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We present analytical and numerical results on the formation and properties of the leaky stop
band in one-dimensional photonic lattices. At the second stop band, one band edge mode suffers
radiation loss generating guided-mode resonance whereas the other band edge mode becomes a
non-leaky bound-state in the continuum. We show that the frequency location of the leaky band
edge, and correspondingly the bound-state edge, is determined by superposition of Bragg processes
generated by the first two Fourier harmonics of the spatial dielectric constant modulation. At the
closed-band state, we discover an analytic condition for the exceptional point where frequency is
fully degenerate.

Periodic subwavelength metastructures, including one-
dimensional (1D) and two-dimensional (2D) metagrat-
ings in photonic-crystal slab geometry, are governed by
principles that depend strongly on the scale of the oper-
ational wavelength λ relative to the period Λ. In the
deep subwavelength regime Λ ≪ λ, classic effective-
medium theory [1] becomes accurate and the materials
are effectively homogenized enabling facile phase control,
anti-reflection properties, and polarization manipulation.
In the subwavelength resonance regime with the period
moderately smaller than the wavelength Λ < λ, on the
other hand, effective-medium theory fails and the metas-
tructures exhibit intricate resonance effects on account
of coupling of incident light to quasi-guided lateral Bloch
modes [2]. The attendant resonance regime enables a va-
riety of novel device concepts exemplified by wideband
reflectors [3], narrow bandpass filters [4], and polarizers
[5]. Most of the important properties are associated with
the second (leaky) stop band because it admits light in-
jection into the lattice via broadside illumination. More-
over, at the second stop band, only two propagating ex-
ternal (zero order) waves exist and thus energy transfer
between them is particularly efficient.

In this Letter, we address fundamental properties of
the second band gaps of photonic lattices in the resonance
regime. The band structure admits a leaky edge and a
non-leaky edge for each supported resonant Bloch mode
if the lattice is symmetric. The leaky modes generate
various spectral responses via guided-mode resonances
(GMRs) and the non-leaky edge becomes a bound-state
in the continuum (BIC), or embedded eigenvalue, cur-
rently of great scientific interest [6–18]. We show that
it is possible to control the width of the leaky band gap
by lattice design. In particular, as a modal band closes,
there results a degenerate state – this state is remark-
able as it is possible to transit to it by parametric and
material choice as shown here. We demonstrate that the
transition to, and across, the degenerate point executes a
band flip. To understand the physical mechanisms induc-
ing the band closure and the band flip, we investigate the
band gap formation relative to lattice harmonic content
and device parameters by employing a semi-analytical
model and finite-difference time-domain (FDTD) simu-

lations [19, 20]. The semi-analytical dispersion model is
particularly powerful as it provides direct physical insight
into leaky band dynamics including band closure and the
degenerate state associated with exceptional points in
dispersion.

As noted in Fig. 1(a), we analyse a single 1D peri-
odic layer of thickness d enclosed by a substrate with
dielectric constant ǫs and a cover region of ǫc. The
periodic layer acts as a waveguide as well as a phase-
matching element because its average dielectric constant
ǫavg = ǫl + ρ(ǫh − ǫl) = 4.00 is larger than ǫs = 2.25
and ǫc = 1.00, where ǫh and ǫl represent the high and
low dielectric constants, respectively, and where ρ is the
fill factor of the high dielectric constant part. We use
a parameter ∆ǫ = ǫh − ǫl to represent the level of di-
electric constant modulation, keeping ǫavg constant to
highlight the effect of changes in ∆ǫ clearly. In this 1D
case, photonic band gaps open up for media with ǫh and
ǫl when 0 < ρ < 1 and ∆ǫ > 0. As shown schematically
in Fig. 1(b), leaky modes in blue circles generate GMR
effects in the reflection spectra by coupling with the in-
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FIG. 1. (color online) (a) Schematic of a 1D photonic lat-
tice with a normally-incident TE-polarized plane wave. (b)
Conceptual illustration of the band flip and bound-state tran-
sition. Here, kz is the wavevector along the z-direction and
K = 2π/Λ is the magnitude of the grating vector. Guided
modes are described by complex normalized frequency Ω.
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FIG. 2. (color online) Band flip and bound-state transitions in a 1D leaky-mode photonic lattice. (a) FDTD simulated
dispersion relations near the second stop band for six different values of ∆ǫ. Insets with blue and red colors illustrate spatial
electric field (Ey) distributions of band edge modes at the y = 0 plane. Vertical dotted lines represent the mirror planes in the
computational cells. The band gap closes when ∆ǫ = 0.62. Before and after the band gap closure, spatial field profiles of the
band edge modes are reversed. (b) Calculated radiative Q factors of the upper and lower bands. Bound states with asymmetric
modal profiles are located in different bands before and after the band gap closure. In the FDTD simulations, we use structural
parameters d = 0.50 Λ, ρ = 0.48, ǫc = 1.00, ǫs = 2.25, and ǫavg = 4.00. Details on the FDTD simulations are provided in the
Supplemental Materials [22].

cident wave whereas BICs in red circles cannot produce
a resonance because they are symmetry protected. The
location of the BIC (leaky mode) transfers from the up-
per (lower) to the lower (upper) band edge due to the
band flip effect as ρ and/or ∆ǫ increase. In general, if
the lattice supports numerous leaky modes, each mode
will undergo similar transitions as each mode possesses
a band gap [21]. In this study, we limit our attention to
the fundamental TE mode as this simplest case brings
out the key properties of the band dynamics.

Figure 2(a) shows the evolution of the second stop
band under variation of ∆ǫ for ρ = 0.48. As the value of
∆ǫ increases from zero, the band gap opens and its size
increases. However, the gap size decreases and becomes
zero as ∆ǫ is further increased. On additional increase in
∆ǫ the band gap reopens and its size grows again. These
dynamics are associated with band flip as seen by the spa-
tial profiles of the band edge modes plotted in the insets
of Fig. 2(a). When ∆ǫ is 0.4 and 0.55, the upper (lower)
band edge modes have asymmetric (symmetric) spatial
electric field (Ey) distributions. When ∆ǫ is 0.62 and
0.75, on the other hand, the upper (lower) modes have
symmetric (asymmetric) field distributions. The field
computations also show that symmetric band edge modes
are radiative out of the grating layer whereas asymmetric
modes are well localized in the grating layer. The band

transitions associated with the symmetry-protected BIC
states are seen clearly in Fig. 2(b) depicting Q factors
as a function of kz. When ∆ǫ is 0.4 and 0.55, the BIC
state resides in the upper band and the Q factor increases
without bound at the center of the first Brillouin zone.
Meanwhile, the Q factor in the lower band does not ex-
ceed 1500 in the computed region |kz/K| ≤ 0.006. On the
contrary, Fig. 2(b) shows that high-Q BIC states exist in
the lower band when ∆ǫ is 0.62 and 0.75.
We now show that the band flip and inter band tran-

sition presented in Fig. 2 is induced by superposition of
Bragg processes denoted by BRq,n where q indicates the
Bragg order and n denotes the Fourier harmonic of the
dielectric constant modulation. As an approximation, we
keep only the strongest Bragg processes which are BR2,1

operating as a second-order Bragg reflection off the first
Fourier harmonic and BR1,2 defining a first-order Bragg
reflection by the second harmonic. Central to our study
is investigating photonic band structures analytically by
solving the 1D wave equation given by [23]

(

∂2

∂x2
+

∂2

∂z2

)

Ey(x, z) + ǫ(x, z)k20Ey(x, z) = 0, (1)

where k0 denotes the free-space wavenumber. Equa-
tion (1) can be solved numerically by expanding the
periodic dielectric function ǫ(x, z) in a Fourier series
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and by expanding the electric field Ey as plane waves
[24]. For the 1D symmetric lattice, the dielectric func-
tion can be expanded in an even cosine function series
ǫ(z) =

∑∞

0
ǫn cos(nKz) where the Fourier coefficients

are given by ǫ0 = ǫavg and ǫn≥1 = (2∆ǫ/nπ) sin(nπρ).
For clear insight into the leaky-mode band dynamics,
we use a simple semi-analytical approach proposed by
Kazarinov and Henry (KH); this model is then veri-
fied by rigorous FDTD computations. The KH model
solves the wave equation by retaining only the zeroth,
first, and second Fourier harmonics [25]. The spatial
electric field distribution is approximated as Ey(x, z) =
[A exp(+iKz) + B exp(−iKz)]ϕ(x) + Erad, where ϕ(x)
characterizes the mode profile of the unmodulated waveg-
uide and Erad represents the radiating diffracted wave.
Near the second stop band, the dispersion relation can
be written as

Ω(kz) = Ω0 −
(

ih1 ±
√

k2z + (h2 + ih1)2
)

/(Kh0), (2)

where Ω0 is the Bragg frequency under vanishing index
modulation and the coupling coefficients are given by

h0 = Ω

∫ ∞

−∞

ǫ0(x)ϕ(x)ϕ
∗(x)dx, (3)

h1 = i
K3Ω4ǫ21

8

∫

0

−d

∫

0

−d

G(x, x′)ϕ(x′)ϕ∗(x)dx′dx, (4)

h2 =
KΩ2ǫ2

4

∫ 0

−d

ϕ(x)ϕ∗(x)dx, (5)

where G(x, x′) denotes the Green’s function for the
diffracted field [26, 27], see Supplemental Materials [22]
for details.
To check the validity of the stop band formation by the

Bragg processes, we calculate the band structures of per-
tinent 1D lattices by FDTD simulations. In Fig. 3(a),
the stop band denoted ∆Ω1 is formed by BR2,1 with
ǫ(z) = ǫ0 + ǫ1 cos(Kz). Dispersion curves (blue lines)
obtained from the full non-approximated lattice are also
plotted for comparison. Clearly, the FDTD results with
the fundamental harmonic only are quite different from
those with the full lattice. Figure 3(b) shows stop band
∆Ω2 formed by BR1,2. The full-lattice band structure is
close to the approximate structure denoting the impor-
tance of this partial scattering process. Figure 3(c) shows
that the third order harmonic cannot contribute to the
second stop band by itself. Figure 3(d) illustrates that
the band ∆Ω12 simulated with the first and second har-
monics simultaneously agrees well with the band ∆Ω sim-
ulated with the full non-approximated lattice. Moreover,
there is excellent agreement with the dispersion curves
calculated with the KH model. Hence, we conclude that
the Bragg-reflection superposition model proposed here
is valid to describe the second stop band of weakly to
moderately modulated photonic lattices.
Equation (2) indicates that the leaky stop band with

two band edges Ωa = Ω0+h2/(Kh0) and Ωs = Ω0−(h2+
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FIG. 3. (color online) Computed stop bands for a 1D leaky-
mode lattice relative to Fourier harmonic content. The dielec-
tric functions vary for these examples. (a) ǫ = ǫ0+ǫ1 cos(Kz),
(b) ǫ = ǫ0 + ǫ2 cos(2Kz) , and (c) ǫ = ǫ0 + ǫ3 cos(3Kz). In
(d) ǫ = ǫ0 + ǫ1 cos(Kz) + ǫ2 cos(2Kz) is used. Parameters for
the FDTD simulations and KH model are d = 0.50 Λ, ρ =
0.35, ǫc = 1.00, ǫs = 2.25,∆ǫ = 1.00, and ǫavg = 4.00.

i2h1)/(Kh0) opens at kz = 0. At the band edge with
frequency Ωa, which is obtained when the electric field
distribution is an asymmetric (sine) function (A = −B),
there is no radiation loss because Ωa is purely real. At
the Ωs band edge obtained when the field distribution
is a symmetric (cosine) function (A = B), the radiative
loss is maximal with Im(Ωs) = −2Re(h1)/(Kh0). Hence,
the band edge modes with the frequencies Ωa and Ωs are
associated with the BIC and GMR, respectively.

Since the coupling coefficients h1 and h2 are due to the
first and second Fourier harmonics, respectively, superpo-
sition between the scattering processes BR2,1 and BR1,2

can be understood from the two coupling coefficients. For
the symmetric lattice shown in Fig. 1(a), h2 is positive
(negative) when the fill factor ρ is smaller (greater) than
0.5; this happens because the second Fourier harmonic
coefficient ǫ2 = (∆ǫ/π) sin(2πρ) changes its sign once
from + to − when ρ = 0.5. But Im(h1) is always positive
irrespective of ρ. Since the size of the band gap is given
by Re(|Ωa − Ωs|)=2|h2 − Im(h1)|, when ρ > 0.5 with
h2 < 0, the size of the gap results from the constructive
interference of BR2,1 and BR1,2. When ρ < 0.5, on the
other hand, the gap size is determined by the destruc-
tive interference of BR2,1 and BR1,2 and thus the gap
size can reach a zero value. Fill-factor-dependent inter-
play between BR2,1 and BR1,2 can be also understood
from FDTD simulated spatial electric field distributions
of band edge modes at ∆Ω1 and ∆Ω2, see Fig. S3 in
Supplemental Materials [22].

When both ρ and ∆ǫ are small, the non-leaky asym-
metric BIC locates at the upper band edge because the
first order reflection BR1,2 dominates the second order
reflection BR2,1. But when ρ increases and approaches
0.5, there is a chance for BR2,1 to overwhelm BR1,2 be-
cause the strength of BR1,2 gets weaker and becomes zero
as ǫ2 approaches zero. For a given value of ρ (< 0.5), as
∆ǫ increases from zero there should exist a critical value
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of index modulation ∆ǫBF where the band gap closes
and the bound-state transition takes place. Before (Af-
ter) the band gap closure, BICs should appear at up-
per (lower) band edges. As the value of ρ gets closer
to 0.5, a smaller value of index modulation ∆ǫ will be
required for BR2,1 and BR1,2 to balance each other be-
cause the coupling coefficients h1 and h2 are proportional
to ǫ2

1
= [2∆ǫ/π× sin(πρ)]2 and ǫ2 = ∆ǫ/π× sin(2πρ), re-

spectively. Table I shows simulated ∆ǫBF for five differ-
ent fill factors. It is seen that ∆ǫBF increases from 0.31
to 1.55 when ρ decreases from 0.49 to 0.45. The depen-
dence of ∆ǫBF on ρ shown in Table I coincides with the
prediction of the destructive interaction between BR1,2

and BR2,1.
Band transitions of symmetry-protected BICs at kz =

0 can be found in 1D leaky-mode photonic lattices which
have 180◦ rotational symmetry around the x-axis (Cx

2
)

and time reversal symmetry (T ). In the transition pro-
cess with the variation of ∆ǫ shown in Fig. 2, the topo-
logical charge carried by the symmetry-protected BIC
is maintained because Cx

2 T symmetry is preserved and
there is no creation or annihilation of BIC since our lat-
tice has no up-down mirror symmetry [7, 28].
When a leaky band closes as shown in Fig. 2(a) with

∆ǫ = 0.62, there exists a finite range of Bloch wave
vectors ∆kz where ∂ΩRe/∂kz = 0. Leaky band flatten-
ing with band gap closure is related to the exceptional
point where the real part ΩRe and imaginary part ΩIm of
frequency are fully degenerated simultaneously [29, 30].
When the band gap closes with h2 = Im(h1), the disper-
sion relation in Eq. (2) can be rewritten as

Ω(kz) = Ω0 −
(

ih1 ±
√

k2z − Re(h1)2
)

/(Kh0). (6)

Equation (6) clearly shows that frequency is fully degen-
erate at kex = ±Re(h1). Near the exceptional point,
comparing with linear dependency, the square-root de-
pendence of the leaky dispersion relations is expected to
induce a large change in frequency with a small variation
of kz. Hence, exceptional points in 1D leaky bands have
been proposed to increase the sensitivity of GMR devices
[30].
Out-of-plane radiation at the leaky edge with a bound

state at the opposing edge are primary aspects of the
leaky-mode photonic lattices under study herein. Band
flips and bound-state transitions have been formulated
above. We also investigated non-leaky stop bands in
conventional periodic stack lattices with infinite thick-

TABLE I. ∆ǫBF as a function of ρ. As ρ decreases from 0.5,
the modulation strength ∆ǫBF increases. In the FDTD sim-
ulations, ∆ǫ was increased in discrete steps of 0.01 and ∆ǫBF

is defined as the first value where the band flip is observed.

ρ 0.49 0.48 0.47 0.46 0.45
∆ǫBF 0.31 0.62 0.93 1.24 1.55

ness. Figure S1 in the Supplemental Materials [22] shows
that the dispersion curves cross as straight lines and
∂ΩRe/∂kz 6= 0 at kz = 0 when the non-leaky stop band
closes. However, we verified band flip at the non-leaky
band edges in terms of electric-field distributions.

In summary, we investigated band flips and bound-
state transitions in 1D photonic lattices. Our analysis
show that the second band gap is primarily controlled
by first-order Bragg diffraction by the second Fourier
harmonic lattice component. However, near fill-factor
of 0.5, second-order Bragg diffraction by the fundamen-
tal Fourier harmonic becomes competitive with the pri-
mary process. It is the destructive interference of these
major two processes that closes the gap and induces a
band flip whereby the leaky edge and the bound-state
edge transit across the band gap. Thus, these fundamen-
tal Bragg processes control the band dynamics. Con-
sequently, the band does not close at fill factor being
identically 0.5 as often assumed. As the grating modu-
lation strength increases, the transition point is increas-
ingly pulled away from this value. An exceptional point
is identified at the closed gap on account of the powerful
semi-analytical dispersion model applied. Our study is
limited to the simplest possible 1D lattice without up-
down mirror symmetry. Therefore, topological charge
carried by the bound state is conserved during the tran-
sition process. Whereas our work elucidates fundamen-
tal aspects of the band dynamics of leaky-mode photonic
lattices, the basic methodology presented can be applied
in other device architectures including photonic-crystal
slabs and metamaterials.
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