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An effective semi-analytical method for analysing of the Cartesian multipole contributions in
light transmission and reflection spectra of flat metasurfaces composed of identical nanoparticles is
developed and demonstrated. The method combines numerical calculation of metasurface reflection
and transmission coefficients with their multipole decompositions. The developed method is applied
for the multipole analysis of reflection and transmission spectra of metasurfaces composed of silicon
nanocubes or nanocones. In the case of nanocubes, we numerically demonstrate a ”lattice invisibility
effect”, when light goes through the metasurface almost without amplitude and phase perturbations
with the simultaneous excitation of nanoparticles multipole moments. The effect is realized due to
destructive interference between the fields generated by the basic multipole moments of nanoparticles
in the backward and forward directions. For metasurfaces composed of conical nanoparticles, we
show that their transmission coefficient does not depend on illumination direction. In contrast, the
reflection and absorption can be different for the illumination from different metasurface sides, which
is associated with the excitation of different multipoles. We believe, our results could be useful for
analysis and understanding of the electromagnetic properties of nanoparticle arrays and pave the
way for the design of novel metasurfaces for various optical applications.

PACS numbers:

I. INTRODUCTION

High-index nanostructures and metasurfaces have been
actively studied in recent years due to their promising
optical properties.1–5 Subwavelength particles with high
refractive index provide the possibility to excite both
electric and magnetic multipole resonances,6–8 which
can be spectrally tuned by changing the size, geome-
try, periodic arrangement, and surrounding conditions of
the particles.8,9 Nowadays, high-index nanostructures re-
place their metal counterparts for variety of applications
due to high energy absorption of plasmon resonances in
the optical wavelength range.10–12 In contradiction to
such plasmonic nanostructures suffering from both inter-
and intraband transitions,13 high-index materials allow
light scattering without sufficient Ohmic losses. These
properties of the high refractive index nanoparticles make
them very attractive for practical applications in the field
of optical nanoantennas,14–18 coherent and nonlinear ra-
diation sources,19–22 Raman spectroscopy,23,24 etc. The
first demonstration of biosensing with silicon nanores-
onators has been recently reported as well.25 Due to
scaling properties of Maxwell equations, the resonant
multipole response of high-index particles can be ob-
tained in different electromagnetic spectral ranges. For
example, recently we have studied scattering properties

of standalone high-refractive-index particles in the ter-
ahertz spectral range and shown the suppression of the
total electric dipole moment due to the destructive inter-
ference between electric and toroidal dipole moments.26

The employment of high-refractive-index nanoparticles
supporting electric and magnetic multipole resonances
as building blocks for metamaterials (especially metasur-
faces) provides new possibilities for phase-amplitude ma-
nipulations of transmitted and reflected light waves.2–4,27

Dielectric metasurfaces appeared as a counterpart of
metallic plasmonic metasurfaces in the optical range. In
contrast to plasmonic structures, dielectric metasurfaces
can work effectively in transmitted-light regime. Re-
cently it has been shown that the dielectric structures can
change polarization of Bessel beams and focus them.28 In
Ref.9 it has been shown that the spectral positions of the
electric and magnetic dipole resonances can be controlled
by nanoparticle shape. As a result, it is possible to de-
sign dielectric (semiconductor) nanoparticles for which
the electric and magnetic dipole (multipole) resonances
are located at the same spectral point or overlap with
each other.17 Then it was proposed to use silicon submi-
cron elliptical and disk particles as basic elements for the
2π variation of transmitted light phase with high trans-
mittance efficiency.29–31 Different realizations of dielec-
tric metasurfaces have been suggested for the control of
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light wave polarization,32 reflection and transmission33,
e.g. using Kerker effect,34 light color filtering35,36 and
anomalous light bending.37 Control of a transmitted light
is very important for photovoltaic applications. In Ref.38,
broadband antireflection coatings based on silicon cylin-
ders have been suggested, and the increasing light absorp-
tion in the whole visible range has been demonstrated.
Dielectric metasurfaces can be also used to control Ra-
man scattering39, laser40 and light absorption41,42 effects.

The method of the multipole decomposition of electro-
magnetic fields radiated by local current sources or scat-
tered by nanoparticle structures is a powerful tool for
the investigating their electromagnetic properties. There
are several approaches that could be classified depending
on the types of the multipoles. For example, Mie the-
ory operates with spherical (cylindrical) multipoles being
the coefficients of the field expansion in vector spheri-
cal (cylindrical) harmonics.43 Another approach includes
the Cartesian multipoles obtained with the Taylor se-
ries of the scalar Green function written in the far-field
approximation.44 Note that in this case, the Cartesian
multipoles are presented in the quasi-static approxima-
tion. Recently, the Cartesian representations of the sev-
eral first spherical multipoles beyond the long-wavelength
approximation have been obtained and discussed.45 In
the theory of a scattering, independently on multipole
representations, the multipole decomposition can pro-
vide an important information about the connection of
amplitude-phase-polarization properties of a scattered
radiation with the geometrical and material parameters
of scatterers. Usually, this approach is applied for the
investigations of optical properties of individual objects,
such as nanoparticles or nanoantennas. However, the
optical response of more complicated systems including
metasurfaces composed of nanoparticles can be also stud-
ied using multipole decomposition.1,33,46–49

In this paper, we present an effective semi-analytical
method for the analysis of the Cartesian multipole contri-
butions in light transmission and reflection spectra of flat
metasurfaces composed of identical nanoparticles. Gen-
erally, the method includes the following stages: i) the
numerical calculation of the total electromagnetic fields
inside metasurface building blocks, and the transmission
and reflection coefficients; ii) the calculation of nanopar-
ticles’ multipole moments using the total electromagnetic
fields; iii) the multipole decompositions of the reflection
and transmission coefficients. Note that analytical stud-
ies of nanoparticles and their arrays are possible in a very
limited number of cases and basically it is concerned only
the spherical nanoparticles and infinitely-long cylindrical
nanorods.43 In the case of arbitrarily-shaped nanoparti-
cles, a full-wave numerical simulation of the structure
composed of the nanoparticles is critical for studying
their optical properties. Multipole decomposition of elec-
tromagnetic fields presented in this article is built upon
the full-wave numerical simulations and is essentially the
next step in the analysis of metasurfaces. Using numeri-
cal simulations, we make sure that all structure features,

such as particles shape and inter-particle coupling, are
correctly taken into account; and further, using analyti-
cal expressions for each multipole, we analyze their role
and contribution to observed optical effects. Thus, we
believe that a full-wave numerical simulation together
with the multipole decompositions is a powerful tool and
significantly broadens a range of problems that can be
investigated.
Generally speaking, for the calculations of separate

multipole contributions to a scattered electric field, which
determines the transmission and reflection coefficients of
an array, it is important to know the field propagators for
each multipole moment. For the dipole sources, the ana-
lytical expressions of the propagators are well known and
presented in Ref.1 for the periodic metasurfaces. How-
ever, for the higher order multipoles, such as quadrupoles
and octupoles, the analytical descriptions are not trivial.
Here we demonstrate a straightforward method allowing
to obtain the multipole decomposition of the transmis-
sion and reflection coefficients of metasurfaces up to elec-
tric octupole taking into account interactions between the
meta-atoms.
In our work, we consider systems in the framework of

the classical approach that is used for the description
of electromagnetic fields and particle’s responses. In the
framework of semi-classical formalism, when only electro-
magnetic fields are considered as classical, our multipole
method could be applied to the systems similar to that of
Ref.50, where arrays composed of atoms have been stud-
ied in the dipole approximation. However, the multipole
moments of atoms need to be calculated using a quantum
approach.
In the next sections, we explain how the multipole de-

compositions for a metasurface can be obtained, then
we apply the developed approach for the analysis of the
transmission and reflection spectra of the metasurfaces
composed of cubic and conical silicon nanoparticles. We
reveal and explain in details the strong suppression of
the reflection from the metasurfaces, taking place due
to the generalized Kerker effect and so-called invisibil-
ity effect (anapole-like behavior).51–53 In the latter case,
light waves transmit metusrfaces almost without ampli-
tude and phase changes.

II. MULTIPOLE REPRESENTATION OF

REFLECTION AND TRANSMISSION

COEFFICIENTS

In order to develop multipole representations of the
transmission and reflection coefficients, we use the results
from the paper1, where reflection and transmission prop-
erties of silicon spherical nanoparticle arrays are theo-
retically investigated in the point electric- and magnetic-
dipole approximation. It has been demonstrated that for
the normal light incidence with the linear polarization
along x-axis (as shown in Fig. 1) the electric field reflec-
tion r and transmission t coefficients of rectangular 2D
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infinite arrays of identical spherical nanoparticles can be
written as

r =
ikd
2SL

[

αE
eff − αM

eff

]

, (1)

t = 1 +
ikd
2SL

[

αE
eff + αM

eff

]

, (2)

where kd = k0
√
εd is the wavenumber in a surrounding

medium (k0 is the wavenumber in vacuum), SL is the
area of a lattice unit cell (SL = D2 for the square lat-
tice, where D is the lattice constant), ε0 is the vacuum
permittivity, and εd is the permittivity of a surrounding
medium. The effective electric αE

eff and magnetic αM
eff

dipole polarizabilities are determined by the expressions

αE
eff =

1

ε0εd/αE − k2dG
0
xx

, (3)

αM
eff =

1

1/αM − k2dG
0
yy

, (4)

where αE and αM are electric and magnetic polarizabil-
ities of single particles, respectively, and G0

xx and G0
yy

are the dipole sums taking into account the influence
of electromagnetic coupling between the nanoparticles in
the array on their dipole moments.33 In our case, only
px-component of electric and my-component of magnetic
dipole moments are not equal to zero and can be written
as

px = ε0εdα
E
effE0 , my = αM

effH0 , (5)

where E0 and H0 are electric and magnetic fields of the
normally incident plane waves at the points of dipole lo-
cations, H0 = (ε0εd/µ0)

1/2E0 (where µ0 is the vacuum
magnetic permeability). Note that all the nanoparticles
of the infinite array have the same electric and magnetic
dipole moments because of nanoparticle equality and the
normal incidence of light waves. Replacing the effective
polarizabilities in (1) and (2) by the corresponding dipole
moments one can obtain

r =
ikd

E02SLε0εd

[

px − 1

vd
my

]

, (6)

t = 1 +
ikd

E02SLε0εd

[

px +
1

vd
my

]

, (7)

where vd = 1/
√
µ0ε0εd is the speed of light in the sur-

rounding nonmagnetic medium. These equations (6) and
(7) are the representation of the reflection and transmis-
sion coefficients in the dipole moment approximation.
In order to estimate the contributions of high-oder

multipole moments (up to the third order) in the re-
flection and transmission coefficients, let us consider the

multipole representation of the scattered electric field Esc
0

obtained for a single nanoparticle54–57

Esc(n) ∼
(

[n× [p× n]] +
1

vd
[m× n]

+
ikd
6

[n× [n× Q̂n]] +
ikd
2vd

[n× (M̂n)]

+
k2d
6
[n× [n× Ô(nn)]]

)

, (8)

where n is the unit vector indicating the scattering direc-
tion, p and m are the total electric (TED) and magnetic

dipole (MD) moments, Q̂, M̂ and Ô are the symmetrized
and traceless tensors of electric quadrupole (EQ), mag-
netic quadrupole (MQ) and electric octupole (EOC) mo-
ments, respectively. The expressions in the brackets in
(6) and (7) can be obtained from (8) if we consider the
dipole terms only and take into account only the forward
scattering for transmission and the backward scattering
for reflection. For the forward scattering n = (0, 0, 1),
and the backward scattering n = (0, 0,−1). Inserting
n = (0, 0, nz) in (8) we obtain

Esc
x ∼

(

pxn
2
z +

1

vd
mynz −

ikd
6

Qxzn
3
z

− ikd
2vd

Myzn
2
z −

k2d
6
Oxzzn

4
z

)

, (9)

Esc
y ∼

(

pyn
2
z −

1

vd
mxnz −

ikd
6

Qyzn
3
z

+
ikd
2vd

Mxzn
2
z −

k2d
6
Oyzzn

4
z

)

. (10)

In the dipole approximation, the scattering amplitudes
(9) and (10) are

Esc
x ∼

(

px ∓ 1

vd
my

)

, (11)

Esc
y ∼

(

py ±
1

vd
mx

)

, (12)

where the upper (lower) sign corresponds to the back-
ward (forward) scattering. Comparing (11) with the ex-
pressions for the reflection and transmission coefficients
(6) and (7), we get the straightforward conclusion: the
multipole representation of the reflection and transmis-
sion coefficients can be obtained by the replacing of the
expressions in the brackets of (6) and (7) by the multi-
pole decompositions of the single particle scattering am-
plitude (9) or (10) depending on the polarization of the
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incident waves. Finally, in the case of the x-polarization

r =
ikd

E02SLε0εd

(

px − 1

vd
my +

ikd
6

Qxz

− ikd
2vd

Myz −
k2d
6
Oxzz

)

, (13)

t = 1 +
ikd

E02SLε0εd

(

px +
1

vd
my −

ikd
6

Qxz

− ikd
2vd

Myz −
k2d
6
Oxzz

)

, (14)

in the case of the y-polarization

r =
ikd

E02SLε0εd

(

py +
1

vd
mx +

ikd
6

Qyz

+
ikd
2vd

Mxz −
k2d
6
Oyzz

)

, (15)

t = 1 +
ikd

E02SLε0εd

(

py −
1

vd
mx − ikd

6
Qyz

+
ikd
2vd

Mxz −
k2d
6
Oyzz

)

. (16)

The reflection and transmission coefficients are

R = |r|2, T = |t|2. (17)

Then the absorption coefficient A could be derived from
the following expression A = 1−R− T .
In next section, we numerically prove that the multi-

pole expressions for T and R obtained above are in ex-
cellent agreement with the direct numerical calculations
of the transmission and reflection for periodic dielectric
metasurfaces.

III. MULTIPOLE ANALYSIS OF SILICON

METASURFACES

In this section, we implement our method to anal-
yse optical properties of silicon metasurfaces in air, and
reveal some special effects. As examples we consider
two types of metasurfaces composed of cubic or conical
nanoparticles. Here, total electric fields in nanoparti-
cles, composing metasurfaces, and corresponding reflec-
tion and transmission spectra are calculated numerically
using finite element method in COMSOL Multiphysics;
the Cartesian multipole moments of the nanoparticles are
calculated following their definitions presented in Ref.45

with replacement of the current density by the induced
polarization P (see Appendix); the multipole contribu-
tion in the reflection and transmission coefficient are es-
timated on the basis of the above equations. Note that, at
the condition of normal incidence of linear polarized light
waves on a flat infinite metasurface composed of identical
nanopaticles, the every nanoparticle will have the same
electric and magnetic multipole moments calculated with
respect of its center of mass. In this article we consider

that infinite metasurfaces are placed in a homogeneous
surrounding medium with εd = 1.

Si

D

D

E

H
k

x

y
z

H

Figure 1: Artistic representation of the considered silicon
metasurface composed of nanocubes (infinite nanostructure
illuminated with the linearly polarized plane wave).

A. Metasurfaces composed of silicon nanocubes

1. Multipole decomposition

Let us apply our approach to analyse the optical prop-
erties of the metasurfaces depicted in Fig. 1 and nor-
mally irradiated by a linear Ex-polarized plane wave.
The nanoparticles with size H = 250 nm are considered.
The spectra of transmission, reflection, and absorption
coefficients and the corresponding mutipole decomposi-
tions are presented in Fig. 2 for two metasurfaces with
a different periodicity. The reflection and transmission
spectra numerically calculated are in excellent agreement
with the corresponding spectra calculated with (13), (14),
and (17) (Fig. 2 a,c). The spectral features (maxima and
minima) observed in Fig. 2a and Fig. 2c can be analyzed
using the multipole decompositions presented in Fig. 2b
and Fig. 2d, respectively.
Now let us demonstrate the influence of the electro-

magnetic interactions between nanoparticles in the ar-
rays on their multipole response. In Fig. 2b,d we show
the absolute values of the multipole contributions in r
and t coefficients of two metasurface with different pe-
riods. Similar values of the multipole contributions in
scattered electric-field amplitude (Eq. 9) for an individ-
ual nanocube placed in free space are given in Fig. 2e.
The comparison between Fig. 2b and Fig. 2e shows that
the resonances of the electric and magnetic quadrupole
moments in the array structure with the large period
(T = 400 nm) are realized in the same spectral region
with a small blue shift of EQ peak. However, the behav-
ior of the total electric dipole moment and the magnetic
dipole moment differs. In the case of the periodic struc-
ture with T = 400 nm, smooth TED resonance of the
single particle acquires a pronounced peak in the region
around λ = 840 nm (Fig. 2b). Moreover, MD resonance
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Figure 2: Spectra of the transmission T , reflection R, and ab-
sorption A coefficients of the metasurfaces composed of silicon
nanocubes of height H = 250 nm with period (a) D = 400 nm
and (c) D = 300 nm. (b),(d) Absolute values of the multipole
contributions in the electric field reflection and transmission
coefficients r and t: panel (b) corresponds to D = 400 nm
(same as (a)) and panel (d) corresponds toD = 300 nm (same
as (b)). (e) Absolute values of the multipole contributions in
the scattered electric-field amplitude (see. Eq. (8)) calculated
for a single silicon nanocube with size H = 250 nm in air.

becomes much broader and shifts to the blue side due

to the electromagnetic interaction between nanocudes
(Fig. 2b). Interestingly, the absolute values of all multi-
pole contributions are approximately equal to each other
near the wavelength of λ = 785 nm in the both cases
presented in Fig. 2b and Fig. 2e. For a single parti-
cle, the similar combination leads to the side-scattering
effect.17 In the case of arrays, this could provide con-
ditions for the so-called ”lattice anapole (invisibility) ef-
fect” (see below). Note that the zero contributions of EQ
(λ = 1000 nm), MQ (λ = 820 nm), and MD (λ = 690
nm) in Fig. 2b are results of the multipole coupling in
array structures.
Decrease of the array period provides stronger electro-

magnetic inter-particle interaction that in turn results in
the more pronounced changes of the spectral distribution
of the multipole resonances in the arrays in comparison
with the case of the single nanoparticles (compare the
multipole decompositions shown in Fig. 2e and in Fig.
2d). In the latter case, the multipole contributions are
calculated for the array with the period of D = 300 nm.
One can see from Fig. 2d that there is the resonant TED-
MQ-EOC coupling around λ ≈ 780 nm, where the three
resonant peaks of TED, MQ, and EOC appear (Fig. 2d).
This coupling provide the resonant peak of the absorp-
tion coefficient in the area of MQ resonance (Fig. 2c).

2. Multipole analysis implementation

Let us consider in details the optical properties of the
metasurfaces with D = 400 nm. In Fig. 2a,b, different
minima and maxima are marked by black arrows, and
these spectral features in the transmission and reflection
coefficients are analyzed with help of the multipole de-
composition approach. For this purpose we consider both
the magnitudes (Fig. 2b) and phases (Fig. 3a) of mul-
tipole contributions in (13) and (14). It is convenient
to use the following presentations for the electric field
reflection (13) and transmission (14) coefficients:

r = i|C|(Ape
iϕp −Ameiϕm +AQe

iϕQ

−AMeiϕM −AOe
iϕO), (18)

t = 1 + i|C|(Ape
iϕp +Ameiϕm −AQe

iϕQ

−AMeiϕM −AOe
iϕO), (19)

where Ap, Am, AQ, AM , AO are the absolute values
(magnitudes) of the ED, MD, EQ, MQ, and EOC terms,
respectively (shown in Fig. 2b) from the electric field
reflection r and transmission t coefficients , and:

C =
kd

E02SLε0εd
, (20)

ϕp, ϕm, ϕQ, ϕM , and ϕO are the phases of the ED, MD,
EQ, MQ, and EOC terms, respectively, with the inclusion
of the phase corresponding to the factor C. Note that the
phase of the factor C originates from the incident electric
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field E0. In our case the spectrum of the E0 phase is
shown in Fig. 4 (the green line). The plots of the phases
from (18) and (19) are presented in Fig. 3a. Note that
the EOC contribution in the reflection and transmission
(Fig. 2b) is very small for the whole considered spectral
range, and, hereinafter, it will not be taken into account
in the multipole analysis.
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Figure 3: Phases of the multipole terms in the amplitude re-
flection and transmission coefficients of the metasurface com-
posed of nanocubes for (a) D = 400 nm and (b) D = 300 nm.
Definition of the phase is explained in the main text.
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Let us analyze the transmission minima and maxima
comparing the data presented in Fig.2a and Fig.2b. Pro-
nounced transmission dip at the wavelength λ = 690 nm
(Fig. 2a) mainly corresponds to the EQ resonance (Fig.
2b). In general, MQ and TED contributions should also
be taken into account in this wavelength range (Fig. 2b).

So, the approximation of (18) and (19) for this wave-
length gives

r ≈ i|C|(−Ap − iAQ +AM ) ≈ |C|AQ, (21)

t = 1 + i|C|(−Ap + iAQ +AM ) ≈ 1− |C|AQ, (22)

where we use that ϕp = ϕM ≈ π, ϕQ ≈ −π/2 (Fig.
3a for λ = 690 nm), and Ap ≈ AM (Fig. 2b also for
λ = 690 nm). Thus, the multipole analysis shows that
this suppression of the transmission is solely determined
by the EQ resonance.
The next case that deserves attention is the transmis-

sion dip at wavelength λ = 765 nm (Fig 2a). This effect
is determined basically by the MQ resonance. Notice-
able separate contributions of MD and EQ multipoles
(Fig 2b) compensate each other because of their phases.
Indeed, from Fig. 3a for λ = 765 nm one can see that
ϕm = ϕQ = 0 and ϕM = −π/2. Moreover, Am ≈ AQ

(Fig. 2b). Thus, using (18) and (19) we get r ∼ AM and
t ≈ 1− |C|AM .
The broad spectral band of the transmission suppres-

sion between λ = 843 nm and λ = 951 nm in Fig. 2a is
realized due to the strong TED and MD scattering in the
forward and backward directions. The destructive inter-
ference between the incident wave and the strong forward
scattering provides the transmission suppression.
The significant reflection suppression at λ = 1200 nm

(Fig. 2a) takes place because of the realization of the
Kerker effect34 in periodic array structures. At these
conditions, array’s optical response is provided basically
by the TED and MD contributions for which the relations
Ap = Am and ϕp = ϕm are fulfilled.

3. Lattice invisibility

Let us now pay a particular attention to the important
and unusual effect at λ ≈785 nm, where the reflection is
totally suppressed (Fig 2a) and the absolute values of
the multipole (TED, MD, EQ, and MQ) contributions to
r, t coefficients are nearly equal to each other, so that
Ap = Am = AQ = AM (Fig 2b, λ ≈ 785 nm). Moreover,
the phases of these multipole contributions are also very
close to each other and equal to zero approximately (Fig.
3a, λ ≈ 785 nm). In this case, we obtain from (18) and
(19) for the field reflection and transmission coefficients

r ≈ i|C|(Ap −Am +AQ −AM ) = 0, (23)

t ≈ 1 + i|C|(Ap +Am −AQ −AM ) = 1. (24)

It means that the light passes through the metasurface
without perturbations. From the Fig. 4 (blue line) one
can see that the metasurface contribution to the trans-
mitted wave phase is also zero, so it is equal to the phase
of the incident wave at λ ≈ 785 nm. In its turn, this
unusual behaviour of the light looks like to the case of
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the absent metasurface or the metasurface, which doesn’t
interact with the light. The multipole analysis following
from (23) and (24) provides important information about
the origin of this effect. The reflection suppression could
be considered as a realization of the generalized Kerker
effect,47 namely: the suppression of the backward scat-
tering is provided by the destructive interference between
the waves scattered by the TED and MD moments and
by the destructive interference between the waves scat-
tered by the EQ and MQ moments. However, here is
also the simultaneous suppression of the scattering in the
forward direction that does not belong to the effects of
Kerker’s type. In the case of the forward scattering the
TED and MD moments generate (scatter) the waves in
phase with respect to each other. Moreover, the MQ
and EQ moments also generate (scatter) the waves in
phase with respect to each other. Therefore, the sup-
pression of the forward scattering is realized only due to
the destructive interference between the waves separately
generated (scattered) by the dipole-type and quadrupole-
type multipoles. In the case of a single nanocube the
similar relation between multipoles leads to the isotropic
side scattering.17 The light transmission through a reso-
nant system without perturbation of both amplitude and
phase could be referred to a lattice invisibility effect or
as extraordinary transmission photonic effect. It means
that an electromagnetic energy is accumulated in scatter-
ers but the total electromagnetic fields outside the scat-
terers mimic the incident fields almost without distortion
as it can be seen from Fig. 5a. We call such behavior
”lattice anapole effect” because this effect is similar to the
light scattering by the particles in anapole states,51 when
the particles do not scatter providing the non-perturbed
incident wave. From the physical point of view, however,
there are always weak contributions of the non-resonant
high order multipoles that affect the transmission am-
plitude and phase. For example, for the case considered
here it concerns the contribution of EOC moment shown
in Fig 2b for λ = 785 nm. These weak contributions
provide satisfaction of the optical theorem54 in the scat-
tering.

4. Denser metasurfaces

Concluding this subsection we consider the metasur-
face where the distance between the nanocubes is smaller
than discussed above. Transmission, reflection, and ab-
sorption spectra of the metasurface with D = 300 nm
are shown in Fig. 2c. The absolute values of the mul-
tipole contributions for this case are presented in Fig.
2d. Note that there are no spectral points, where the
contributions of the mutipoles coincide. However, one
can see from Fig. 2c that there is a reflection suppres-
sion band around λ = 785 nm. The application of the
multipole analysis for the point λ = 785 nm gives the
following relations: AM < AQ < Ap < Am (Fig. 2d)
and ϕM < ϕQ ≈ ϕp ≈ ϕm (Fig. 3b). This means that

ba

Figure 5: Fragment of the spatial electric field distribution in
the zy-plane at λ = 785 nm for (a) D = 400, (left) only inci-
dent field, (right) total electric field; (b) D = 300 nm, (left)
only incident field, (right) total electric field. The black con-
tours indicate the position of a nanocube in the metasurfaces

the effect of the unperturbed transmission corresponding
to the expressions (23) and (24) is not realized in the
metasurface at this wavelength, and the phase of trans-
mitted light differs from the phase of the incident wave
(Fig. 5b).

B. Metasurface composed of silicon nanocones

E

H
k D

D

Air surrounding

(ns = 1)

H

Dc

x

y
z

Figure 6: The artistic representation of the considered sili-
con metasurface based on nanocones (infinite nanostructure
illuminated by a linearly Ex-polarized plane wave).

The next example considered here is the metasurface
composed of the silicon nanocones of height H = 300 nm
and base diameterDc = 300 nm. A fragment of the meta-
surface is schematically presented in Fig. 6. The main
difference between the cases of cubical and conical par-
ticles is in their symmetrical properties; while cubes are
symmetric with respect to the incidence direction (up-
ward or downward), cones are not. We describe and com-
pare transmission, reflection, and absorption spectra and
corresponding multipole contributions to the amplitude
reflection and transmission coefficients for the two afore-
mentioned irradiation regimes (Fig. 7). From Fig. 7a,c
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Figure 7: Spectra of the transmission T , reflection R, and
absorption A coefficients of the metasurface composed of the
silicon nanocones with H = 300 nm, Dc = 300 nm with period
D = 450 nm for (a) illumination from top of the nanocones
(c) illumination from the base side. (b,d) Absolute values
of the multipole contributions in the amplitude coefficients r

and t: panel (b) corresponds to the illumination from top of
the nanocones (same as (a)), and panel (d) corresponds to
illumination from base edge of the nanocones (same as (b)).

it is clearly seen that the suggested multipole decompo-
sition (17) correctly corresponds to the numerical calcu-
lations of the transmission and reflection for both cases
of irradiation (some discrepancy in the short wavelengths
regions is associated with the influence of the higher or-
der multipoles). Due to the fact that the extinction does
not depend on the irradiation direction, the numerically
calculated transmission spectra presented in Fig. 7a,c are
unchanged with the variation of the illumination condi-

Figure 8: Electric field distribution inside and on the surface
of one conical nanoparticle from the considered silicon meta-
surface (H = 300 nm, D = 450 nm) at the wavelength λ =
619 nm for the illumination (a,b) from top of the cones (c,d)
from the base.

tions. However, the reflection and absorption coefficients
can change their spectral properties. This effect could
be associated with the changes of the total electric and
magnetic field distributions inside the nanocones irradi-
ated in the opposite directions (see, for example, Fig.
8). As a result, one can see some differences between the
multipole contributions presented in Fig. 7b and Fig. 7d.
For the application of the multipole analysis several

spectral points at wavelengths λ = 619, 674, 707, and
794 nm are selected in Fig. 7. The narrow transmis-
sion minimum at the wavelength λ = 619 nm basically
corresponds to the resonant excitation of MQ moment
for both illumination directions. However, the contribu-
tions of other multipoles are different for the different
illumination conditions (compare Fig. 7b and Fig. 7c
near λ = 619 nm), because in this case we have different
distributions of the electric field inside the nanoparticles
and shown in Fig. 8.
Importantly, in contrast to the case of nanocubes, there

are no spectral points where the values of the multipole
contributions are equal to each other in terms of both
phase and amplitude (Fig. 7b,d). The lack of such
points means that lattice invisibility is not realized in
this metasurface. At the wavelength λ = 674 nm there is
a strong suppression of the reflection (Fig.7a,c). For this
spectral point for both illumination directions we have
Ap = Am = AM = A > AQ, it is clearly seen from Fig.
7b,d. The spectral changes of the phases calculated for
the multipole terms are shown in Fig. 9. For the illu-
mination from top (Fig. 9a) the phases of all multipole
terms are near zero at λ = 674 nm, so one can approx-
imate them, as ϕp = ϕQ = ϕM ≈ 0 and ϕm 6= 0, and
write

r ≈ i|C|(AQ −Aeiϕm), (25)

t ≈ 1 + i|C|(Aeiϕm −AQ). (26)
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For the illumination from cones’ base (Fig. 9b) the
phases behavior is different at λ = 674 nm comparing
with the above case. However, again all phases are close
to zero but ϕp = ϕQ 6= 0 and ϕm ≈ ϕM ≈ 0, so one can
estimate

r ≈ i|C|([A+AQ]e
iϕp − 2A), (27)

t ≈ 1 + i|C|(A−AQ)e
iϕp . (28)

Because of in the both cases the phases are small, the
reflection suppression is corresponded to the small value
of (A − AQ) that could be considered as a generalized
Kerker condition.
For the both illumination schemes there are also two

spectral points with the almost zero transmission at the
wavelengths λ = 707 nm and λ = 794 nm (Fig. 7a,d).
These effects are provided by the resonant excitation of
TED (λ = 707 nm) and MD moments (λ = 794 nm).
Small disagreements between the spectral positions of the
dipole resonances and the transmission zeros observed in
Fig.7, are explained by the weak contributions of other
multipoles. Interestingly, the phase difference between
the TED and MD terms in the electric field reflection
and transmission coefficients is the same and equals to
π/2 for the both illumination schemes at λ = 707 nm
and λ = 794 nm (Fig. 9). As a result one can estimate
the reflection coefficient as

|r|2 ∼ |(iAp −Am)|2 = A2
p +A2

m. (29)

In the proximity to the TED and MD resonances, the
interaction between them provides maximum reflection
and minimum transmission.

IV. CONCLUSION

In this work we have presented the technique that al-
lows to make a multipole analysis of the transmission
and reflection spectra of metasurfaces composed of peri-
odically arranged nanoparticles. We have revealed how
the analytical multipole decompositions of field reflection
and transmission coefficients of nanoparticle arrays can
be obtained from the single particle scattering. It has
also been demonstrated that the multipole analysis al-
lows to explain the origins of the reflection and transmis-
sion features. The developed approach has been applied
for the multipole analysis of the reflection and transmis-
sion properties of the metasurfaces (2D arrays) composed
of silicon nanocubes or nanocones. In the case of the
nanocubes, the ”lattice invisibility (anapole) effect” has
been found and discussed. It has been shown that this
effect corresponds to the light transmission through a
metasurface almost without amplitude and phase per-
turbations, however, with the excitation of basic multi-
pole moments. For the metasurfaces composed of conical
nanoparticles illuminated from different sides, it has been
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Figure 9: Phases of the multipole terms in the electric field
reflection and transmission coefficients r and t of the meta-
surface composed of nanocones (H = 300 nm, Dc = 300 nm)
with the period D = 450 nm. (a) Illumination from the apex
side of the nanocones, (b) illumination from the base edge of
the nanocones. The definition of the phase is explained in the
main text.

shown that the transmission does not depend on the illu-
mination schemes whereas the reflection and absorption
can be different, because of different electric field distri-
butions inside the nanoparticles for the same wavelength.

We have demonstrated that our method is applicable
to the arrays composed of arbitrarily shaped nanoparti-
cles. In this case, full-wave numerical calculations need
to be applied. The multipole analysis explaining the ob-
served reflective and transmitting properties of the array
and can be applied for tuning its geometrical parameters
to achieve required functionality of the metasurface.

Thus, for the application aspects of our approach, two
main positions can be pointed out. The first advantage
is a direct application of our technique. In this case, the
developed method can be used both for investigations of
the influence of inter-particle interactions inside arrays on
the multipole optical response of nanoparticles and for a
theoretical explanation of spectral transmission and re-
flection features of the arrays. After investigations of the
multipole response in the arrays, this information can be
used for optimization of the array optical properties. For
instance, the optimization can be done by tuning overlaps
of different multipole resonances those spectral positions
are determined by the particle’s geometry and array pe-
riods. Multipole decompositions of the array fields and
analysis of transmission and reflection spectra give us
more precise and effective tool for theoretical optimiza-
tion of nanoparticle arrays. The second advantage is the
possibility to use multipole response of single nanopar-
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ticles for the estimation of the optical properties of the
arrays composed of them. Using our method we showed
how the array surrounding affects and changes the multi-
pole response of nanoparticles. Frequently, the array sur-
rounding only slightly disturbs the spectral distribution
of multipole resonances of single dielectric nanoparticles.
It means we can use spectral multipole behavior of single
nanoparticles for the qualitative design of nanoparticles
arrays with given optical properties.
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Appendix: Expressions for the multipole moments

For the Cartesian multipole moments following expres-
sions have been used:

p =

ˆ

pj0(kr)dr +

k2

10

ˆ

{

[r ·P]r− 1

3
r2P

}

15j2(kr)

(kr)2
dr,

m = − iω

2

ˆ

[r×P]
3j1(kr)

kr
dr,

Q̂ =

ˆ

{

3(r⊗P+P⊗ r)− 2[r ·P]Û
}

3j1(kr)

kr
dr+ 6k2

ˆ

{5r⊗ r[r ·P] −

(r⊗P+P⊗ r)r2 − r2[r ·P]Û
} j3(kr)

(kr)3
dr,

M̂ =
ω

3i

ˆ

{[r×P]⊗ r+

r⊗ [r×P]} 15j2(kr)

(kr)2
dr,

where p, m, Q̂, M̂ are the multipole moments in the
Cartesian representation, and jn denotes n-order spher-
ical Bessel function, k is the wavenumber in air. All
expressions based on light-induced polarization P(r) =
ε0(εSi − 1)E(r), where ε0 and εSi are the vacuum per-
mittivity and relative dielectric permittivity of silicon.
E(r) is the total electric field inside the nanoparticle. We
also use the electric octupole moment expressions from
Ref.17,54.

∗ Electronic address: terekhovpd@gmail.com
† Electronic address: alinak@bgu.ac.il
‡ Electronic address: a.b.evlyukhin@daad-alumni.de
1 A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S.
Lukyanchuk, and B. N. Chichkov, Physical Review B 82,
045404 (2010).

2 A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma,
Y. S. Kivshar, and B. Lukyanchuk, Science 354, aag2472
(2016).

3 S. Jahani and Z. Jacob, Nature Nanotechnology 11, 23
(2016).

4 I. Staude and J. Schilling, Nature Photonics 11, 274
(2017).

5 A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, Ad-
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