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We study the localization-driven correlated states among two isolated dirty interacting helical
edges as realized at the boundaries of two-dimensional Z2 topological insulators. We show that an
interplay of time-reversal symmetric disorder and strong inter-edge interactions generically drives the
entire system to a gapless localized state, preempting all other intra-edge instabilities. For weaker
interactions, an anti-symmetric interlocked fluid, causing a negative perfect drag, can emerge from
dirty edges with different densities. We also find that the interlocked fluid states of helical edges are
stable against the leading intra-edge perturbation down to zero temperature. The corresponding
experimental signatures including zero temperature and finite temperature transport are discussed.

I. INTRODUCTION

Quenched randomness (disorder) can drastically sup-
press the electronic transport by inducing Anderson
localization1, a phenomena that is known to be promi-
nent in low dimensions. Cooperations of interaction
and disorder can induce manybody localization2–4 which
exhibits ergodicity breaking and enables unexpected
orders5. As a striking outcome, a combination of time-
reversal (TR) symmetric disorder and inter-particle in-
teractions can drive a two-dimensional (2D) topological
insulator6–11 (TI) edge, conducting ballistically in the ab-
sence of interaction6,12, to a gapless insulating edge13. In
this work, we further explore the new correlated states
due to a similar localizing mechanism among two isolated
interacting Z2 TI edges with quenched disorder.
A 2D TR symmetric TI6–11 is a fully gapped bulk in-

sulator whose edge is described by counter-propagating
electrons forming Kramers pairs. The TR symmetry
prevents the edge electrons from Anderson localization
which generically ceases conductions in the conventional
one-dimensional systems. Such a topological protected
state emerges a helical Luttinger liquid description14,15

and exhibits a quantized e2/h edge conductance at zero
temperature. The possibility of realizing 2D TR sym-
metric TI motivates various experimental studies16–30

which might pave the way for creating Majorana and Z4

parafermion zero modes, enabling topological quantum
computations31–34.
Contrary to the well-studied single edge problems

(see recent reviews35,36 and the references therein), the
physics of two interacting TI edges37–43 has not been ex-
plored systematically, the effect due to simultaneous ap-
pearance of disorder and interactions especially. In this
work, we focus on the low temperature regimes of two iso-
lated dirty interacting TI edges with different densities.
We show that the combinations of inter-edge interac-
tions and disorder can generate new types of localization-
driven correlated states: A gapless insulating state with
both edges being spontaneously TR symmetry broken,
and an anti-symmetric interlocked fluid with edges car-
rying opposite currents. The former represents an inter-
edge instability that preempts all other phases driven
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FIG. 1. Zero temperature phase diagram of two dirty TI edges
with different densities. We assume 1 > K− > K+ due to the
repulsive interactions. For K− > K+ > 3/4, the two helical
Luttinger liquids are decoupled. The symmetric inter-edge
mode is localized when K− > 3/4 > K+. An anti-symmetric
interlocked fluid is developed. For 3/4 > K− > K+, the a
gapless localized insulator is predicted.

by TR symmetric intra-edge perturbations. The latter
corresponds to a zero temperature perfect negative drag

in striking contrast with the well known perfect positive
drag among quantum wires44,45. These regimes are sum-
marized in Fig. 1. We also discuss the stability of the neg-
ative drag state against intra-edge perturbation. Both of
the inter-edge correlated states can be measured via a
specific Coulomb drag46,47 related experimental setup39

as illustrated in Fig. 2 (a). Concomitantly, we predict the
two terminal conductance at zero temperature (Fig. 3)
and finite temperatures (Fig. 4).

II. MODEL

We consider two isolated TR symmetric Z2 TI edges
that interact via Coulomb force37–39,42 but do not al-
low inter-edge electron tunnelings. For each isolated
edge, there are counter-propagating right (R) and left
(L) mover fermions forming Kramers pairs. In the low
energy limit, the kinetic term is given by

Ĥ0 = −i
∑

a=1,2

vFa

∫

dx
[

R†
a(x)∂xRa(x)− L†

a(x)∂xLa(x)
]

,

(1)
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where a = 1, 2 is the edge index and vFa is the Fermi
velocity of the ath edge band. Time-reversal operation
is encoded by Ra(x) → La(x), La(x) → −Ra(x), and
i → −i. Therefore, the conventional backscattering (e.g.,
R†L+L†R in the spinless Luttinger liquid) is prohibited6.
The time-reversal symmetric disorder is the chemical po-
tential fluctuation (pure forward scattering) given by,

ĤV =
∑

a=1,2

∫

dxVa(x)
[

R†
a(x)Ra(x)+L†

a(x)La(x)
]

, (2)

where Va(x) is the disordered potential in the ath edge.
We assume that the disordered potentials are zero-mean
Gaussian random variables and satisfy Va(x)Vb(y) =
∆δabδ(x − y), where O denotes a disorder average of O.
The interaction between the two helical edges is pri-

marily due to Coulomb interaction. Instead of study-
ing specific microscopic models, we construct the inter-
edge perturbations via symmetry and relevance in the
renormalization group analysis. The leading TR sym-
metric backscattering terms are the inter-edge umklapp
interactions37,39 given by

ĤU,+ =U+

∫

dx
[

e−iδQ+xL†
1R1L

†
2R2 +H.c.

]

, (3)

ĤU,− =U−

∫

dx
[

e−iδQ−xL†
1R1R

†
2L2 +H.c.

]

. (4)

In the above equations, δQ± = Q± − 2(kF1 ± kF2) mea-
sures the lack of commensuration, Q± = 2π/d is the com-
mensuration wavevector (d is the lattice constant of the
2D bulk), and kF1 (kF2) indicates the Fermi wavevector

in the first (second) edge. Generically, both ĤU,− and

ĤU,+ are irrelevant due to incommensuration. We ig-
nore the intra-edge backscattering terms since they are
subleading39,48,49.
In order to include Luttinger liquid effects (arising from

both intra- and inter-edge interactions), we use stan-
dard bosonization50,51. The density (na) and current
(Ia) can be expressed in terms of the phonon-like field
(θa). na = ∂xθa/π and Ia = −∂tθa/π. The two he-
lical Luttinger liquids problem can be decomposed into
symmetric and anti-symmetric inter-edge degrees of free-
dom. In the imaginary time path integral, the bosonic
action37,39,45 is given by S± = S0,±+SV,±+SU,±, where

S0,± =
1

2πv±K±

∫

dτdx
[

(∂τΘ±)
2 + v2± (∂xΘ±)

2
]

,

(5a)

SV,± =

∫

dτdxV±(x)
1

π
∂xΘ±, (5b)

SU,± =
U±

2π2α2

∫

dτdx cos
[

2
√
2Θ± − δQ±x

]

, (5c)

where Θ± = 1√
2
[θ1 ± θ2] encodes the symmetric (+) and

anti-symmetric (−) collective modes, K± (v±) is the Lut-
tinger parameter (velocity), V±(x) = 1√

2
[V1(x) ± V2(x)]

is the disorder potential, and α is an ultraviolet length
scale.
The inter-edge Luttinger interaction is given by

(∂xθ1)(∂xθ2) ∝ (∂xΘ+)(∂xΘ+) − (∂xΘ−)(∂xΘ−). As
a consequence, repulsive inter-edge interactions tend to
decrease K+ and increase K−. [Note that K± < 1
(K± > 1) for overall repulsive (attractive) interactions.]
Importantly, the intra-edge Luttinger interactions still
dominate and drive K± < 145. We therefore assume
that 1 > K− > K+ holds generically.
Lastly, we discuss the disorder terms. V±(x) is a Gaus-

sian random field which obeys V±(x) = 0, V±(x)V±(y) =

∆δ(x − y), and V+(x)V−(y) = 0. The above conditions
ensure that the symmetric and anti-symmetric sectors are
completely decoupled. The intra-edge perturbation will
hybridize the two sectors. We will discuss the validity of
our model in the end of the next section.

III. LOCALIZATION-DRIVEN CORRELATED

STATE

We now discuss the zero temperature states in the si-
multaneously appearance of the inter-edge backscatter-
ing and the TR symmetric disorder. We will first review
the mechanism that drives inter-edge collective modes
into localization. Two new states (inter-edge localized
and interlocked fluid states) can be inferred from the lo-
calization physics. We finally discuss the stability of the
interlocked fluid states against intra-edge perturbations.

A. Interplay of disorder and interaction

The two helical Lutinger liquids problem can be viewed
as two decoupled problems of a disordered interacting
helical edge13 with proper rescaling of parameters. We
briefly review the ideas in Ref. 13 and discuss the local-
ization physics in this subsection.
We first discuss the stability of the Luttinger liquid

phase. The disorder potential SV,± [given by Eq. (5b)]
generates chemical potential spatial fluctuations but does
not induce backscattering. On the other hand, the inter-
edge umklapp backscattering interaction SU,± [given by
Eq. (5c)] alone cannot gap out Θ± unless |δQ±| ≤ δQc

52

(where δQc is the critical value in the commensurate-
incommensurate transition). Therefore, the Luttinger
liquid phase is generically stable with only disorder or in-
teraction. Nevertheless, the fluctuations of chemical po-
tentials (equivalent to the fluctuations of kF1 and kF2)
compensate the missing momenta (δQ±) in a random
fashion. As a result, the backscattering is enhanced due
to “local commensuration”13,39,49,53. Both the symmet-
ric and anti-symmetric sectors in Eq. (5) can be mapped
to the localization problem studied in Ref. 13 with a
rescaling K → K±/2. The critical value K± = 3/454

(less interacting than the single edge critical value K =
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3/813–15) separates a Luttinger liquid phase and a gapless
localized phase.
For sufficiently strong interactions (K± < 3/4), the

inter-edge Θ± sector is driven to a localized state13,55,56

as the full gapped state (due to SU,±) is not stable
against the random field disorder given by SV,±

13,57. In
addition, the bosonized theory at K± = 1/2 can be
mapped to a theory of massive Luther-Emery fermion
with a chemical potential disorder13, known to be An-
derson localized for all the eigenstates58. It can be fur-
ther inferred that the physical state is a gapless insu-
lator due to the structures of density and current op-
erators in bosonization/refermionization13. Away from
K± = 1/2, the refermionized theory becomes interact-
ing and is no longer exactly solvable. For K± < 1/2,
the backscattering is enhanced due to the additional re-
pulsive interaction59–61 so the localization is stable. For
K± > 1/2, the localization grows less stable as increas-
ing K±, and the critical point (K± = 3/4) is obtained
from bosonization analysis. The localizing mechanism
here gives a non-monotonic dependence in ∆ with the
strongest localization when ∆ is comparable to δQ±

13.

B. Inter-edge localized state

When both the symmetric and anti-symmetric sectors
are localized (K+,K− < 3/4), the edge state breaks TR
symmetry spontaneously. We can define pseudospin op-
erators for each edge13,14 whose finite expectation values
indicate TR breaking of the localized states. The pseu-
dospin expectation values in the localized state are ran-
dom in space and uncorrelated among the two isolated
edges. The localized state here can be viewed two lo-
calized edges carrying half-charge13. The Luther-Emery
fermions at K+ = K− = 1/2 correspond to symmetric or
the antisymmetric collective modes of the half-charge ex-
citations among two edges. Importantly, this inter-edge
instability (K+,K− < 3/4) dominates over the leading
intra-edge instability (K < 3/8)14,15 because the critical
interaction strength is weaker (larger Luttinger parame-
ter).

C. Interlocked fluid state

For weaker interactions, there might exist a region such
that only one of the inter-edge degrees of freedom is local-
ized. The correlation among two edges is determined by
the remaining delocalized collective mode. Such corre-
lated states are called interlocked fluids in the studies of
one-dimensional Coulomb drag and reflect the Luttinger
liquid behavior44,45,62. Here, we focus on the Coulomb
drag physics among two generically unequal TI edges.
This case was not considered in the existing literature.
For two isolated dirty TI edges with different electron

densities, both the symmetric and anti-symmetric sec-
tors are similar except 1 < K− < K+ (due to the repul-

FIG. 2. (a) The proposed experimental setup39 (“edge gear”)
for studying the inter-edge correlated states. The top TI is
attached to two external electrodes which result in two sepa-
rated edges carrying current I1 and I ′1; the bottom TI forms
a close edge loop with a current I2 (but without a voltage
drop). The two proximate edge states (carrying currents I1
and I2) interact via inter-edge Coulomb interactions. As dis-
cussed in the main text, the two terminal conductance on the
top TI encodes the information of the inter-edge correlated
states. (b) The standard Coulomb drag experiment in the
lateral geometry as a comparison.

sive inter-edge Luttinger interactions). A negative inter-
locked fluid can arise when K+ < 3/4 and K− > 3/4
since the symmetric sector is localized. Such a cor-
related state is described by an anti-symmetric inter-
edge collective mode, corresponding to a perfect “neg-
ative drag”. In two dimensional electronic systems, a
perfect negative drag can arise due to inter-layer exci-
ton formation63,64. Similarly, a negative drag between
two clean one-dimensional systems can also take place
when the commensurate condition |δQ+| < δQc (kF1 ≈
−kF2) is finely tuned39,65. Here, the interlocked anti-
symmetric state is not induced by gapping at commensu-
ration but by localizing the collective degrees of freedom.
This localization-driven anti-symmetric interlocked fluid
is also complementary to the early study for incommen-
surate clean quantum wires66. The phase diagram of the
two dirty TI edges with different densities is summarized
in Fig. 1.

As a comparison, for two clean TI edges with the same
electron density (kF1 = kF2), the inter-edge interaction
SU,− [given by Eq. (5c)] becomes to a commensurate
backscattering term (δQ− = 0) that gaps out the anti-
symmetric mode for K− < 144,45 at zero temperature.
The system therefore develops a symmetric interlocked
fluid dictating a perfect positive drag39,44,45. In the pres-
ence of disorder, the symmetric interlocked fluid remains
stable as long as K+ > 3/4. The fully gapped anti-
symmetric mode becomes to a gapless localized state be-
cause the long range order is unstable against random
field disorder in one dimension13,57. For K+ < 3/4, the
system develops an inter-edge fully localized state that
halts conduction at all.
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D. Stability of interlocked fluid states

In Ref. 67, the stability of a perfect drag against the
single-particle impurity scattering was investigated. The
impurity scattering with in a quantum wire can hybridize
the symmetric and anti-symmetric collective modes. As
a consequence, the perfect drag is only stable above cer-
tain temperature scale set by disorder scattering67. Here,
we repeat the same analysis for drags among two helical
Luttinger liquids.
Due to the TR symmetry, the single-particle backscat-

tering (e.g., L†
1R1) is not allowed. Therefore, we consider

the TR symmetric impurity two-particle backscattering
interaction14,68 as follows:

Ĥimp =
∑

a=1,2

Wa

[

L†
a(0 + α)L†

a(0)Ra(0)Ra(0 + α) + H.c.
]

,

(6)

where W is the strength of impurity interaction and a
point splitting with the ultraviolet length α is performed.
The corresponding bosonic action is

SW =
∑

a=1,2

W̃a

∫

dτ cos [4θ(τ, x = 0)]

=W̃1

∫

dτ cos
[

2
√
2 (Θ+ +Θ−)

]

+ W̃2

∫

dτ cos
[

2
√
2 (Θ+ −Θ−)

]

(7)

where W̃a = Wa/(2π
2α2). Based on the scaling

dimensions14,68, W̃1 and W̃2 become relevant when K++
K− < 1/2. These intra-edge interactions are the sub-
leading perturbations because the inter-edge localizaiton
happens when K± < 3/4. (As a comparison, the clean
helical Luttinger liquid drag happens when K− < 139.)
To further investigate the stability of the interlocked

fluid states, we follow the treatment in Ref. 67. We
focus on the antisymmetric interlocked fluid (negative
drag) for K+ < 3/4 and K− > 3/4. Then, we as-
sume the symmetric sector is in the semicalssical limit
(K+ → 0+). In such an approximation, the Θ+(τ, x)
can be replaced by a time-independent function γ+(x),
and all the contributions from instanton tunnelings be-
tween degenerate vacuums are ignored. Enabling the
instanton tunneling will make the impurity scattering
less relevant, so the semiclassical treatment here can be
viewed as “the worst case scenario”. The impurity two-
particle backscattering interaction is approximated by
cos(2

√
2Θ−+C) where C is an unimportant constant. As

a consequence, Eq. (7) becomes relevant when K− < 1/2.
This analysis confirms that the antisymmetric interlocked
fluid (K+ < 3/4 < K−) remains stable when the sym-
metric mode is fully localized. The same stability also
applies to the symmetric interlocked fluid due to two he-
lical liquids with the same density for K+ > 1/2.
In conclusion, the intra-edge perturbations do not

sabotage the interlocked fluid states among two heli-
cal Luttinger liquid, in contrast to the conventional

G
 (

e2
/h
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FIG. 3. The two terminal conductance at zero temperature
as a function of interaction in the edge gear setup [Fig. 2 (a)].
For sufficiently weak inter-edge interactions, the conductance
(in the unit of e2/h) is 2 as the absence of the bottom close
loop TI. In the perfect drag regime, the conductance follows
Eq. (8) with an upper bound 3/2 and a lower bound 14/11
(red dotted lines). These bounds guarantee discontinuities
of the conductance. For sufficiently strong interactions, two
TI edge states become localized insulators. The conductance
becomes to 1.

Coulomb drag44,45 where the stability against the impu-
rity backscattering is only valid for temperatures higher
than the scale set by disorder67. The stability of drag
among helical liquids is a manifestation of the topologi-
cal protection in the topological insulator edges.

IV. PROPOSED EXPERIMENTAL SETUP

The physics of two isolated TI edges is related to the
Coulomb drag experiments46,47,62,69 in one dimensional
systems. We focus on the “edge gear” setup39 [in Fig. 2
(a)] that detects all the inter-edge correlated states dis-
cussed above. We will first focus on infinitely long edges
at zero temperature. The corrections due to finite sizes
and/or finite temperatures are discussed via existing well-
known properties of the localized insulator and Luttinger
liquid analysis.

A. Edge gear setup: Results with an infinite long

size at zero temperature

The edge gear setup39 in Fig. 2 (a) contains two iso-
lated TI systems in the lateral geometry. Two TIs are
separated via a gap such that two proximate edges can
interact via Coulomb force, but the electron tunneling is
prohibited. The top TI is connected to two external leads
while the bottom TI forms a close edge loop. The two
terminal conductance is measured in the top TI system
whose value generically encodes the inter-edge correla-
tion.
Firstly, in the absence of any inter-edge interaction,

the conductance is 2 e2

h (due to two edge channels) in-

dependent of the Luttinger parameter70–72. For both
K+,K− < 3/4, the inter-edge localized state takes place
and makes I1 = I2 = 0. The conductance is therefore
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FIG. 4. The sketched temperature dependence of drag con-

ductance in various regimes. Gdrag = G −

e
2

h
where G is the

two-terminal conductance of edge gear setup. The yellow solid
line indicates the two helical liquids regime (K+,K− > 3/4);
the blue dot-dashed line indicates the negative drag (K+ <
3/4 < K−); the red dashed line indicates the localized regime
(K+,K− < 3/4). The detail features of each curve are ex-
plained qualitatively in the main text.

reduced to e2

h as only the edge with current I ′1 is con-
ducting. For the interlocked fluids, the inter-edge inter-
actions induce I1 = ±I2 where the positive/negative sign
corresponds to the perfect positive/negative drag. The
conductance (for both the positive and negative drags)39

is

G =
I ′1 + I1

V
=

e2

h

[

1 +
1

1 + 1/K

]

(8)

which encodes the Luttinger parameter K73 of the close
loop TI edge state. The non-universal conductance varies

from 3
2
e2

h (K = 1, non-interacting limit) to 14
11

e2

h (K =

3/8, intra-edge instability14,15). As plotted in Fig. 3,
those bounds ensure two stage conductance “transitions”
(discontinuities) when tuning the interaction. We note
that Eq. (8) is based on the “Luttinger liquid lead”
approximation39. For an ideal close loop (infinite coher-
ence time) in the perfect drag regime74, the conductance
is predicted to be 2e2/h as if the close loop was absent.
The only missing ingredient from the edge gear setup

is the “sign” (positive/negative) of the perfect drag since
the two terminal conductance in Eq. (8) only encodes
the electron correlation. A separate measurement (e.g.,
imaging edge currents via SQUID75,76) is required for re-
vealing the parallel/anti-parallel nature of the interlocked
fluid states.

B. Edge gear setup: Finite size and finite

temperature corrections

Now, we discuss the finite size and the finite tempera-
ture corrections. All the localization-driven correlated
states predicted in this work require the edge length
L ≫ ξloc where ξloc is the localization length. The
drag conductance (Gdrag = I1/V ) can be expressed by
Gdrag = G++G−, whereG+ andG− are the conductance

contributions due to the symmetric and anti-symmetric
sectors respectively.
For delocalized modes (K± > 3/4), the primary

sources of perturbations come from the inelastic scatter-
ing due to ĤU,±. The leading conductance correction is
given by δG± = G± −G±,0 ∝ −T 4K±−2 for T ≪ ∆/v39,
where G±,0 is the conductance at zero temperature. At
sufficiently high temperature, we can deduce the con-
ductance via the conductivity of the Luttinger liquid
analysis39. For T ≫ v|δQ±|, the conductance is given
by G± = σ±

L ∝ T−4K±+339, where σ± is the conductiv-
ity of the symmetric/anti-symmetric sector.
For K+ < 3/4 (K− < 3/4), the symmetric (anti-

symmetric) mode becomes localized. In a finite length
localized insulator, there exist multiple temperature
regimes78. For sufficiently high temperatures, the ther-
mal length is smaller than the localization length so the
Luttinger liquid analysis can be applied39,44,45,53. We
summarize the temperature dependence as follows:

Gloc
± ∝











































e−2L/ξloc,± , for T ≪ T ′
±

e−const
√

T0,±/T , for T ′
± ≪ T ≪ T0,±

e−T0,±/T , for T0,± ≪ T < δEm,±,

T−4K±+2, for δEm,± ≪ T ≪ ∆/v

T−4K±+3, for T ≫ δEm,±, v|δQ±|

(9)

where ξloc,± is the localization length in the
symmetric/anti-symmetric sector, T ′

± and T0,± cor-
respond to the lower and upper bounds of the variable
range hopping mechanism77,78, and δEm indicates the
distance between mobility edge energy and the fermi
energy in a finite size 1D insulator. T ′

± ≡ vξloc,±/L
2 is

determined by setting the optimal hopping length to be
the same as the finite edge length L; T0,± ≡ v/ξloc,± cor-
responds to the typical energy separation in a localized
length ξloc,±. For T ≫ δEm, the localized state is no
longer sharply defined. We can treat the backscattering
interactions as perturbations with the Luttinger liquid
analysis. The standard drag conductivity predicts two
high temperature regimes39,53 similar to the results for
K± > 3/4. The regime yields T−4K±+2 will disappear if
δEm,± ≥ ∆/v. We note that the conductance Gloc

± is at

most 1
2
e2/h.

Combining the results above, we summarize the tem-
perature dependence in the three regimes. All the results
are summarized in Fig. 4. In the decoupled helical liq-
uids regime (K+,K− > 3/4), the measured two-terminal
conductance (GL) is given by39

GL(T ) =







2 e2

h −A1T
4K+−2 −A2T

4K−−2, for T ≪ ∆/v,

e2

h +B1T
−4K++3 +B2T

−4K−+3, for T ≫ v|δQ±|,
(10)

where A1,2 and B1,2 are temperature independent con-
stants. The conductance is monotonically decreasing as
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increasing T in this regime. The size dependence are
absorbed into A1,2 and B1,2

In the inter-edge localized regime (K+,K− < 3/4),

the conductance is GL(T ) =
e2

h +Gloc
+ +Gloc

− where Gloc
+

and Gloc
− are given by Eq. (9). The highest tempera-

ture regime gives a temperature enhancing conductance
behavior because −4K± +3 > 0. The conductance is es-
sentially a monotonically increasing function of temper-
ature. The potential non-monotonicity is in the vicinity
of T ∼ ∆/v when 1/2 < K± < 3/4.
In the negative drag regime (K+ < 3/4,K− > 3/4),

the zero temperature conductance of a finite size system

is GL(0) = G+C e2

h e2L/ξloc,+ where G is given by Eq. (8)
and C is a constant. The temperature dependent con-
ductance is given by

GL(T )=







GL(0)−D1T
4K−−2, for T≪ ∆/v,

e2

h + D2

T 4K+−3 + D3

T 4K−−3 , forT ≫ v|δQ+|, δEm,

(11)

where D1, D2, and D3 are constants. At high tempera-
tures, the D2 term wins over D3 term because 4K+−3 <
0 < 4K− − 3. The conductance in the negative drag
regime is a non-monotonic function in temperature. The
non-monotonicity can be understood by the interplay of
the localized symmetric mode (monotonically increas-
ing conductance) and delocalized antisymmetric mode
(monotonically decreasing conductance).

C. Drag resistivity setup

As a comparison, we discuss the standard “drag resis-
tivity” setup46,47 as illustrated in Fig. 2 (b). The drag
resistance is defined by RD = −V2/I1. V2 is the gen-
erated voltage canceling the electromotive force due to
the inter-edge interaction. Both the inter-edge localized
and the interlocked fluid states tend to develop infinite
zero-temperature drag resistivity ρD = RD/L (where L
is the length of edge). The sign of the perfect drag can
be measured in principle. Meanwhile, the inter-edge lo-
calized state also contributes a non-universal sign which
is determined by the weaker localized inter-edge collec-
tive mode. We therefore conclude that there is no simple
way to separate inter-edge localized and interlocked fluid
states from the standard setup in the zero temperature
limit. In addition to the above mentioned issues, the edge
3 in the bottom TI [of Fig. 2 (b)] most likely shorts the
system.

V. SUMMARY AND DISCUSSION

We have studied the zero temperature phases in two
isolated dirty interacting TI edges. We showed that an

inter-edge localized state can generically takes place due
to an interplay of TR symmetric disorder and inter-edge
interactions. We also predicted that an anti-symmetric
interlocked fluid state, producing a negative drag, can
arise among two dirty TI edges with different densities.
The anti-symmetric interlocked fluid is a consequence of
localized symmetric collective mode and delocalized an-
tisymmetric collective mode. Moreover, the interlocked
fluids states among two TI edges is founded to be stable
down to zero temperature, in contrast to the quantum
wire systems where the drag is only valid above some
temperature corresponding to disorder scattering67. Our
study explicitly shows that non-trivial inter-edge correla-
tions can still arise even without commensuration. The
zero and finite temperature transport signatures of the
edge gear setup39 are discussed.

We comment on the negative drag between two gener-
ically unequal TI edges. This scenario is specific to TI
edge states where single particle backscattering is ab-
sent, so the negative drag can be viewed as a signature of
Coulomb drag among helical Luttinger liquids. The con-
dition of different densities is reminiscent of the experi-
mental observation of negative drag among asymmetric
quantum wires69 whose mechanism has not been con-
cluded yet. Our results might provide a new perspective
for understanding the negative drag in one dimensional
systems.

In this work, we merely consider sufficiently long TI
edges within the standard Luttinger liquid analysis and
the linear response theory. The effect of dispersion
nonlinearity79 and the finite electric field response80 are
interesting future directions. The finite close edge loop
correction in the edge gear setup [Fig. 2 (a)], potentially
generating a resonant feedback for an ac drive, is an in-
teresting topic in the future.
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