|p,+〉|2
ε0(q) + ε0(p)

, (4)
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where δh =
∑

i=x,y,z δbi cos(Q · r)σi, with σi the three Pauli matrices, and we work in units for which vF = 1. Plugging into

Eq. 4 yields

∆E = −1

4

∑

q

{ |〈q,−|δb · σ|q−Q,+〉|2
ε0(q) + ε0(q−Q)

+
|〈q,−|δb · σ|q +Q,+〉|2

ε0(q) + ε0(q +Q)

}

. (5)

Explicit calculations may be carried through with this expression, as we outline in the Appendix. To characterize the

quadratic energy cost for magnetization gradients we introduce a tensor quantity gijµν by the definition ∆E(Q) − ∆E(0) =
Ω
2

∑

µ,ν=x,y

∑

ij=x,y,z g
ij
µνQµQνδbiδbj . Many of the gijµν coefficients turn out to vanish; the non-vanishing ones are given by

gzzxx = gzzyy = 2b2z

∫

d2q

(2π)2
q2

ε0(q)7
=

8

15πbz
(6)

and

gxxxx = gyyyy =
4

5πbz
,

gyyxx = gxxyy = gxyxy =
16

5πbz
. (7)

An important property which must be checked is that the system is stable against gradients of the magnetization, i.e., that the

energy of the system can only increase as Q increases from zero. This is manifestly true for gradients associated with δbz. For

the in-plane components, it is convenient to notice that one may write

∆E(Q)−∆E(0) =
(

δbx δby
)

(

gxxxxQ
2
x + gxxyyQ

2
y gxyxyQxQy

gxyxyQyQx gyyxxQ
2
x + gyyyyQ

2
y

)(

δbx
δby

)

.

Using Eqs. 7, it is easy to confirm that the eigenvalues of the matrix appearing in this equation are always positive for any

direction of Q, and increase quadratically with its magnitude. This indicates that gradients in the magnetization tend to increase

the energy of the configuration, so that the spin-spin interactions favor ferromagnetism in this system.

A prominent feature of these results is that all these coefficients diverge as the gap-opening component bz → 0, indicating a

diverging stiffness as the uniform component of the surface magnetization vanishes. On the other hand, if the oscillations in the

underlying S field come from rotations in the field, but the field itself is of constant length, then we expect δb, bz ∼ |S|, so that

∆E(Q)−∆E(0) is still non-analytic in S and is anomalously large when |S| is small, but is not divergent in the S → 0 limit.

This surprising result is actually consistent with the effective RKKY spin coupling that is known for graphene; as discussed

in the introduction, the 1/R3 interaction found there leads to long-range gradient interactions, with a Fourier transform that is

linear rather than quadratic in Q, and hence non-analytic in wavevector. Our perturbative calculation explicitly assumes that

∆E(Q) is analytic in wavevector, and the divergence of the stiffnesses as bz → 0 is the signal that this assumption breaks down.

To see more clearly how this works, we will consider the energetic cost of imposing a spin gradient on electrons in graphene.

Before proceeding with this, however, we extend the analysis discussed above to the case where the electron system is doped,

and see that this relieves the large gradient energy found in the calculation above.

2. Fermi Energy in a Band

When the Fermi energy µ is alternatively in the band, we end up with a very different result: there is no dependence on the

wavevector Q to order Q2. Again the perturbation around a uniformly magnetized state will take the form

δh = δb · ~σ cosQ · r. (8)

In what follows we assume the Fermi energy µ is in the valence band – i.e., below the gap. Because the Hamiltonian is particle-

hole symmetric we should obtain the same result for µ → −µ. Assuming Q < µ, the change in energy due to the perturbation

can be expressed at second order as a sum of two terms, ∆E = ∆E+ +∆E−, with

∆E+ =
1

4

∑

q>kF

|q−Q|<kF

|〈q,−|δb · ~σ|q+Q,−〉|2
ε0(q+Q)− ε0(q)

− 1

4

∑

q>kF

|〈q,−|δb · ~σ|q+Q,+〉|2
ε0(q+Q) + ε0(q)

, (9)

where the Fermi wavevector is defined by ε0(kF ) = µ. ∆E− has the same form as Eq. 9, with Q → −Q. As demonstrated in

the Appendix, when the ∆E+ and ∆E− are summed, the result is independent of Q; i.e., the energy required to introduce an
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oscillation in the magnetization is independent of the oscillation wavevector. This indicates that an effective energy functional

for the magnetization should have vanishing coefficient for the quadratic gradient term – effectively, a vanishing spin stiffness.

This contrasts dramatically with the situation we found for µ = 0, where the stiffness diverged as bz → 0.

Two comments are in order. The first is that this vanishing stiffness results from the perfect linear spectrum of our unperturbed

model. In real systems there is some curvature in the spectrum away from the Dirac point energy, and we expect this will lead

to non-vanishing contributions to the stiffness. If the Fermi energy is not too far from the Dirac point then one can treat such

deviations perturbatively, and these should be finite. Thus we expect non-vanishing contributions for spin gradients in a doped

system, as will be supported by our numerical studies described below, but these will be small compared to what happens when

the Fermi energy is in the gap of the uniformly magnetized system. The second is the comparison of this result to a closely

related one for graphene: when doped, its spin susceptibility is independent of Q for small Q8. In this situation, however,

RKKY interactions between spins do not vanish, due to contributions from large Q. This leads to ferromagnetic coupling

among spins on the same sublattice, and antiferromagnetic ones for spins on opposite sublattices, for length scales shorter than

∼ 1/2kF
8. Beyond this scale, the RKKY interactions oscillate and average to zero. The net effect is a short distance coupling,

which ultimately leads to a non-vanishing gradient energy for the system..

As we see, the comparison of this system with the behavior of graphene is quite useful, so we next turn to an analysis of what

happens in the latter system when a spin gradient is imposed.

B. Comparison to Graphene

Because graphene has essentially no spin-orbit coupling, it

couples to an impurity spin in a different way than what was

examined in the last section. Nevertheless, results for it do

bring some insight to systems governed by the Hamiltonian

H appearing in Eq. 2. In graphene the spin operator is com-

pletely independent of the spinor degree of freedom that H
acts upon; spin is a separate quantum number for the elec-

trons. The effect of a single impurity spin is to act like a local

Zeeman field with direction fixed by the impurity spin itself.

1. Perturbation Theory

In the standard perturbative approach to RKKY

interactions6, one computes the static linear spin response

χij
αβ(Q) of (the Fourier transform of) the electron spin compo-

nents si(Q) to a perturbation JSj(Q), where J is the sd cou-

pling and α, β = A,B are indices specifying the sublattice(s)

to which the impurities are coupled. The spin symmetry dic-

tates that the spin response has the form χij
αβ(Q) = χ0

αβδij ,

and the total change of energy at second order in J is

∆E = −J2
∑

Q

∑

i=x,y,z

∑

α,β χ
0
αβ(Q)Si,α(−Q)Si,β(Q),

where Si,α is the ith component of the impurity spin field on

sublattice α.

As has been shown previously8, for undoped graphene

χ0
αβ(Q) begins at a positive cutoff-dependent constant for

Q = 0 and varies linearly with increasing Q: for example,

χ0
AA(Q) = 1

4π

(

Λ− π
8Q

)

, where Λ is an upper cutoff of or-

der the bandwidth. For doped graphene χ0
AA(Q) is indepen-

dent of Q (and equal to the Q = 0 value for the undoped case)

up to Q = 2kF , where a non-vanishing slope in Q sets in.

(χAB has the same magnitude as χAA but has opposite sign.)

The cusp is a realization of the well-known Kohn anomaly

and leads to 2kF oscillations in the response. Analogous be-

havior – static spin susceptibility that is nearly constant at low

momentum, followed by a cusp at 2kF – has also been found

in HgTe quantum well models72,73. As in the graphene case8,

the weak low momentum dependence results from cancella-

tions between intra- and inter-band contributions to the spin

susceptibility.

The results are reminiscent of what we found in the last two

subsections. The linear behavior in Q for undoped graphene is

non-analytic and indicates that the quadratic small Q calcula-

tion carried out above must fail in the limit that the gap closes

i.e., for vanishing uniform magnetization in the zero-doped,

spin-orbit coupled model. Indeed we expect that for bz → 0
that the spin-response associated with Eq. 2 will tend to a

combination of χ0
AA and χ0

AB for graphene. Thus, we should

understand the divergences in Section II A 1 in this limit as

indicating a crossover from quadratic to linear behavior in the

spin response with respect to Q when the system exits the bro-

ken symmetry state.

2. Beyond Perturbation Theory: Helicity Modulus

In contrast to the models considered above, in graphene

the expected ordering at low temperature is antiferromagnetic

across the sublattices8. When this is present the RKKY inter-

action as calculated perturbatively fails at the longest length

scales in a way very analogous to what happened in the spin-

orbit coupled case. This occurs because a uniform staggered

magnetization acts as a mass term in the Hamiltonian for each

spin individually, opening a gap ∆ in the spectrum. If one

works perturbatively around this state, one expects an expo-

nential falloff in the spin-spin interaction at length scales be-

yond that set by ∆. Interestingly, since spin-orbit coupling

is essentially negligible in this system, no spin orientation is

favored, and it is possible to assess the energetics of spin gra-

dients of different length scales, as we now show.

Suppose the staggered magnetization is characterized by an

ordering vector b(r). For a square system of linear size L
one can imagine a configuration in which b rotates precisely

once around some fixed axis as r varies down the entire length

of the sample in some direction. The helicity modulus47 is

defined in terms of the energy cost to introduce this spin twist,
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relative to a uniform groundstate:

ρs(g = 2π/L) = lim
L→∞

2L−2 [E(g = 2π/L)− E(g = 0)] /(2π)2,

(10)

where g is the wavevector of the imposed spin gradient, and

E(g) is the energy of the system (proportional to its area) with

some imposed spin gradient. While ρs(g = 0) is the spin stiff-

ness of the system at the longest possible length scale avail-

able in a finite size system, we can generalize this quantity by

allowing g to be a free variable, probing the energy cost for

gradients at length scales 2π/g. This quantity may be com-

puted for graphene subject to a uniformly rotating staggered

magnetization.

Our Hamiltonian in this situation is

HG = vF [p̂xτx + p̂yτy − b · ~στz] , (11)

where ~σ is the set of Pauli matrices acting on the spin degree

of freedom, ~τ are the corresponding matrices acting in the

sublattice space, and p̂x,y are components of the momentum

operator. As above we set vF = 1. If b = b0(sin θ, 0, cos θ)
is independent of position, then the eigenstates of b · ~σ are

χ+ =

(

cos θ
2

sin θ
2

)

, χ− =

(

− sin θ
2

cos θ
2

)

,

and the corresponding eigenergies of HG are given by

±
√

p2x + p2y + b20, each of which is two-fold degenerate. To

compute ρs(g) we will need to find the single-particle ener-

gies in the situation where θ → gx. To do this we transform

our spin quantization axis to be locally parallel to b(x). This

is equivalent to writing the eigenstates of Eq. 11 in the form

Ψ(x) = α(x) ⊗ χ+(x) + β(x)⊗ χ−(x), (12)

where the σ matrices act on the vectors χ±, and the τ ma-

trices act on the two-component vectors α and β. With

some algebra, one can show that the stationary state equation

HGΨ = εΨ can be cast in the form

(H̃ − ε)

(

α
β

)

= 0, (13)

where

H̃ = pxτx + pyτy − b0τzµx − gµzτx, (14)

and the ~µ Pauli matrices act in the (α, β) space.

The solutions to Eq. 13 can be evaluated directly, yielding

four single particle energies,

±εs(p) = ±
{

p2 + g2 + b20 + 2sg
√

p2x + b20

}1/2

, (15)

where s = ±1. We are interested in the situation where the

negative energy states are completely full, so the total energy

is

E(g) = −
∑

s

∑

p

εs(p). (16)

From this we wish to subtract the energy at g = 0. The single

particle energies of the filled states are clearly −
√

p2 + b20 ≡
−ε0(p). The energy difference E(g) − E(0) can be written

in the form

∆E(g) ≡ E(g)− E(0) = −
∑

p

[ε+1(p) + ε−1(p)− ε0(p− gx̂)− ε0(p+ gx̂)] . (17)

The shift of the g = 0 energies in the subtraction does not affect the result provided the system obeys periodic boundary

conditions, and in this form one may confirm that the sum over p in Eq. 17 is independent of cutoff. Substitution yields the

explicit expression

∆E(g) = −
∑

p

{

[

p2 + b20 + 2g
√

p2x + b20 + g2
]1/2

+

[

p2 + b20 − 2g
√

p2x + b20 + g2
]1/2

−
[

p2 + b20 + 2gpx + g2
]1/2 −

[

p2 + b20 − 2gpx + g2
]1/2

}

. (18)

Assuming the system to be of sizes Lx and Ly in the x̂ and ŷ
directions respectively we can replace the momentum sum in

the thermodynamic limit by an integral. If we assume g <<

b0, to lowest non-trivial order in g we find

∆E(g) ≈ LxLyg
2b20

∫

d2p

(2π)2
1

ε0(p)3
∼ LxLyg

2b0. (19)

The result is anomalous in the sense that, for a generic magnet
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where the stiffness usually depends analytically on the mag-

netization scale, we expect ρs ∼ LxLy∆E(g) ∼ b20g
2. Eq.

19 is consistent with a long-range interaction among spin gra-

dients that is cut off by the scale of the magnetization itself,

b0. This interpretation is further supported by considering

larger values of g. To do this, we compute the py integral

in ∆E(g) analytically, which allows it to be cast in the form

∆E(g) = −LxLy
g3

(2π)2G( b0g ), with

G(u) ≡
∫ ∞

−∞

dx

{

[

1 + u2 + x2
]

log

[

(1 + u2 + x2)2 − 4x2

(1− u2 − x2)2

]

+ 2x log

[

1 + 2x+ x2 + u2

1 + 2x+ x2 + u2

]

− 2
√

x2 + u2 log

∣

∣

∣

∣

∣

1 +
√
x2 + u2

1−
√
x2 + u2

∣

∣

∣

∣

∣

}

. (20)

Note in writing this expression we have taken the momentum

cutoff to infinity. One may compute G(u) numerically, with

the result that G(u) ∼ −u2 for u << 1, and G(u) ∼ −|u|
for u >> 1, as illustrated in Fig. 3. The latter result re-

produces the explicit small g result, while the former shows

∆E(g) ∼ b20|g| for b0 << g. This non-analytic behavior in

g is what one expects from the linear Q behavior of the spin

susceptibility discussed in the previous subsection, indicative

of long-range interaction for magnetization gradients. We see

however that the interaction is cutoff by the average magne-

tization b0. This length scale can become very large in the

limit of low magnetic impurity density or a relatively small sd
coupling scale J .

0.5 1.0 1.5 2.0 2.5 3.0

u

-20

-15

-10

-5

G(u)

FIG. 3: Numerical result for G(u) (Eq. 20) as a function of

u ≡ b0/g. This function determines how the energy of the sys-

tem increases when a spin gradient of wavevector g is introduced,

which for g << b0 is quadratic in g but only linear in b0, while for

g >> b0 one obtains behavior linear in g.

The result holds as well for graphene when treated in the

tight-binding model. To show this, we consider the simplest

such system in which the carbon atoms are laid out in a trian-

gular lattice with two atoms per unit cell and lattice parameter

a, with nearest neighbor hopping t. The Fermi velocity is re-

lated to the tight-binding parameters via ~vF =
√
3/2ta0. In

each unit cell there is an effective Zeeman energy h = ∆ẑ, in

opposite directions for each of the sublattices, modeling the

staggered magnetization. We consider a ribbon of this, with

cross-sectional width Lw, in which h rotates around an axis

by 2π along the ribbon cross-section. The system has well-

defined momentum along the ŷ-direction, py , and for each

of these we compute a set of single-particle energies by di-

agonalizing the tight-binding model numerically. The rele-

vant electronic energy of the system is the sum of all nega-

tive energy states, integrated (numerically) over py . From this

we subtract the corresponding energy for a uniform staggered

magnetization h, with the same magnitude ∆. This differ-

ence is ∆E(g = 2π/Lw). When vF /Lw ≫ ∆, one expects

∆E ∼ Lwg becomes constant as Lw grows. By contrast,

for fixed Lw it should grow linearly with increasing ∆. This

behavior is consistent with the numerical observations, as il-

lustrated in Fig. 4.

C. Discussion

We conclude this section with some observations as well as

speculations regarding the impact of the unusual gradient en-

ergy in these systems. First, we note that our approach treats

the energetics of electrons near individual Dirac points with-

out including the possibility of the impurity scattering elec-

trons between them. Because of the momentum space sepa-

ration among Dirac points in an electronic structure, these ef-

fects usually lead to contributions that oscillate rapidly in the

RKKY coupling between impurities as a function of their sep-

aration. For long wavelength properties of the system, such

effects average away, justifying an approach in which one fo-

cuses on Dirac points individually8. In the context of DW’s,

one interesting consequence is how the energetics impacts the

temperature at which the system should disorder. A simple

estimate74,75 of the free energy to create a DW of length L
against an otherwise uniform magnetization background takes

the form ∆F (L) = εL − kBTη(L/ξ), where ε ∼
√

ρsS̄ is
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FIG. 4: Numerical calculation of energy per unit length required for single overturn of the staggered magnetization ∆ in a graphene ribbon of

width Lw, relative to that with a uniform staggered magnetization, for various values of Lw and ∆. When Lw is held fixed, this energy grows

linearly with ∆. For fixed ∆, the energy approaches a constant as 1/Lw grows.

the energy per unit length, with S̄ the average magnetization

per unit area, and ξ ∼
√

ρs/S̄ is the width of a DW, T is the

temperature, and η is factor of order unity which character-

izes how quickly the DW changes its direction as one moves

down its length, in units of ξ; the second (entropic) term arises

from the number of configurations one may construct for the

DW, in which the complicating factors of interactions among

different parts of the DW have been ignored, as well as the

fact that a finite L DW in a system without boundaries is ac-

tually a closed loop. In spite of these simplifications, for the

Ising model the condition∆F (L) < 0, which is interpreted as

DW proliferation and the loss of magnetic order in the system,

yields an estimate of kBTc = εξ/a ∼ ρs. In the Ising model,

this type of argument yields the correct Tc to within 25% of

the exact answer75.

In the present system, however, the behavior of ρs is

anomalous. For example, for short-range interactions this

scales as ρs ∼ S̄2, which in turn is proportional to the square

of the impurity density, since the ρs is a long-wavelength mea-

sure of interactions among the impurities. If one uses the

long wavelength estimate for systems analyzed above, we find

ρs ∼ S̄, linearly proportional to the impurity density. This be-

havior contrasts with what happens when the Fermi energy is

moved away from any Dirac point energy of the surface, in

which case we return to a magnetic system with short-range

interactions: Tc then scales quadratically with impurity den-

sity. This change in behavior is an in-principle measurable

signature of the interesting DW energetics in these systems.

In addition to the anomalous average magnetization depen-

dence of DW’s in this system, our gradient analysis suggests

an emergent long-range interaction which becomes important

at increasingly long length-scales as the magnetization de-

creases. In the next section, we will demonstrate the presence

of this interaction by examining the energetics of inter-DW

interactions.

III. DOMAIN WALL INTERACTIONS

As discussed above, one aspect of the unusual gradient in-

teractions in these systems would be the emergence of long-

range interactions between DW’s as the magnetization scale

gets small. To test this, we will compute these interactions di-

rectly in two simple models: continuum Dirac electrons cou-

pled to a piecewise constant magnetization field, and a tight-

binding model of “gapped graphene.” In both cases we will

see that the character of the interaction changes significantly

depending on the placement of the chemical potential µ: when

it passes through the magnetization-induced gap, it becomes

increasingly long-ranged as the magnetization becomes small.

When µ is outside this gap, the interaction remains short-

ranged even as the gap closes.

A. Continuum System with Piecewise Constant

Magnetization: Phase Shift Analysis

We begin with a generic surface Dirac Hamiltonian of the

form in Eq. 2, which within regions of constant magnetization

may be written as

H = (ky − by)σx + (kx − bx)σy +∆σz, (21)

where kx and ky are components of the electron wavevec-

tor for the system surface with constant magnetization. In

this equation we have taken our unit of energy to be ~vF /a0,
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where vF is the speed associated with the Dirac point when

∆ = 0, and our length unit a0 is set by a microscopic lat-

tice scale. Our approach will be to consider linear combina-

tions of the eigenstates associated with this type of Hamil-

tonian, matching them across boundaries where bx, by , and

∆ change suddenly. We compute a transfer matrix for the

system, from which we can obtain both bound state energies

and phase shifts for scattered states, allowing us to compute

the energies of each of these as a function of separation be-

tween two DW’s. We will see the effects of these combine in

a surprising way to yield a slow variation of the system energy

when the chemical potential is in the gap, and the separation

is not too large.

1. Wavefunctions

The type of DW configuations we analyze are illustrated

in Fig. 5, which contain five separate regions in which ∆
and bx are constant, labeled I through V . The rotation of

the magnetization within the two DW’s may have the same or

opposite senses, as illustrated by the solid and dashed arrows

in Region IV . We treat this as a scattering problem where

electrons in regions I and V are connected through a transfer

matrix T ,

~ΨV = T ~ΨI (22)

The two components of the wavefunctions ~Ψi represent am-

plitudes for the two orbitals upon which the Dirac matrices in

FIG. 5: Piecewise constant domain wall configuration with two do-

main walls of width w each separated by a center-to-center distance

d. Top panel: The parameter bx, for which we allow the possibil-

ity of values that are equal or opposite, allowing for magnetizations

that rotate with the same or with opposite senses. Piecewise constant

regions I − V are labeled. Bottom panel: ∆(x), illustrating that

the magnetization rotates from up to down and back again. Arrows

indicate the orientation of the magnetization vector in each region.

Eq. 21 act. To obtain the transfer matrix T , we find eigen-

vectors of this Hamiltonian for some fixed energy E in each

region, and match both components of the wave functions at

each boundary (I to II , II to III , etc.) Note that ky is a

good quantum number and is constant for a wavefunction in

all regions.

The general form for the wavefunction in region j may be

written as

~Ψj = eikyy

[

Aje
i(k+

x )jx

(

uj
+

vj+

)

+Bje
i(k−

x )jx

(

uj
−

vj−

)]

,

(23)

and energy E = −
√

k2y + k2x +∆2
0 the same in all regions.

We solve this straightforwardly to obtain the values of kx
for the scattering states in regions I and V ; note for bound

states this may turn out be imaginary. The energy also deter-

mines the values of (k±x )j in each of the “internal” regions

j = II, III, IV ,

(k±x )j = −bjx ±
√

E2 − k2y −∆2
j . (24)

In terms of these the values of u, v are given by

uj
± =

ky − i((k±x )j + bjx)
√

(∆j − E)2 + k2y + ((k±x )j + bjx)2
,

vj± =
E −∆j

√

(∆j − E)2 + k2y + ((k±x )j + bjx)2
.

With this information, the T matrix may be straightforwardly

computed analytically; the expression is lengthy and we do

not present it explicitly. Note that the T matrix contains the

information about the domain wall width w and the distance

d between the two domain walls (DWs). We will compute

the energy of the DW structure from T , which contains two

contributions of similar size, one from bound states induced

by the DW’s, and one from scattering phase shifts.

2. Energy from Bound States

We can express the scattering amplitudes in terms of the

components of T using

AV = TAAAI + TABBI , BV = TBAAI + TBBBI , (25)

where A and B are the amplitudes for right- and left- moving

electrons, respectively, in the I and V regions. To obtained

the bound state solution, we put kx → iκ and find κ such that

AI = BV = 0. This condition is satisfied when TBB = 0.

For a given w and d, we numerically find the solution for

κ which gives TBB = 0. A very nice simplification for this

particular geometry is that the solution is independent of ky ,

which makes the computation of this energy contribution par-

ticularly simple, once κ is known. Since the model we are

considering is particle-hole symmetric, we need only consider

chemical potentials µ ≤ 0. The total energy contribution from
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the bound states is given by summing over all states with en-

ergy below µ, which includes only negative energy states,

∆Eb/Ly = − 1

π

∫ π

kc
y

dky

√

k2y +∆2
0 − κ2, (26)

where Ly is the length of the system along the ŷ direction.

Note the lower cutoff kcy , which is given by

kcy =

{

√

µ2 −∆2
0 + κ2 if (µ2 −∆2

0 + κ2) ≥ 0,

0 otherwise,

is non-trivial because a bound state will only be present below

a given µ if ky is sufficiently large. The integral in Eq. 26

is straightforward to compute with the numerically generated

values of κ.

3. Energy from Scattering States

We next need to calculate the change in electronic energy

due phase shifts of the wave functions due to scattering from

the DWs. To do this we imagine the whole system to be em-

bedded at the center of a large box of length L, whose size we

will eventually take to infinity. For simplicity we require the

lower component of the wave function to vanish at the edges

of this box. (Other boundary conditions may be considered

but should not have qualitative effects on the results.) Using

Eqs. 22 and 23, this leads to a condition for the allowed states

in this box,

TAAe
ikxL − TAB

TBBe−ikxL − TBA
= 1. (27)

This may be rewritten as a quadratic equation for eikxL in

terms of the matrix elements of T , whose solutions we cast

in the form eikxL = eiqnL+iη±(kx) ≡ eik
′L. The values of

η±(kx) give allowed values of kxL, with the η+ solutions cor-

responding to qn ≡ nπ/L, with n the even positive integers,

when the DWs are eliminated (T → unity), and with η− cor-

responding to qn with n odd in the same limit. Interestingly,

we again find a useful independence from ky: for a given kx
the total phase shift η(kx) = η+(kx)+η−(kx) is independent

of ky . The shift in energy due to the DW structure comes from

the differences between qn and k′(qn), which, though small,

add up to a finite contribution when summed over all the oc-

cupied states. To see this one starts with the expression for the

total energy contribution due to the scattering states,

Eph/Ly =

∫

dky
2π

∑

n, filled

E[kx(qn), ky].

For largeL, we recast the sum over n as a momentum integral,

E±
ph/Ly →

∫

dky
2π

∫

Ldq

2π
E[kx(q), ky ].

Here ± corresponds to the two solutions for the phase shift,

η±(kx). Now using the relation kxL = qnL + η±(kx), the

energy may be written as

E±
ph/Ly =

∫

dky
2π

∫

dkx
2π

(L− dη±(kx)

dkx
)E[kx, ky].

The first term gives a constant background which is inde-

pendent of the DW separation, and so maybe ignored. Adding

the non-trivial contributions from η+ and η−, we obtain the

energy increase due to scattering,

∆Eph

Ly
= − 1

4π2

∫ ∫

dkydkx
dη(kx)

dkx
E[kx, ky].

As mentioned above, the total phase shift η(kx) is indepen-

dence of ky , so we may rewrite the above equation as

∆Eph

Ly
= − 1

4π2

∫

dkx
dη(kx)

dkx

∫

dkyE[kx, ky].

Note that the domain of integration for kx, ky must respect

the condition E[kx, ky] < −|µ|. When the chemical potential

is in the gap for the uniformly magnetized system, both kx
and ky will vary from −π/a0 to π/a0 for some cutoff scale

Λ = π/a0.

Since our analysis above yields explicit expressions for

η(kx) (again, not presented as this is lengthy yet straightfor-

ward to obtain), it is convenient to integrate this directly rather

than its derivative. Up to surface terms which are independent

of the DW separation, partial integration yields

∆Eph

Ly
= − 1

2π2

∫ π/a0

0

dkxη(kx)
dF (kx)

dkx
(28)

where F (kx) is given by

F (kx) =

∫ π/a0

kc
y

dky

√

k2x + k2y +∆2
0. (29)

The lower limit kcy is again defined as

kcy =

{

√

µ2 −∆2
0 − k2x if (µ2 −∆2

0 − k2x) ≥ 0,

0 otherwise.

The integral in Eq. 28 is straightforward to evaluate numeri-

cally.

4. Results

We next turn to a discussion of results from this analysis. In

all cases the basic energy scale is set by the square of the gap

energy ∆0, which we scale out in presenting the results. Dis-

tances are shown in units of the cutoff length scale a0, which

may be taken for concreteness as the lattice constant of the

underlying structure. Fig. 6 illustrates typical results for the

energy of a pair of DW’s as a function of their separation, for

different values of the gap ∆0 for the uniform magnetization

far from the pair, when the chemical potential µ is in the gap.

In these calculations, the DW widths are taken to be 0 so that
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the magnetization jumps discontinuously at each DW. The re-

sults are shown on a linear-log scale, and it is apparent for

the smallest values of ∆0 that the energy rises nearly linearly

towards the asymptotic value for well-separated DW’s. This

behavior is expected for interactions between spin-gradients

that vary as 1/R, so that the interaction between line-like ob-

jects such as a DW will be logarithmic. As expected from our

analysis above, this long-range interaction is emergent, in the

sense that it is cut-off at a distance scale that diverges as ∆0

vanishes. We find very similar results for finite width DW’s,

for both cases where the in-plane spins are parallel or antipar-

allel (see Fig. 5.) The basic interaction between DW’s is set

by the change in gap-opening component of the field, not the

components perpendicular to this.

Fig. 7 illustrates corresponding results for fixed ∆0 =
0.005, in units of ~vF /a0, for different values of µ. Here it

makes most sense to present the results on a linear scale, and

it is apparent that effective range of the DW attraction shrinks

as µ moves deeper into a band. The expected 2kF oscillations

are also apparent. Figs. 6 and 7 firmly establish the qualitative

differences between DW interactions for µ in a gap and µ in a

band.

As discussed above, these interactions arise from the com-
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FIG. 6: DW pair energy (adding the contributions from both the

bound state and phase shift) as a function of the distance between

the domain walls d when µ is in the gap. Different lines indicate

different values of ∆0, as indicated. Energies expressed in units of

e0 ≡ ~vF /a0.
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phase shifts shown separately, for ∆0 = 0.005e0 and for various

values of chemical potential as indicated. Energies expressed in units

of e0 ≡ ~vF /a0. The near cancellation of the two contributions is

apparent.

bined effects of the bound states in the DW’s and the phase

shifts of the scattering states.

It is interesting to examine the contributions of these sepa-

rately, as we do in Fig. 8. Interestingly, one finds an attractive

bound state contribution which slightly overbalances a repul-

sive phase shift contribution, to yield a net attractive interac-

tion. The ranges of each individually turn out to be consider-

ably longer range than the net attraction, and their sums yield

the characteristic behaviors illustrated in Figs. 6 and 7. This is

a surprisingly intricate way for the slow d dependence of the

interaction that emerges at small ∆0 to be realized microscop-

ically: our expectations of its presence descended from pertur-

bative analyses around uniform magnetized systems, which

contain no obvious signals that the DW’s will host bound

states at all. This behavior is a remarkable demonstration of
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FIG. 9: Energy of DW superlattice as a function of separation d for

graphene, for different values of µ and ∆0 as indicated, in energy

units of e0 ≡ ~vF /a0. Domain wall are one unit cell wide. Note x-

axis is on a log scale in (a), but on a linear scale in the other figures.
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how the topological character of the underlying bands – which

necessitate the presence of the bound states – plays a power-

ful if subtle role in yielding the long-wavelength physics of

the magnetic degrees of freedom in this system.

B. A Microscopic Realization: Gapped Graphene

The results in the previous subsection were derived in the

context of a continuum model with an imposed short length-

scale cutoff. To further establish the presence of the emer-

gent long-range interaction, we wish to see that it is present

in a microscopic, i.e., a tight-binding, model. To do this, we

consider a model of spinless electrons in a graphene lattice,

with a staggered potential that varies in the x̂ direction. In

general, in such a staggered potential graphene is a normal in-

sulator; however, under certain circumstances it does have a

non-trivial topological character. This behavior emerges be-

cause each valley carries a half integer Chern number of op-

posite sign. In geometries for which valleys are not admixed,

the system will behave in ways akin to more protected topo-

logical systems. For example, when there are regions of op-

posing staggered potential ∆0 meeting at a valley-preserving

interface, valley-dependent gapless chiral modes are known to

emerge76,77.

The staggered potential we employ in our model has four

regions: one with amplitude ∆0, one with amplitude −∆0,

separated by two regions where the staggered potential van-

ishes for one unit cell along the x̂ direction. These two re-

gions are a distance d apart, and model DW’s in the system.

The entire system obeys periodic boundary conditions along

the ŷ direction, and is periodic in the x̂ direction up to a phase

eikx(2d+2a), with a the DW width (equivalent to the basic unit

cell size in our model). The system may be understood as a

superlattice of DW’s, with the total number of DW pairs given

by the number of kx values retained in the calculation. A cor-

responding wavevector ky for the ŷ-direction is also a good

quantum number, and the number of ky values retained effec-

tively fixes the size of the system in this direction. Finally, the

microscopic lattice structure is oriented such that the centers

of the two valleys (K and K′ points) are separated along the

ŷ direction, avoiding valley-mixing effects78,79.

To assess the energetics of this system, we compute the total

electronic energy for negative energy states up to some choice

of chemical potentialµ, and subtract from this the correspond-

ing energy for a system of the same size with uniform stag-

gered magnetization ∆0. µ may be chosen to be in the gap or

within a band of the latter. Note that the spectrum is particle-

hole symmetric, so we only examine non-positive values of µ.

This energy difference is a measure of the energy required to

create the DW pairs, and by varying d we obtain a measure of

their interaction energy.

Fig. 9 illustrates some typical results. In panel (a) we il-

lustrate the DW pair energy as a function of d, on a linear-log

scale, for a small value of ∆0 and µ in the gap. The straight-

ness of the line clearly attests to the logarithmic interaction in

this distance scale. For large enough d we expect the inter-

action energy to reach a constant value, and this behavior is

demonstrated in panel (b) for larger ∆0, where the asymptotic

length scale is not so large that it is difficult to reach numeri-

cally. Panels (c) and (d) contrast these with the situation for µ
in a band, where it is clear that the interaction is much shorter

in range. Note that the 2kF oscillations are not apparent in

these figures; this is due to the number of k values retained

(20 kx values, 1001 ky values) which leads to a relatively

small number of bands cutting through the chemical poten-

tial. In principle a much larger number of kx values should

bring out the oscillations, but in practice we find this requires

a smaller number of ky values, which we find sacrifices ac-

curacy at short distances. Thus, although these numerics are

limited by the absence of the expected 2kF oscillations at long

distances, they do confirm the transition from logarithmic to

short-range behavior (for small ∆0) as µ moves into a band.

IV. DOMAIN WALLS IN TCI MATERIALS

As discussed above, interactions among DW’s in Dirac-

mediated systems involves a delicate balance of the energetics

of the bound states they host and the scattering of unbound

states. Moreover, the possibility of detecting the DW’s is

greatly enhanced by the bound states because they render the

DW’s conducting. While the analyses discussed above have

largely focused on magnetic moments at a surface coupled

by a single Dirac point, many systems actually host multiple

points, all coupling to the magnetic moments and contribut-

ing to the effective interactions among spin gradients. In this

last section, we study this in some detail for the interesting

case of TCI materials, where the competition among these can

lead to multiple orientations for the ground state energy34. In

particular we will demonstrate that for the (111) surface of

TCI’s in the (Sn/Pb)Te class, for a uniform magnetized sys-

tem each distinct Dirac point has an associated Chern number

of ±1/2, and that the total change of Chern number across a

DW correctly predicts the number of states hosted, indepen-

dent of details of the DW structure. We will also present nu-

merical evidence that the DW energetics strongly suggest that

these systems should be described by a six-state model under

appropriate circumstances.

A. Tight-Binding Model

TCI’s such as (Pb/Sn)Te have band topology protected by

mirror symmetry. The Bravais lattice of the system is fcc with

two sublattices (i.e, a rocksalt structure), which we label a
and b. Focusing on the (111) surfaces, it is convenient to view

the structure as two-dimensional triangular lattices with ABC

stacking. In this orientation, triangular layers of a and b atoms
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FIG. 10: (a) The fcc Brillouin zone containing Li(i = 0, 1, 2, 3) points and their projections onto the (111) surface, which yield the Γ̄ and

M̄i(i = 1, 2, 3) points. (b) Extended real space unit cells with two atoms per unit cell, used in constructing a domain wall. (c) Surface

Brillouin zone for the two surface atom unit cell, which folds the original hexagonal Brillouin zone for the single atom (real space) unit cell

into a rectangular one.

are arranged alternately along the (111) direction.

A “standard” tight-binding model for these systems is given

by35,80 Hbulk = Hm +Hnn +Hnnn +Hso, with

Hm =
∑

j

mj

∑

R,s

c
†
j,s(R) · cj,s(R),

Hnn = t
∑

(R,R′),s

c †
a,s(R) · dR,R′dR,R′ · cb,s(R′) + h.c.,

Hnnn =
∑

j

t′j
∑

((R,R′)),s

c
†
j,s(R) · dR,R′dR,R′ · cj,s(R′) + h.c.,

Hso = i
∑

j

λj

∑

R,s,s′

c
†
j,s(R)× cj,s′ (R) · (~σ)s,s′ . (30)

In these equations R labels the sites of a cubic lattice, j = a, b
are the species type (Sn/Pb or Te), which have on-site energies

ma,b, and s =↑, ↓ is the electron spin. The 3-vector of oper-

ators cj,s(R) annihilates electrons in px, py and pz orbitals,

and there is a local spin-orbit coupling strength λj on each

site. (~σ is the vector of Pauli matrices.) The vectors dR,R′

are unit vectors pointing from R and R′, and, finally, the sum

over (R,R′) denotes positions which are nearest neighbors,

while ((R,R′)) denotes next nearest neighbors. The bulk en-

ergy structure of these systems includes direct energy gaps

in the vicinity of d points of the Brillouin zone35,80, whose

locations are illustrated in Fig. 10(a). There are four such

(distinct) points, located on hexagonal faces of the Brillouin

zone, and there is a three-fold rotational symmetry around

each Γ− L axis.

To focus on surfaces, we will consider slab geometries of

this system, to which we will add magnetic moments. In the

absence of any magnetization, the system hosts gapless sur-

face states33 whose energies are within the bulk gap. These

states form the “low-energy sector” in which we are inter-

ested, and which ultimately control the coupling of mag-

netic moments near the surface. In these materials magnetic

dopants may be added throughout the bulk81–89, which typ-

ically substitute for atoms at the (Sn/Pb) sites. The doping

also introduces carriers in the bulk (moving the chemical po-

tential out of the gap), creating RKKY coupling among the

bulk magnetic moments. The system in this way becomes a

dilute magnetic semiconductor. The model we consider34 sup-

poses that compensating dopants can be added to the system

to remove the bulk electrons, bringing the chemical potential

back to the bulk gap, and eliminating any significant coupling

among the bulk magnetic moments. This effectively elimi-

nates these degrees of freedom on average67,68. Conducting

electrons at the system boundary however will still be present

due to their topological protection, so that magnetic moments

near the surface form an effective two-dimensional magnet.

These are the degrees of freedom upon which we wish to fo-

cus.

The calculations we describe below begin with a slab with

47 layers, which we find to be sufficient to avoid significant
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mixing between states on the two surfaces. The tight-binding

parameters we use in Eq. 30 are adapted from Ref. 90, and are

specifically (using the nearest neighbor hopping t as our en-

ergy unit) t
′

a = −t
′

b = −0.556t, λa = λb = −0.778t,ma =
−mb = 3.889t. The simplest unit cell for our slab geometry

incorporates one site from each triangular layer, so that our

system is effectively a two-dimensional triangular lattice with

many atoms in the unit cell. The resulting surface Brillouin

Zone (BZ) is a hexagon, which is perpendicular to one of the

Γ-L directions as shown in Fig. 10 (a). We denote this partic-

ular L-point as L0, and its projection onto the surface BZ is

denoted as Γ̄. The projections of the other three L points are

denoted as M̄ points in the surface BZ.

The large unit cell and orbital basis for our model in prin-

ciple allows a full band structure calculation for the slab ge-

ometry, but produces a very large number of bands, most of

which are far in from the “low-energy” part of the spectrum.

Incorporation of all these bands severely limits the realiza-

tions of DW’s we can in practice consider in the slab. More-

over, for the Chern number calculations we describe below,

fully including all of these introduces large numerical errors.

To circumvent these problems, we project our system into a

Hilbert space that incorporates the surface states, i.e., those

states with energy within or closest in energy to the center of

the bulk band gap.

B. Chern Number

We begin by demonstrating numerically that the Chern

number associated with each surface Dirac point is ±1/2. To

do this, we adopt a method detailed in the Ref. 91. Briefly, the

method involves discretizing the momentum space within the

surface BZ, computing phases associated with each plaquette

in the discretized space which become equivalent to the local

Berry’s curvature when the discretization becomes sufficiently

fine, and summing over these to obtain a Chern number. The

phases can be defined for every band, allowing a computation

of the Chern number for each of them.

In practice, when there are many bands these calculations

become numerically difficult. The challenge arises because in

regions where different bands approach the Berry’s curvature

varies rapidly, and one needs a very fine k-space mesh to re-

solve this with sufficient accuracy. For large unit cells such

as the slab we consider, such calculations are impractical. For

narrower slabs the computations can be carried through, but

only for such narrow ones that the states on the two surfaces

are strongly admixed. As we are interested in Chern numbers

for individual surfaces, we instead project the Hilbert space

of the wide-slab system into the set of bands that host surface

states, and examine their Berry’s curvature directly.

The bands associated with surface Dirac cones only develop

well-defined Chern numbers when they are gapped out, and

we are interested specifically in what these are for the uniform

magnetized states that are connected by a DW. We thus carry

out our calculations for the slab system, with uniform mag-

netic moments S at the (Pb/Sn) sites, coupled to the elec-

trons via an sd Hamiltonian,
∑

i JS · si, where si is the elec-

-0.3

0.0

0.3

Γ
_

M
_

E
n/

t

k

FIG. 11: The band structure around Γ̄ and M̄ with magnetic moment

|JS| = 0.05. A small potential gradient has been introduced to lift

the surface degeneracy.

tron spin at site i at a surface. Here S for each surface points

along the Γ-L0 axis, which maximizes the gap opening of the

Dirac point at the Γ̄ point. We then focus on the two bands

that host the top and bottom surface Dirac cones. These two

bands are well separated in energy from other bands around

symmetry points (Γ̄, M̄ ) as shown in Fig. 11, but come very

close to the bulk bands as they enter the bulk spectrum. This

makes it very difficult to calculate the Berry’s curvature ac-

curately too far away from the Γ̄ and M̄ points in the surface

BZ91.

To proceed we assume that the Berry’s curvature away from

the symmetry points (Γ̄, M̄ ) summed over all the bands with

energies below the center of the gap average to zero, and focus

on the contributions from the surface bands. To identify these

individually for each surface, we break the symmetry between

the top and bottem surfaces of the slab by adding a very small

potential gradient. As shown in Fig. 11, this separates out the

two surface bands and allows us to follow them individually.

Fig. 12 shows our computed Berry’s curvature for the top

surface state around Γ̄ point for |JS| = 0.10 and 0.02. It

is evident that the most of the curvature accumulates around

the symmetry point, which becomes more localized with de-

creasing magnetization strength |JS|. We then calculate the

Chern number by numerically integrating the curvature within

a circle outside of which the curvature is very small, as indi-

cated in Fig. 12. The “leakage” of Berry’s curvature outside

this circle becomes increasingly negligible as |JS| becomes

small, and we find that as |JS| → 0, the Chern number tends

to 1/2 as shown in Fig. 14. Similar behavior occurs around

the M̄ points. The Berry’s curvature illustrated in Fig. 13

clearly becomes more localized with decreasing magnetiza-

tion, and the extrapolated integrated Berry’s curvature tends

to −1/2, as shown in Fig. 14. Note that for the opposite sur-

face, for magnetizations pointing outward at both surfaces, the

Chern numbers for the Dirac spectra at the same type of sym-

metry point have opposite sign. This can be understood as a

consequence of a combination of time-reversal and inversion

symmetries (in the absence of the imposed potential gradient),

which map states on each surface onto one another.

These results have important consequences for DW’s,

which connect regions with different uniform magnetizations.
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FIG. 12: The Berry’s curvature for top surface state around Γ̄ point

with the magnetic moment |JS| as indicated.

FIG. 13: The Berry’s curvature for top surface state around M̄ point

with the magnetic moment |JS| as indicated.

The change in Chern number topologically necessitates the

presence of chiral, conducting bound states within a DW, with

chirality given by the sign of that change92. For example, in

the Ising case, where a DW connects states of magnetization

parallel and antiparallel to the surface, one expects 1 and 3

states, of opposite chirality, for the Γ̄ and M̄ points, respec-

tively. We now turn to numerical investigations that show this

to be the case, and that it holds robustly with respect to pa-

rameters that characterize the details of the DW structure, as

to be expected for a topologically protected property.
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FIG. 14: The extrapolation of Chern number with magnetic moment

|JS| for top surface state. The bottom surface state has opposite

behavior i.e., the values are opposite in sign.

C. Domain Walls on a TCI Surface

We now turn to microscopic calculations of the electronic

surface structure in the presence of a magnetization domain

wall for our model TCI. Our goal is to explicitly demonstrate

the presence of gapless, chiral conducting states within the

surface energy gap generated by a uniform magnetization, as

found in the previous section. We will see that the number for

each chirality agrees with our expectations based on the Chern

number calculations, and see that these are robust for different

microscopic realizations of the DW magnetization profiles.

The numerical approach will also allow us to assess the en-

ergy of a DW excitation, which is of particular interest in the

context of situations where the ground state magnetization is

along a Γ-Li direction, with i = 1, 2, or 3. These directions

are associated with the M̄ points in the surface BZ, and there

are six degenerate groundstate directions when the chemical

potential is adjusted near the energy of the Dirac points asso-

ciated with these locations34. These directions however come

in two groups of 3, with components of the magnetization per-

pendicular to the surface either directed upward or downward.

A priori it is unclear whether DW’s connecting states with the

same perpendicular component or opposite ones is lower in

energy; in our model we will see that the latter is lower in

energy. This means that the system in these circumstances

should be regarded as a six state system, rather than one with

two sets of three states with a relatively large barrier separat-

ing states in different groups.

We begin by explaining how the numerical calculations are

carried out.

1. Projected Hamiltonian in Presence of Domain Wall

Our basic approach is to create a Hamiltonian with magne-

tization on the surfaces varying with position, to form a DW

configuration. This means we will be working with very large

unit cells, so that computation of the electron states becomes

impractical for the full set of states in the slab geometry. We

thus continue to exploit the technique of projecting the Hamil-

tonian into the low energy space of surface states. For sim-

plicity we consider DW’s which run along the two highest

symmetry directions on the surface, along the k1 and k2 di-

rections illustrated in Fig. 10(c). Our supercells are very large

along the cross-sectional direction of the DW, but as the mag-

netization is a function of displacement in only one direction,

they can be very small in the direction perpendicular to this.

Because the real space atoms on the surface are laid out in a

triangular lattice, neighboring atoms in general will have dis-

placements both parallel and perpendicular to the DW cross-

section. To deal with this we allow our supercells to have a

width containing two atoms along the narrow direction [see

Fig. 10(b)], so that the magnetization need depend only on

the position of an atom along the cross-sectional direction.

Thus, the supercell will be constructed of a line of small

unit cells, defined by the primitive lattice vectors a1 and a2
shown in Fig. 10(b). The BZ associated with this doubled

unit cell can be represented by a rectangle, as shown in (c) of
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the same figure. Notice this is half the size of a unit cell con-

taining only one surface atom, so that M̄ points of the latter

falling outside of the former get folded in. In particular this

means the M̄1 point will coincide in the smaller BZ with the

Γ̄ point, and the M̄2 and M̄3 points will coincide with one

another.

We next need to generate a set of basis states that can rep-

resent a magnetization profile that varies slowly over many 2-

atom unit cells. As a concrete example, suppose that the mag-

netization rotates as we move along the a1 direction. If we

impose periodic boundary conditions, we are required to have

two DW’s separating regions of uniform magnetization in dif-

ferent directions. Let Nc be the number of unit cells within

which the full profile is contained. Our basis is generated for

this large supercell in the absence any magnetic moments, by

fixing k2, and diagonalizing the Hamiltonian for a unit cell of

the slab with only 2 surface sites, and with quantized values of

k1 of the form k1 = km = 2πm/Nc;m = 0, 1, 2, ...(Nc− 1).
For each momentum, we retain only Ns states with energies

closest to the bulk gap, which capture the surface states. (Typ-

ically Ns = 8 works well in our calculations.) We thus retain

NcxNs states in total for each of the quantized k1 momenta.

These basis states may be represented as

|km, j〉 ≡
∑

i

αj
km

(i)|αi〉

=
1√
Nc

∑

n

e−ikmxn |n, j〉 (31)

where |αi〉 ≡ |is, oi, si〉 represents basis states indexed by

site is = 1, 2, ...2x47, oi = (px, py, px) the orbital index, and

si = (↑, ↓) the local spin index. The quantities xn denote

the positions of the two atom unit cells within the larger su-

percell. Thus for each km, we have retained j = 1, 2, ...Ns

states, which we will use for the basis of our Hilbert space.

The energy eigenvalue (again, in the absence of any magneti-

zation) for the state |km, j〉 is denoted by Ekm,j .

Rewriting our basis in real space by inverting the Fourier

transform,

|n, j〉 = 1√
Nc

∑

km,j

eikmxn |km, j〉, (32)

we can now introduce surface magnetic moments into the

Hamiltonian, writing as Hn the projection of the sd Hamil-

tonian for the two sites in the cell located at xn, with each site

containing the values of Si determined by the presumed mag-

netization profile of the DW. With this addition, the effective

Hamiltonian matrix for our system becomes

〈km, j|Heff |km′ , j′〉 = 1

Nc

Nc−1
∑

n=0

〈km, j|Hn|km′ , j′〉ei(km−km′)xn + Ekm,jδkm,km′ δj,j′ . (33)

Note again that this matrix is dependent implicitly on the value

of k2, the wavevector in the direction along which the DW

runs. This matrix is considerably reduced in size from what

one has for the tight-binding model of the full slab with a

magnetization profile on its surface, and allows us to com-

pute energy states of the electrons as a function of k2. For

DW’s running along the a1 direction, we construct an effec-

tive Hamiltonian in a very analogous way.

2. Results

With this formalism, we now compute electronic structures

for different DW configurations. We expect to find states

invading the gaps present in the surface electronic structure

when there is a uniform magnetization. These occur near two

places (see Fig. 10). (i) The center of the rectangular BZ

where Γ̄ and M̄1 overlap due to zone-folding. (ii) The projec-

tion of the M̄2 and M̄3 points onto the k-axis running along

the DW. The latter corresponds to either the X̄ or the Ȳ point

in the reduced Brillouin zone shown in Fig. 10(c), depend-

ing on which direction the DW runs along. We will see that

the in-gap states appear when the projection of the magnetic

moments along any of the bulk Γ-L directions changes sign

inside the DW cross-section. We expect from our Chern num-

ber analysis that the number of in-gap branches depends on

the number of such projections changing sign.

We first consider the case of DWs connecting different

states with magnetic moments along the Γ-L0 axis, with the

DW’s running along the a2 direction. [See Fig. 10(b)]. In

this case the magnetic moments rotate as we move in the a1
direction within a DW, and the rotation is in the plane de-

fined by the direction perpendicular to the surface and the a1
direction. This represents a Néel domain wall47. The geom-

etry of our supercell includes two regions of width Ns − 2d
with uniform magnetization, one pointing “up” and the other

“down”, connected by two DW’s of width d within which the

magnetization rotates uniformly. We consider several values

of d, including d = 0 for which the change in magnetization

is abrupt.

Fig. 15(a) illustrates the band structure near the Γ̄ point as

a function of k2 for a DW with d = 0 and |JS| = 0.1. As
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FIG. 15: (a) Energy bands En near Γ̄ when a Neel domain wall of

width d = 0 runs along k2. The electron density n(i1) for the rep-

resentative DW states (indicated by blue cross points and numbered

1, 2...) along the unit cell direction a1 are shown in (b) and (c) for

top and bottom surfaces respectively of the slab with (111) surfaces.

The component of magnetic moments bz along Γ− L0 direction are

shown by red arrows between panels (b) and (c) .
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FIG. 16: Energy bands En [panel (a)] and electron densities [panels

(b), (c)] of bound DW states near the Ȳ point for the DW configura-

tion as described in Fig. 15.

noted above, the Γ̄ point hosts two Dirac points, associated

with the surface projections of the bulk L0 and L1 points, due

to zone-folding of the original hexagonal Brillouin zone [Fig.

10(c)]. Since this DW configuration induces a sign change in

the component of magnetic moments along the Γ − L0 and

the Γ − L1 directions, we expect to find two chiral states as-

sociated with these. Because we have two surfaces, each with

two DW’s, this leads to an expectation of 8 chiral states. Fig.

15(a) shows this is indeed true. (Note each of the states in the

figure is exactly doubly degenerate, due to a combination of

time-reversal and inversion symmetries.) Figs. 15(b) and (c)

show the electron densities of representative states from the

different chiral branches, for each of the DW’s on the top and

bottom surface. It is clear that each of the DW’s hosts two

chiral states, running in opposite directions. This is consistent

with the Chern number change we found in the last section,

which was ±1 for the Γ̄ point, and ∓1 for a M̄ point. Note
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FIG. 17: (a) Energy bands En near Γ̄ when a Neel domain wall of

width d = 10 runs along k2. The electron density n(i1) for DW

states (indicated by blue cross points and numbered 1, 2...) along the

unit cell direction a1 are shown in (b) and (c) for top and bottom

surfaces respectively of the slab with (111) surfaces. The component

of magnetic moments bz along Γ − L0 and bx along a1 directions

are shown by red arrows between panels (b) and (c).

the small gap opening at k2 = 0 near energy -0.14 occurs due

to admixture of DW states associated with the M̄ point on

the same surface: as the densities in Figs. 15(b,c) show, the

localization lengths for these states are still relatively large

compared to our inter-DW separation, even for the large unit

cells we use. This is a reflection of the fact that within the uni-

formly magnetized regions, the magnetization is not parallel

to the Γ−L1 direction, so the gaps induced in the Dirac points

at M̄ are relatively small.

In contrast, the band structure near Ȳ associated with this

magnetization profile yields states in each DW with the same

chirality. This is shown in Fig.16. For example, the states

labeled 1 and 4 disperse in the same direction, and are lo-

cated in the same DW. Analogous calculations (not shown) of

DW’s running perpendicular to the structure relevant for Figs.

15 and 16 yield analogous results. We thus confirm that the

net chirality of DW states connecting groundstates with mag-

netizations along the Γ − L0 axis, but in opposite directions,

have net chirality of 2. This is just as expected from our Chern

number analysis.

Further analogous calculations may be carried through for

other geometries. For example, Figs. 17 and 18 illustrate re-

sults for wider DW’s, d = 10. The results are qualitatively

very similar to our d = 0 results, importantly showing the

same types of chiral states near the Γ̄ and Ȳ points as for

d = 0, and the same net chirality for the DW’s that we expect

based on the Chern number analysis. We have found other val-

ues of d, both larger and smaller, yield these types of results

as well. In addition we have performed calculations for Bloch

walls – profiles in which the rotation axis of the magnetiza-

tion inside the DW is parallel rather than perpendicular to the

direction along which the DW runs – and again find the same

basic results. As might be expected for topologically deter-

mined properties, the chirality of DW’s in this system seems

rather robust.
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FIG. 18: Energy bands En [panel (a)] and electron densities [panels

(b), (c)] of bound DW states near the Ȳ point for the DW configura-

tion as described in Fig.17.

FIG. 19: (a) DW configurations connecting (i) Γ − L1 to Γ − L2

directions (magenta), (ii) Γ−L1 to Γ−L3 directions (blue). (b) The

energy difference between these configurations ∆E = Eii − Ei as

a function of chemical potential µ for d = 0, 10 and |JS| = 0.01
showing minimum when µ is close to M̄ Dirac point energy EM̄ . (c)

∆E for larger |JS| = 0.10

We also wish to consider DW’s connecting different states

associated with magnetization groundstates along the Γ −
L1,2,3. These are energetically stable when the chemical po-

tential is near the energy of the Dirac points associated with

M̄ points. As mentioned above, what is not a-priori obvious

is whether DW’s that connect groundstates with the same sign

of magnetization along the direction perpendicular to the sur-

face will be higher or lower in energy than those connecting

neighboring magnetization states with opposite such projec-

tions. Our calculations support that it is in fact the second of

these that is energetically favorable. To show this, we con-

sider DW configurations as shown in Fig. 19(a). There are

two cases: (1) one which connects the Γ − L1 to Γ − L2 di-

rections (magenta), and (ii) one which connects the Γ − L1

direction to the Γ − L3 direction (blue). Using the technique

described above, we compute the single-particle energy states

for each of the two structures, and then add all the energies

below the Fermi energy µ to obtain a total energy associated

with the magnetization profile. The energy difference of these,
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FIG. 20: (a) Energy bands En at Γ̄ for DW configuration correspond-

ing to (ii) in Fig. 19(a), with d = 0. The density of electron n(i1)
for the representative DW states (indicated by blue cross points and

numbered 1, 2...) along the unit cell direction a1 are shown in (b) and

(c) for top and bottom surfaces respectively of the slab with (111)

surfaces.
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FIG. 21: (a) Energy bands En near Ȳ for DW configuration corre-

sponding to (ii) in Fig. 19(a), with d = 0, for momentum along

k2. The electron density n(i1) for the representative DW states (in-

dicated by blue cross points and numbered 1, 2...) along the unit cell

direction a1 are shown in (b) and (c) for top and bottom surfaces

respectively of the slab with (111) surfaces.

∆E = Eii −Ei, as a function of µ, is shown in Fig.19 (b) for

|JS| = 0.01 and d = 0, 10 as indicated. We find that the DW

configuration (ii) is favorable over (i), and moreover that ∆E
has a local minimum, when µ is close to the M̄ Dirac point

energy, EM̄ . This has the important consequence of mak-

ing all six groundstate configurations equally accessible from

some given starting state, yielding a six state clock model.

If µ is near EM̄ we expect, as discussed above, that system

will thermally disorder at sufficiently high temperature via a

Kosterlitz-Thouless transition46.

Finally, it is interesting to contrast the nature of the in-gap

states hosted by these DW’s with those relevant to magneti-

zations along the Γ − L0 axis. Examination of Fig. 19(a) re-

veals that while the magnetization projection along the Γ−L1

and Γ − L3 directions does not change sign, those along the



21

Γ− L0 and Γ − L2 directions do. This means for a DW run-

ning along the k2 direction, we should find a single chiral state

near each of the Γ̄ and Ȳ points. Figs. 20 and 21 demonstrate

that this indeed happens. Note that the chiral directions of the

two modes are oppositely oriented within a given DW, so that

the net chirality vanishes. This is consistent with our observa-

tion, in the previous section, that the M̄ and Γ̄ Chern numbers

have opposite signs. This can have interesting consequences

for differing electrical behaviors due to DW’s when µ is near

the energy of the Dirac points at M̄ as opposed to that of the

Γ̄ point. We discuss this further in the next and final section

of this paper.

V. SUMMARY, DISCUSSION, AND FUTURE DIRECTIONS

In this paper we studied domain walls of ferromagnetic sys-

tems, in which the magnetic degrees of freedom mutually in-

teract through their impact on Dirac electrons on a surface.

Such models arise naturally in the context of topological in-

sulators protected by time-reversal symmetry (TI’s) and topo-

logical crystalline insulators (TCI’s), and are very commonly

studied perturbatively, using varieties of the RKKY analysis.

In our study we demonstrated that if magnetic order does set

in this type of system, the energetics of magnetization gra-

dients may become anomalous, in a way that is in principle

controllable. When the surface electron density is such that

there is a Fermi surface, the interactions effectively cut off at

a length scale of order 1/kF , above which there are 2kF oscil-

lations in the RKKY coupling. As kF → 0, the coupling re-

tains its sign, and the RKKY analysis predicts a (well-known)

1/R3 fall-off in the coupling. In a coarse-grained description

of the system, this means that the appropriate gradient term

for the magnetization at low temperature becomes anomalous,

acquiring an emergent long-range form, with true long-range

interactions among magnetization gradients being the limiting

behavior as the magnetization magnitude vanishes. For non-

vanishing scale of magnetization, the gradient energy can be

properly described by a form that is quadratic in wavevector,

but acquires a non-analytic form in the magnetization itself.

The emergent long-range form of the interaction impacts,

among other things, interactions among DW’s, since these in-

volve a fixed change in magnetization. From our analysis of

the gradient energies, we showed that the emergent interaction

induces logarithmic interactions between DW’s, up to a length

scale set by the magnetization itself. Using an effective Dirac

model in conjunction with a transfer matrix method, we were

able to verify the presence of this interaction, and found more-

over that it results from a subtle cancellation in the energies

associated with bound states in the DW’s and phase shifts of

unbound electrons scattering from them. A tight-binding sys-

tem involving graphene with a position-dependent mass term

that models DW pairs corroborated the result.

We then considered DW’s in a more concrete system, a

model of (Sn/Pb)Te alloys that are a paradigm for TCI sys-

tems. We considered the (111) surface, which hosts particu-

larly rich physics in this context, because it hosts Dirac points

at two different, distinct energies, a single isolated Dirac point

(near the surface Γ̄ point) and, at slightly lower energy, a

group of three degenerate Dirac points (near three M̄ points),

allowing for different types of DW’s. We carried out a nu-

merical Berry’s phase analysis on the electronic states around

these points in the presence of a uniform magnetization, and

demonstrated that they carry Chern numbers of opposite sign,

±1/2. When the chemical potential is adjusted such that the

Γ̄ point dominates the energetics of the magnetization, the re-

sulting DW excitations are predicted to induce a change of

Chern number given by ±2. This suggests the DW’s host in-

gap states with a net chirality. We demonstrated that this is

true using a numerical low-energy projection scheme for the

tight-binding slab, and showed that it arises as a net effect of

four in-gap states, with two running in opposite directions,

and another pair running in the same direction. For cases

where the M̄ Dirac points dominate the magnetization energy,

we found that the lowest energy DW’s of equally connect six

possible groundstate orientations, and in this case yield two

conducting states of opposite chirality.

The conducting states of DW’s in these systems are of con-

siderable interest, because they allow their presence to be de-

tected electrically. DW’s can be forced into the system, for

example, by cooling it from high temperature in zero field.

The DW’s can be detected in principle by a variety of tech-

niques, by looking for their contribution to the conductance

of the surface. This could be investigated by transport stud-

ies, tunneling measurements, or even surface reflectance. The

behavior of the system as the chemical potential is changed

should reveal the different regimes of the low-energy DW’s, as

the system is tuned through different behaviors of the gradient

energy, as well as through Fermi energy scales where different

Dirac points may dominate the magnetization dynamics. It is

interesting to note, for example, that in the two-fold case (one

low-energy magnetization axis) the DW’s should be strongly

conducting due to their chirality, whereas in the six-fold case,

the vanishing chirality will allow backscattering between the

in-gap states in a DW, leading to a smaller contribution to the

surface conductance. Beyond this, an estimation of the critical

temperature Tc, based on balancing of energy and entropy of

a DW, reveals a crossover from a Tc ∼ n2
imp when the Fermi

surfaces are closed loops to Tc ∼ nimp when there is a point-

like Fermi surface (i.e., when the Fermi energy passes through

a Dirac point.) This behavior is illustrated in Fig. 22.

While our detailed analyses of these systems have largely

focused on the low-energy behavior of the topological DW

excitations, it is interesting to consider the consequences of

our results for higher temperatures. In particular, approaching

a phase boundary for some magnetic impurity density nimp,

Tc(nimp), one expects the average magnetization to become

vanishing small as DW’s come increasingly close to prolif-

erating. However, this does not imply that the interactions

among the DW’s become unlimited in range: in such a situ-

ation, the stiffness becomes limited by kBT , rather than the

magnetization scale63. For example, a calculation akin to that

of Sec. II B 2 at finite temperature T reveals that the energy

cost to introduce an magnetization gradient g in graphene be-

haves as ∆E(g) ∼ g2b20/T
93. This indicates that the long-

range behavior of the stiffness will be cut off by finite temper-
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FIG. 22: Schematic phase diagram for classical magnetic impuri-

ties coupled by surface Dirac electrons, contrasting behavior of the

critical temperature Tc vs. impurity density nimp when the Fermi

energy µ passes through a Dirac point (red) with when it does not

(blue). Dashed illustrates illustrates a trajectory in which the in-gap

states associated with domain walls will produce pseudogap behav-

ior in the electronic spectrum, and where the interactions among the

DW’s become increasingly long range moving down the trajectory,

enhancing the density of states within the mean-field gap.

ature if the magnetization scale is small. Thus, true long-range

interactions in this system emerge if one approaches the low-

temperature, low impurity density point, as illustrated in by

the dashed arrow in Fig. 22. In approaching this point, inter-

actions among DW’s of unlimited range emerge. It is inter-

esting to note that the in-gap states hosted by finite size DW’s

will in principle fill the mean-field gap in the Dirac electron

spectrum, but the density of states associated with these will

drop rapidly approaching zero energy as DW’s of increasing

size (which will host the lowest energy in-gap states) are ex-

ponentially unlikely to be found in the system when in the

ordered state. The emergent long-range interactions will en-

hance the average area occupied by DW’s and their associated

induced states in the gap relative to systems with short-range

gradient interactions. In principle, this behavior should be di-

rectly accessible in tunneling experiment.

The studies we have reported in this paper suggest many

other directions for future exploration. For example, in

computing DW interactions we have considered quasi-two-

dimensional systems in which sample edges do not play a

role. One may go beyond this to consider very narrow, quasi-

one-dimensional systems, where the DW’s become zero-

dimensional objects and the system edges can introduce fur-

ther long-range interactions94. Beyond this, in our approach to

these systems we have treated the magnetic moments as clas-

sical. Clearly at sufficiently low temperature a quantum treat-

ment would be more appropriate. For example, we have ig-

nored the possibility of non-trivial correlations between con-

duction electron spins and the impurity spins that occur in the

Kondo effect, although this physics should set in at extremely

low temperature when the sd coupling scale J is small95. Be-

yond this, it is interesting to note the connection of this system

with “chiral magnets,”96 magnetic systems coupled to chiral

fermions97–102, which are known to support quantum phase

transitions with their own unique critical behaviors. Note that

while such systems are similar to the ones we focus upon,

these are generally formulated as magnets supporting their

own independent gradient interactions, exchange-coupled to

chiral fermions, while in the systems we are considering, in-

teractions among the magnetic moments arise solely from ex-

change coupling with the Dirac electrons. From the perspec-

tive of an renormalization group (RG) analysis the systems

may be connected, in which case the origin in Fig. 22 will

move to a non-vanishing value of nimp. The classical behav-

ior discussed in our work will nevertheless present itself as

crossover behavior prior to quantum critical behavior suffi-

ciently close to the transition point. Our studies demonstrate

that interesting fluctuation behavior appears in this system

even away from the quantum critical regime.

Related to this, systems such as graphene, in which spin-

orbit coupling is largely irrelevant so that the magnetiza-

tion enjoys continuous symmetries, offer further possibilities

for study. Interacting electrons in graphene without external

magnetic moments can be formally recast in terms of non-

interacting electrons with an auxiliary Hubbard-Stratanovich

field98, suggesting a quantum phase transition in the univer-

sality class of the Gross-Neveu model103. How this picture

changes when real quantum spins couple to the electrons re-

mains an interesting area to investigate. While the continuous

symmetry of the order parameter implies that thermal fluctu-

ations at any non-zero temperature disorder the system54, the

non-analytic behavior of the system with respect to spin gra-

dients at short wavelengths suggest that interesting collective

modes can be present in this regime. Moreover, the effect of

thermal disordered magnetic moments on the electron states

of this system should have interesting consequences for ther-

mal and transport properties of the system.

Beyond graphene, other systems in which spin-orbit cou-

pling is small could support the physics we discuss. Among

these are proposed TCI systems where the surface states are

protected by a combination of time-reversal and discrete ro-

tational symmetry, proposed in Ref. 32. In such systems,

magnetic impurities exchange-coupled unequally to px and

py orbitals, which could be realized in cases where the im-

purities bind along edges of a unit cell, will correlate anti-

ferromagnetically, in analogy with what happens in graphene

for impurity coupling to single sites, which are on one or

the other of the two sublattices. An interesting aspect of the

low-energy surface Hamiltonian in the former model is its

quadratic dispersion32, which in principle should lead to even

longer-range emergent interactions among spin gradients than

for the Dirac cone systems we focused upon in this study.

A further generalization of this physics could be sought in

topological systems of higher dimensionality, such as Weyl

and Dirac semimetals with diluted magnetic impurities. Here

the RKKY interactions between impurities fall off faster

than in the two-dimensional systems considered in our work,

as 1/R5104. Interestingly, classical magnets with this fall-

off are only marginally different from magnets with short

range interactions105 in the renormalization group sense, so

emergent long-range interactions as the magnetization orders

should be more subtle, if present at all in such systems. Note
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that if the electronic system supports spin-orbit coupling that

leads to an easy-axis for the spins, the system will be Ising-

like. In this case the long-range part of the interaction is

believed to be marginally irrelevant106, and the system will

likely behave much as an Ising magnet with short-range in-

teractions. A more detailed analysis, however, could never-

theless uncover behaviors that distinguish these topological

systems from their topologically trivial cousins, for example

if they host non-trivial structure in their DW’s. We leave this

question for future investigation.

Finally, effects of disorder have been assumed throughout

this paper to sufficiently average that its effects may be ig-

nored at a qualitative level. This seems most likely for situa-

tions where the effective interactions have become sufficiently

long range, but when the interaction length scale is fixed by a

Fermi momentum, they are likely to become more important.

In addition, electron-electron interactions have been ignored

throughout our study. In systems where Fermi surfaces and

Dirac points may coexist at the same energy – such as the

(111) TCI surface – these will be screened and are likely to be

qualitatively unimportant. Other surfaces, such as TI systems

or the (100) surface of the (Pb/Sn)Te TCI system, can become

fully gapped, and here we expect logarithmic, repulsive in-

teractions among DW’s because of the charge they contain.

These interactions will be present to arbitrarily large distance

even at finite T , and whether they impact classical thermal

phase transitions in these systems is another interesting direc-

tion to explore.

Clearly, magnetic degrees of freedom coupled by Dirac

electrons host a rich variety of physical phenomena. Under

many circumstances, these systems support domain walls as

fundamental topological excitations, which reflect the inter-

esting effective interactions induced among the magnetic mo-

ments, as well as the topological nature of the electronic sys-

tem that couples them. Their behavior, both thermal and elec-

trical, offer exciting windows into the special properties of

electrons in such topologically non-trivial systems.
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VI. APPENDIX

In this Appendix we provide a few details of the stiffness calculations whose results are described in Section II. We begin first

with the case where the Fermi energy is in the gap, from Eq. 5, which we reproduce for convenience:

∆E = −1

4

∑

q

{ |〈q,−|δb · ~σ|q−Q,+〉|2
ε0(q) + ε0(q−Q)

+
|〈q,−|δb · ~σ|q+Q,+〉|2

ε0(q) + ε0(q +Q)

}

. (34)

To find the gradient energy we expand this to quadratic order in Q. A long but in principle straightforward calculation brings us

to the expression

∆E(Q)−∆E(0) ≈ 1

32

∑

µ,ν=x,y

QµQν

∑

q

{

|〈q,−|δb · ~σ|q,+〉|2
ε0(q)2

∂µ∂νε0(q)

− 1

ε0(q)
∂µ∂ν |〈q,−|δb · ~σ|q,+〉|2

}

(35)

This expression is explicitly quadratic in Q and δb. As discussed in the main text it is natural to introduce a tensor gijµν charac-

terizing the energy cost, so that ∆E(Q) −∆E(0) = Ω
2

∑

µ,ν=x,y

∑

ij=x,y,z g
ij
µνQµQνδbiδbj . The g coefficients can read off

from Eq. 35, and for fixed δb one can use them to assess the energy cost for introducing a slow gradient in the magnetization.

More explicit expressions for the g’s require a matrix element, which can found using Eq. 3. This yields

|〈q,−|δb · ~σ|q,+〉|2 =
{

[

q2δbz − bzq · δb
]2

+ ε0(q)
2 [ẑ · (q× δb)]

2
}

/[qε0(q)]
2, (36)

which in turn provides integral expressions of the form

∑

ij

gijµνδbiδbj =
1

Ω

∑

q

2δµν − 4qµqν/ε0(q)
2

q2ε0(q)5

×
{

q4δb2z + b2z
(

q2xδb
2
x + q2yδb

2
y

)

+ ε0(q)
2
(

q2xδb
2
y + q2yδb

2
x

)

− 2q2qxqyδbxδby
}

. (37)

It is immediately apparent that only gzzµν and gijµν with i, j = x, y are non-vanishing, so that gradients in δbz can be assessed

separately from gradients in δbx,y. The various non-vanishing values of gijµν can now be read off in integral forms, all of which

are analytically tractable. The explicit results are given in Eqs. 6 and 7.
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We next consider the case when the Fermi energy passes through a band. Our starting point is now the expressions for ∆E+

and ∆E−. The former is given by Eq. 9, which again we reproduce for convenience:

∆E+ =
1

4

∑

q>kF

|q−Q|<kF

|〈q,−|δb · ~σ|q+Q,−〉|2
ε0(q+Q)− ε0(q)

− 1

4

∑

q>kF

|〈q,−|δb · ~σ|q+Q,+〉|2
ε0(q+Q) + ε0(q)

, (38)

and again ∆E− has the same form as Eq. 9, with Q → −Q. The constraints on the wavevector sums can be simplified by

defining a step function,

fq =

{

0 q < kF ,
1 q > kF ,

(39)

and a unit vector ĥq ≡ (qx, qy, bz)/ε0(q). Using Eq. 3 to compute the matrix elements, with considerable algebra one can

reformulate ∆E as ∆E ≡ ∆E
(1)
+ +∆E

(2)
+ +∆E

(1)
− +∆E

(2)
− where

∆E
(1)
− =

1

4

∑

q

fq
|δb|2

[

ε0(q)− ĥ−q−Q · ĥ−qε0(|q−Q|)
]

ε20(|q +Q|)− ε20(q)
, (40)

∆E
(2)
− =

1

2

∑

q

fq

[

(δb · ĥ−q−Q)(δb · ĥ−q)
]

ε0(|q+Q|)
ε20(|q+Q|)− ε20(q)

, (41)

and ∆E
(i)
+ of the same form as ∆E

(i)
− , but with Q → −Q, up to terms that cancel when the ∆E

(i)
± ’s are summed together to

form ∆E.

We now proceed to show ∆E
(1,2)
± are actually independent of Q. Defining φ as the angle between Q and q, and introducing

an upper momentum cutoff Λ, one finds for large Ω

∆E
(1)
− = −Ω|δb|2

16π2

∫ Λ

kF

dq
q2

Qε0(q)

∫ 2π

0

dφ
cosφ

2 q
Q cosφ+ 1

= −Ω|δb|2
16π2

∫ Λ

kF

dq
q2

Qε0(q)

(

πQ

q

)

(42)

which is manifestly Q-independent. Clearly the same will be true of ∆E
(1)
+ . For the remaining contribution to ∆E is is helpful

to combine ∆E
(2)
+ and ∆E

(2)
− , which can be cast in the form

∆E
(2)
+ + ∆E

(2)
− = −

∑

q

fq
ε0(q)

{

δb · (q+Q)δb · q+ δb2zb
2
z

ε20(|q+Q|)− ε20(q)

}

, (43)

The term δb2z in Eq. 43 vanishes upon integration over φ. For the remaining two terms we write δb in the form

δb = δb‖Q̂ + δb⊥ẑ × Q̂+ δbz ẑ.

In terms of these quantities, one finds

∆E
(2)
+ + ∆E

(2)
− = −

∑

q

fq
ε0(q)







[

δb2‖ − δb2⊥

]

q2 cos2 φ+Qqδb2‖ cosφ

ε20(|q+Q|)− ε20(q)







= − Ω

4π2Q2

∫ Λ

kF

dq
q

ε0(q)

∫ 2π

0

[

δb2‖ − δb2⊥

]

q2 cos2 φ+Qqδb2‖ cosφ

2 q
Q cosφ+ 1

= − Ω

4π2Q2

∫ Λ

kF

dq
q

ε0(q)

{

q2
[

δb2‖ − δb2⊥

]

(

−πQ2

2q2

)

+Qqδb2‖

(

πQ

q

)}

, (44)

which is again manifestly independent of Q. We thus see that, provided Q < µ, the energy required to introduce an oscillation

in the magnetization is independent of the oscillation wavevector. This indicates that an effective energy functional for the
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magnetization should have vanishing coefficient for the quadratic gradient term – effectively, a vanishing spin stiffness. This

contrasts dramatically with the situation we found for µ = 0, where the stiffness diverged as bz → 0.
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