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Hyperbolic propagation offers exciting opportunities in nanophotonics, from sub-diffraction 

imaging to enhanced local density of states. This transport regime is typically induced by strong 

modulation of conductivity, i.e., with alternating metallic and dielectric material properties. 

Here, we analyze a moving impedance surface, showing that suitably tailored homogeneous 

metasurfaces can support one-way hyperbolic propagation when in motion, adding non-

reciprocity to hyperbolic propagation phenomena, and without suffering from nonlocal effects 

stemming from discretization or finite granularity of the surface. 

1 Introduction 

The electrodynamics of moving media has been an active research topic for long time  [1–5], 

highlighting various unusual properties, such as non-reciprocity and large anisotropy. Recently, 

with the growing interest in exotic phenomena in photonics, the interest in moving media has 

grown, including opportunities to induce parity-time (PT) symmetry and symmetry 

breaking [6,7], quantum friction [8–11] and wave instabilities [12,13]. Recently, fast-moving 
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systems were proposed and studied, such as rapidly rotating particles [14,15] and 

optomechanical systems [16,17], which present promising platforms to realize these unusual 

effects. In a different context, hyperbolic wave propagation in metamaterials has also attracted 

significant interest, offering opportunities to engineer and enhance the emission of particles and 

molecules [18,19], for imaging and focusing [20]. To date, hyperbolic propagation has been 

mostly achieved using layered or wire bulk metamaterials [21], which may be accompanied by 

broadband non-reciprocity when a large magnetic bias is applied [22]. Hyperbolic metasurfaces, 

formed by alternating conductive and insulating impedance strips, enable direct and easier access 

to these unusual and enhanced light-matter interactions [23–25], supporting hyperbolic transport 

over a surface. In both approaches, however, the finite periodicity ultimately limits the exotic 

response by setting a limit on the cut-off wavenumber for hyperbolic propagation and 

introducing nonlocal effects  [26]. Naturally hyperbolic materials, such as boron nitride, may 

provide enhanced light-matter interactions within a homogeneous bulk response, but they 

typically suffer from loss and are limited to narrow frequency ranges of operation  [27,28]. In the 

following, we explore non-reciprocal hyperbolic propagation over a surface without the need of 

periodicity, strong modulation of the conductivity properties and of magnetic bias, but instead 

based on moving homogeneous surfaces. We show that motion above a certain velocity can 

support hyperbolic propagation with highly anisotropic and non-reciprocal responses, offering an 

interesting way to combine hyperbolic regimes with directional features.  
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2 Formulation 

The geometry of interest, shown in the inset of figure (1a), consists of a homogeneous 

impedance surface moving with velocity tangent to the surface in the lab frame S. In S’, the 

system where the surface is at rest, we use the conventional impedance boundary condition 

 ( )2 1 tanˆ ' ' '× − =n H H σE   (1) 

where 1 (2) refers to above (below) the surface and σ  is the conductivity tensor. We utilize the 

Lorentz transformations for the electromagnetic fields  [1]  
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with ( ) 1/22/ , , 1c β γ β
−

= = = −β v β , and the matrix operators ,α β  are defined in the 

Appendix. Upon substituting equation (2) into equation (1), after some straightforward steps we 

obtain the equivalent boundary condition for a tangentially moving metasurface  

 ( ) ( ) ( )1 1
2 1 tan 0 2 1ˆˆ ˆxHγ γ ε− −× − = + × + ⋅ −x H H α σα E v x n E E v , (3) 

expressed in terms of the fields in the lab frame S. The right-hand side contains three electric 

current contributions: the first is an effective conduction current, displaying motion-induced 

anisotropy; the second term indicates magneto-electric coupling arising from the Lorentz force 

sustained by the normal magnetic field; the third term is a convection current, generated by the 

mechanical motion of the induced surface charge. The effective masses and distances associated 

with the surface structure are also altered due to the motion by a factor γ , and these second-
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order effects are taken into account in the effective conductivity matrix 1 1γ − −=σ α σα% . In this 

work, we assume the surface has an isotropic surface impedance 1 /sZ jXσ= = , with σ  being 

the surface conductivity ( j te ω  time dependence used throughout the paper), and the motion is 

chosen such that ˆv=v z  ( ˆβ=β z ) with 0v >  ( 0β > ). We consider an inductive surface ( 0X > )  

which may describe, for instance, a sheet of pristine graphene or other 2D materials in the mid-

infrared range, or suitably designed metasurfaces in optics or radio-frequencies [29–32]. After 

substituting these assumptions into equation (3), the boundary condition used assumes the form 

 ( ) ( ) ( ) ( )1 2 tan 0 0 1 0 2ˆˆ ˆ ˆxv vσγ μ ε ε× − = + × + ⋅ −x H H σE z H z n E E% ,  (4) 

with the effective conductivity now expressed in the simple form 1

0
0
γ

σ
γ −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
σ% . 

3 Quasi-TM one-way hyperbolic modes 

In S’, only transverse-magnetic (TM) modes are supported, as expected for homogeneous 

inductive impedance surfaces [33,34]. Due to the anisotropy induced by the motion, the surface 

waves propagating in S will no longer be pure-TM  [30] when considering propagation into 

various angles, but since they are obtained from the transformation of pure-TM waves in S’, and 

for moderate speeds are still dominated by their TM component, we shall term them quasi-TM 

(qTM). The electromagnetic fields associated with the surface waves have the form [ ],tj y z xe e α− ⋅ −k , 

with in-plane wave vector tk  and confinement coefficient α . Their dispersion relation in S is 

obtained by substituting the surface-wave fields into boundary condition (4), which results in 

 ( )0 tzk kα δ β= −  , (5) 
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with ( )2
02 /Xδ γ η= . Combining this with the free-space dispersion ( 2 2 2 2

0tz tyk k kα+ = + ) gives 

the in-plane dispersion iso-frequency contour in S 
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.  (6) 

The dispersion is clearly non-reciprocal, due to the odd tzk  term, induced by the linear motion 

that breaks time-reversal symmetry. Its expression yields an ellipse ( 2 1δβ < ) or hyperbola 

( 2 1δβ > ), as shown in Fig. (1a) for varying values of β . The threshold of β  for which the 

topological transition occurs is 

 ,
,

p TM
th TM

v
c

β = ,  (7) 

where ( ) 1/22 2
, 01 4 /p TMv c X η

−
= +  is the phase velocity of the TM surface waves on the stationary 

surface. Since α in equation (5) must be positive for the wave not to diverge, we additionally 

obtain 0tzk kβ < . When ,th TMβ β>  this inequality forbids one branch of the hyperbola in (6), 

yielding a one-way hyperbolic dispersion contour, as seen in Fig. 1, where the slope of the 

hyperbola asymptote is 2 2
,/ 1p TMv vγ − . 

In the qTM regime, due to the nature of the fields the (normal electric field, very weak normal 

magnetic field) the convection current is the dominant term compared to the Lorentz current. 

Therefore, in this regime we may define an effective qTM conductivity tensor 

 ( ) ( ) 1 1 1tan 0 1 0 2 tan

0
ˆˆ

2 2ty tz

v
jvk jvk

σγ
ε ε

α σγ α− − −

⎛ ⎞
+ ⋅ − = ⎜ ⎟+⎝ ⎠

σE z n E E E%   (8) 
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which captures the propagation properties in this system: hyperbolic propagation is associated 

with a change of sign of the first diagonal term of (8) for large enough values of v , and non-

reciprocity arises from the odd-dependence in tzk . 

We validated our analysis calculating with a full-wave electromagnetic solver (COMSOL), the 

fields induced on a finite segment of moving impedance by a source on the left side of the strip, 

and the motion was modeled using the effective boundary condition in equation  (4). Figure (1b) 

shows the a snapshot of the longitudinal electric field { }Re zE  when the surface is static and 

05X η=  ( 0 0 0/η μ ε= ) when exciting from the 0z =  by  an aperture field distribution 

corresponding to the ˆ+z  propagating wave. Here, the supported surface wave has the expected 

wavenumber 0~ 10tzk k . For 0.05β =  [Figure (1c)] non-reciprocity, as evident from the 

different wavelength for forward and backward waves. The extracted wave-numbers, after 

Fourier transforming the fields (shown in figure (1d)), are consistent with our analytical 

dispersion, , 06.7tz forwardk k≈  and , 020.15tz backwardk k≈ . Nonreciprocal propagation of surface 

waves was also discussed in  [35], where nonreciprocity was induced by a drift current driven 

over graphene and in [36] through a metallic slab; here mechanical motion effectively replaces 

the current bias. 

4 Quasi-TE one-way hyperbolic modes 

Interestingly, the surface motion enables transverse-electric (TE) surface modes, which are 

forbidden along inductive impedance surfaces at rest. The dispersion equation for quasi-TE 

(qTE) surface waves can be obtained in the same way as qTM, and it reads 
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 ( )0
0 cos

2TE tk k
X

ηα γ β ϕ= − − . (9) 

For low speeds, 0TEα >  can be satisfied only for capacitive surfaces 0X < . However, X  can 

be positive in (9) when the term in brackets becomes negative. In this case, while the surface at 

rest is inductive, the motion enables TE propagation. Interestingly, these waves can only have 

non-reciprocal hyperbolic dispersion and, using Eq. (9), we find that these modes are supported 

for velocities satisfying ( )( ) 1/22
, 01 / 2th TE Xβ β η

−
> = + . For large surface inductance values, like 

those examined in figure (1), i.e., far from resonance, this value is close to 1, implying fast 

required speeds. However, this requirement can be relaxed using lower inductance values, for 

metasurfaces closer to resonance, enabling unique propagation features of both qTE and qTM 

modes. The effective boundary condition in (4) shows that for qTE propagation the conduction 

and Lorentz current currents are dominant comparing to the convection current, which defines 

the equivalent qTE conductivity  

 ( ) ( )0 0
tan 0 tan1

1 / /ˆ
0

tz ty
x

k k k k
v

γσ β γσβ
μ

σγ −

⎛ − ⎞
+ × = ⎜ ⎟

⎝ ⎠
σE σ z H E% % .  (10) 

In figure (2a) we show the dispersion of qTE waves on an inductive surface for increasing 

velocity, with 0 / 20X η= , yielding a threshold value of , 0.1th TEβ  . As the velocity increases 

the dispersion hyperbola become wider. Figure (2b) maps various propagation regimes for qTE 

and qTM modes vs. ,X β . The black curves represent the threshold values , ,,th TE th TMβ β . For low 

velocities only anisotropic qTM propagation is possible, but as the speed increases additional 

regimes arise: high-inductance surfaces allow one-way hyperbolic qTM modes, whereas low-

inductance surfaces allow hyperbolic qTE modes. For high velocities, both hyperbolic regimes 
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are possible. Figure (2c) shows the emission of a magnetic 2D dipole ˆm=m y  exciting a TE 

mode for ,0.15 th TEβ β= > , and one-way efficient emission takes place. Fig. (2d) shows qTM 

excitation in the elliptic regime, yielding anisotropic nonreciprocal propagation. Fig. (2e) shows 

qTM excitation in the hyperbolic regime for the same surface at a faster speed; one-way 

hyperbolic emission is visible, with enhanced emission rates and stronger spatial localization. 

Fig. (2f) shows excitation of the surface in Fig. (2c) by a magnetic dipole, inducing one-way qTE 

hyperbolic surface waves. Both hyperbolic regimes display high intensity of the excited waves in 

the directions parallel to the hyperbola asymptotes, which leads to the expected light-matter 

interaction enhancement, here uniquely combined with strong non-reciprocal response.  

Close examination reveals that qTE propagation over moving inductive surfaces arises from TE 

modes excited at negative frequencies in S’. Heuristically, Eq. (9) shows that in S’ TE modes are 

supported on inductive surfaces ( 0X > ) if 0ω < . Negative frequencies in S’ can be Doppler 

shifted to positive in S for sufficiently large velocities, allowing access to these modes. Coupling 

of radiation processes with negative frequency waves using motion was studied in  [12,37]. 

5 Effect of losses  

When losses are considered, we expect waves with different wavenumbers to have different 

decay constants. To incorporate losses in our model, we let the surface impedance obtain a 

complex value - s I RZ jX X jX= = − + . In this scenario, , tkα  are also complex-valued, 

,R I t tR tIj k k jkα α α= + = + , and for simplicity we assume ẑ  propagation. considering qTM 

propagation, and substituting the complex valued parameters into the boundary condition in 

equation (4), we get 
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 ( )( )02R I R I tR tIj X jX k k j kα α γ β β+ = + − −   (11) 

And an example for the asymmetric attenuation is shown in figure (3). We see that as the speed 

of the surface increases, the separation in the attenuation coefficients becomes larger, in 

conjunction with the real parts of zk . This can be attributed to the fact that larger real parts of the 

wavenumber imply stronger confinement of the fields, which lead to enhanced absorption, larger 

imaginary parts of tk , and asymmetric propagation distances. 

6 Conclusions 

We have shown that moving metasurfaces enable a unique regime of non-reciprocal hyperbolic 

wave propagation, supporting the insurgence of TM and TE surface modes coupled over the 

same surface, which enable the directional emission of localized electric and magnetic emitters 

over a surface with strongly localized enhanced light-matter interactions. While the required 

speeds may be impractical in some scenarios, one may consider alternative systems to 

qualitatively demonstrate some of these effects, such as rotating surfaces [14,15], or space-time 

modulated surfaces that effectively mimic motion  [38–40]. We are currently exploring these 

opportunities. 

7 Appendix 

To compactly define the electromagnetic field Lorentz transformations we use matrix operators 

defined in  [1], listed here for the sake of completeness. The operator β  represents the ×β  

operation 
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0

0
0

z y

z x

y x

β β
β β
β β

⎛ ⎞−
⎜ ⎟= × = −⎜ ⎟
⎜ ⎟−⎝ ⎠

β β I   (12) 

And α  is defined as 

 ( ) 21γ
β

= + − ββα I   (13) 

Where I  is the 3x3 unit matrix, and ββ  is the external product. 
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Figures 

 

Figure 1. (a) Isofrequency contours for the normalized wavenumber. The value of β  is color 

coded. A topological transition from elliptical to hyperbolic is noticed around the threshold value 

0.1THβ ≈ (green thick line), also highlighted in the color bar. The surface inductance is 05X η= .  

The inset shows the geometry of interest. (b) zE  distribution when the surface is stationary. (c) 

zE  distribution when 0.05β = , corresponding to the magenta curve in panel (a). (d) Fourier 

transform of zE  presented in (c). The dominant wavenumbers are labeled. 
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Figure 2. (a) Dispersion of the qTE modes on a moving inductive surface, color coded according 

to the value of β , for 0/ 1/ 20X η = . (b) Map of the possible guiding regimes of qTM and qTE 

modes over a moving inductive surface. (c) Excitation of one-way TE surface wave on a moving 

impedance surface by a 2D magnetic dipole with 0.15β = . (d) Excitation of qTM waves in the 

elliptic regime, 0/ 5, 0.05X η β= = (purple region in (b)). (e) Excitation of qTM surface waves in 

the hyperbolic regime, 0/ 5, 0.15X η β= = ( orange region). (f) Excitation of qTE surface waves 

in the hyperbolic regime, same parameters as (c) (purple region).  
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Figure 3. Real and imaginary parts of the longitudinal wavenumber zk  for propagation on lossy 

impedance surface. The conductivity parameters chosen here are 05RX η=  and 00.1IX η= .  

 

 

 

 

 


