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In this work, we examine the topological phases that can arise in triangular lattices with discon-
nected elementary band representations. We show that, although these phases may be “fragile” with
respect to the addition of extra bands, their topoloigcal properties are manifest in certain nontrivial
holonomies (Wilson loops) in the space of nontrivial bands. We introduce an eigenvalue index for
fragile topology, and we show how a nontrivial value of this index manifests as the winding of a
hexagonal Wilson loop; this remains true even in the absence of time-reversal or sixfold rotational
symmetry. Additionally, when time-reversal and twofold rotational symmetry are present, we show
directly that there is a protected nontrivial winding in more conventional Wilson loops. Crucially, we
emphasize that these Wilson loops cannot change without closing a gap to the nontrivial bands. By
studying the entanglement spectrum for the fragile bands, we comment on the relationship between
fragile topology and the “obstructed atomic limit” of Ref. 1. We conclude with some perspectives
on topological matter beyond the K-theory classification.

I. INTRODUCTION

A recent work (Ref. 1) developed a topological band
theory predicated on the notion of elementary band rep-
resentations (EBRs), which are the fundamental building
blocks of atomic-limit band structures.2–4 Complement-
ing and including other theories classifying topological
phases5–8, this theory provides a clear map from orbitals
in real space to topology in momentum space; as such,
using this theory we were able (uniquely amongst classi-
fying theories) to predictively construct and tabulate all
the types of bands appearing in the 230 space groups,9,10

with all possible orbitals at all Wyckoff positions, and
to predict and identify large classes of new topologi-
cal materials. Additionally, these EBR tables9,10 were
used by various authors11,12 to deduce explicit forms for
all symmetry-indicated strong topological indices. Us-
ing this theory, it was proved that if a system consisted
of disconnected bands separated by a gap in momentum
space, and if all eigenfunctions taken together transform
as a single EBR, then these bands cannot be topologically
trivial1,13,14.

Building on this notion, Po et al. have constructed15

a model in wallpaper group p6mm1′ (space group 183
with time-reversal (T ) symmetry)16 which realizes one of
the disconnected elementary band representation first ex-
plicitly presented in Ref. 1. Their model consists of spin-
ful pz orbitals on the 2b Wyckoff position (honeycomb
lattice site, c.f. Fig. 10), similar to graphene. The four
bands taken together transform as a (physically, since it is
time-reversal symmetric) elementary band representation

(PEBR). In Ref. 1, it was shown that the disconnected
realizations of this elementary band representation her-
alds the possibility of the existence of the Z2 nontrivial
phase of the Kane-Mele model with Rashba spin-orbit
coupling. However, by including sufficiently long range
hoppings, the model of Po et al. realizes a different phase,
where, although one band – which, in their model, has
the highest energy – has no symmetric, localized Wannier
description, the authors are able to construct symmetric,
localized Wannier functions for the other, lower energy,
band, centered at the origin of the unit cell, the 1a posi-
tion (although they have no weight at the 1a position).
Furthermore, by adding two ancillary orbitals on the 1a
position, the authors are able to deform the lower en-
ergy band of their model to an atomic limit, where the
Wannier functions for the lowest two bands are not only
centered on the 1a Wyckoff position, but also vanish on
all other sites (i.e., they are atomic-limit s orbitals at the
1a position). This and related models have been recently
explored further in Ref. 17 (which appeared while this
work was in preparation), where the authors showed that,
with twofold rotational symmetry and time-reversal sym-
metry, there existed a Wilson loop invariant which can
be used to detect that an isolated set of two bands does
not admit localized, symmmetric Wannier functions.

In Ref. 18, we addressed many of these issues through
an examination of several disconnected elementary band
representations without spin-orbit coupling. We showed
that in all cases considered there existed a topological
group of bands, i.e. a set of bands which do not admit
a description in terms of localized, symmetric Wannier
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functions. Furthermore, we showed that this Wannier ob-
struction could be detected by the nontrivial winding of
an appropriately defined Wilson loop within the space of
topological bands. Because the winding of these Wilson
loops cannot change without closing a gap to the topo-
logical bands, the winding number serves as an index of
fragile topology (c.f. Ref. 17). We emphasized that even
these “fragile” invariants correspond to in-principle mea-
surable phenomena, as they are properties of an isolated
set of bands; observable consequences of fragile topology
have recently been studied in Refs. 19–21

The results of Refs. 1, 13, 18, and 17 are all consistent:
a disconnected elementary band representation cannot be
trivial. In this paper, we further explore the models and
theory of fragile topology, and show the stability of fragile
phases through Wilson loop calculations. We first focus
on the specific case of the model of Po et al. in Sec. II,
and show that this model in fact is an explicit demonstra-
tion how the theory of band representations1,13 is able
to capture topological behavior beyond the usual (sta-
ble) K-theoretic classification. Next, we show that the
topologically nontrivial bands in the model remain non-
trivial upon relaxing first time reversal and then twofold
rotational symmetry. We highlight that with these re-
laxed symmetries the conventional Wilson loop of Ref. 17
and Section II is no longer a good indicator of nontrivial
topology. It would then seem as if we had constructed a
disconnected EBR with no nontrivial Wilson loops; how-
ever, we show that this is not the case. We introduce a
new, hexagonal Wilson loop which can detect the pres-
ence of a split elementary band representation using only
threefold rotation and mirror symmetry, thus highlight-
ing the point that one must consider all possible Wilson
loops (and, more generally, nested Wilson loops and the
analytic structure of symmetry matrices19–21) in order to
deduce that a group of bands is topologically trivial. The
winding number of this hexagonal Wilson loop serves as
an index of fragile topology even in the absence of time-
reversal symmetry. Furthermore, we show how the pres-
ence of this non-trivial winding can be determined from
the symmetry of the occupied bands. We then conclude
in Sec. IV by presenting how these observations fit into a
broader view on topological band theory where, by defi-
nition, a set of separate bands is topological if at least one
of the separate bands in the system cannot be described
by a band representation as presented in [1]. We advo-
cate for an expansion of the notion of “topological phase”
beyond the conventional definition in terms of a topolog-
ically nontrivial projector onto the space of all occupied
bands; rather, we propose that it is relevant to examine
the topology of isolated groups of bands (i.e. projectors).
The theory of topological quantum chemistry1 (TQC) is
uniquely suited to all these tasks.

II. C2T -SYMMETRIC MODEL IN THE
FRAMEWORK OF TQC

A. Four Band Model

In Ref. 15, the authors give the full details of their
model, which we summarize in Appendix A. In its sim-
plest form, the model consists of spinful pz orbitals cen-
tered on both sites of a honeycomb lattice, the 2b posi-
tion of space group p6mm1′. By including long-distance
hoppings and exotic spin-orbit interactions, this model
realizes a disconnected EBR (first discovered in Ref. 1)
in a topological phase distinct from the usual Kane-Mele
model (it is Z2 trivial.) The lowest set of bands in this
model span the little group representations Γ̄9 at the Γ
point, and K̄6 at the K point, which are the same ir-
reps as the band representation (Ē1 ↑ G)1a induced from
s orbitals at the center of the unit cell. The authors
find symmetric, localized Wannier functions for this set
of bands (which can be made to have lowest energy - va-
lence). The other set of bands (which can be chosen to
be the conduction bands) admits no description in terms
of localized orbitals – the projection operator onto these
eigenstates is topologically nontrivial – as pointed out by
us in Ref. 13. This can be seen from the little group rep-
resentations for this group of bands, which are Γ̄8 at the
Γ point, and K̄4 ⊕ K̄5 at the K point. Consulting the
Bilbao Crystallographic Server9, we note that these little
group representations cannot be obtained from any two-
band EBR, but rather arise only as the formal difference
of band representations5,18. Thus, we confirm that these
bands, taken in isolation, admit no localized, symmetric
Wannier description. We emphasize here that while an
examination of the little group irreps is a sufficient con-
dition to deduce that a group of bands is topologically
nontrivial, it is not a necessary condition; the triviality
of the “valence” bands in this model must be deduced by
other means, as was done in Ref. 15 through an explicit
construction of localized symmetric Wannier functions.

This is consistent with the general proof given in
Ref. 13, where we showed that if an elementary band
representation is disconnected into two (or more) groups
of bands, at least one of these groups must be topo-
logically nontrivial (the situation when only one, rather
than two bands are nontrivial, was not explicitly acknowl-
edged in Ref. 1). The theory of EBRs thus gives a uni-
fied description of both strong topology5,11 and fragile
topology15,17,18. The decomposition of an EBR into a
topological band along with a band admitting a localized
Wannier description demonstrates that, unlike previous
methods, we are able to capture nontrivial topology be-
yond the K-theoretic classification. We point out that
our EBR classification includes, as a subset, the symme-
try index classification of Ref. 5, obtained by modding
out by the addition (and appropriately defined7 subtrac-
tion) of EBRs. However, it also includes the cases that
cannot be obtained by the definition of Ref. 5 and by the
K-theory classification.
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FIG. 1. (a,b) Sublattice-resolved entanglement spectrum (as
defined in Eq. 2) for the higher (a) and lower (b) energy bands
that comprise the disconnected EBR in the model Eq. (A1)
when µ = 0. ζ are the eigenvalues of the correlation matrix
in the lowest two bands, restricted to the A sublattice. The
fact that ζ is gapless and extends from 0 (Bloch functions
have zero weight on the A sublattice) to 1 (wavefunctions are
entirely contained on the A sublattice) indicates that these
bands cannot be continued to an unobstructed atomic limit.
(c) Wilson loop of the lowest energy bands at µ = 0. The
Wilson loop was evaluated in the g2 reciprocal lattice direc-
tion, and plotted as a function of the basepoint in the g1

direction. (d) Wilson loop of the higher energy bands in the
disconnected EBR at µ = 0. The Wilson loop was evaluated
in the g2 reciprocal lattice direction, and plotted as a func-
tion of the basepoint in the g1 direction. The winding of the
Wilson loops shows that these bands do not have a localized
Wannier description.

As pointed out in Ref. 17, the topology of bands in this
model can be diagnosed by considering Wilson loops

Wmn
g1

(k2) = 〈umg1+k2g2
|
k2g2+g1←k2g2∏

k

P (k)|unk2g2
〉 (1)

oriented along the reciprocal lattice directions. The path
of this loop is shown in Fig. 6a. Here P (k) is a projec-
tor onto a set of two bands. We first consider the case
with twofold rotation (C2) and time-reversal (T ) symme-
try. The Hamiltonian is given explicitly in Appendix A.
In Fig. 1d we plot the Wilson loop in the direction of
the reciprocal lattice vector g1, plotted as a function of
momentum in the g2 direction for the topological bands,
which exhibit nontrivial winding. In Appendix B, we
present a simple, direct proof that the crossings in these
Wilson loops are protected by C2T symmetry, comple-
menting the higher-level arguments of Ref. 17. These
crossings are protected for any two-band Wilson loop, ir-
respective of the total number of bands in the system; we
will revisit this in Sec.II B. Because the winding of this
Wilson loop is nontrivial, we deduce that these bands

do not admit a description in terms of localized, sym-
metric Wannier functions, i.e. the bands are topological.
We also show the same Wilson loop for the lower energy
bands, which is trivial.

Concomitantly with the fact that the highest-energy
band cannot be written in terms of exponentially local-
ized symmetric Wannier states, the entanglement spec-
trum of the gapped valence bands is nontrivial. To ex-
emplify this, we compute the entanglement spectrum us-
ing an entanglement region that includes all A sublattice
sites, and excludes all B sublattice sites.22 This entangle-
ment region can be defined as the image of the projector

PA =
∑

Rσ

|φARσ〉〈φARσ|, (2)

where φARσ is the tight binding basis function for the
states on sublattice A in unit cell R with spin σ. (be-
yond the tight-binding limit, we can use instead the or-
thogonalized Löwdin orbitals23 centered on sublattice A,
or even all functions supported on the C3 symmetric half
of the unit cell containing the A sublattice) As shown in
Fig. 1a, the entanglement spectrum for this cut is gap-
less as a function of momentum, indicating that the two
bands are inextricably linked. In the four-band model
with orbitals only at the honeycomb lattice sites, the
nontriviality of the entanglement spectrum follows imme-
diately from a consideration of the C3 eigenfunctions at
high-symmetry points. In particular, it can be shown24

by directly examining the basis functions for the little
group representations that for a four band model with
s or pz orbitals at the 2b position of wallpaper group
p6mm1′, the A-sublattice entanglement spectrum for two
bands with little group representions (Γ̄9, K̄6) is pinned
to ζ(Γ) = (1/2, 1/2) and ζ(K) = (0, 1). This shows that
in the four-band model, the valence band states cannot
be localized entirely on one sublattice. Thus, we deduce
that the Wannierizable (i.e. describable in terms of a set
of exponentially localized, symmetric Wannier functions)
valence bands form an obstructed atomic limit (i.e. the
Wannier functions are centered on a different Wyckoff
position than the basis orbitals). It is precisely because
the Wannier functions are not centered on the honeycomb
lattice sites that the entanglement spectrun is nontrivial.

Taken together, these observations imply that the
only way to deform the model to a limit where the va-
lence band Wannier functions are indistinguishable from
atomic orbitals without closing the gap is to extend the
Hilbert space to include more than a single EBR. How-
ever, this process of adding states is not reversible: once
we add extra states to allow us to disentangle the two
bands in this disconnected EBR, there is no way to then
remove the extra states without changing the electron fill-
ing, or the topology. Additionally, and as we will show in
the next section, the model will always have at least one
band not obtainable from exponentially localized Wan-
nier orbitals.
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B. Six Band Model in the framework of TQC

We now extend our model by coupling to two ancillary
states (with Hilbert space on the 1a Wyckoff position at
the center of the unit cell), giving six bands total. It was
shown in Ref. 15 that by adding two additional states
(one per spin) per unit cell centered at the 1a Wyckoff
position, it is possible to construct a homotopy from the
new, Hilbert space enhanced, model to one in which the
lowest two bands have atomic-limit Wannier functions
supported entirely at the 1a position. Letting H0 be the
Hamiltonian of the original four-orbital model, Ref. 15
constructed (up to an overall scale factor)

H(µ) = H0⊕ 02×2 + sin(πµ)Hc + 04×4⊕ 36(1− 2µ)I2×2,
(3)

where Hc couples the original orbitals to the ancillary
orbitals at the 1a position and the last term is a chemical
potential for the ancillary orbitals.

For µ = 0, this describes the original four-orbital
model, with two additional decoupled bands well sepa-
rated in energy, as shown in Fig. 2a. As µ is tuned from
0 to 1, the lowest pair of bands is deformed into a set of
bands originating from atomic-like orbitals centered on
the 1a site, identical to the ancillary bands at µ = 0, as
shown in Fig. 2c. The authors emphasize that this occurs
without closing a gap between the lowest band and the
bands above it. However, as a function of µ, a gap does
close between the (topologically nontrivial) middle pair
of bands and the ancillary bands (a fact which was not
explicitly highlighted in Ref. 15). That this must be the
case follows from examining the ordering of irreducible
representations at the K point at µ = 0 and at µ = 1:
we see from Figs. 2a and 2c that a band inversion at theK
point is required to pass from µ = 0, where the highest-
energy representation at K is the two-dimensional K6

representation, to µ = 1, where the representations K4

and K5 are at a higher energy than K6. More generally,
this is a consequence of the change of band ordering under
the homotopy µ: in order for the disconnected EBR to
have the same energy order after µ→ 1, there must be a
band inversion of the trivial 1a bands and the topological
bands. We show the spectrum of the model at one of the
gap-closing points in Fig. 2b. Throughout this process,
there is always at least one group of (two) bands which
does not admit a localized Wannier description (except
at the gapless point, where a two-band projector is no
longer well-defined). Once a gap closes and reopens be-
tween the topological bands and the ancillary bands, we
are forced to re-evaluate which sets of bands transform as
a disconnected EBR. We show this process schematically
in Fig. 2d.

Crucially, we have not eliminated any topological
bands throughout this process. The Wilson loop eval-
uated in the subspace of the four highest bands of this
model does not wind17; for µ ≥ 0.6 it is the four highest
bands that form a four-band EBR, which is connected for
the value of µ depicted in Fig. 2b. This EBR then splits
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(d)

FIG. 2. Evolution of the spectrum as a function of coupling µ
to ancillary sites. (a) shows the spectrum of the Hamiltonian
in Eq. (3) at µ = 0, where the ancillary states are decou-
pled and lie far above the topological bands. (b) shows the
model at the point where the gap between the ancillary and
topologically nontrivial bands closes, µ ≈ 0.60. The upper
four bands correspond to the topologically nontrivial bands
of the model, overlapping with the ancillary states on the 1a
position. (c) shows the spectrum at µ = 1. The trivial states
at the 1a position have been teleported to the lowest pair of
bands. The four highest-energy bands in (c) form the same
disconnected EBR as the lowest and middle bands in (a). (d)
shows schematically the evolution of band topology as µ is
varied from 0 to 1. T denotes groups of bands with a non-
winding Wilson loop, while F denotes groups of bands with
a winding Wilson loop. The black star denotes the region in
parameter space in which the four highest energy bands are
interconnected.

again for larger values of µ. There remains for generic
values of µ a set of two topological bands, and hence
a suitably chosen two-band Wilson loop which winds,
shown in Figs. 3c and 3d. Since the ancillary bands are
decoupled from the original bands at µ = 0 (Fig. 2a)
and µ = 1 (Fig. 2c), in both cases there is a group of
bands whose irreps at high-symmetry points are incom-
patible with a local Wannier description. Note that we
have not trivialized a disconnected EBR. Rather, this ho-
motopy exhibits a novel “band teleportation” effect – as
a function of µ, the trivial states from the highest energy
band are teleported to the lowest energy band,without
ever closing the gap between the upper four bands and
the lower two. In other words, before a gap between the
ancillary bands and the middle two bands closes, it is
the lowest four bands which transform as a disconnected
elementary band representation; after a gap to the ancil-
lary bands closes and reopens, it is the highest four bands
which transform as a disconnected elementary band rep-
resentation. To verify this claim, we plot in Figs. 3a and
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3b the entanglement spectrum for the two lowest groups
of bands at µ = 1. We see that these bands corresponds
to trivial atomic orbitals on the 1a site, while the middle
bands have the same entanglement as the original lower
bands of the µ = 0 disconnected EBR.
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FIG. 3. (a) Translationally-invariant entanglement spectrum
for the two lowest bands at µ = 1, with an entanglement
region containing the 1a ancillary site as well as the A sub-
lattice. The entanglement spectrum is trivial: all states have
weight 1 on the 1a site, indicating that these bands corre-
spond to atomic-limit orbitals on this site. (b) shows the
translationally invariant entanglement spectrum of the two
highest bands of the model at µ = 1, for the same entan-
glement cut. Contrary to (a), the entanglement spectrum is
nontrivial, matching exactly the spectrum of the two middle
bands at µ = 0 as shown in Fig. 1a. This shows that we have
indeed teleported the trivial states from the highest pair of
bands at µ = 0 to the lowest (at µ = 1) pair of bands. (c)
Shows the Wilson loop for the topological band at µ = 0.3,
where it is the middle set of bands in the spectrum. (d) shows
the Wilson loop for the same bands at µ = 0.8, where it is
the highest group of bands in the spectrum. Note that the
loops in (c) and (d) are topologically indistinguishable from
the loop shown in Fig. 1d.

Such band teleportation is possible precisely due to
the nontrivial entanglement present in the topological,
disconnected EBR. Closing a gap between the ancillary
states and the disconnected EBR transfers the orbital
character of the ancillary states to the (entangled) lower
energy band of the EBR. This process is reversible, and
“conserves” topology in the sense that for all µ there is
always at least one topological set of two bands in the
spectrum. To see this, we plot in Figs. 3c and 3d the
Wilson loop of the topological bands for µ = 0.3 and µ =
0.8 respectively. We see that in both cases, the Wilson
loop spectrum is topologically indistingushable from the
µ = 0 result of Fig. 1d. Finally, if the ancillary bands are
removed from the spectrum, the resulting Hamiltonian is
identical to the Hamiltonian before the ancillary bands
were included, leaving behind exactly the starting point.

We note that similar pheomena may be observable in
bands forming an obstructed atomic limit.

The refined notion of topology of projectors onto iso-
lated groups of bands, rather than of the stable topology
of valence bands, is relevant for finding new topological
material candidates, where any isolated group of bands
may be experimentally accessed, even in the “unoccu-
pied” bands, by pumping experiments. TQC can cap-
ture both the “strong” (stable) and the fragile instances
of band topology.

We see then that this model for a “fragile” topologi-
cal phase corresponds to one of the disconnected EBRs
given in the exhaustive classification of Refs. 1 and 9 of
all 10398 EBRs and PEBRs in the non-magnetic space
groups. Recall there that an EBR was defined not just
in terms of the little group representation of bands at
high-symmetry points, but in terms of the smooth depen-
dence of the representation matrices (sewing matrices)
as a function of k for all momenta in the Brillouin Zone
(note that with this definition, distinct EBRs may have
the same irreps at high symmetry points, but are dis-
tinguishable nevertheless through Wilson loop or sewing
matrix invariants). Only one of two groups of bands that
together comprise the disconnected EBR admits expo-
nentially localized Wannier functions, but the other can-
not. A distinct set of bands in these phases can be con-
tinued to a non-obstructed atomic limit if ancillary bands
are added to the Hilbert space, reminiscent of the spin-
less topological phases of Ref. 25. However, this comes at
the price of having the band gap close between a pair of
ancillary bands and the topological bands. We call this
process “band teleportation”. However, at all times in
the process, there exist topological bands, i.e. bands not
describable by localized Wannier orbitals. These phases
fall outside of the classification schemes predicated on
stable equivalence, which are, by definition, robust un-
der adding arbitrary trivial bands. Thus, although the
little group representations that appear in this model are
sufficient to determine that the bands cannot be topo-
logically trivial, it is not included in the classification of
Ref. 5. The EBR theory (and, more generally, TQC)
gives a more complete description of topological elec-
tronic bands. The most general experimentally relevant
theory defines a set of topological bands as one which
does not transform as band representations (of which a
disconnected elementary band representation is the sim-
plest example).

We emphasize again that the non-trivial two-band Wil-
son loops shown in Figs. 1d,3c, and 3d constitute a ro-
bust and physically meaningful signature of the nontriv-
ial topology in this model. In particular, the topological
winding of a two-band Wilson loop cannot be changed
without closing a gap between the topological bands and
other bands in the spectrum, due to the stability of
the winding proved in Appendix B. Furthermore, even
though generic Wilson loops with N total bands in this
space group will not wind, a two-band Wilson loop can
always be defined for a pair of bands separated by a spec-
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FIG. 4. Spectra for six band models obtained by breaking
symmetries in the original model of Sec. II. (a) is obtained by
breaking time reversal symmetry while preserving all spatial
symmetries of p6mm. (b) is obtained by then further break-
ing mx symmetry, leaving a model invariant under the space
group p3m1. In both cases, the middle group of bands fails to
admit a description in terms of localized Wannier functions.

tral gap from all other states in the spectrum. Thus,
we explicitly show that the models here consisting of a
disconnected EBR plus ancillary bands indeed do con-
tain topologically nontrivial bands, distinguished by an
in-principle measurable invariant (the Wilson loop wind-
ing). We see then that the Wilson loop “in the space
of all occupied bands,” is insufficient to characterize the
topology of a material; more involved Wilson loops must
be considered.

III. TOPOLOGICAL BANDS AND WILSON
LOOP WINDINGS

From the preceding discussion, we see that the topo-
logical nontriviality of bands in this model is reflected in
the C2T -protected winding of the Wilson loops directed
along the reciprocal lattice vectors. However, it is impor-
tant to note that, as we mentioned in Sec. II above, the
nontriviality of these bands is reflected directly in terms
of their little group irreps at Γ and K. In fact, C3 eigen-
values alone are sufficient to determine that these bands
cannot be continued to an atomic limit. In particular, if
we break time-reversal symmetry in space group p6mm1′

to yield space group p6mm (183), these bands still origi-
nate from the disconnected EBR (Ē ↑ G)2b. Going even
further, we can break C2 symmetry as well while preserv-
ing the mirror symmetry my which exchanges K and K ′;
doing so reduces the model to space group p3m1 (156)
(still without time reversal symmetry). This splits the 2b
Wyckoff position into the 1a position consisting of the A
honeycomb sublattice, and the 1b position consisting of
the B honeycomb sublattice. In this space group, these
two bands are still topologically nontrivial, being express-
ible as the difference (Ē1 ↑ G)1b⊕(Ē1 ↑ G)1b	(Ē1 ↑ G)1a
of EBRs. The symbol “	” denotes the difference of EBRs
as defined in Refs. 18 and 5. In Appendix A, we give the
modifications to the parameters of model necessary to
realize these space groups. For the remainder of this sec-
tion, we will take µ = 0.3 for all models. In Figs 4a and
4b we show the spectra for each of these models.
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FIG. 5. Wilson loops for the models in space groups p6mm
and p3m1. (a) shows the Wilson loop for the topological
bands in p6mm; clear gaps near θ = 0 and θ = π can be
observed, showing that the loop is deformable to a trivial
Wilson loop. (b) shows the Wilson loop for the lowest bands
in p6mm, which is also clearly does not wind. Similarly, (c)
shows the Wilson loop for the topological bands in p3m1, and
(d) shows the loop for the lowest bands in p3m1.

Because we have broken the C2T symmetry which pro-
tects crossings in the Wilson loop discused in Section II,
the g1-directed Wilson loops fail to wind in all of these
models. We show this in Fig.5. This may lead one to
conclude that all bands in this model are trivial; as we
mentioned previously, this would be incorrect, as can be
easily checked from little group representations. How-
ever, it is natural to ask if there exists a more exotic
Wilson loop which reflects the nontriviality of the middle
bands in these models. This reflects the general need to
work hard in finding the appropriate Wilson loop needed
to show the topological nature of a set of bands. This
is especially true in cases where sets of larger numbers
of bands can be shown by symmetry eigenvalues to not
admit localized Wannier functions.

The importance of C3 symmetry suggests we examine
a loop which explicitly respects this symmetry. As such,
let us examine the set of hexagonal Wilson loops Wh(k)
depicted in Fig. 6b. We can express this loop as the
cube of a “dressed” (i.e. augmented by multiplication by
a symmetry operation) Wilson line26

Wh(k) = (W3)3 (4)

W3(k) = C−13 W(−k,k)←(−2k/3,4k/3)×
×W(−2k/3,4k/3)←(2k/3,2k/3)W(2k/3,2k/3)←(k,0),

(5)

Where the Wilson line

Wk2←k1
=

k2←k1∏

k

P (k) (6)
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FIG. 6. Diagram of the Brillouin zone in space groups p6mm
and p3m1, showing the Wilson loop paths used in this work.
The reciprocal lattice vectors and high symmetry points are
also shown. (a) Path of the straight Wilson loop Wg1(k)
indicated as a dotted line. The basepoint of the loop is shown
as a black circle. (b) Path of the hexagonal Wilson loopWh(k)
as a dotted hexagon, with direction indicated; the basepoint
of the loop is indicated with a black circle. The endpoint of
the Wilson line in the definition of W3(k) is shown as a grey
circle.

is an operator in the space of Bloch functions given as a
path-ordered product of projectors P (k) onto a suitably
chosen set of bands, and C−13 is the operator effecting an
inverse threefold rotation on the space of Bloch functions
at the endpoint of the Wilson line.

As we show in Appendix C, the spectrum of W3 is
gauge invariant owing to the fact that it is an opera-
tor which maps Bloch states at k = (k, 0) onto them-
selves. Additionally, as shown in Eq. (C21) mirror sym-
metry forces the spectra of both Wh(k) and W3(k) to
be “particle-hole” symmetric, i.e. every eigenvalue of eiθ

has a partner at e−iθ for θ 6= 0, π. Furthermore, we show
that for a two-band subspace, crossings in the spectrum
of Wh(k) are protected due to the W3 (or in p6mm, the
analogous W6) eigenvalues of the Wilson bands. Finally,
note that in the presence of time-reversal and C2 sym-
metries, additional protected crossings can occur in the
spectrum of a two-band hexagonal Wilson loop owing to
C2zT symmetry (c.f. App. B),

Let us focus on the loop Wh(k) restricted to the two-
band subspace of the middle bands of our six-band model
in both space groups p6mm and p3m1. In Fig. 7 we show
the spectrum of Wh and W3 for both the trivial (b) and
topological (a) pairs of bands in space group p6mm, with
Hamiltonian given by Eqs. (A1) and (A4), with param-
eters given in the second column of Table I. In Fig. 8
we show the same spectra for our model in space group
p3m1, with parameters given in the third column of Ta-
ble I. Finally, we show in Fig. 9 the same spectra in the
original six-band model with time-reversal symmetry for
comparison. We see in all cases that the spectrum of
Wh(k) winds nontrivially for the topological bands, show-
ing that these bands are not adiabatically connected to
an atomic limit. In these cases, the winding is guaran-
teed by both mirror symmeyry and the C3 eigenvalues
of the bands at Γ and K, which forces the spectrum of

logW3(0) to be pinned at ±π/3, while the spectrum of
logW3(0) is pinned to ±π. Since Wh = W 3

3 , this leads to
an essential winding in the spectrum of Wh (see App. C
for the full proof).

Thus, we have here an example of a topologically non-
trivial set of bands which cannot be diagnosed by a non-
trivial winding along a straight Wilson loop. Neverthe-
less, the theory of TQC correctly predicts the nontrivial
topology of this group of bands. We see then the danger
of using only a small set of Wilson loops to conclude that
a set of bands is topologically trivial; in general, differ-
ent symmetry-distinct classes of Wilson loop, such as our
hexagonal loop Wh above, can reflect different obstruc-
tions to forming localized Wannier functions.

IV. BROADER OUTLOOK

The points above touch upon a more complete perspec-
tive between the theory of topological quantum chemistry
beyond the conventional approach to classifying topolog-
ical phases. In particular, we emphasize the importance
of topological bands and projectors, rather than focus-
ing simply on the topology of the entire valence band
manifold. Ref. 1 is more than just a classification –
it aims not to find the allowed topological indices in a
space group, but instead to enumerate all the allowed
topological band connectivities; we have since tabulated
this data on the Bilbao Crystallographic Server.9,27 In-
deed, as mentioned in Ref. 1 and explored in detail in
Ref. 13, the exact elementary band representation dis-
cussed in Ref 15 also can be tuned to the Z2 nontrivial
phase of the Kane-Mele28, through an intermediate phase
where all four bands are connected. For the same reasons
as outlined above, the eigenvalue method of Ref. 5 can-
not predict the existence of this phase. TQC tells us
such a phase can exist because the space group permits
a disconnected PEBR. That TQC can detect both stable
(Kane-Mele model) and unstable (Eq (3)) phases within
the same space group shows its power in capturing new
topological physics.

Finally, we remark on the applicability of the TQC
framework in light of our detailed examination of fragile
phases, as well as the results of Refs. 15 and 17. Having
showed that the EBR method encompasses all the topo-
logical classes of Ref. 5, and the more refined topological
phases beyond K-theory, we remark that the utility of
using the existence of disconnected EBRs as a tool for
finding new topological materials has been established
in the multiple examples presented in Refs. 1, 29–31.
The EBR method for finding materials as detailed in
Refs. 1, 10, and 13 is established and tried. Furthermore,
a diagnosis of nontrivial topology on the basis of elemen-
tary band representations is more general than a case-by-
case classification based on individual classes of Wilson
loops, as we have shown with our discovery of the pro-
tected winding of hexagonal loops in Sec. III. Although
symmetry indicators belong to an efficiently computable
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FIG. 7. Spectra of Wh(k) and W3(k) for each group of two bands in the lowest four bands in our model in space group p6mm
without time-reversal symmetry. Both spectra are pinned at the endpoints k = 0 and k = 1/2 by C3 symmetry, as shown in
Appendix C. The upper plots are obtained from those below by multiplication by three ( mod 2π), leading to crossings in the
spectrum of Wh. (a) shows the spectra for the middle, topological bands. The upper panel is the spectrum of −i logWh(k),
while the lower panel is the spectrum of −i logW3(k). We show in dotted lines in the lower panel the values θ = nπ/3 for
integer n; note the avoided crossing near θ/3 = 0 (the crossing at θ/3 = π near k = 1/4 is protected by C6 symmetry, as
explained in Appendix C). Upon taking the cube of this spectrum, these eigenvalues correspond to crossings in the spectrum of
Wh(k). The spectrum of Wh(k) exhibits a nontrivial winding, reflecting the topology of these two bands. (b) Shows the same
spectra for the lowest two bands. Here we see that there is no winding of the eigenvalues of Wh(k).
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FIG. 8. Spectra of Wh(k) and W3(k) for each group of two bands in the lowest four bands in our model in space group p3m1
without time-reversal symmetry. Both spectra are pinned at the endpoints k = 0 and k = 1/2 by C3 symmetry, as shown in
Appendix C. The upper plots are obtained from those below by multiplication by three ( mod 2π), leading to crossings in the
spectrum of Wh. (a) shows the spectra for the middle, topological bands. The upper panel is the spectrum of −i logWh(k),
while the lower panel is the spectrum of −i logW3(k). We show in dotted lines in the lower panel the values θ = nπ/3 for
integer n; note the avoided crossing near θ/3 = 0, π. Upon taking the cube of this spectrum, these eigenvalues correspond to
crossings in the spectrum of Wh(k). The spectrum of Wh(k) exhibits a nontrivial winding, reflecting the topology of these two
bands. (b) Shows the same spectra for the lowest two bands. Here we see that there is no winding of the eigenvalues of Wh(k).

subset of the topological data contained in the theory of
band representations, we emphasize again that the full
data of a band representation is contained in the repre-
sentation matrices for symmetry operations as a function
of momentum, which is in-principle computable. Because
Wilson loop windings like those presented here are fun-
damentally tied to this k-dependence, we suspect that
an examination of more exotic disconnected EBRs will
allow for the discovery of even wider varieties of topolog-
ical invariants.

Note Added: During the completion of this work, we
learned of Ref. 32, where similar Wilson loops are con-
sidered in an unrelated context.
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Appendix A: Review of the Models Considered

Following Ref. 5, we construct our models by choos-
ing individual hoppings, and summing over their symme-
try orbits. In particular, we consider the seven hoppings
shown in Fig. 10. For each bond i, ranging from 1 to 7
in the figure, we choose a spin-independent hopping am-
plitude ti and a vector of spin-orbit coupling strengths
(λxi , λ

y
i , λ

z
i ). We then form

hi =
∑

R

(tiδσσ′ + i ~λi · ~σσσ′)c†ifRσcioRσ′ (A1)

where cioRσ (cifRσ) annihilates an electron in an s (alter-
natively pz, since under the wallpaper group symmetries
considered in this paper the two are indistinguishable) of
spin σ at the origin o (endpoint f) of the bond in unit cell
R. Note that hi is automatically time-reversal invariant

provided that ti and ~λi are real; we break time reversal
symmetry by choosing complex values for certain of these
hoppings. To construct the full Hamiltonian, we employ
the coset decomposition of the point group G = 6mm,

G = 〈my, C3〉 ∪mx〈my, C3〉 ≡ G0 ∪mxG0 (A2)

where mx and my are reflections that take x ↔ −x and
y ↔ −y. Here G0 is isomorphic to the point group 3m.
We can thus form the Hamiltonians

H0 =
1

12

5∑

i=1

∑

g∈G0

(
ghig

−1 + xi(mxg)hi(mxg)−1
)
,

(A3)

Hc =
1

12

7∑

i=6

∑

g∈G0

(
ghig

−1 + xi(mxg)hi(mxg)−1
)
,

(A4)

where H0 includes all couplings between orbitals at the
honeycomb lattice sites, and Hc couples orbitals at the
honeycomb sites to orbitals at the origin. H0 and Hc are
combined as per Eq. (3) to form the full Hamiltonian.
We have introduced an additional set of parameters xi
which control the breaking of mx symmetry, and hence
the breaking of point group 6mm to point group 3m;
when xi = 1 for all i, the HamiltoniansH0 andHc respect
the full 6mm symmetry.

In Tables I below, we give the values of ti, ~λi, and xi
used to construct our models in p6mm1′, p6mm, and
p3m1 respectivey.

Appendix B: Generic Wilson loop crossings

In this Appendix we will show that C2z and T sym-
metry allow for and stabilize crossings in the two-band
Wilson loop, away from high-symmetry k-points. Let us
consider the family of k‖-oriented Wilson loop matrices
W (k⊥), parametrized by k⊥. While a convenient choice
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p6mm1′ p6mm p3m1

Bond t λx λy λz x t λx λy λz x t λx λy λz x
1 −0.7 −0.4 −0.2 0 1 −0.7 −0.4 −0.2 0 1 −0.7 −0.4 −0.2 0 1
2 0 −0.6 0 −1 1 0 −0.6 0 −1 1 0 −0.6 0 −1 0.8
3 −0.3 −0.7 −0.4 0 1 −0.3 −0.7 −0.4 0.3i 1 −0.3 −0.7 −0.4 0.3i 1
4 0 0.9 0.3 0 1 0.1 0.9 0.3 0.4i 1 0.2 0.9 0.3 0.2i 1
5 −0.2 0.4 0.3 0.12 1 −0.2 0.4 0.3 0.12 1 −0.2 0.4 0.3 0.12 0
6 −3 −2.1 1.2 0 1 −3 −2.1 1.2 0 1 −3 −2.1 1.2 0 1
7 0.5 1.2 −0.7 0 1 0.5 1.2 −(0.7 + 1.4i) 0 1 0.5 1.2 −(0.7 + 1.4i) 0 1

TABLE I. Values of the parameters ti, ~λi and xi used to construct the models discussed in the main text. The definition of
these parameters is given in Eqs. (A1–A4). Note the complex parameter values used to break time-reversal symmetry, and the
values of x 6= 1 used to break C6 symmetry.

1
2

3
4

56

7

e1

e2

FIG. 10. Real-space lattice vectors and hoppings used to con-
struct models in space groups p3m1, p6mm, and p6mm1′.
Sites on the A sublattice are labelled with stars, those on
the B sublattice with circles, and the 1a site at the origin of
the unit cell is labelled with a triangle. Bonds used in the
construction of the Hamiltonian are shown indexed from 1–7.
Bonds 1–5 are used to construct H0 and are shown as dashed
lines, whereas bonds 6 and 7 are used to construct Hc and
are shown as dashed-dotted lines.

is to orient k‖ and k⊥ along the basis vectors g1 and g2 of
the reciprocal lattice (as in Fig. 1d, this is not necessary
for the proof that follows). Now, both C2z and time-
reversal symmetry take k‖ → −k‖ as well as k⊥ → −k⊥.
This implies that

TW (k⊥)T −1 = W †(−k⊥) (B1)

C2zW (k⊥)C−12z = W †(−k⊥), (B2)

where T is the antiunitary operator that implements T -
symmetry. Defining the Wilson Hamiltonian HW (k⊥)

by

W (k⊥) ≡ eiHW (k⊥), (B3)

we deduce

T HW (k⊥)T −1 = HW (−k⊥) (B4)

C2zHW (k⊥)C−12z = −HW (−k⊥), (B5)

where the antiunitarity of T accounts for the additional
minus sign. We also have the combined symmetry

C2zT HW (k⊥)(C2zT )−1 = −HW (k⊥) mod 2π. (B6)

We note briefly that this equation permits solutions
with k⊥-independent gapped spectrum spec[HW (k⊥)] =
{0, π}. However, since we are mostly concerned with
time-reversal symmetric gapped systems (where this so-
lution is ruled out by Kramers’s theorem), we will neglect
this possibility.

We will now examine the algebraic constraints placed
on 2 × 2 matrix representatives of these symmetries in
the two-band subspace [the image of the projectors P in
Eq. (1)], and from these deduce restrictions on the form of
HW . Unitarity implies that we can chose representatives

T = UTK (B7)

C2z = U2, (B8)

where UT and U2 are unitary, and K is the complex con-
jugation operation. The constraints T 2 = C2

2z = −I,
along with T C2zT −1 = C2z translate to

U2
2 = −σ0, (B9)

UTU
∗
T = −σ0 (B10)

U2UT = UTU
∗
2 , (B11)

where we have introduced and will use (σ0, ~σ) for the
identity matrix and the vector of three Pauli matrices
σx, σy, and σz respectively. The most general solution to
these constraints is given by

UT = iU(k⊥)σyU(k⊥)T , (B12)

U2 = iU(k⊥)(n̂ · ~σ)U(k⊥)†, (B13)
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where n̂ is an arbitrary unit vector, and U(k⊥) is an
arbitrary (smooth) unitary matrix. Inserting these into
the constraint Eq. (B6), we see that

HW (k⊥) = a(k⊥)U(k⊥)(n̂ · ~σ)U(k⊥)†. (B14)

Inserting this expression into the definition Eq. (B3), we
see that there is a crossing in the Wilson loop spectrum
whenever a(k⊥) = nπ for n ∈ Z; for n even these cross-
ings occur at θ = i logW = 0, and for n odd they occur at
θ = ±π. Furthermore, since the condition for a crossing
depends on the value of a single function of one variable
(in two dimensions), linear crossings in the Wilson loop
spectrum can only be created or destroyed in pairs. We
thus conclude that the Wilson loop windings in Figs. 1d
and 3d are robust.

Appendix C: Hexagonal Wilson loops

While the fragile phases in space group p6mm1′ men-
tioned above can be accurately diagnosed by the C2T
protected winding of straight Wilson loops, neither C2

nor time-reversal symmetry are necessary to protect this
topological phase. In fact, our EBR analysis above
showed that the nontrivial nature of this phase can be
diagnosed solely by comparing the C3 eigenvalues at the
K,K ′ and Γ points to the table of EBRs. Furthermore,
this same set of eigenvalues is also incompatible with any
two-band band representation in the space groups p6mm,
p3m11′, and p3m1 (obtained from p6mm1′ by breaking
time reversal, C2, and both C2 and time reversal, respec-
tively). Hence C3 and mirror symmetry alone are enough
to guarantee that these two bands are topologically non-
trivial. This suggests we look for a diagnostic of this
topological phase dependent on C3 and mirror symme-
tries.

To do so, let us examine the concrete case of p3m1.
We take the same direct and reciprocal lattice vectors as
in the main text,

e1 =

√
3

2
x̂− 1

2
ŷ (C1)

e2 = ŷ (C2)

and

g1 =
4π√

3
x̂ (C3)

g2 = 2π

(
1√
3
x̂ + ŷ

)
(C4)

Recall that with this choice of lattice vectors, the high

symmetry points have the reduced coordinates

K =

(
1

3
,

1

3

)
, (C5)

K ′ =

(
−1

3
,

2

3

)
, (C6)

M =

(
1

2
, 0

)
, (C7)

M ′ =

(
−1

2
,

1

2

)
, (C8)

M ′′ =

(
0,

1

2

)
, (C9)

modulo reciprocal lattice translations. For what follows
the relevant symmetries are C3, and my (we will alson
briefly comment on the role of time-reversal symmetry).
We recall that my interchanges K and K ′, and leaves M
invariant.

To define our topological invariant, consider the wilson
line WC(k) evaluated along the following path:

C = {(k, 0)→ (2k/3, 2k/3)→ (−2k/3, 4k/3)→ (−k, k)}.
(C10)

We emphasize that WC(k) has (k, 0) as a basepoint. The
path C is one third of a hexagon encircling the Γ point.
We can thus define the full hexagonal Wilson loop as

Wh(k) = WC2
3C(k)WC3C(k)WC(k) (C11)

= C2
3WC(k)C−23 C3WC(k)C−13 WC(k) (C12)

= −(C−13 WC(k))3 (C13)

where we have used the fact that C2
3 = −C−13 . Note that

the above equation is a statement about operators on the
space of Bloch functions. In particular, we recognize

W3(k) ≡ C−13 WC(k) (C14)

as (the inverse of) the operator which implements C3

symmetry on the loop Wh(see, for instance, Ref. 26), i.e.

C3Wh(k)C−13 = C3(C−13 WC(k))3C−13 (C15)

= WC(k)(C−13 WC(k))3W−1C (C16)

= WC(k)Wh(k)WC(k)−1, (C17)

where the effect of the Wilson line WC(k) is to account
for the fact that a C3 rotation shifts the basepoint of
Wh(k) from (k, 0) to (−k, k). We have thus concocted
an interesting situation where a Wilson loop Wh(k) is
expressible as a function of the generator of a symmetry
of the loop, i.e.,

[Wh(k),W3(k)] = 0, Wh(k) = −W3(k)3. (C18)

Let us next examine the matrix elements of these op-
erators in a subspace of bands {|umk >}. First, we note
that WC(k) has nonvanishing matrix elements between
states |um(k,0)〉 and 〈un(−k,k)|, while C3 has nonvanishing
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matrix elements between |umk 〉 and 〈unC3k
|. Neither of

these operators individually has a gauge-invariant spec-
trum. However, putting them together, we have that

(W3)
mn

(k) = 〈um(k,0)|C
−1
3 |u`(−k,k)〉〈u

`
(−k,k)|W (k)|un(k,0)〉

(C19)
transforms covariantly under unitary transformations in
this subspace of bands – under a k-dependent unitary
transformation, (W3)

mn
(k) is conjugated by the unitary

evaluated at (k, 0). Thus, W3 has gauge invariant eigen-
values. Furthermore, since [W3(k),Wh(k)] = 0, the two
can be simultaneously diagonalized. We can thus label
the Wilson bands of Wh(k) by their eigenvalues under
W3(k); the interpretation is that the dressed Wilson line

W3(k) implements a C3 rotation on the eigenstates of
Wh(k).

Let us now examine some specific properties of W3(k)
and Wh(k). First, let us rewrite W3(k) as a product of
Wilson lines between sides and corners of the hexagon,

W3(k) =C−13 W(−k,k)←(−2k/3,4k/3)×
×W(−2k/3,4k/3)←(2k/3,2k/3)W(2k/3,2k/3)←(k,0),

(C20)

from which it follows that

myW3(k)m−1y = C3W(0,−k)←(2k/3,−4k/3)W(2k/3,−4k/3)←(4k/3,−2k/3)W(4k/3,−2k/3)←(k,0),

= W(k,0)←(2k/3,2k/3)W(2k/3,2k/3)←(−2k/3,4k/3)W(−2k/3,4k/3)←(−k,k)C3,

= W3(k)−1, (C21)

where we have used the group relation myC3m
−1
y = C−13 ,

along with the action of C3 on bloch functions and
wavevectors. From this, it follows that the spectrum of
W3(k) is “particle-hole” symmetric, and consequently the
same for the spectrum of Wh(k).

We will use the holonomies W3(k) and Wh(k) to
show the nontriviality (i.e. nonWannierizability) of var-
ious topological bands. The crux of the argument will
be to compare Wh(Γ) (i.e. Wh(k = 0)) to Wh(M)
(i.e. Wh(1/2)), and deduce that there must be an unre-
movable winding in Wh(k). Since the path along which
Wh(k) is computed covers the whole Brillouin zone as k
is varied, we will deduce that a group of bands is not
homotopic to the atomic limit. To begin, we note first
that for k = 0 we have

W3(0) = C−13 (Γ) (C22)

Wh(0) = P (Γ), (C23)

where P (k) is defined as the projector onto the bands
of interest. Evaluating these matrices in the subspace of

the image of P (k) gives

(W3)
mn

(0) = Bmn
C−1

3
(Γ) (C24)

Wmn
h (0) = δmn (C25)

where Bg(k) denotes the sewing matrix26,33 for the sym-
metry g at the point k.

Next, we examine W3 (1/2), which is the line
MKM ′′K ′M ′. It is helpful to first rewrite

W3

(
1

2

)
= C−13 WM ′←K′WK′←M ′′←KWK←M (C26)

= WM←(K′−g2+g1)C3C
−2
3 WK′←M ′′←KWK←M

(C27)

= WM←(K′−g2+g1)C3W(K′−g2)←(M−g1)←K−g1
×

× C−23 WK←M (C28)

Conjugating by WK←M and using C−23 = −C3, we find

WK←MW3(1/2)WM←K = −WK←M←(K′−g2+g1)C3W(K′−g2)←(M−g1)←K−g1
C3 (C29)

= −WK←M←(K′−g2+g1)C3V (g1)W(K′−g2+g1)←(M)←KV
†(g1)C3, (C30)

where V (g1) is the unitary matrix relating Bloch states in adjacent Brillouin zones. Introducing the shorthand
K ′12 = K ′ + g1 − g2 and taking matrix elements remembering the periodicity of the sewing matrices, we have thus

(WKMW3(1/2)W †KM )mn = −Wm`
KMK′12

B`rC3
(K ′)W rs

K′12MKB
sn
C3

(K) (C31)

This shows that W3, as a matrix in the space of bands under consideration, is unitarily equivalent to (minus) a
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product of the C3 sewing matrix at K, and the C3 sewing
matrix at K ′ parallel transported to K.

Lastly, let us examine the role of W3 eigenvalues eiθ/3

on the spectrum of Wh(k). Using Eq. C18, we see that
each pair of θ/3 = ±nπ/3 eigenvalues of W3 leads to
a pair of Wilson bands crossing with Wh eigenvalues
θ = (n+1)π. Furthermore, provided n 6= 0 mod 3, these
crossings are protected, as they correspond to an inter-
section of Wilson bands with different W3 eigenvalues.
Absent additional symmetries (see, for example, below),
crossings with n = 0 mod 3 are not stable. Note that
while these statements use the mirror-enforced particle-
hole symmetry of the Wilson lines W3 and Wh, they hold
irrespective of the number of bands in which the Wilson
loop is evaluated (the rank of the projector).

Note that in systems with additional C6 symmetry, we
can define an analogous operation

W6 = C−16 W(0,k)←(k,k)←(k,0) (C32)

which satisfies

W3 = (W6)2, (C33)

Which allows us to further label the eigenstates of W3

andWh by theirW6 eigenvalues. As above, my symmetry
imposes particle-hole symmetry on the spectrum of W6.
In particular, states with W6 eigenvalues given by ±i
have W3 eigenvalues with θ/3 = ±π. Thus, the addition
of C6 symmetry stabilizes crossings in the W3 spectrum
with n = 6m + 3, as seen for instance in Fig. 7. This
leads to additional protected crossings in the spectrum
of Wh at θ = π.

With these pieces in place, let us examine the fragile
topological phase introduced in the main text. We now
specialize to the case where the Wilson loops are defined
with rank-2 projectors, i.e. the case of two isolated bands.
The topologically nontrivial bands from Sec. II have for
their C3 sewing matrices5,9

BC3(Γ) = e−iπσz/3

BC3(K) = BC3(K ′) = −σ0 (C34)

Inserting these into Eqs. (C24) and (C31) above, and
using the fact that

Wmn
KMK′12

Wn`
K′12MK = σm`0 , (C35)

we find that

W3(0) = eiπσz/3, W3

(
1

2

)
= −σ0, (C36)

i.e. the eigenvalues of W3(0) are e±iπ/3, and the eigen-
values of W3

(
1
2

)
are (−1,−1). First, this implies that

Wh(0) = Wh

(
1

2

)
= σ0, (C37)

so that at k = 0 and k = 1/2 the spectrum of logWh is
pinned to zero. Furthermore, continuity and particle-hole
symmetry of the spectrum of W3 implies that the eigen-
values of W3 must pass through e±2iπ/3 and odd num-
ber of times. Each time a pair of bands passes through
e±2iπ/3, we get a crossing in the spectrum of logWh at
±π. We thus deduce that as we tune k from 0 to 1

2 , the
spectrum of logWh starts at (0, 0), goes through ±π and
odd number of times, and returns to (0, 0). Thus, there
is necessarily a winding of the spectrum of Wh, and we
deduce that this group of bands cannot be described by
exponentially localized, symmetric Wannier functions.

We note that the essential ingredients to prove the ne-
cessity of this Wilson loop winding were C3 symmetry,
and particle-hole symmetry of the Wilson loop spectrum.
While in our concrete example we used mirror to enforce
particle-hole symmetry, time reversal also has the same
effect. Thus, in any space group which contains either
p3m1 or p31′ as a subgroup, a group of bands with the
combination of C3 sewing matrices given in Eq. (C34)
must be topologically nontrivial. Furthermore, even in
space group p3 (with or without time-reversal symme-
try), such bands can be topological, although the wind-
ing is not mandated. Nevertheless, “adiabatic” breaking
of mirror or time-reversal symmetry will lead to a topol-
pogical phase, a la inversion symmetry breaking in the
Kane-Mele model.

We see then that “symmetry-indicated” fragile topo-
logical bands, i.e. topological bands whose little group
irreps are equivalent to a difference of EBRs, can man-
ifest obstructions to Wannierizability in unconventional
Wilson loops. In general then, the criteria of whether
or not a group of bands originated from a disconnected
elementary band representation provides the most direct
indication of an obstruction to Wannierizability. We have
thus also shown that the unstable equivariant homotopy
theory of Bloch bundles holds many surprises for future
work.
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