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Interference of transmitted and received signals hinders the simultaneous functionality of a conven-
tional optical antenna as a transmitter and receiver which is required for full-duplex communication.
The full-duplex communication schemes enabled by dense wavelength division multiplexed optical
networks require distinct transmitter/receiver components operating at different wavelengths which
increase the cost, complexity and footprint of physical layer. In this work, we demonstrate that
an array of nanoantennas with leaky-wave architecture based on spatiotemporal modulation es-
tablishes nonreciprocal optical links which can reject the interference of transmitted and received
signals by isolating the frequency of transmission and reception modes. For this purpose, we inte-
grate indium-tin-oxide into plasmonic nanodipoles which allows for realization of time-modulated
nanoantennas in near-infrared frequency regime through electrical modulation of charge carrier
density with radio-frequency signals. The radiation characteristics of individual nanoantennas and
modal properties of nanoantenna arrays are rigorously studied through linking of charge transport
and electromagnetic models. To this end, we extend the formulation of discrete dipole approxima-
tion as the standard modeling tool for electromagnetic scattering from nanoantenna arrays to treat
realistic time-modulated structures with drastically different time-scales between optical and mod-
ulation frequencies. The operation of spatiotemporally modulated array antennas in transmission
and reception modes is investigated. Moreover, electrical beam-scanning functionality and depen-
dence of antenna characteristics to modulation parameters and wavelength are demonstrated. It is
rigorously established that such array antennas can operate as full transceivers by separating the
transmitted and received signals propagating along the same direction through down-conversion and
up-conversion of the frequency. Our results provide a route toward realization of optical antenna
systems capable of full-duplex communication and real-time beam-scanning which can increase the
capacity and decrease the complexity of optical networks.

Antenna theory is very well-established in the radio
frequency (RF) and microwave regime1. Different design
paradigms such as phased array, holographic leaky-wave
and Yagi-Uda antennas have been adopted toward tai-
loring the radiation pattern, gain and bandwidth of an-
tennas for many different applications with profound im-
pact on modern information and communication technol-
ogy. The recent advances in nanofabrication have allowed
for down-scale of the antenna footprints into nanoscale,
enabling high-speed wireless communications in optical
frequencies. The new class of plasmonic nanodipoles,
consisting of two plasmonic nanoparticles separated by
a small gap, has received a great attention and the ef-
fects of adjusting length, loading and geometry on tun-
ing the radiation characteristics of nanodipoles have been
investigated2–5. These nanodipoles can be fed through
free-space illumination or optical nano-waveguides and
the nanogap region can be used as transmitting and re-
ceiving point of the nanoantenna6. Several efforts have
been put into translating the well-established concepts of
RF antennas into the optical counterparts and different
paradigms of reflect-array7, Yagi-Uda8 and leaky-wave9

antennas have been successfully brought into optics by
considering an ensemble of plasmonic nanoantennas.

Constrained by the reciprocity, conventional antennas
are bound to transmit or receive equally toward or from
the same direction at the same frequency. This symme-
try between the transmit (Tx) and receive (Rx) modes
prohibits functionality of a conventional antenna as a si-

multaneous transmitter/receiver (transceiver) due to the
interference of transmitted and received signals and leads
to simplex communication as shown in Fig. 1(a). How-

FIG. 1. (a) Simplex communication scheme using an indi-
vidual antenna at each communication node. (b) Full-duplex
communication scheme enabled by wavelength division mul-
tiplexing and distinct transmitter/receivers at each commu-
nication node. (c) Full-duplex communication by isolating
transmission and reception frequencies based on individual
antennas with spatiotemporal modulation at each node.

ever, for most practical applications a full-duplex com-
munication is required to increase the link capacity. In
the near-infrared (NIR) regime, dense wavelength divi-
sion multiplexing (WDM) has allowed for integration
of more than 80 channels at several gigahertz intervals
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from 1530 nm to 1565 nm (C-band) via optical split-
ter/combiners into a single strand multi-mode optical
fiber10,11. This approach enables full-duplex communi-
cation by dividing the communication channel and us-
ing different wavelengths for transmission and reception.
However, requirement for distinct receivers and transmit-
ters for each wavelength at each side of the link makes
this scheme ineffective in cost and size while adding com-
plexities in implementation of physical layer (Fig. 1(b)).
In this work, we aim at achieving full-duplex communi-
cation in NIR regime through interference rejection of
transmitted and received signals via non-reciprocal opti-
cal links in a shared transmission medium as shown in
Fig. 1(c) by utilizing an individual leaky-wave antenna
consisted of an array of time-modulated nanoantennas.

In order to break the reciprocity, an effective motion is
required within the device to enable different behaviors
for the waves propagating in forward and backward di-
rections by imparting different momentums to the light.
Magneto-optical effects have been traditionally used for
this purpose, where a DC magnetic field induces a molec-
ular momentum bias resulting into an asymmetric per-
mittivity tensor12–15. This approach requires utilization
of bulky and heavy magnets which increases footprint
of the device. More recently, exploiting spatiotemporal
modulation16 and material nonlinearities17,18 have been
proposed to realize magnetless nonreciprocal devices with
compact footprints suitable for on-chip applications. The
linear nonreciprocity based on spatiotemporal modula-
tion is typically stronger than nonlinear reciprocity and
enables nonreciprocal response for simultaneous excita-
tions with arbitrary intensities, while nonlinear nonre-
ciprocity requires high intensities and operates for one
excitation at a time19. This is due to the fact that non-
linear processes and their frequency conversion efficiency
are strongly dependent on the intensity of input field.

A spatiotemporal modulation of refractive index in-
duces a momentum bias at a macroscopic scale which can
be used to mimic the motion of a traveling wave. This ap-
proach has been used in waveguide geometries to achieve
power isolation20,21 and to realize non-reciprocal com-
munication with leaky-wave antenna architecture22–24.
Moreover, space-time gradient metasurfaces have been
shown to enable new functionalities and extend the de-
gree of light manipulation beyond the capabilities of
static and quasi-static metasurfaces25–31. In Refs22

and23, magnetless non-reciprocal leaky-wave antennas in
RF have been fabricated by using varactors for applying
spatiotemporal modulation. The realization of the con-
cept in the low-THz regime has also been demonstrated
using externally biased graphene sheets24. Moving be-
yond THz into infrared and visible frequencies, allows for
further miniaturization of antenna footprints and enables
higher speed in communications due to the higher fre-
quency of carrier waves. However, bringing the concepts
from RF into nano-optics requires identification of novel
routes to achieve time-modulation at optical frequencies
as well as modification of analysis and design rules. For

this purpose, field-effect modulation in transparent con-
ductive oxides or transition-metal nitrides yields a great
promise for realization of time-modulated nanoantennas
as it enables electrical modulation of refractive index
with several GHz in speed via changes in carrier den-
sity and offers a continuous tunability in a relatively
wide range with very low power consumption in steady-
state32,33. Indium-tin-oxide (ITO) is one of the most
widely used transparent conducting oxides and it has
been recently integrated into optical metasurfaces for
achieving tunability, switching and modulation of elec-
tromagnetic waves in NIR regime33–37. Despite the real-
time tunability offered by these metasurfaces, their op-
eration has remained quasi-static as their variations in
time are disregarded.

In this paper, we integrate ITO as an electro-optical
load into a plasmonic nanodipole. Radiation characteris-
tics of the nanodipole can be tuned in the NIR regime by
applying an external voltage which subsequently changes
the carrier concentration and refractive index in the ac-
tive layer of ITO. Biasing the nanodipole with an RF
signal, a time-modulated nanodipole is realized and as
a result, the input energy is coupled into higher-order
frequency harmonics consisted of the central frequency
up- and down-modulated by the modulation frequency.
A spatiotemporally modulated leaky-wave antenna is im-
plemented by using an ensemble of time-modulated nan-
odipoles and applying a progressive phase delay in the
temporal modulation of the elements. The operation of
antenna in Tx and Rx modes is investigated and it is
demonstrated that such an array antenna enables full-
duplex communication through a shared transmission
medium by isolating transmission/reception frequencies
at each port which rejects the interference of transmit-
ted and received signals. In particular, the transmitted
and received signals propagating along the same direc-
tion can be separated through frequency down-conversion
and up-conversion operations. Moreover, the antenna
can perform dynamic beam scanning with 180◦ angle-of-
view through electrical tuning of the progressive phase
delay in temporal modulation via RF phase shifters.
For analyzing the optical response of antenna structures,
we extend discrete dipole approximation (DDA) formu-
lation based on a multifrequency approach which al-
lows for efficient and accurate characterization of real-
istic time-modulated structures with drastically different
time-scales between optical and modulation frequencies.
Moreover, the electro-optical response of nanoantennas
is rigorously characterized by linking charge transport
and electromagnetic models via carrier-dependent disper-
sion model. The contributions of our paper are therefore
twofold: First, we develop a novel formulation for solv-
ing active optical antennas with multiscale spatiotempo-
ral features and second, we implement a spatiotempo-
rally modulated array antenna in NIR frequency regime
capable of performing full-duplex communication by ex-
ploiting electro-optical property of ITO. The rest of this
manuscript is organized as follows. In section I, we de-
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velop the multifrequency DDA formulation for modeling
time-modulated nanoantennas. In section II, we study
the radiation characteristics of ITO-loaded plasmonic
nanodipoles. The modal properties of nanoantenna array
is discussed in section III and the non-reciprocal behav-
ior of the antenna in RX and Tx modes is investigated to
establish its applicability for full-duplex communication.
Moreover, the beam-scanning functionality and depen-
dence of antenna characteristics to modulation parame-
ters and wavelength are presented. Finally, the conclu-
sions are drawn in section IV.

I. FORMULATION

DDA and polarizability theory have been extensively
used as the standard modeling tools for analyzing indi-
vidual nanoantennas as well as nanoantenna arrays and
chains of plasmonic particles9,38–46. In the level of in-
dividual element analysis, DDA is a numerically exact
method and equivalent to method of moments (MoM)
solution to the volume integral equation (VIE) formu-
lation of Maxwell’s equations47–51. In the spirit of vol-
umetric MoM, the volume of the element is discretized
into a grid of deeply subwavelength cubical sub-volumes
each of which is described by a dipolar polarizability. The
polarizability of an infinitesimal sub-volume is given by
Clausius-Mossotti (CM) expression52,53. For a finite cell
size, CM polarizability is modified by lattice dispersion
relation (LDR) in order to satisfy the optical theorem,
and increase the accuracy and convergence rate of the
results49,54. DDA method has been successfully applied
to arbitrary-shaped scatterers made of plasmonic55 and
high-index materials41. The derivation of DDA equations
from VIE formulation of Maxwell’s equations is briefly
recalled in section 1 of Supplemental Material56.

In the level of array analysis, when the dimensions of
constituent elements of the array are much smaller than
the scattered wavelength, the optical response of each el-
ement is dominated by the radiation due to the induced
dipolar modes and contribution of higher order multi-
poles are negligibly small41,46. As such, each element
can be assigned a polarizability tensor which relates the
net induced dipole moment of the element to the local
field at its phase center46,57 and the total scattered field
can be subsequently obtained by solving for the induced
dipole moments within the framework of DDA. This ap-
proach dramatically reduces the number of unknowns to
be solved for since the fine meshing of each nanoantenna
is replaced by its dipolar polarizability. Such model order
reduction, from computational point of view, falls into
the category of projection methods in which one seeks
for an approximate solution to the full-order problem
through projection of integral equations onto a reduced
order space. Different projection methods have been
used in the framework of MoM such as characteristic ba-
sis function method58, synthetic basis function method59

and macro-basis function method60,61. The accuracy of

these methods depends on the proper construction of the
projection space which is consisted of the dipolar polar-
izability of the elements in the DDA framework. Several
techniques have been proposed for polarizability tensor
retrieval of subwavelength elements. Among these tech-
niques, the ones based on quasistatic models fail to take
into account the energy conservation, radiative damp-
ing and exotic wave phenomena62–64. In order to ac-
curately predict the scattering of an element in an ar-
ray configurations, the dynamic polarizability is required
which can be rigorously retrieved via numerical simula-
tions and evaluation of the net induced dipole moment or
the scattered field from the element under different inci-
dent conditions46,65. This approach has been extensively
used for homogenization of metamaterials consisted of
plasmonic or high-index dielectric and magnetodielectric
inclusions with complex geometries42,46, which yields ac-
curate results in the account of preserved coupling infor-
mation between the elements while imposing a fraction of
computational cost compared to the full-order problem.
In particular, DDA framework can be used hierarchically
in two different length scales of individual element and
array configuration to retrieve the dynamic polarizability
of individual nanoantennas41 and subsequently use the
retrieved polarizabilities for solving the scattering from
the whole array44.

Simulation of realistic time-modulated devices in op-
tical frequencies poses a great challenge for conven-
tional time-domain methods such as finite-difference
time-domain (FDTD) due to very large difference be-
tween time-scales of optical and modulation frequen-
cies. The accessible modulation frequencies of electro-
optical material are less than 100 GHz which are very
small compared to the optical excitation frequencies20,28.
This requires an enormous number of optical cycles in
time-domain simulations to capture the steady-state re-
sponse; making the computation prohibitive. In the
case of nanoantennas with deeply subwavelength fea-
tures, this becomes even more challenging as the time-
step in FDTD simulations decreases by decreasing the
mesh size. In order to overcome these limitations, multi-
frequency techniques in frequency-domain have been re-
cently proposed29,31,66 which can capture the stationary-
state response of such modulated systems, efficiently and
accurately through coupling frequency-domain simula-
tions at different frequency harmonics.

Here, we extend DDA formulation based on a multi-
frequency approach for treating time-modulated nanoan-
tennas and arrays in the frequency domain. As the start-
ing point, we consider a scatterer discretized into an en-
semble of N deeply subwavelength cubical sub-volumes
whose permittivities are varying in time. When the tem-
poral modulation is sufficiently slow with respect to the
oscillations of optical excitation (adiabatic regime), for
any given optical frequency, the change in the permittiv-
ity of a dispersive material at excited frequency harmon-
ics of different orders is negligible and the main dispersion
effects arise from the optical excitation. In such a case,
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the stationary-state scattering response in the frequency
domain can be obtained by solving for a non-dispersive
time-varying material at each optical frequency. The va-
lidity of this assumption is guaranteed in the real-case
scenarios at the optical frequency regime where modula-
tion frequency is a very small fraction of excitation fre-
quency. The time-dependent CM polarizability tensor of
n-th cell at the optical frequency of ω0 can be obtained
as52:

an(t)
dn→0

= IaCMn (t) = Id3n
3

4π

εn(t)− 1

εn(t) + 2
, (1)

where dn and εn are the dimension and time-dependent
permittivity at optical frequency of ω0 corresponding to

the n-th dipolar cell, respectively and I is the identity
dyadic. The CM polarizability is subsequently modified
by higher-order correction terms through LDR in order
to satisfy the optical theorem and improve the accuracy
and convergence for a finite cell size49:

an(t) = IaCMn (t)
[
1− (aCMn (t)/d3n)[(

bLDR1 + bLDR2 εn(t) + bLDR3 εn(t)S
)(
k0d
)2

+
(
2/3
)
i
(
k0d
)3]]−1

,

(2)

where bLDR1 ≈ 1.8915, bLDR2 ≈ −0.1648 and bLDR3 ≈ 1.77
are LDR constants, k0 is the free-space wave-number and

S =
∑3
µ=1

(
âµêµ

)2
with â and ê being the unit vectors

denoting direction of propagation and polarization of the

incident field ( ~Einc), respectively. When the elements
are varying in time with a periodic modulation having a
modulation frequency of ωm, the time-dependent polar-
izability is also periodic and can be expanded in form of
a Fourier series as:

an(t) =
∑
l

α
l
n(ω0)eilωmt, (3)

and the Fourier transform takes the following form:

αn(ω) =
∑
l

α
l
n(ω0)δ(ω − lωm). (4)

Disregarding the dispersion effects arising from adia-
batically generated frequency harmonics, the temporal
evolution of the dipole moment corresponding to the n-

th cell (~Pn(t)) can be expressed as:

~Pn(t) = an(t)~E(~rn, t). (5)

where ~E(~rn, t) is the time-dependent external electric
field at the phase center of n-th dipole denoted by the
coordinate vector of ~rn.

The dipolar equation can be taken into angular fre-
quency domain by taking the Fourier transform of both

sides as:

~pn(ω) = αn(ω) ∗ ~E(~rn, ω)

=

∫
αn(ω − ω′) ~En(~rn, ω

′)dω′,
(6)

where * denotes convolution. This equation implies that
an input frequency of ω0 will excite dipole moments cor-
responding to a spectrum of output frequencies. Substi-
tuting Eq. (4) into (6) while choosing ω = ωq = ω0+qωm
and ω′ = ωp = ω0 + pωm with q, p = · · · ,−1, 0,+1, · · · ,
we will arrive at the following coupled multifrequency
equations, relating the induced dipole moments of out-
put spectrum to the local field of input spectrum at the
n-th lattice point:{

~pn(ωq)
}

=
{
α
q−p
n (ω0)

}{
~E(~rn, ωp)

}
, (7)

in which the local field can be expressed as the sum of
incident field and the sum of scattered fields from all
other dipoles as:

~E(~rn, ωp) = ~Einc(~rn, ωp) +

N∑
m=1
m6=n

G(~rnm, ωp)~pm(ωp), (8)

where ~rnm = ~rn − ~rm and G(~rnm, ωp) is the free-space
dyadic Green’s function, giving the free-space electric
field at ~rn due to radiation from an infinitesimal dipole
at ~rm with a frequency of ωp:

G(~rnm, ωp) =
(
k2pI +∇∇

)exp(ikp|~rnm|)
|~rnm|

, (9)

where kp = ωp/c. Writing the coupled equations (7) and
(8) for all dipoles (n = 1, · · · , N), we will obtain a linear
system of equations in the following form:

p = T Ei, (10)

whose solution gives the induced dipole moments of each
cell corresponding to different frequency harmonics. In
the above equation, p = [p1, p2, · · · , pN ]T with:

pn = [· · · , ~pn(ω−1), ~pn(ω0), ~pn(ω+1), · · · ]T , (11)

and Ei = [Ei,1, Ei,2, · · · , Ei,N ]T with:

Ei,n = [· · · , ~Einc(~rn, ω−1), ~Einc(~rn, ω0), ~Einc(~rn, ω+1), · · · ]T ,
(12)

and T =


T 1,1 T 1,2 · · · T 1,N

T 2,1 T 2,2 · · · T 2,N

...
...

. . .
...

TN,1 TN,2 · · · TN,N

 with:

T n,m
n=m

=



. . .
... . .

.

α
0
n α

−1
n α

−2
n

· · · α+1
n α

0
n α

−1
n · · ·

α
+2
n α

+1
n α

0
n

. .
. ...

. . .



−1

, (13)
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T n,m
n6=m

= −



. . .

G(~rnm, ω−1)

G(~rnm, ω0)

G(~rnm, ω+1)
. . .


(14)

The structure of self-interaction blocks in the inter-
action matrix implies that introducing a periodic time-
modulation with a modulation frequency of ωm leads to
generation of all frequency harmonics ω0 ± qωm due to
self-coupling effects. For a time-invariant sub-volume,

α
q−p
n = αn(ωp)δqp in which δqp is the Kronecker delta

that decouples the frequency harmonics. Truncating the
number of frequency harmonics at ±Mf , the size of ma-
trix equation (10) will be 3N(2Mf +1). Compared to the
conventional DDA method, multifrequency DDA leads to
generation of larger interaction matrices (×(2Mf + 1)),
however, it should be noted that the generated matri-
ces are sparse unlike the dense matrices of conventional
DDA. This is due to the decoupled interaction of fre-
quency harmonics via Green’s functions. According to
the block structures in equations (13) and (14), it can
be easily concluded that the density of interaction ma-

trix in multifrequency DDA is less than
N+2Mf

N(2Mf+1) . The

sparsity of the interaction matrix in multifrequency DDA
can be exploited to decrease the storage requirements and
accelerate the matrix-vector multiplications in iterative
solvers via sparse operations. For further reduction of
the computational complexity and memory consumption,
Fast Fourier Transform (FFT)67 and Hierarchical matrix
(H-matrix) construction68 can be adopted similar to the
conventional DDA formulation.

Once the dipole moments of the sub-volumes in an
individual scatterer are obtained at different frequency
harmonics, the contributions of multipole modes to the
scattering at all frequency harmonics can be extracted
through Taylor expansion of the fields around the phase
center of scatterer41. In particular, the scattering re-
sponse of a deeply subwavelength nanoantenna is dom-
inated by the contribution of dipolar modes whose net
dipole moments at different frequency harmonics can be

obtained as ~P (ωq) =
∑N
i=1 ~pi(ωq). By extracting the

net dipole moments of a nanoantenna under three inde-
pendent incident conditions (e.g. plane wave excitations
along three principal axes), each block of the correspond-
ing multifrequency dynamic polarizability tensor can be
rigorously retrieved, as:{

α
q−p

(ω0)
}

=
{
~P1(ωq) ~P2(ωq) ~P3(ωq)

}
×{

~E1(ωp) ~E2(ωp) ~E3(ωp)
}−1

,
(15)

This polarizability relates the net induced dipole mo-
ments of the nanoantenna at the output spectrum to
the local field of input frequency spectrum at the phase
center of nanoantenna. Subsequently, an array of sub-
wavelength time-modulated nanoantennas can be solved

within the same framework of multifrequency DDA by
replacing the fine meshing of each nanoantenna by its re-
trieved polarizability. This approach relaxes the compu-
tational requirements for solving large-scale array prob-
lems which are intractable by adopting conventional com-
putational techniques, while yielding accurate results for
the scattered fields as the coupling information between
the elements are preserved. Solving the matrix equa-
tion (10) for an array of subwavelength time-modulated
nanoantennas described by their position and multifre-
quency dynamic polarizabilities, the net dipole moments
of each nanoantenna at different frequency harmonics will
be obtained which allows for straightforward calculation
of the scattered fields of different frequency harmonics
via dyadic Green’s functions.

It should be mentioned that the periodicity can be sim-
ply considered in the developed formulation by using the
periodic dyadic Green’s functions evaluated by Ewald’s
method69. The substrate contribution can also be taken
into account by incorporating the dyadic Green’s func-
tions of layered media to via discrete complex im-
age method (DCIM) to avoid meshing of the substrate
volume70. The formulation can also be readily extended
for treatment of magnetic dipoles in high-index dielectric
nanoantennas and the magneto-electric cross coupling in
chiral geometries44,69.

The validity and accuracy of the developed formula-
tion is rigorously verified in section 2 of the Supplemental
Material56 by comparing the nearfield and farfield results
of generated frequency harmonics by a time-modulated
nanodipole obtained with multifrequency DDA and full-
wave simulation results of FDTD. Moreover, the superior
computational performance of the method in character-
ization of the steady-state response of time-modulated
structures with multiscale temporal and spatial features
is established.

II. ITO-LOADED PLASMONIC NANODIPOLE

Recently, several different approaches have been pro-
posed to change the refractive index of materials by using
external stimuli which enable dynamic functionality and
real-time tunability of the optical response. In the NIR
regime, mechanical reconfiguration71, phase transitions72

and carrier accumulation/depletion33 have been utilized
for this purpose. Among all these mechanisms, field ef-
fect modulation is the most promising approach for real-
ization of time-modulated nanoantennas as it allows for
continuous tunability of refractive index over a relatively
wide range with modulation speeds up to several GHz
while possessing very low power consumption. It has
been recently used in transparent conducting oxides33

and transition metal nitrides73 to achieve tunability in
NIR and visible frequencies by integration of these mate-
rials into resonant geometries. When such electro-optical
materials are biased in a parallel capacitor configuration,
a driving static electric field forms an ultrathin charge
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accumulation or depletion layer at the interface of mate-
rial with the insulator depending on the sign of applied
voltage74. The changes in carrier concentration within
the accumulation/depletion layer can be subsequently
translated to the changes in complex dielectric function
using carrier-dependent dispersion models. By applying
an RF biasing signal, the carrier concentration and thus
the dielectric function can be modulated in time with
speeds up to several GHz20,32,33. The maximum speed of
modulation is limited by the signal delay resulting from
RF probe connections, with current speed values up to
≈ 100 GHz75.

Here, we consider a plasmonic nanodipole as the ba-
sic radiating element. The geometry of nanoantenna is
depicted in Fig. 2(a), which is consisted of rectangular

FIG. 2. (a) The schematic of an ITO-loaded plasmonic nan-
odipole. (b) Typical multiscale meshes used for FEM de-
vice (triangular mesh) and DDA electromagnetic (cubic mesh)
simulations. (c) and (d) demonstrate real and imaginary parts
of ITO permittivity as functions of wavelength and carrier
concentration, respectively.

arms made of silver with length of L, width of w and
height of h. The nanodipole is loaded with an ITO layer
and a silica insulating layer at its gap with thicknesses
of gITO and gSiO2 , respectively in accordance with bi-
asing requirements. Large enhancement of electric field
at the gap of nanoantenna when it is operating at the
resonant wavelength, enhances light-matter interactions
at nanoscale and provides a route to achieve a large tun-
ability by the slightest changes in the refractive index of
the nanoload3,5. As such, integration of ITO into the
nanogap, enables real-time tuning of nanoantenna radi-
ation characteristics in NIR regime through applying a
DC bias via its electro-optical property. Moreover, it al-
lows for realization of time-modulated nanoantennas by
applying an RF biasing signal. The electro-optical re-
sponse of nanoantenna is characterized through linking
of charge transport and electromagnetic models. The
charge transport is modeled using Lumerical Device sim-

ulator, which solves drift-diffusion and Poisson equations
self-consistently based on a finite-element method, while
the electromagnetic modeling is carried out based on the
multifrequency DDA method by discretizing the volume
of nanoantenna into cubic dipolar cells in the spirit of
VIE methods. In both device and electromagnetic sim-
ulations, a multiscale meshing is adopted with refined
mesh at the interface of ITO and insulator to capture
the decay length of charge accumulation/depletion layer
as well as the large field confinement at the nanogap, ac-
curately and efficiently. It has been shown previously,
a non-uniform mesh improves the convergence of DDA
method for solving structures with nanogaps and deeply
subwavelength features76,77. Moreover, the convergence
of the DDA is much faster for cubically-shaped objects
due to absence of shape reconstruction errors with cubical
sub-volumes. Figure 2(b) depicts the typical multiscale
meshes used for device and electromagnetic simulations.

The complex-valued permittivity of silver is taken from
experimentally obtained results78 and the dielectric func-
tion of ITO is described by a Drude model as33:

εITO(ω, n) = εinf −
ne2

ε0m∗m0

1

ω2 + iωΓ
, (16)

where εinf = 3.9 is the high-frequency dielectric con-
stant, n is the carrier concentration, e is electron charge,
ε0 is the vacuum permittivity, m∗ = 0.35 is the effec-
tive mass of charge carrier, m0 is the electron mass, ω
is the angular frequency and Γ = 1.8 × 1014 rad/s is
the damping constant33,79. Figures 2(c) and (d) demon-
strate the real and imaginary parts of ITO permittivity
as functions of wavelength and carrier concentration. As
it can be seen, increasing the carrier concentration leads
to decrement of the real part of permittivity. In par-
ticular, the permittivity crosses zero in NIR regime by
increasing the carrier concentration such that the optical
behavior of nanoload is changed from capacitive (dielec-
tric) to inductive (plasmonic).

In the device simulations, ITO is modeled as a semicon-
ductor with the DC permittivity of εDC = 9.380, bandgap
of Ebg = 2.8 eV81, and electron affinity of χ = 5 eV33.

In the following, we study the radiation characteris-
tics of quasi-static and time-modulated ITO-loaded plas-
monic nanodipoles.

A. Quasi-static Nanoantenna

We consider a nanodipole with w = h = 10 nm,
gITO = 6 nm and gSiO2 = 4 nm. Figure 3(a) schemat-
ically depicts the field-effect induced charge accumula-
tion and depletion mechanism under applied external
biases of different signs. The sign of applied voltage
determines the direction of static electric field and the
electron charge carriers will be driven opposite to that
direction which results into accumulation/depletion. A
background carrier concentration of nbg = 3×1020 cm−3

is considered for the n-doped ITO layer33. The carrier
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FIG. 3. (a) Schematic representation of charge accumulation
and depletion at the ITO-SiO2 interface upon applying bias
voltages with different signs. (b) The spatial distribution of
carrier concentration as a function of position with respect to
the ITO-SiO2 interface for different applied bias voltages. (c)
The normalized polarizability of unbiased ITO-loaded nan-
odipole as a function of wavelength for different arms lengths.
(d) The normalized polarizability of ITO-loaded nanodipole
with arm length of L = 120 nm as a function of wavelength
for different applied bias voltages. (e) and (f) demonstrate
distribution of electric and magnetic fields at the resonant
wavelength of unbiased ITO-loaded nanodipole with L = 120
nm.

concentration within the ITO layer as a function of posi-
tion with respect to ITO/SiO2 interface is obtained using
Lumerical solver and is plotted in Fig. 3(b) for different
DC applied bias voltages. As it can be observed, a neg-
ative bias voltage results into depletion of charges at the
interface while a positive bias voltage leads to formation
of an accumulation layer. The slight depletion of charges
occurred at 0 V bias is due to lower work function of ITO
compared to that of silver33. The charge distribution in
depletion/accumulation layer exhibits an exponential de-
cay profile with a decay length of ≈ 2.5 nm. This distri-
bution can be translated into an inhomogeneous permit-
tivity profile using the Drude model in equation (16). To
bring out the essential physics effectively and relax the
mesh refinement required for convergence of computa-
tional results, the carrier concentration is taken to change
homogeneously in an effective active region with a thick-
ness of 1 nm which is shown to provide highly accurate
results consistent with the inhomogeneous distribution37.

The nanodipole is illuminated by a normally incident
plane wave with polarization along the arms, as shown in

Fig. 2(a). The scattering from nanoantenna is analyzed
using DDA and the polarizability tensor of nanoantenna
is retrieved as outlined in section I. The dominant com-
ponent in the polarizability tensor of the nanoantenna
is αzz and other components are small due to absence
of polarization cross-coupling and the ultrathin dimen-
sions of nanodipole along x and y directions. As such, in
the rest of this manuscript, polarizability of nanoantenna
refers to αzz component. Figure 3(c) shows the normal-
ized polarizability of nanoantenna as a function of wave-
length for different arm lengths. According to the Mie
scattering theory, the maximum value that the polariz-
ability of a resonant dipolar particle can yield is k308π/9
with the notation used in this paper39. As such, all the
polarizabilities are normalized with a factor of k308π/9
consistent with the approach used in refs2–5. A resonant
peak is observed in the polarizability spectra correspond-
ing to the open-circuit resonance of the nanoantenna3,5

which is shifted toward longer wavelengths by increas-
ing the arm length. The resonant wavelength is located
where the length of nanoantenna is equal to λeff with
λeff being the effective wavelength of guided light along
the nanoantenna. It should be noted that due to the
plasmonic features of silver and high confinement of elec-
tric field at the nanogap, the effective guided wavelength
is significantly smaller compared to the free-space wave-
length which results into drastic miniaturization of opti-
cal nanoantennas3. The radiation efficiency of nanoan-
tenna is enhanced at the resonant wavelength and retains
a reasonably high value over a relatively wide spectral
range around the resonance. In the rest of our anal-
ysis, we choose the arm length as L = 120 nm which
exhibits the resonance close to the free-space wavelength
of λ = 1.55 µm corresponding to the telecommunica-
tion wavelength at C-band. Figure 3(d) demonstrates
the polarizability of this nanoantenna as a function of
wavelength for different applied bias voltages. As ex-
pected, by increasing the voltage, resonance is shifted
into shorter wavelengths due to decrement of the permit-
tivity in the active region of ITO layer which decreases
the capacitance of nanoload. At the same time, the res-
onance becomes broader and weaker in the account of
increment in the carrier-induced optical loss in the ac-
tive region of ITO. An opposite trend is observed for
negative voltages, where depletion of charges leads to in-
crement of the nanoload capacitance and decrement of
carrier-induced optical loss. It can be noted that the
resonance experiences smaller spectral shift for negative
applied bias voltages due to less significant change in the
permittivity of active region of nanoload through deple-
tion of charges. According to Fig. 2(c), depletion of
charge carriers will lead to unity-order increment in the
real part of permittivity, whereas by increasing the car-
rier concentration, the real part of permittivity decreases
and crosses zero leading to a substantial change in the
light-matter interaction. The wide spectral tunability in
the resonant wavelength of the nanodipole is afforded
in the account of high field confinement at the nanogap
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which leads to significant enhancement of light-matter
interactions with the active region at nanoscale. The
distributions of scattered electric and magnetic fields cor-
responding to the naodipole antenna with L = 120 nm at
the resonant wavelength are plotted in Fig. 4(e) and (f),
respectively. The field patterns closely resembles that of
a radiating current dipole. The electric field is strong at
the edges while the highest confinement is occurred at
the nanogap.

B. Time-modulated Nanoantenna

Next, we consider the plasmonic nanoantenna biased
with a sinusoidal RF signal v(t) = v0 sinωmt with modu-
lation frequency of fm = 10 GHz and amplitude of v0 = 5
V as shown schematically in Fig. 4(a). The spatiotempo-
ral distribution of carrier concentration within the ITO
layer corresponding to one cycle of temporal modulation
is obtained using transient mode of Lumerical solver and
is depicted in Fig. 4(b). As it can be seen, the charge dis-
tribution has an exponential decay profile in space while
it is varying almost sinusoidally in time through consec-
utive accumulation and depletion. In this case, the car-
rier concentration in the effective accumulation/depletion
layer is taken to vary as n(t) = nbg(1 + δ sin(ωmt)). It
should be noted that while carrier concentration and ac-
cordingly permittivity have sinusoidal profiles in time,
the temporal profile of polarizability corresponding to the
sub-volumes in the active region of ITO (given by LDR)
is non-sinusoidal but is still periodic with the modulation
frequency of fm.

As a result of time-modulation and as implied by equa-
tions in the formulation section, the input energy to
the nanoantenna is coupled to higher-order frequency
harmonics (f0 ± nfm), where the degree of coupling
is determined by the temporal variations in scattering.
The polarizability of nanoantenna corresponding to dif-
ferent frequency harmonics is retrieved using multifre-
quency DDA, as outlined in section I by considering
Mf = ±3 for the maximum number of harmonics which
is found to be sufficient for convergence of the results
(the amplitudes of higher-order frequency harmonics de-
cay rapidly by increasing the harmonic index such that
all other higher-order frequency harmonics are negligibly
small). In the account of small modulation frequency
compared to the excitation frequency, the up- and down-
modulated frequency harmonics are excited with almost
equal efficiencies29. The nanoantenna polarizability com-
ponents corresponding to the fundamental and first-order
frequency harmonics are plotted in Figs. 4(c) and (d) for
different modulation depths (δ) of carrier concentration
in the active region of ITO layer, respectively. It can be
noted that the frequency conversion efficiency to higher
order harmonics is proportional to the modulation depth
and is maximum in the vicinity of resonant wavelength.
This can be understood from the fact that the tempo-
ral change in the scattering response of the nanoantenna

FIG. 4. (a) The schematic of a time-modulated plas-
monic nanodipole implemented by carrier modulation of ITO
nanoload with an RF signal. (b) The distribution of carrier
concentration as a function of position with respect to the
ITO-SiO2 interface and time within one cycle of temporal
modulation with a frequency of fm = 10 GHz. (c) and (d)
demonstrate normalized polarizability components of time-
modulated plasmonic nanodipole as functions of wavelength
for different modulation depths, corresponding to the funda-
mental and first-order frequency harmonics, respectively. (e)
depicts distributions of electric field at the resonant wave-
length of time-modulated nanodipole corresponding to fun-
damental and first order frequency harmonics.

is maximal around the resonance due to enhanced light-
matter interactions and sensitivity via large confinement
of the electric field in the active region of nanogap. Fur-
thermore, because of coupling to higher order frequency
harmonics, the quality factor corresponding to the funda-
mental frequency harmonic resonance decreases and the
resonant peak becomes broader by increasing the modu-
lation depth.

The electric field patterns corresponding to the funda-
mental and first-order harmonics are plotted in Fig. 4(e)
at the resonant wavelength for the modulation depth of
δ = 0.9 which exhibit similar dipolar distribution with
the highest field confinement in the nanogap associated
with the resonance.
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III. NON-RECIPROCAL LEAKY-WAVE
ANTENNAS

In this section, we study the modal properties of an ar-
ray of nanoantennas and establish non-reciprocal optical
links in NIR regime using a two-port spatiotemporally-
modulated array antenna with leaky-wave architecture in
which the radiation is achieved through space-time tran-
sition of a guided mode into a leaky-wave mode, while
the nonreciprocity of the optical links isolates the fre-
quency of transmission and reception modes of the an-
tenna. This approach allows for full-duplex communica-
tion at NIR regime with a single array antenna in the
account of rejection of interference between transmitted
and received signals at each port. The major portion of
the optical link between the communication nodes con-
sists of the wireless broadcasting link, i.e., the free space
between two antenna systems.

The simulation of nanoantenna arrays has been carried
out in the framework of multifrequency DDA by retriev-
ing multifrequency dynamic polarizability of individual
nanoantennas and replacing the fine meshing of nanoan-
tennas with their dynamic polarizabilities to solve for
the induced dipole moments at different frequency har-
monics. This reduced order model enables us to bring
out the essential physics by neglecting the contribution
of higher-order multipoles and yields a good approxima-
tion to the full-order model which is demonstrated and
discussed in section 3 of Supplemental Material56. In
particular, both dipolar and full-order models predict
the excitation of guided mode along the array with the
same effective wavelength illustrating that the excitation
of guided modes in such plasmonic nanoantenna array is
indeed a result of collective excitation of dipolar modes
in the adjacent elements38,39,46,82. It can be concluded
that retaining the dipolar couplings is sufficient for accu-
rate description of the scattering response from a chain of
transversely polarized plasmonic particles, even for nar-
row spacings. In the case of transverse polarization, the
variation in the scattering response of the elements is very
minor by changing the inter-particle distance and it is
dominated by the dipolar resonance near the wavelength
corresponding to the resonance of isolated particles83–86.

A. Modal Properties of Nanoantenna Array

The modal properties of nanoparticle chains and arrays
of nanodipoles have been comprehensively studied38,39,87.
It has been shown that such arrays may support guided
and leaky modes, with longitudinal and transverse po-
larizations in which the dipole moments of constituent
elements are along and perpendicular to the array axis,
respectively. These modes are characterized by the
complex-valued spatial frequencies along the array direc-
tion k = β + iα. Defining the free-space wavenumber
as k0 = 2π

λ , the modes with |β| < k0 are leaky modes
which are loosely confined to the array and will radi-

ate into free-space, while the modes with |β| > k0 are
guided modes which propagate along the array with no
radiation to free-space. Here, we consider an array of
unbiased ITO-loaded nanodipoles as shown in Fig. 5(a)
which is transversely polarized (p⊥x). It has been shown

FIG. 5. (a) An array of ITO-loaded plasmonic nanodipoles
with a separation distance of d excited by an injected guided
mode. (b) The dispersion diagram of supported backward
guided modes in an array of array of unbiased ITO-loaded
plasmonic nanodipoles for different nanoantenna spacing. (c)
and (d) demonstrate the field distributions of transverse elec-
tric field along array of nanodipoles at the wavelength of
λ0 = 1.55 µm for different nanoantenna spacings of d = 50
nm and d = 70 nm, respectively.

that an array of transversely polarized dipoles supports
a backward guided mode (|βx| > k0)39. Unlike longitudi-
nal mode (for which p ‖ x), the dispersion of transverse
backward mode yields dω

dβx
< 0 for βx > 0, which is a

result of group and phase velocities of guided light be-
ing antiparallel. This mode is supported for a range of
spacing between nanoantennas smaller than a threshold
value. The narrower spacing allowed for transversely po-
larized nanoantennas, yields higher modal confinement
compared to the longitudinally polarized counterparts.
Moreover, as the spacing between the nanoantennas de-
creases, the sensitivity of the mode with respect to ohmic
losses decreases and the bandwidth increases39. This
means that denser arrays are expected to have a bet-
ter guidance of energy. The dispersion diagram of the
nanoantenna array is obtained using the approach de-
veloped in39 and the results are plotted in Fig. 5(b)
for different spacing between nanoantennas. The dashed
lines in Fig. 5(b) denote light lines (|βx| = k0) and the
region between them is the leaky (fast-wave) region and
the region outside is the guided region. In the account of
backwardness of the guided mode, the positive spatial fre-
quencies βx correspond to the modes with negative group
velocity propagating in −x direction (backward propa-
gation) and the negative spatial frequencies βx indicate
positive group velocity and propagation in +x direction
(forward propagation). As it can be observed, by decreas-
ing the spacing between nanoantennas the ratio of |βx/k0|
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corresponding to the transverse guided mode supported
by the array increases, indicating a higher modal con-
finement. The nearfield distributions of the transverse
electric field (Ez) corresponding to the guided modes in
an array of nanoantennas with a total length 3.5 µm and
spacings of 50 nm and 70 nm are demonstrated in Figs.
5(c) and (d), respectively in the x-y plane cutting through
the center of nanoantennas for the excitation wavelength
of λ0 = 1.55 µm (since the dipolar approach is only ap-
plicable for calculation of scattered fields outside of the
elements, the internal fields are excluded in the figures).
The results clearly show the better guidance of the denser
array as expected. In order to achieve minimal absorp-
tion and maximum bandwidth for the guided mode, we
choose the spacing between nanoantennas as d = 50 nm
in the following.

B. Operation Modes of
Spatiotemporally-modulated Leaky-wave Antenna

Next, we consider the nanoantenna array in which the
elements are biased separately with a progressive phase
delay in order to realize a spatiotemporal modulation
in the carrier concentration of ITO nanoloads such that
n(x, t) = nbg(1 + δ cos(ωmt − βmx)). Such modulation
mimics a traveling wave along the array whose phase ve-
locity vm = ωm

βm
and direction controls the space-time

modal transitions via momentum exchange with light.
Since the spatial modulation is a phase-term for tem-
poral modulation, it can be implemented by using RF
phase shifters in the biasing network as shown in Fig.
6(a) to apply temporal modulation with a progressive
phase delay of βmx. In order to model the spatiotem-
porally modulated array, we have retrieved the multi-
frequency dynamic polarizability tensor of the nanoan-
tenna for temporal modulations with different phase de-
lays. The retrieved spectra of polarizability components
corresponding to different orders of frequency harmon-
ics are brought in section 4 of Supplemental Material56.
The results indicate that applying a phase delay of βmx
to the temporal modulation of nanoantenna leads to α

p

experiencing a phase shift of pβmx while maintaining a
constant amplitude. This can also be concluded from
multifrequency DDA equations in which a shift in the
time-domain polarizabilities is mapped to a phase shift
in their Fourier coefficients in the frequency domain (see
section 4 of Supplemental Material56 for derivation).

It is well-established that a spatial modulation allows
coupling of guided modes into radiative leaky modes
through spatial diffraction88,89. In such a case, the dis-
persion diagram is consisted of an infinite set of branches,
where n-th branches are shifted horizontally by nβm
with respect to the branches of unmodulated system and
the spatial diffraction orders are defined by temporal
and spatial frequencies of (f, βx) = (f0, β0 + nβm) with
(f0, β0) denoting frequencies of the input mode. This
leads to reciprocity between transmission and reception

modes as the coupling of (f0, β0) → (f0, β0 − βm) dic-
tates the coupling of (f0,−β0 + βm) → (f0,−β0). The
reciprocity constraint is lifted by space-time modal tran-
sitions upon introducing a temporal modulation. In this
scenario, n-th branches of dispersion diagram are shifted
horizontally by nβm and vertically by nωm with respect
to the branches of unmodulated structure90. Accord-
ing to the Floquet theorem for spatiotempotally peri-
odic media91, the allowed diffraction orders for the sys-
tem are defined by temporal and spatial frequencies of
(f, βx) = (f0 +nfm, β0 +nβm). This implies that spatial
diffraction to higher-order spatial frequency harmonics is
accompanied by a frequency conversion to higher-order
temporal frequency harmonics which can isolate the tem-
poral frequency of transmitted and received waves and
also break the spatial symmetry between transmission
and reception patterns. In the following, we examine the
operation of the spatiotemporally modulated array an-
tenna in Tx and Rx modes.

FIG. 6. (a) An array of plasmonic nanodipoles with spa-
tiotemporal modulation, coupling injected guided modes into
radiative leaky-modes through space-time modal transitions.
(b) The dispersion diagram of spatiotemporally modulated
nanoantenna array and allowed space-time modal transitions
for radiation of forward and backward propagating guided
modes. (c) and (d) demonstrate the radiations patterns for
first-order up- and down-modulated frequency harmonics cor-
responding to injection of backward guided mode from port
1 (forward propagating) and port 2 (backward propagating),
respectively. (e) depicts the distributions of electric field cor-
responding to first-order up- and down-modulated frequency
harmonics when the guided mode is injected from port 1.
(f) three-dimensional radiation pattern of first-order down-
modulated frequency harmonic for injection of a forward
propagating guided mode.
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The array is considered to have a total aperture length
of 11 µm consisted of 220 nanoantennas with a separa-
tion distance of d = 50 nm. The modulation parameters
are chosen as fm = 10 GHz, βmd = −1.55 and δ = 0.9.
The dispersion diagram of this spatiotemporally modu-
lated array antenna is plotted in Fig. 6(b). We study
the radiation characteristics of the antenna by feeding
the antenna from port 1 (forward propagation) and port
2 (backward propagation). The temporal and spatial fre-
quencies of the input backward guided mode into port 1
are defined by (f, βx) = (f0, β0) where f0 is the frequency
corresponding to the wavelength of λ0 = 1.55 µm and
β0 ≈ −7.18k0. This point is located in left-hand side of
the dispersion diagram of Fig. 6(b). The input wave goes
through space-time modal conversion as it propagates
along the array in +x direction. It should be noted that
the modal conversion to a specific space-time harmonic
is not complete due to dissipation loss and intermodula-
tion conversions. However, the long length chosen for the
nanoantenna array ensures that all the modes are either
radiated to the free-space or decayed along the nanoan-
tenna array before reaching the terminations. As such,
the only contribution to the free-space radiation comes
from the leaky-modes. According to the Floquet theo-
rem, the frequencies of the first-order allowed modes for
conversion are (f0−fm, β0−βm) and (f0 +fm, β0 +βm).
The first mode is accessible through branch (n = −1)
which lies within the leaky region while the second mode
is accessible in the guided region. The space-time tran-
sition to the leaky mode is depicted in Fig. 6(b) by the
arrow pointing toward up-right. As a result of this modal
conversion, a bidirectional radiation of down-modulated
frequency (f0 − fm) is achieved in the H-plane through
uplink Tx1 as shown in Fig. 6(c) while the contribution
of up-modulated frequency harmonic to free-space radi-
ation is negligibly small since it is a guided mode. The
radiation angle can be theoretically obtained as89:

φt1 = cos−1(
c(β0 − βm)

ω0 − ωm
), (17)

predicting φt1 ≈ ±62.13◦ which is in excellent agreement
with the radiation pattern shown in Fig. 6(c).

The input backward guided mode into port 2 with
the same temporal frequency can be defined as (f0,−β0)
which lies in right-hand side of the dispersion diagram.
In this case, the first-order allowed modal transitions are
(f0−fm,−β0−βm) and (f0+fm,−β0+βm) among which
only the second mode is accessible within the leaky re-
gion. This transition is depicted by the arrow pointing
toward down-left in the dispersion diagram of Fig. 6(b).
As a result of this transition, a radiation of up-modulated
frequency harmonic is achieved through uplink Tx2 as
shown in Fig. 6(d) toward the following angle:

φt2 = cos−1(
c(−β0 + βm)

ω0 + ωm
), (18)

which is calculated as φt2 ≈ ±117.87◦ consistent with the
bidirectional radiation pattern in Fig. 6(d).

The nearfield distributions of the electric field cor-
responding to the first-order up- and down-modulated
frequency harmonics are shown in Fig. 6(e) for the
case of guided mode excitation from port 1. As it
can be seen, the down-modulated frequency harmonic
shows a bidirectional radiation into free-space while the
up-modulated frequency harmonic is decayed along the
array. The three-dimensional radiation pattern of the
down-modulated frequency harmonic is also shown in
Fig. 6(f) which demonstrates a directive pattern in the
H-plane, whereas in the E-plane, the radiation pattern
is roughly a dumbbell shape similar to a single dipole
antenna.

The above analysis indicates the isolation of frequency
between transmitted waves from port 1 and port 2 (up-
links) which is a result of nonreciprocal nature and direc-
tionality of the antenna. It should be noted that in prin-
ciple, the nonreciprocity and asymmetry in the dispersion
diagram of spatiotemporally modulated antenna can also
largely break the symmetry between φt1 and φt2, how-
ever, due to the fact that accessible modulation frequen-
cies of electro-optical materials are very small compared
to the excitation frequency in NIR regime (ωm << ω0),
the introduced asymmetry in the dispersion digram is
negligibly small and φ1 ≈ 180◦ − φ2.

Next, we investigate the Rx operation mode of the an-
tenna. To this end, we illuminate the array with plane
waves of different incident angles and measure the re-
ceived powers at port 1 and port 2 as shown in Fig. 7(a).
We consider the frequency of incoming light as f0 − fm
which is the transmitting frequency of antenna when it
is fed from port 1. For a free-space mode with βx lo-
cated in the radiation region, two photonic transitions
are allowed into (f0 − 2fm, βx − βm) and (f0, βx + βm).
The first transition allows for efficient coupling to the
backward propagating backward guided mode (βx0 > 0)
on branch (n = 0), when the antenna is incident by the
following angle:

φr1 = cos−1(−
c(−β0 + βm − 2ωm

dβx

dω )

ω0 − ωm
), (19)

which is depicted in the dispersion diagram of Fig. 7(b)
by the arrow pointing toward up-right. The second tran-
sition allows for efficient coupling to forward propagat-
ing backward guided mode (βx0 < 0) on branch (n = 0),
when the antenna is incident by the following angle:

φr2 = cos−1(−c(β0 − βm)

ω0 − ωm
), (20)

which is shown in the dispersion diagram of Fig. 7(b)
by the arrow pointing toward down-left. As such, the
power is received through downlink Rx1 with a frequency
of f0 − 2fm at port 1 when illuminated at an angle of
φr1 ≈ ±62.13◦ while it is received through downlink Rx2

with a frequency of f0 at port 2 when illuminated at
an angle of φr2 ≈ ±117.87◦. The reception patterns
of port 1 and port 2 corresponding to up- and down-
modulated frequency harmonics are shown in Fig. 7(c)
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FIG. 7. (a) Spatiotemporally modulated nanoantenna array
coupling incoming radiation into guided modes through space-
time modal transitions. (b) Dispersion diagram of spatiotem-
porally modulated nanoantenna array and allowed space-time
transitions for receiving the incoming radiation at port 1
(through backward propagating backward guided mode) and
port 2 (through forward propagating backward guided mode).
(c) and (d) demonstrate the reception patterns of the first-
order up- and down-modulated harmonics at port 1 and port
2. (e) and (f) depict the distributions of electric field when the
oblique incidence is coupled to backward and forward prop-
agating backward guided modes of first-order frequency har-
monics, respectively.

and (d), respectively which show an excellent agreement
with the theoretically predicted values for the reception
angles. It can be noted that the reception patterns are
almost symmetric. This is due to the fact that, in the
account of small modulation frequency, ωm

ω0
<< dω

dβ and

thus φr1 ≈ 180◦ − φr2. The nearfield distributions of
the electric field corresponding to the up- and down-
modulated frequency harmonics are also shown in Figs.
7(e) and (f) for incident angles of φr1 and φr2, respec-
tively which clearly show the reception of down- and
up-modulated frequency harmonics at port 1 and port
2 through coupling to backward and forward propagat-
ing guided modes.

Comparing the transmission and reception perfor-
mance of the array antenna in Figs. 6 and 7, clearly
illustrates frequency isolation between transmission and
reception modes (uplinks and downlinks) which rejects
the interference of transmitted and received signals at
each port of the antenna. Port 1 transmits and receives
through down-conversion of frequency while port 2 up-
converts the frequency of transmitted and received waves.

It should be mentioned that, in addition to the isolation
of Tx and Rx modes in the temporal frequency domain,
the spatiotemporal modulation can isolate the two modes
in the spatial domain as well meaning that in principle
the transmission and reception angles can be drastically
different (φt1 6= φr1). However, due to the fact that in
the NIR regime, the accessible modulation frequencies
of electro-optical materials are very small compared to
the optical frequency, ωm

ω0
<< dω

dβ and thus φt1 ≈ φr1.

The spatial asymmetry between transmission and recep-
tion is the key to developing power isolators. In such
applications, larger modulation frequencies can be ob-
tained using optical modulation of carrier concentration
in electro-optical materials92 instead of electrical biasing.
However, the focus of this paper has been on developing
transceiver antennas requiring isolation of reception and
transmission patterns in the temporal frequency domain
which can be accomplished using small modulation fre-
quencies. In fact, the spatial symmetry of transmission
and reception modes makes enables isolation of the trans-
mitted and received signals propagating along the same
direction at the same frequency through up- and down-
conversion of frequency which is desirable in a full-duplex
communication scheme (Fig. 1(c)). In such a scenario,
a three-port waveguide can be employed as a power di-
vider/combiner as schematically shown in Fig. 8 which
allows routing the input and output signals at different
ports while the individual array antenna is serving the
role of a full transceiver and rejects the interference be-
tween the signals.

FIG. 8. A spatiotemporally modulated array antenna rout-
ing the transmitted and received signals propagating along
the same direction at different paths through a three-port
waveguide while rejecting the interference between this sig-
nals; Thus, operating as a full transceiver.

C. Beam-scanning and Antenna Characteristics

In the following, we comprehensively study the char-
acteristics of spatiotemporally modulated array an-
tenna namely scanning angle, directivity, half-power
beamwidth, radiation efficiency and gain in terms of
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wavelength and spatial modulation frequency. It should
be noted that the length of the leaky wave antennas cho-
sen here (11 µm) is sufficiently long such that all the
power is either radiated into free-space or decayed along
the array. As such, all the antenna characteristics are
determined directly by the modal properties and wave-
length.

In the account of electrical tunability of nanoanten-
nas, both temporal (fm) and spatial (βm) modulation
frequencies can be adjusted electrically to tune the trans-
mission/reception frequency or scan the beam in real-
time. According to equations (17)-(20), the transmis-
sion and reception angles can be controlled through spa-
tial modulation frequency (βm) which is applied by the
phase shifters in the RF biasing network. Figure 9(a)
shows the beam-scanning functionality of array antenna
in transmission of down-modulated frequency harmonics
by changing βm, when it is fed at port 1 (Tx1 operation
mode). All the radiation patterns are normalized with
respect to peak gain to clearly demonstrate the scanning
angles. An angle-of-view of 180◦ can be achieved in the
beam-scanning from backward endfire (φ = 180◦) to for-
ward endfire (φ = 0◦).

The bandwidth of the transverse guided mode sup-
ported by the dense array of nanoantennas is enough to
cover the entire C-band. As such, the antenna can be
used at different frequencies allowing to multiplex differ-
ent communication channels into a single platform via
dense wavelength division in order to increase the com-
munication link capacity. The variation of beaming angle
corresponding to the Tx1 operation mode is shown in Fig.
9(b) as a function of wavelength and spatial modulation
frequency. The dispersion of transverse backward guided
mode yields dω

dβx
< 0 which leads to increment in the spa-

tial frequency of guided mode β0 by increasing the wave-
length (decreasing the frequency). As such, the radiation
angle in upper (lower) half-space turns counter-clockwise
(clockwise) toward backward endfire by increasing the
wavelength consistent with predicted values by equation
(17) while the antenna preserves its functionality.

The directivity of radiation pattern corresponding to
the Tx1 operation mode is calculated using1:

Dt =
2π|Emax|2∫ 2π

0
|E(φ)|2dφ

, (21)

and the result is presented in Fig. 9(c) as a function
of wavelength and spatial modulation frequency wherein
the contours denote the corresponding beaming angles.
It can be observed that the variations of directivity is
correlated with the beaming angle such that the maximal
directivity corresponds to broadside angles (φt1 = ±90◦)
while the directivity decreases as the beam approaches
endfire direction (φt1 = 0◦, 180◦). Moreover, increas-
ing the wavelength results into decrement of the direc-
tivity due to the increase in the imaginary part of guided
mode’s spatial frequency (attenuation constant).

The half-power beamwidth (∆φ3dB) of the radiation
pattern is also obtained in terms of wavelength and spa-

FIG. 9. (a) Electrical beam-scanning functionality of the ar-
ray antenna in Tx1 operation mode by adjusting the modula-
tion phase delay. (b)-(f) demonstrate the beaming angle, di-
rectivity, half-power beamwidth, radiation efficiency and gain
of the array antenna as functions of wavelength and spatial
modulation frequency in Tx1 operation mode, respectively.
The contours denote the beam angle.

tial modulation frequency which is depicted in Fig. 9(d).
The narrowest beamwidth corresponds to broadside and
the width of the beam becomes wider as it approaches
endfire which is consistent with the radiation patterns
shown in Fig. 9(a).

The radiation efficiency of the antenna with respect to
the input power depends on the feeding approach. Since
the only contribution to the free-space radiation comes
from modal transition of the guided mode, direct injec-
tion of guided mode through a waveguide port leads to
higher efficiency compared to the excitation with an ex-
ternal dipolar emitter. Here, we define the radiation ef-
ficiency (ecd) with respect to the power accepted by the
antenna at the input location, irrespective of the feed-
ing approach. Figure 9(e) demonstrates the radiation
power efficiency of the down-modulated frequency har-
monic with respect to the received power at port 1 as a
function of wavelength and spatial modulation frequency.
As expected, the maximum radiation efficiency is ob-
tained around the operating wavelength of λ = 1.55 µm
which corresponds to the resonant wavelength of nanoan-
tennas. Moreover, the radiation efficiency increases as
the beam approaches endfire while it exhibits a minimum
at broadside. It should be mentioned that despite the en-
hancement of radiation efficiency around the resonance,
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the efficiency is still limited to a less than 12% in the ac-
count of ohmic losses introduced by ITO and silver as well
as imperfect modal transition to higher order frequency
harmonics. It is noteworthy that the modal transition
efficiency can be increased through decrement of modu-
lation depth and increasing the interaction length which
also results into larger dissipation loss24. As such, there
is a trade-off between the dissipation loss and modal con-
version efficiency.

Finally, the antenna gain corresponding to the trans-
mission in Tx1 mode is obtained by multiplication of ra-
diation efficiency and directivity (Gt = ecdDt) and the
result is shown in Fig. 9(f) as a function of wavelength
and spatial modulation frequency. As it can be seen a
reasonably large gain is achieved over the entire C-band
around the resonant wavelength of nanoantennas.

Similar results can be obtained for reception mode of
the antenna which are not included for the sake of brevity.

IV. CONCLUSION

In summary, we have implemented time-modulated
nanoantennas in the NIR frequency regime through in-
tegration of ITO into the gap of plasmonic nanodipoles
and gate biasing with RF signals. We have also presented
an extended DDA formulation to treat time-modulated
systems with multiscale features in spatial and temporal
domains based on a multifrequency approach and charac-

terized electro-optical response of nanoantennas through
linking of charge transport and electromagnetic models.
The resonant characteristics of dipole nanoantennas lead
to large confinement of electric field at the nanogap which
enhances light-matter interactions with the ITO active
region at nanoscale, yielding enhanced frequency con-
version efficiencies. A spatiotemporally-modulated ar-
ray antenna with leaky-wave architecture has been re-
alized using an ensemble of separately biased nanoan-
tennas with a progressive phase delay where the radia-
tion is achieved through space-time modal transitions of
a guided mode. Nonreciprocal optical links have been es-
tablished through up-conversion and down-conversion of
the frequency which isolate the frequencies of transmitted
and received signals at each port. The electrical beam-
scanning functionality has been demonstrated and the
dependence of the antenna characteristics to wavelength
and modulation parameters has been studied comprehen-
sively. This approach enables full-duplex communication
through a shared transmission medium with an individ-
ual antenna at each communication node. Moreover, it
allows for integration of multiplexing several wavelengths
into a single transmission medium which can be exploited
to increase the capacity of communication link.
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(2011).

58 B. Zhang, G. Xiao, J. Mao, and Y. Wang, IEEE Transac-
tions on Antennas and Propagation 58, 3576 (2010).

59 L. Hu, L.-W. Li, and R. Mittra, IEEE Transactions on
Antennas and Propagation 58, 3086 (2010).

60 A. Rashidi, H. Mosallaei, and R. Mittra, Journal of Ap-
plied Physics 109, 123109 (2011).

61 D. Ansari Oghol Beig and H. Mosallaei, Progress In Elec-
tromagnetics Research 43, 211 (2012).

62 S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kha-
rina, and J.-P. Heliot, IEEE Transactions on Antennas
and Propagation 44, 1006 (1996).

63 R. Marqués, F. Mesa, J. Martel, and F. Medina, IEEE
Transactions on Antennas and Propagation 51, 2572
(2003).

64 A. Ishimaru, S.-W. Lee, Y. Kuga, and V. Jandhyala,
IEEE Transactions on Antennas and Propagation 51, 2550
(2003).

65 F. B. Arango and A. F. Koenderink, New Journal of
physics 15, 073023 (2013).

66 Y. Shi, W. Shin, and S. Fan, Optica 3, 1256 (2016).
67 J. Goodman, B. T. Draine, and P. J. Flatau, Optics Let-

ters 16, 1198 (1991).
68 D. Ansari-Oghol-Beig, M. Rostami, E. Chernobrovkina,

S. K. Saikin, S. Valleau, H. Mosallaei, and A. Aspuru-
Guzik, Journal of Applied Physics 114, 164315 (2013).

69 S. Campione and F. Capolino, Radio Science 47 (2012).
70 Y. P. Chen, E. Wei, W. C. Choy, L. Jiang, and W. C.

Chew, Optics express 20, 20210 (2012).
71 J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, Nature

nanotechnology 8, nnano (2013).
72 M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock,

E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater,
Optics express 17, 18330 (2009).

73 Y.-J. Lu, R. Sokhoyan, W.-H. Cheng, G. K. Shirmanesh,
A. R. Davoyan, R. A. Pala, K. Thyagarajan, and H. A.
Atwater, Nature Communications 8, 1631 (2017).

74 G. Kafaie Shirmanesh, R. Sokhoyan, R. A. Pala, and H. A.
Atwater, Nano letters 18, 2957 (2018).

75 G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Al-
bonesi, P. M. Fauchet, and E. G. Friedman, Integration,
the VLSI journal 40, 434 (2007).
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