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Nonlinear optical responses are a crucial probe of physical systems including periodic solids. In
the absence of electron-electron interactions, they are calculable with standard perturbation theory
starting from the band structure of Bloch electrons, but the resulting formulas are often large and
unwieldy, involving many energy denominators from intermediate states. This work gives a Feynman
diagram approach to calculating non-linear responses. This diagrammatic method is a systematic
way to perform perturbation theory, which often offers shorter derivations and also provides a natural
interpretation of nonlinear responses in terms of physical processes. Applying this method to second-
order responses concisely reproduces formulas for the second-harmonic, shift current. We then apply
this method to third-order responses and derive formulas for third-harmonic generation and self-
focusing of light, which can be directly applied to tight-binding models. Third-order responses in
the semiclasscial regime include a Berry curvature quadrupole term, whose importance is discussed
including symmetry considerations and when the Berry curvature quadrupole becomes the leading
contribution. The method is applied to compute third-order optical responses for a model Weyl
semimetal, where we find a new topological contribution that diverges in a clean material, as well
as resonances with a peculiar linear character.
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I. INTRODUCTION38

Optical response provides a window into the quantum39

nature of materials. The exquisite control and precise40

measurements enabled by modern optical techniques fre-41

quently couple with theoretical predictions to test and42

confirm models of quantum materials. Nonlinear optical43

responses1–4, in particular, give a wealth of information44

on dynamics, symmetry, and—recently—topology5–17.45

To fully reap the benefits of optical techniques, it is nec-46

essary to accurately predict optical responses in solids47

from theory, including both simplified tight-binding mod-48

els and advanced computational approaches.49

Historically, optical responses were understood first at50

the linear order, and then extended to nonlinear orders51

alongside the development of the laser in the 1960s. For52

molecular systems, normal quantum-mechanical pertur-53

bation theory suffices, and a convenient diagrammatic54

language became popular, capturing optical processes in55

terms of electrons changing energy levels18. In crystalline56

systems, however, there are several additional wrinkles.57

Simply defining the perturbation corresponding to an ex-58

ternal electric field is a subtle task. Like in a molecule,59

absorbing a photon can cause an electron to jump to a60

different band, but can also cause the electron to move to61

a nearby k-point on the same band. The latter requires62
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connecting adjacent points in k-space, and thus involves63

the Berry connection19,20.64

It is only relatively recently that the electromagnetic65

perturbation was written carefully in order to treat non-66

linear responses. There are two standard ways of writing67

an electromagnetic perturbation within the framework68

of independent electrons and dipole fields. First, the so-69

called length gauge70

ĤE = Ĥ0 + eE(t) · r̂ (1)

uses the single-particle position operator r̂ whereas the71

second, the velocity gauge, uses the minimal substitution72

scheme73

ĤA = Ĥ0(k − eA(t)) (2)

where the vector potential A(t) is chosen so that E(t) =74

−∂tA(t). As usual, each gauge is well-suited for a differ-75

ent set of tasks. The length gauge is better for analytical76

answers, semi-classical limits, and some questions involv-77

ing topology, whereas the velocity gauge gives a cleaner78

resonance structure and is easier to implement numeri-79

cally, especially for tight-binding models.80

Over time, there has been a competition between the81

two approaches. The velocity gauge was initially favored82

in the 1980s due to easier calculation (see e.g.21,22). Ve-83

locity gauge calculations, however, often contain spurious84

divergences at zero frequency, which can be eliminated85

only with somewhat opaque sum rules. The position op-86

erator was defined carefully in the work of Blount in the87

1960s23, and its relation to the Berry connection was un-88

derstood deeply by the early 1990s, giving rise to the89

modern theory of polarization24,25. This understanding90

was harnessed by Sipe and Shkrebtii to develop a widely91

used approach to calculate second-order responses within92

the length gauge5. The wide variety of physical effects93

in the second-order response—including shift current6–9,94

injection current13,14,26, and second-harmonic generation95

(SHG)9,27—are of great current interest for a wide va-96

riety of systems. These convenient formulae5, together97

with putative dangers associated with the velocity gauge98

when truncating the number of bands, ensured the pri-99

macy of the length gauge.100

Recent work28–30 has re-examined the roots of the101

problem, providing careful prescriptions for both gauges102

and how to translate between them. It is now possible to103

use either gauge correctly, depending on the problem at104

hand. In this work we focus primarily on the relatively105

underappreciated velocity gauge, developing a convenient106

Feynman diagram prescription for calculating nonlinear107

responses. As noted above, diagrammatic methods have108

a long history in the subject. The formulation here, how-109

ever, has several key differences from previous work to110

implement the correct form of the electromagnetic inter-111

action and fully account for the effects of the Berry con-112

nection. Our goal is to show that any second- or third-113

order optical response can be calculated from diagrams114

in only a few lines. Two practical advantages of the re-115

sulting velocity-gauge expressions is that the resonance116

structure is manifest, immediately distinguishing one-,117

two-, and three-photon terms, and the expressions can118

be directly implemented in tight-binding models without119

the need for sum rules.120

One motivation for this work is providing tools to bet-121

ter understand optical responses. A large body of re-122

cent work has followed the theme of studying optical re-123

sponses in situations where they become particularly sim-124

ple: semiclassics and Weyl semimetals. In semiclassics,125

the limit of a single band where ω → 0, optical responses126

can be understood from the semiclassical equations of127

motion (EOM) that describe wavepackets of Bloch elec-128

trons. Berry curvature gives an additional contribution129

to these equations of motion called the anomalous ve-130

locity, which leads to the Hall conductivity in linear131

response31. At second order, the anomalous velocity is132

responsible for the circular photogalvanic effect (CPGE),133

and non-linear Kerr rotation that is proportional to the134

dipole of Berry curvature10–12.135

The next-to-simplest situation is that of two-band136

models, where interband responses give rise to reso-137

nances. Perhaps the most intriguing two-band models138

are those for Weyl semimetals. These materials support139

three-dimensional gapless points called Weyl nodes that140

are sources and sinks of Berry curvature32,33. Simple141

tight-binding models often suffice to describe their prop-142

erties. However, the fact that the Fermi surface vanishes143

at the Weyl nodes puts them firmly beyond the semi-144

classical regime. Due to their nontrivial Berry curvature145

structure, Weyl semimetals host a variety of non-trivial146

linear responses, including the chiral magnetic effect34,35
147

and gyrotropic magnetic effect36,37. As one might ex-148

pect, there is an even richer set of nonlinear optical re-149

sponses due to the Berry curvature13,14,27. These effects150

can be realized, for instance, in the monopnictide TaAs,151

a Weyl semimetal with inversion breaking38,39. Recent152

optical experiments on TaAs revealed that TaAs shows153

CPGE responses closely tied to its Weyl node structure16
154

and giant SHG, with the largest χ(2) of any known155

material15,17.156

Below we connect the Feynman diagram formulation of157

optical response to both semiclassics and Weyl semimet-158

als. In the semiclassical limit we show that, with partic-159

ular symmetries, the largest term in the third-order re-160

sponse has a topological origin as the quadrupole of the161

Berry Curvature. We also examine the third-harmonic162

response of a Weyl semimetal. We find that the off-163

diagonal component σzxxx has large two-photon and164

three-photon resonances with peculiar linear profiles due165

to the Weyl cones.166

The remainder of this paper is organized as fol-167

lows. Section II introduces notation and the Feynman168

rules. Sections III-V derive non-linear optical responses169

through third order using Feynman diagrams and pro-170

vide some physically interesting limits. Section VI con-171

siders the semiclassical limit, its relation to the length172

gauge, and some topological considerations at third or-173

der. Section VII presents a numerical example of a Weyl174
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Component Diagram Value

(Classical)
Photon

Propagator
ω 1

Electron
Propagator

ω, a Ga(ω)

One-Photon
Input Vertex α, ω

b, ω2

a, ω1

ie
~ω1

hαab

Two-Photon
Input Vertex

α, ω1

β, ω2

b, ω4

a, ω3

2∏
k=1

(
ie

k~ωk

)
hαβab

Three-Photon
Input Vertex β, ω2

α, ω1

γ, ω3

b, ω5

a, ω4

3∏
k=1

(
ie

k~ωk

)
hαβγab

One-Photon
Output Vertex α, ω

b, ω2

a, ω1

ehµab

TABLE I. The Feynman rules for non-linear electromagnetic
perturbations in a crystal. Following the pattern, a new ver-
tex with N incoming photons will appear at N th order. En-
ergy must be integrated around each internal loop, and con-
served at each vertex. The output vertex can appear with
any number of photons and gains a power of ie(k~ωk)−1 for
each additional external photon.

semimetal and, lastly, Section VIII concludes with some175

heuristic rules for choosing a gauge, and other comments.176

II. SETUP & FEYNMAN RULES177

We will work in a band theory picture of non-178

interacting electrons for simplicity, though most of the179

considerations involved carry over to Fermi liquid the-180

ory. We first recall some key definitions to set notation,181

then discuss perturbation theory in an external electric182

field for velocity gauge, and derive the Feynman rules.183

We also comment on the assumptions and caveats of the184

framework.s185

A. Band Theory and Notation186

Consider a crystalline material in d dimensions de-187

scribed by band theory. The second-quantized Hamil-188

tonian is then189

Ĥ0 =
∑
a∈Z

∫
[dk] εa(k)c†kacka (3)

where
∫

[dk] = (2π)−d
∫
ddk indicates the properly-190

normalized integral over the d-dimensional first Brillouin191

zone, the sum runs over all bands, and the c† and cs’s192

are single-particle fermion creation and annihilation op-193

erators, satisfying the usual anticommutation relations194

{cka, c†k′b
} = (2π)dδabδ(k − k′). (4)

(Latin indices a, b, c, d are used to label bands hence-195

forth.) We assume that the crystal is infinite in extent,196

without boundary.197

Because the Hamiltonian (3) involves only a single rais-198

ing and lowering operator, Fermion number is a symme-199

try of the system. We may thus write all observables200

in terms of the single-particle wavefunctions. As usual,201

Bloch’s Theorem says the single-electron wavefunctions202

may be written as203

ψka(r) = 〈0|Ψ̂(r)c†ka|0〉 = eik·ruka(r), a ∈ Z, k ∈ BZ
(5)

where Ψ̂(r) annihilatesss an electron at r, and the u’s204

are periodic functions on the unit cell40. The u’s are205

eigenfunctions of the k-dependent Hamiltonian Ĥ0(k) =206

e−ik·rĤ0e
ik·r:207

Ĥ0(k) uka(r) = εkauka(r). (6)

Despite our assumption of independent electrons, we208

work in a fully many-body framework. This is necessary209

to implement Feynman diagrams but also, as discussed210

below, makes the generalization to the interacting case211

transparent.212

B. Electromagnetic Interactions213

Suppose there is an external electric field which we214

treat classically. We adopt the velocity gauge with the215

minimal coupling Hamiltonian (2). To capture nonlinear216

responses, we expand in powers of the vector potential217

in a Taylor series. This is, however, not as straightfor-218

ward as it might naively seem because one must carefully219

consider what notion of derivative should be employed in220
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the series. The answer is that one should use the (Berry)221

covariant derivative D̂ when working in k-space. The222

derivation of this fact and the defintion of the covari-223

ant derivative are reviewed in Appendix A. Appendix A224

shows that the covariant derivative D̂ is related to the225

single-electron position operator via r̂ = iD̂, and that it226

acts naturally on operators via227

D̂[Ô] = [D̂, Ô], (7)

where the commutator has matrix elements228

[D̂µ, Ô]ab =
∂Oab
∂kµ

− i[Aα, Ô]ab (8)

where A is the Berry connection whose matrix elements229

are Aab = i 〈uka|∂kukb〉. Note that the covariant deriva-230

tive of an operator is not the derivative of its matrix231

elements.232

In terms of the covariant derivatives, the Hamiltonian233

can be written as a Taylor series in terms of the electric234

field as235

ĤA = Ĥ0 + V̂E(t) = Ĥ0 +

∞∑
n=1

1

n!

[
n∏
k=1

e

~
AαkD̂αk

]
Ĥ0,

(9)
where αk ∈ {x, y, z} is a spatial index with an implicit236

sum, and D̂ is the (Berry) covariant derivative. (Greek237

indices µ, α, β, . . . will always represent spatial indices238

with an implicit summation henceforth.)239

Equation (7) can be used to write the velocity operator240

of the unperturbed Hamiltonian as241

v̂ = [D̂, H0] = −i[r̂, Ĥ0]. (10)

For convenience, we define higher derivatives of the un-242

perturbed Hamiltonian by243

ĥα1...αN = D̂α1 · · · D̂αN [Ĥ0]. (11)

The perturbation due to the external field can then be244

written as245

V̂E(t) =
e

~
Aα(t)ĥα +

1

2

( e
~

)2

Aα(t)Aβ(t)ĥαβ + · · · (12)

Fourier transforming and using E(ω) = iωA(ω), we have246

V̂E(t) =

∞∑
n=1

1

n!

n∏
k=1

∫
dωke

−iωkt
(
ie

~ωk

)
Eαk(ωk)ĥα1...αn .

(13)
It is essential that—in the velocity gauge—a seemingly247

new perturbation appears at each order in the electric248

field. Physically, the nth term corresponds to the simul-249

taneous interaction of N photons with an electron.250

The electromagnetic response of a crystal is character-
ized by the conductivity tensors. Incident electric fields
produce a current, giving rise to a non-zero expectation

of the current operator. The conductivity tensors are de-
fined as the coefficients in an expansion of the current in
powers of the external field:

〈Ĵµ〉 (ω) =

∫
dω1 σ

µα(ω;ω1)Eα(ω1) (14)

+

∫
dω1dω2 σ

µαβ(ω;ω1, ω2)Eα(ω1)Eα(ω2) + · · · (15)

where the first argument of the conductivity tensor σ is251

the “output” frequency ω and the others (ω1, ω2, . . . ) are252

the frequencies of the incident light.253

C. Feynman Rules254

The task in front of us is to compute the conductivity255

tensors from the Hamiltonian Ĥ0. This is an ideal task256

for perturbation theory, as we start with a free fermion257

system and have a perturbation naturally stratified in258

power of the external field. In the literature, the current259

operator has commonly been computed with a density260

matrix formalism in the single-particle picture3,5. How-261

ever, we shall adopt a path-integral and Feynman dia-262

gram approach that is shorter and more physically trans-263

parent. The two approaches are, of course, equivalent.264

Formally, the partition function of the perturbed sys-265

tem may be written as a path integral266

Z[E] =

∫
Dc†Dc exp

(
−i
∫
dtHA(t)

)
HA(t) =

∫
[dk] c†k(t)H0ck(t) + c†k(t)VE(t)ck(t).

(16)

The expectation of the current is then

〈Ĵµ〉 (t) =
1

Z
Tr
[
T ev̂µE(t) e−i

∫
Ĥ(t′) dt′

]
(17)

=
1

Z

∫
Dc†Dc

[
evµE(t)

]
exp

(
−i
∫
dt′HA(t′)

)
where T represents time-ordering of operators. Here v̂E
is the velocity operator in the perturbed system—which
itself depends on the electric field:

v̂µE(t) = D̂µ[Ĥ0 + V̂E(t)] (18)

=

∞∑
n=0

1

n!

n∏
k=1

∫
dωke

iωkt

(
e

~ωk

)
Eαk(ωk)ĥµα1···αn .

In terms of functional derivatives, the conductivities are
then given by

σµα1...αn(ω;ωk) (19)

=

∫
dt

2π
eiωt

n∏
k=1

∫
dtk
2π

eiωktk
δ

δEαk (tk)
〈Ĵµ〉 (t)

∣∣∣
E=0

.

As a brief technical aside, one would usually take func-267

tional derivatives in the frequency domain, but due to268
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the explicit time-dependence in the Hamiltonian, it is269

neccesary to compute first in the time-domain and then270

Fourier transform.271

Considering the form of (17), we are performing a dual272

expansion in E, as both the exponent and the velocity273

operator depend on the electric field. As is usual in quan-274

tum field theory, the effect of the functional derivatives in275

(19) turns out to be purely combinatorial and can be en-276

tirely captured in terms of Feynman diagrams. The only277

wrinkle is that, since we are computing a non-standard278

type of current, there is an extra vertex corresponding to279

the “output” velocity operator.280

Explicitly, the value of the Nth non-linear conductivity281

can be computed by drawing all connected diagrams such282

that:283

1. There are N + 1 external photons.284

2. All electrons are internal and compose one loop.285

3. Exactly one vertex is crossed to indicate the output286

current Ĵµ; all other vertices are dotted.287

4. Diagrams are symmetrized over all incoming pho-288

tons (αk, ωk). The factors on the vertices in Table289

I are chosen to avoid double-counting.290

5. The value of edges and vertices are given in Table291

I.292

This procedure is slightly different from what is com-293

mon in particle physics and thus merits some explana-294

tion. First, since c� vF , the Fermi velocity, a negligible295

amount of momentum is exchanged through interactions.296

We thus consider only energy conservation at each ver-297

tex. Second, we assume electrons are bound to the solid,298

so only photons may be external. Third, since electrons299

must return to their equilibrium positions after a per-300

turbation and are non-interacting, only diagrams with301

exactly one fermion loop are permitted. Fourth, we treat302

the photon as a classical background field without dy-303

namics, whose propagator is unity. However, the electron304

propagator is the usual one for free fermions305

Gka(ω) =
1

ω − εa(k)
(20)

where the k-index is suppressed below for notational con-306

venience. We will see below that, in practice, photons307

may never cross the inside of a fermion loop.308

This method is simple to apply in practice. Unlike309

many diagrammatic methods, this method involves no310

divergences beyond simple poles and does not require311

regularization. The computation of the first, second, and312

third-order responses are no more than a few lines. The313

only non-trivial part consists of one new contour inte-314

gral at each order, which are performed for the reader’s315

convenience in Appendix B.316

D. Assumptions and Caveats317

Though the method of Feynman diagrams outlined318

here is convenient, it is important to recognize the as-319

sumptions that went into it and thus determine its range320

of validity. The use of the velocity gauge is associated321

with several problems: spurious divergences and inac-322

curate approximations. The conductivities computed in323

velocity gauge are apparently divergent with σ(N) ∼ 1
ωN

.324

These divergences are spurious, but eliminating them re-325

quires the use of sum rules. These sum rules are now326

understood as identities needed to convert from velocity327

to length gauges (see the Appendix of28). However, they328

are still inconvenient to apply beyond first order, so when329

taking the ω → 0 limit, it is best to work in the length330

gauge. This is carried out carefully in Section VI.331

The velocity gauge has often been considered badly be-332

haved under approximations. When materials are mod-333

elled by effective Hamiltonians focusing on a few bands334

close to the Fermi level (such as two band models for335

Dirac semimetals), then effective optical responses calcu-336

lated in the length gauge are generally accurate, while337

those in the velocity gauge can suffer from corrections338

the same size as the response, rendering them practically339

useless. It was shown in29 that this inaccuracy only arises340

with models where the effective Hamiltonian is not de-341

fined on the full Brillouin zone, ruining periodicity, or342

from the application of incorrect sum rules. In practice,343

this prevents some two-band models of topological ma-344

terials from being studied with velocity gauge. However,345

if enough care is taken in defining the model, there is no346

reason the velocity gauge cannot be used.347

One should also take care with dynamical effects. We348

have taken a perturbative approach to what is actually349

a non-equilibrium problem. The currents described here350

are only the initial current created after an incident pulse351

of light. In practice, other dynamical effects may come352

into play before those currents can be observed, corrupt-353

ing or distorting the current. For instance, a strong laser354

field could create a population of excitons whose recom-355

bination interferes with the motion of electrons. This356

type of issue makes it difficult to observe phenomena357

which manifest as electrical currents rather than opti-358

cal responses, such as the shift current. We should note,359

however, that the perturbation theory with equilibrium360

Green’s functions accurately describe the nonlinear con-361

ductivities, since they are obtained as finite order per-362

turbation in the external electric field E(ω) with respect363

to the equilibrium state. Namely, one could say that364

our diagrammatic approach generalizes the Kubo formula365

for linear response. Normally the Kubo formula relates366

the linear conductivity to the current-current correlation367

function 〈JJ〉. Nonlinear conductivity generalizes this to368

the setting where the input and output current are differ-369

ent operators, so we are effective computing correlators370

of the form 〈J (JJJ)〉 (at the third order).371

A brief comment on the effect of scattering is also in372

order. In a real material, impurities, photons and other373
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effects will perturb the free fermion band-structure. If374

these effects are sufficiently weak, as is often the case,375

one can simply replace the electron propagator with a376

dressed version377

Ga(ω) =
1

ω − εa
→ 1

ω − εa + iΣa(ω)
(21)

where Σa is the self-energy of the electron, and is calcu-378

lable within Fermi liquid theory. In practice it is usually379

unnecessary to understand the full frequency dependence380

of the self-energy. The phenomenological approximation381

iΣ(ω) = iγ → i0+ is therefore often made. All the above382

calculations can be carried out with this phenomeno-383

logical scattering factor included by slightly moving the384

poles, i.e. simply substituting ω1 → ω1 + iγ, etc. One385

should note that for two-photon poles, the scattering fac-386

tor contributes twice, so387

1

ω1 + ω2 − ε
→ 1

ω1 + ω2 − ε− 2iγ
. (22)

It was pointed out in29 that this factor of two can actu-388

ally have a significant effect on the shape of resonances,389

especially at low frequency, and is therefore crucial when390

making experimental predictions.391

This procedure is essentially the same as incorporat-392

ing interactions into the model. In principle, the tech-393

nique developed here works in the fully interacting case,394

once the propagator and velocity operator are appropri-395

ately modified. However, performing this analytically re-396

quires either weak interactions (i.e. a Fermi liquid) or a397

quadratic Hamiltonian, such as in a mean-field approxi-398

mation. The BCS model of superconductivity falls into399

the later category, and non-linear responses of supercon-400

ductors will be the topic of future work.401

Equipped with the Feynman rules, it is straightforward402

to compute the non-linear conductivity tensors at any or-403

der. At first-order there are two diagrams, four at second404

order, and eight at third order. Each corresponds to a405

unique physical process that contributes independently406

to the overall response.407

III. FIRST ORDER CONDUCTIVITY408

As a pedagogical demonstration of our framework, we409

re-derive the first-order conductivity. Using the rules,410

the answer is almost immediate. As an additional con-411

firmation, however, we offer a complementary derivation412

starting from the definition of the conductivity. One can413

see this as a derivation of the Feynman rules at first or-414

der.415

A. Derivation from Diagrams416

There are two Feynman diagrams at first order:

σµα(ω;ω1) = (23)

µ, ω

α, ω1

ω′, a

+ α, ω1 µ, ω

ω′ + ω1, b

ω′, a

=
ie2

~ω1

∑
a,b

∫
[dk]

∫
dω′ hαabGb(ω

′ + ω1)hµbaGa(ω′)

+
ie2

~ω1

∑
a

∫
[dk]

∫
dω′ hµαaaGa(ω′).

The frequency integrals are performed with standard
techniques (see Appendix B) to find

I1 =

∫
dω′Ga(ω′) = fa (24)

I2(ω1) =

∫
dω′Gb(ω

′ + ω1)Ga(ω′) =
fab

ω1 − εab
(25)

where fa = f(εka) is the Fermi factor and fab = fa − fb,417

εab = εa − εb are difference of Fermi factors and energies418

respectively. Therefore the conductivity is419

σµα(ω;ω) =
ie2

~ω
∑
a 6=b

∫
[dk]fah

µα
aa +

hαabh
µ
bafab

ω − εab
. (26)

(The sum over band indices is only performed over the420

indices appearing in each term; the first term is summed421

over a while the second is summed over both a and b.422

This notational abbreviation is used from now on.)423

To connect this to familiar results, we convert to the424

length gauge and consider the ω → 0 limit, expressing all425

matrix elements in terms of the velocity matrix elements,426

vµab = hµab. Using the identity427

hµαab = [Dα, vµ]ab = ∂αvµab − i[Aα, vµ]ab (27)

and the fact vµab = −iεbaAµab, the conductivity becomes

σµα(ω;ω) = (28)

ie2

~ω
∑
a,b

∫
[dk]fa∂

αvµaa + fabv
α
abv

µ
ba

(
1

εba
− 1

ω − εab

)
.

Combining the term in parentheses into a single fraction428

eliminates the spurious divergence:429

σµα(ω, ω) =
ie2

~
∑
a,b

fa∂
αvµaa
ω

+
fabv

α
abv

µ
ba

(ω − εab)εba
(29)

This is the standard result in the length gauge5.430
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In the ω → 0 limit, the second term becomes
fabv

α
abv

µ
ba/(ε

2
ba) + O(ω2) = faFµαaa + O(ω2), the Berry

curvature. We then have

lim
ω→0

σµα(ω;ω) = (30)

ie2

~
∑
a

∫
[dk]
−∂αfavµaa
ω − iγ + faFµαaa

The first term corresponds to the Drude weight, and the431

second term is responsible for the Hall conductivity. This432

formula matches what is derived from semiclassics in a433

Boltzmann equation approach, which is examined in Sec-434

tion VI.435

B. Derivation of the Diagrams436

We now give an alternative derivation of Eq. (23) from
the definition of the current operator. This is essentially
equivalent to a derivation of the Feynman rules and may
be skipped by a reader already convinced of their validity.
We start from the time-domain conductivity

σµα(t; t1) =
δ

δEα(t1)
〈Ĵµ〉 (t)

∣∣∣
E=0

. (31)

We must therefore evaluate the expectation value of437

δv̂µE(t)

δEα(t1)
− v̂µE(t)

δ

δEα(t1)

∫
dt′ Ĥ(t′) (32)

at E = 0. Writing Ĥ(t′) = Ĥ0 + V̂E(t′), and using (13),
the second term requires the derivative

δ

δEα(t1)
V̂E(t) (33)

=
ie

~

∫
dω1

e−iω1(t−t1)

ω1

×
∞∑
n=0

1

n!

n∏
k=1

∫
dωke

−iωktEαk ĥαα1...αn

=
ie

~

∫
dω1

e−iω1(t−t1)

ω1
ĥα +O(E).

Starting from (18) for the first term of (32), one computes

δ

δEα(t1)
v̂µE(t) (34)

=
ie

~

∫
dω1

e−iω1(t−t1)

ω1

×
∞∑
n=0

1

n!

n∏
k=1

∫
dωke

−iωktEαk ĥµαα1...αn(t)

=
ie

~

∫
dω1

e−iω1(t−t1)

ω1
ĥµα(t) +O(E).

Hence the conductivity is

σµα(t; t1) (35)

= −e
∫
dt′
ie

~

∫
dω1

e−iω1(t′−t1)

ω1
〈ĥµ(t)ĥα(t′)〉

+ e
ie

~

∫
dω1

e−iω1(t−t1)

ω1
〈ĥµα(t)〉 ,

where brackets denote expectations with respect to the438

unperturbed Hamiltonian.439

To proceed, we must evaluate the expectation values440

in terms of the electron propagator441

〈c†ka(t)ckb(t
′)〉 = δab

∫
dω eiω(t−t′)Gka(ω). (36)

Hence

〈ĥµα(t)〉 =
∑
a,b

∫
[dk] 〈c†ka(t)hµαab ckb(t)〉 (37)

=
∑
a

∫
[dk] hµαaa

∫
dω Gka(ω) (38)

and, applying Wick’s theorem,

〈ĥµ(t)ĥα(t′)〉 (39)

=
∑
a,b,c,d

∫
[dk] 〈c†ka(t)hµabckb(t)c

†
kc(t

′)hαcdckd(t
′)〉

=
∑
a,b

∫
[dk]hµbaGka(t− t′)hαabGkb(t′ − t)

= −
∑
a,b

∫
[dk]

∫
dω′′e−iω

′′(t1−t′)
∫
dω′e−iω

′(t′−t1)

× hµbaGka(ω′′)hαabGkb(ω
′).

In the last step we dropped terms corresponding to dis-442

connected diagrams, which contribute zero in expecta-443

tion.444

We have now reduced everything to the propagators445

and matrix elements of derivatives of the Hamiltonian—446

the elements present in the Feynman rules. The last step447

is to Fourier transform the conductivity to frequency-448

space to eliminate exponential factors. Thus449

σµα(ω;ω1) (40)

=

∫
dt

2π
eiωt

∫
dt′

2π
eiω1t1

ie2

~

[∫
dω1

e−iω1(t−t1)

ω − 1
〈ĥµα(t)〉

−
∫
dt′
∫
dω1

e−iω1(t′−t1)

ω1
〈ĥµ(t)ĥα(t′)〉

]

=
ie2

~ω
∑
a,b

∫
[dk]

[∫
dω′ hµαaaGa(ω′)

+

∫
dω′ hαabGa(ω′)hµbaGb(ω

′ − ω1)

]
δ(ω − ω1)
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where in the first step all the t integrals have been per-450

formed to create δ-functions in frequency, eliminating451

t, t′, ω′ and ω′′ and ω1 → ω′ in the second step. This pre-452

cisely matches (23), which was obtained immediately by453

Feynman diagrams. The diagrams serve to eliminate the454

tedious steps of collapsing Fourier transforms into delta455

functions, thereby greatly streamlining calculations.456

IV. SECOND ORDER RESPONSE457

We now turn to the second-order response and demon-
strate the second-order conductivity is concisely repro-
duced by the diagramatic formalism. There are four di-
agrams that contribute:

σµαβ(ω;ω1, ω2) = (41)

µ, ω

β, ω2

α, ω1ω′, a

+ α, ω1

β, ω2

µ, ωω′ + ω1, b

ω′, a

+

α, ω1

β, ω2

µ, ω

ω′ + ω12, b

ω′, a

+

α, ω1

β, ω2

µ, ωω′ + ω1, b

ω′ + ω12, c

ω′, a

+
(
(α, ω1)↔ (β, ω2)

)
= e

(
ie

~ω1

)(
ie

2~ω2

)∑
a

∫
[dk]

∫
dω′Ga(ω′)hµαβaa

+
−e3

~2ω1ω2

∑
a,b

∫
[dk]

∫
dω′Ga(ω′)hαabGb(ω

′ + ω1)hµβba

+
−e3

2~2ω1ω2

∑
a,b

∫
[dk]

∫
dω′Ga(ω′)hαβab Gb(ω

′ + ω12)hµba

+
−e3

~2ω1ω2

∑
a,b,c

∫
[dk]

∫
dω′Ga(ω′)hαabGb(ω

′ + ω1)hβbc

×Gc(ω′ + ω12)hµca +
(
(α, ω1)↔ (β, ω2)

)
.

There is an overall constraint ω = ω12 ≡ ω1 + ω2.458

The frequency integrals, which are called I1, I2, and459

I3 are performed in Appendix B. Indeed, only the tri-460

angle diagram contributes a new integral, I3, computed461

in (B24); the others appeared at first order. The most462

convenient form of I3 depends on the situation. For in-463

stance, one can use partial fractions to split each term464

into separate resonances. However, for now we adopt a465

more compact representation with a triple resonance:466

I3(ω1, ω2) =
(ω1 − εbc)fab + (ω2 − εba)fcb
(ω2 − εba) (ω1 − εcb) (ω − εca)

(42)

We thus arrive at a formula for the second-order conduc-
tivity

σµαβ(ω;ω1, ω2) = (43)

−e3

~2ω1ω2

∑
a,b,c

∫
[dk]

1

2
fah

µαβ
aa + fab

hαabh
µβ
ba

ω1 − εab
+ fab

1
2h

αβ
ab h

µ
ba

ω − εab

+ hαabh
β
bch

µ
ca

(ω1 − εbc)fab + (ω2 − εba)fcb
(ω1 − εcb) (ω2 − εba) (ω − εca)

+
(
(α, ω1)↔ (β, ω2)

)
As above, the sum over bands a, b, c should only be em-467

ployed when necessary. For instance, the term fah
µαβ
aa is468

only summed over a, and not b, c.469

Let us pause for a moment to interpret the structure of470

this formula. Each term is a product of a matrix-element471

part and a resonance part from one of the integrals I1, I2472

or I3. This natural separation allows us to easily consider473

various physical limits, wherein the resonance structure474

simplifies but the matrix elements remain unchanged.475

The terms are arranged by powers of ω. The first term476

corresponds to the derivative of the Drude weight, the477

“Drude weight dipole”. The second and third terms are478

one- and two-photon resonances respectively, which are479

large when two bands are separated by energies of ω1 or480

ω1 + ω2. The last term, corresponding to the triangle481

diagram, is more complex. We will see below that it is482

still the sum of one-photon and two-photon resonances.41
483

Also note that there is an overall pole (ω1ω2)−1. Except484

in the first term, this second order pole is only an appar-485

ent divergence, and dissappears when the ω → 0 limit is486

carefully taken. However, the divergence is physical in487

the first term. Section VI considers this point carefully.488

To provide convenient equations for important limits,489

as well as to gain a better understanding of the reso-490

nance structure, we next examine two limits: second-491

harmonic generation and the shift current. Again, this492

merely amounts to taking the limit of the resonance inte-493

grals I2 and I3, and other limits can be carried out with494

comparable ease.495

A. Second-Harmonic Generation496

The second-harmonic response is generated by both497

one-photon and two-photon resonances. That is, if the498

incident light is at frequency ω, then there will be a499

second-order response at both ω and 2ω. One-photon500

resonances come from the second and fourth diagrams in501

(41), while two-photon resonances are due to the third502

and fourth diagrams. The first diagram only contributes503

resonantly near ω = 0. To capture these resonances care-504

fully, we use an alternative form for the integral I3 which505

makes them manifest.506

Defining ρ1 = ω1/ω, ρ2 = ω2/ω. We may apply the
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partial fraction identity

1

(A− ω1)(B − ω2)
= (44)

1

(A− ρ1B) (B − ω2)
− ρ1

(A− ρ1B)(A− ω1)

to write507

I3(ω1, ω2) =
1

ω − εca

[
fa

εab − ρ1εac
+

fc
εbc − ρ2εac

]
+

ρ1

ω1 − εba

[
fa

εba + ρ1εac
+

fb
ρ2εab + ρ1εcb

]
+

ρ2

ω2 − εcb

[
fc

εcb + ρ2εac
− fb
ρ1εcb + ρ2εab

]
.

(45)

Here the first-term is a resonance due to absorbing both
photons simultaneously, while the latter two are reso-
nances in ω1 or ω2 only. So far, this is general, and can
be used in (43) in place of (42). In the case of second har-
monic generation, we take ω1 = ω2 = ω, so ρ1 = ρ2 = 1

2 .
After several cancellations,

I3(ω, ω) (46)

=
1

εab + εcb

[
2fac

2ω − εca
+

fbc
ω − εcb

+
fba

ω − εba

]
.

Starting from the general equation (43), using I3(ω, ω),
and writing out the frequency-symmetrization (α, ω0)↔
(β, ω0) yields

σµαβ(2ω;ω, ω) = (47)

− e3

2~2ω2

∑
a,b,c

∫
[dk] fah

µαβ
aa + fab

hαabh
µβ
ba + hβabh

µα
ba

ω − εab

+ fab
hαβab h

µ
ba

2ω − εab
+

(
hαabh

β
bc + hαabh

β
bc

)
hµca

εab + εcb

×
[

2fac
2ω − εca

+
fbc

ω − εcb
+

fba
ω − εba

]
.

This result is equivalent to velocity-gauge formulas for508

the second-harmonic present in the literature27,29, but509

did not involve any sum rules.510

B. Shift Current511

Another interesting limit to consider is the so-called512

shift current, σµαβ(0;ω,−ω). It can be thought of as the513

“solar panel” response where incident light generates a514

DC current, and has been of recent interest in the context515

of two-band systems where it has a particularly simple516

form9.517

As with the second harmonic, the only real task is to518

determine what happens to the pole structure. Starting519

from (45), one finds520

I3(ω,−ω) =
1

εac

[
fab

(ω − εba)
− fcb

(ω − εbc)

]
. (48)

Then, symmetrizing explicitly,

σµαβ(0;ω,−ω) = (49)

e3

~2ω2

∑
a,b,c

∫
[dk] fah

µαβ
aa + fab

hαabh
µβ
ba

ω − εab

+ fab
hβabh

µα
ba

−ω − εab
+ fab

hαβab h
µ
ba

εba

+
hαabh

β
bch

µ
ca

εac

[
fab

(ω − εba)
− fcb

(ω − εbc)

]
+
hβabh

α
bch

µ
ca

εac

[
fab

(−ω − εba)
− fcb

(−ω − εbc)

]
.

This result agrees with known expressions for the shift521

current found in the literature. One can easily check522

this reduces to the correct two-band limit that has been523

studied in previous work9. It is worth contrasting this524

result to the alternative (but equivalent) length-gauge525

results in, e.g. Ref.5. The results there involve a maxi-526

mum of two bands in each term, whereas here there are527

three band terms. Converting between the two gauges528

requires the use of sum rules, which exchange some in-529

traband matrix elements with interband ones, and visa530

versa. Specifically, one can convert to the shift current531

formula in5 by focusing on the interband resonance from532

the band a to b, where we collect terms involving fab
(ω−εba)533

after switching indices a↔ c in the term fcb
(ω−εbc) and use534

the second-order sum rule in Eq. (13) of8. Moreover,535

since the conductivity does not depend on the choice of536

gauge, one may conclude that saying a particular term537

involves a certain number of bands is gauge-dependent538

information and therefore not necessarily physical. This539

demonstates Eq. (49) is equivalent to previously known540

expressions for the shift current in the literature.541

The injection current is a second-order process that de-542

scribes a current whose magnitude grows linearly in time543

as the sample is illuminated. This process is manifest in544

in Ref.5 as a term with an overall 1/δω divergence in the545

nonlinear conductivity σ(δω;ω + δω,−ω). In our frame-546

work, the naive limit of Equation (49) does not contain547

this divergence, but it can be recovered by considering548

the limit δω → 0 of σ(δω;ω+δω,−ω) in Eq. (43). Specif-549

ically, the last two terms in Eq. (49) are related to the550

injection current since the factor 1/εac is divergent for551

a = c which is cutoff by introducing a small δω.552

V. THIRD ORDER RESPONSE553

It is at third order that the diagrammatic method es-554

poused here becomes the most useful. Unlike at second-555

order, the third order response is generically allowed by556

symmetry and expected to be present to some degree in557

all materials. Third order optical responses are relatively558

unstudied, especially in the case of non-zero Berry con-559

nection. Understanding this area is our main focus in this560
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paper. Using our diagrammatic formalism, we derive ex-561

pressions for the third-order response where each term is562

associated with an individual process. This allows them563

to be split into manifestly one-photon, two-photon, and564

three-photons parts, so that the origin of each resonance565

is clear. We then examine the limits of third harmonic566

generation and self-focusing of light. In subsequent sec-567

tions we begin to interpret these formulas in the one band568

(semiclassical) and two-band (Weyl semimetal) limits.569

There are eight diagrams that contribute at third or-570

der.571

σµαβγ(ω;ω1, ω2, ω3) = (50)

+ + + (51)

+ + + (52)

=
e

3!ω1ω2ω3

(
ie

~

)3∑
a

∫
[dk]

∫
dω′ Ga(ω′)hµαβγaa (53)

+
e

2!ω1ω2ω3

(
ie

~

)3∑
a,b

∫
[dk]

∫
dω′ Ga(ω′)hαabGb(ω

′ + ω1)hµβγba (54)

+
e

2!ω1ω2ω3

(
ie

~

)3∑
a,b

∫
[dk]

∫
dω′ Ga(ω′)hαβab Gb(ω

′ + ω12)hµγba (55)

+
e

3!ω1ω2ω3

(
ie

~

)3∑
a,b

∫
[dk]

∫
dω′ Ga(ω′)hαβγab Ga(ω′ + ω123)hµba (56)

+
e

ω1ω2ω3

(
ie

~

)3 ∑
a,b,c

∫
[dk]

∫
dω′ Ga(ω′)hαabGb(ω

′ + ω1)hβbcGc(ω
′ + ω12)hµγbc (57)

+
e

2!ω1ω2ω3

(
ie

~

)3 ∑
a,b,c

∫
[dk]

∫
dω′ Ga(ω′)hαabGa(ω′ + ω1)hβγbc Gc(ω

′ + ω123)hµca (58)

+
e

2!ω1ω2ω3

(
ie

~

)3 ∑
a,b,c

∫
[dk]

∫
dω′ Ga(ω′)hαβab Ga(ω′ + ω12)hγbcGc(ω

′ + ω123)hµca (59)

+
e

ω1ω2ω3

(
ie

~

)3 ∑
a,b,c,d

∫
[dk]

∫
dω′ Ga(ω′)hαabGb(ω

′ + ω1)hβbcGc(ω
′ + ω12)hγcdGd(ω

′ + ω123)hµda (60)

The ω′ integrals are evaluated in Appendix B. For concision, however, we shall leave the expression in terms of I3572

and I4. We must also symmetrize under all possible combinations of incoming photons, which amounts to the six573

permutations of (α, ω1), (β, ω2), and (γ, ω3). We will denote this permutation symmetry by 1
3!S3. The full third-order574

non-linear response is thus575

σµαβγ(ω;ω1, ω2, ω3) =

1

3!
S3

−ie4

~3ω1ω2ω3

∑
a,b,c,d

∫
[dk]

1

6
fah

µαβγ
aa +

1
2fabh

α
abh

µβγ
ba

ω1 − εab
+

1
2fabh

αβ
ab h

µγ
ba

ω12 − εab
+

1
6fabh

αβγ
ab hµba

ω − εab

+ hαabh
β
bch

µγ
bc I3(ω1, ω2) +

1

2
hαβab h

γ
bch

µ
bcI3(ω12, ω3) +

1

2
hαabh

βγ
bc h

µ
bcI3(ω1, ω23) + hαabh

β
bch

γ
cdh

µ
daI4(ω1, ω2, ω3).

(61)
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A. Third-Harmonic Generation576

One physical limit of interest is third-harmonic generation, when there is a single incoming frequency. There are577

many simplifications in this case, giving rise to a relatively simple expression. In particular, the integral for the box578

diagram, I4, can be separated into one-, two- and three-photon resonances as579

I4(ω, ω, ω) =
fab

(ω − εba)(εab + εcb)(2εab + εdb)
+

fbc
(ω − εcb)(εab + εcb)(εbc + εdc)

+
fdc

(ω − εdc)(εcb + εcd)(2εdc + εac)

+
4fdb

(2ω − εdb)(2εab + εdb)(εbc + εdc)
+

4fca
(2ω − εca)(εcb + εab)(2εdc + εac)

+
9fda

(3ω − εda)(2εab + εdb)(2εdc + εac)
.

(62)
We can similarly decompose the integrals for the triangle diagrams. The case I3(ω, ω) is given in Equation (47).
Similarly,

I3(ω, 2ω) =
1

2εab + εcb

[
3fac

3ω − εca
+

2fcb
2ω − εcb

+
fba

ω − εba

]
(63)

I3(2ω, ω) =
1

2εcb + εab

[
3fac

3ω − εca
+

2fba
2ω − εba

+
fcb

ω − εcb

]
. (64)

Combining these and applying the permutation symmetry yields

σµαβγ(3ω;ω, ω, ω) = (65)

−ie4

~3ω3

∑
a,b,c,d

∫
[dk] fah

µαβγ
aa + fab

[
hαabh

µβγ
ba + hβabh

µγα
ba + hγabh

µαβ
ba

ω − εab

]
+ fab

[
hαβab h

µγ
ba + hβγab h

µβ
ba + hγαab h

µα
ba

2ω − εab

]
(66)

+
[(
hαabh

β
bc + hβabh

α
bc

)
hµγca +

(
hβabh

γ
bc + hγabh

β
bc

)
hµβca + (hγabh

α
bc + hαabh

γ
bc)h

µα
ca

]
I3(ω, ω) (67)

+
[
hαabh

βγ
bc h

µ
ca + hβabh

γα
bc h

µ
ca + hγabh

αβ
bc h

µ
ca

] (
I3(ω, 2ω) + I3(−ω,−2ω)

)
(68)

+
[
hαabh

β
bch

γ
cd + hαabh

γ
bch

β
cd + hβabh

γ
bch

α
cd + hβabh

α
bch

γ
cd + hγabh

α
bch

β
cd + hγabh

β
bch

α
cd

]
hµdaI4(ω, ω, ω). (69)

B. Self-Focusing580

Another common third-order response is the self-focusing of light, which is the modification to the linear conduc-581

tivitiy due to nonlinear effects. For instance, the process wherein an excited electron absorbs photons of energy ω582

and then −ω,583

ω

ω −ω

ω

(70)

can masquarade as the diagram for first order conductivity from Equation (23). To describe this effect, one can define584

the effective conductivity, via 〈Jµ〉 (ω) = σµαeff (ω)Eα(ω) where585

σµαeff (ω) = σµα(ω) + σµαβγ(ω;ω,−ω, ω)Eβ(−ω)Eγ(ω) +O(E4). (71)

The third-order correction term, σµαβγ(ω;ω,−ω, ω), is also called the self-focusing effect.586

In the self-focusing limit, the conductivity is a sum of resonances at 0ω, 1ω and 2ω, corresponding to the sums
and differences of the incident frequencies. Unfortunately, the minus sign from the −ω photons lifts the permutation
symmetry between the various incident photons, creating a more complex resonance structure than in the third-
harmonic case. It is convenient to express the conductivity in terms of the following expressions:

I3(ω,−ω) =
1

εac

[
fab

ω − εba
+

fbc
ω − εbc

]
, I3(0, ω) =

1

εab

[
fac

ω − εca
+

fcb
ω − εcb

]
, I3(ω, 0) =

1

εbc

[
fab

ω − εba
+

fca
ω − εca

]
,

(72)
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and I3(ω, ω), which is given by (47). For the box diagram, one must also consider

I4(−ω, ω, ω) (73)

=
1

εac(εab + εad)

[
fba

ω − εab
+

fad
ω − εda

]
+

1

εac(εcb + εcd)

[
fcb

ω − εdc
+

fcd
ω − εdc

]
+

4fdb
(2ω − εdb) (εbc + εdc)(εab + εad)

,

I4(ω,−ω, ω) =
1

εacεbd

[
fab

ω − εba
+

fbc
ω − εbc

+
fda

ω − εda
+

fcd
ω − εdc

]
(74)

I4(ω, ω,−ω) (75)

=
1

εdb(εad + εac)

[
fcd

ω − εcd
+

fad
ω − εda

]
+

1

εbd (εab + εac)

[
fba

ω − εba
+

fcb
ω − εcb

]
+

4fac
(2ω − εca) (εab + εcb) (εad + εcd)

.

Then, applying the symmetrization over (α, ω), (β,−ω), (γ, ω), the self-focusing is

σµαβγ(ω;ω,−ω, ω) = (76)

ie4

3!~3ω3

∑
a,b,c,d

∫
[dk]fah

µαβγ
aa + fab

[
hαabh

µβγ
ba

ω − εab
+

hβabh
µγα
ba

(−ω) + εab
+
hγabh

µαβ
ba

ω − εab

]

+ fab

[
hαβab h

µγ

0− εab
+
hβγab h

µα
ba

0− εab
+

hγαab h
µβ
ba

2ω − εab

]
+ fab

hαβγab hµba
ω − εab

+
[(
hαabh

β
bch

µγ
ca + hγabh

β
bch

µα
ca

)
I3(ω,−ω) +

(
hβabh

α
bch

µγ
ca + hβabh

γ
bch

µα
ca

)
I3(−ω, ω) +

(
hγabh

α
bch

µβ
ca + hαabh

γ
bch

µβ
ca

)
I3(ω, ω)

]
+
[(
hαβab h

γ
bch

µ
ca + hβγab h

α
bch

µ
ca

)
I3(0, ω) + hγαab h

β
bch

µ
caI(2ω,−ω)

]
+
[(
hαabh

βγ
bc h

µ
ca + hγabh

αβ
bc h

µ
ca

)
I(ω, 0) + hβabh

γα
bc h

µ
caI(−ω, 2ω)

]
+
[(
hαabh

β
bch

γ
cd + hγabh

β
bch

α
cd

)
hµdaI4(ω,−ω, ω) +

(
hβabh

γ
bch

α
cd + hβabh

α
bch

γ
cd

)
hµdaI4(−ω, ω, ω)

+
(
hγabh

α
bch

β
cd + hαabh

γ
bch

β
cd

)
hµdaI4(−ω, ω, ω)

]
Note that there is an exact permutation symmetry α↔ γ since the second and forth frequencies are both ω.587

VI. SEMICLASSICAL LIMIT588

This section carefully examines the semiclassical limit589

of non-linear optical responses. This crucial physical590

limit, where on focusing on independent bands in the591

limit ω → 0, has been the subject of much recent work,592

as described in the introduction. The goal of this sec-593

tion is to carefully take this limit. Per the discussion in594

Section II D, this is most easily carried out in the length595

gauge. The alternative is to start from the velocity gauge596

and apply many sum rules. However, the source of these597

sum rules is expanding the change of gauge which con-598

verts from velocity to length gauge28, so it clear that the599

length gauge is the natural physical setting for this limit.600

We will start with a purely semiclassical derivation, then601

show that this matches the results from the length gauge,602

and lastly comment on the topological properties of the603

third-order semiclassical conductivity.604

A. Semiclassical Derivation605

We work with a single band and ignore interband con-
tributions. Recall that the equations for semi-classical
electron dynamics in an electric field (but no magnetic
field) are given by

~
d

dt
r = ∇kεk + eE ×Ω(k),

~
d

dt
k = −eE

where E = E(t) is the applied electric field and Ω is the606

standard vector representation for the Berry curvature607

in three dimensions. In the notation of this paper, for a608

single band a, Ωαa = εαβγFβγaa where ε is the Levi-Civita609

symbol, so (E ×Ω)
µ

= FµαEα.610

We take a Boltzmann equation approach, writing the611

charge and current density as, respectively,612

ρ(t) = −i
∫

[dk]f(t), and J(t) = −e
∫

[dk]
dr

dt
f(t) (77)

where f = f(t,k) is the distribution function of elec-613

trons, and is taken to be Fermi-Dirac distribution fFD614
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in equilibrium. The time-evolution of f is given by the615

Boltzmann Equation616

dk

dt
·∇kf + ∂tf =

fFD − f
τ

(78)

for some relaxation time τ .617

We take a monochromatic perturbation E(t) =618

Eαeαe
iωt. Expanding f(t) =

∑
K∈Z f

(K)e−iωKt and619

equating terms of the same order in (78), we have620

− eE ·∇kf
(K) + (−iKω)f (K+1) = −1

τ
f (K+1). (79)

With the initial condition f (0) = fFD, this gives an order-621

by-order solution as622

f (K+1) =
−i

Kω + iγ
eE ·∇f (K) (80)

where γ = 1/τ is a dissipation rate. The first-order cur-623

rent is thus624

Jµ(ω) = −e
∫

[dk] vµf (1) + FµαEαf
(0) (81)

so, integrating by parts, the linear conductivity is625

σµα(ω;ω) =
e2

~

∫
[dk] fFD

(
−i ∂

αvµ

ω + iγ
− Fµα

)
(82)

One can check this exactly reproduces the fully quantum626

equation for σµα, Equation (30), for the case of a single627

band.628

At higher orders, the semiclassical conductivities are
essentially the same, comprised of a “Drude-like” and
“Berry-curvature”-like term:

σµαβ = e3

∫
[dk]fFD

(
∂β∂αvµ

(2ω̃)ω̃
− i∂

βFµα

ω̃

)
(83)

σµαβγ = e4

∫
[dk]fFD

(
i
∂γ∂β∂αvµ

(3ω̃)(2ω̃)ω̃
+
∂γ∂βFµα

(2ω̃)ω̃

)
(84)

where ω̃ should be read as ω + iγ.629

We will show that these equations reproduce the lead-630

ing order divergences at ω → 0 for the quantum calcula-631

tions of the second- and third-order conductivities. How-632

ever, the numerous other terms in the quantum formulas633

are not captured here due to their essential interband na-634

ture. It would be interesting to examine a modified semi-635

classical picture involving interband corrections, which636

should be able to reproduce more of the full response.637

Under time-reversal symmetry, ∇k, v, F , and k all638

change sign, so at second order only the derivative of the639

Berry curvature survives, while at third order only the640

velocity term remains. One can extrapolate the pattern641

in (84) to all orders in semiclassics.642

B. Length Gauge643

Let us now derive the semiclassical limit starting in644

the length gauge formulation, (1). We adopt the stan-645

dard density-matrix approach pioneered by Sipe and646

Shkrebtii5, defining the single-particle reduced density647

matrix648

ρkab(t) = 〈c†ka(t)ckb(t)〉 . (85)

Then the current is given by Jµ(t) = eTr [v̂µρ(t)], where649

the trace is taken over the single-particle Hilbert space,650

i.e. it stands for the integral of the Brillouin zone and651

sum over bands.652

The time-dependence of the density matrix in the in-653

teraction picture is given by the Schwinger-Tomonaga654

Equation655

i
d

dt
ρ̂I(t) =

[
ĤE,I(t), ρ̂I(t)

]
, (86)

where the subscript I indicates the interaction picture:656

ÔI(t) = U(t)†ÔU(t) for U(t) = e−itĤ0 . We can solve657

(86) within the framework of perturbation theory by em-658

ploying Dyson series. Expand ρ̂ =
∑
K ρ̂

(K) as a power659

series in power of the electric field. We can then integrate660

(86) to find an order-by-order solution661

ρ̂(K+1)(t) = −i
∫ t

−∞
dτ
[
ĤE,I(τ), ρ̂

(K)
I (τ)

]
. (87)

This also requires an initial condition ρ̂(0) = δabfa, taken
to be the Fermi-Dirac distribution. We can now write a
computable expression for the current. At nth order, the
current can be written as a nested commutator

Jµ(t) = e

n∏
k=1

∫ τk−1

−∞
dτk(ieEαk) (88)

× Tr
{

[· · · [v̂µ, r̂α1(τ1)] · · · , r̂αn(τn)] ρ̂0

}
where τ−1 ≡ t. Rearranging commutators and Fourier
transforming, the nth nonlinear conductivity can then
be written

σµα1...αn(ω;ω1, . . . , ωn) =
1

n!
Sne

n∏
k=1

∫ τk−1

−∞
dτke

−iωkτk

(89)

× (ie) Tr
{
ρ̂0 [r̂αn(τn), · · · , [r̂α1(τ1), v̂µ] · · · ]

}
where Sn symmetrizes over all incoming frequencies662

{(αk, ωk) : 1 ≤ k ≤ n}.663

Our task is now to evaluate this commutator at leading664

order in ω. This is done most expediently by using the665

relation between the position operator and the covari-666

ant derivative r̂ = iD̂, which is described in Appendix667

A. The form of the commutators in (89) is almost the668

same as the covariant derivative repeatedly acting on the669
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velocity operator—but we must account for the time de-670

pendence. The time-evolved operator r̂(t) = U(t)† r̂ U(t)671

is easily computed by noting that, in the energy basis,672

U(t)ab = e−iεka(t)δab is a one-parameter family of gauge673

transformations. Equation (A7) implies674

iD̂(t) = i∇+A′(t),A′(t) = eiH0tAe−iH0t+ t∇H0 (90)

where (∇Ĥ0)ab = δab∇kεa(k) is the regular gradient of
the matrix elements. In components, this implies the
identity

[r̂α(τ),O]ab = (i∂α + τ∆α
ab)Oab (91)

+
∑
c

eiεactAαacOcb −OacAαcbeiεcbt,

where we have defined ∆α
ab ≡ hαaa − hαbb = ∂αεab.675

Employing (91) with Ô = v̂µ,

σµα(ω;ω) =
ie2

~
∑
a,b

∫
[dk]fa

∫ 0

−∞
e−iωτ (92)

×
(
i∂αvµ + eiεabτAαabv

µ
ba − eiεbaτv

µ
abA

α
ba

)
.

As is customary, when performing the time integral, a676

phenomenological relaxation rate ω → ω+ iγ is added so677

that
∫ 0

−∞ dτ ei(ζ−ω−iγ)τ = i
ω+iγ−ζ . Therefore the linear678

conductivity is679

σµα(ω;ω) =
ie2

~
∑
a6=b

∫
[dk]fa

∂αvµ

ω + iγ
+ fab

Aαabv
µ
ba

εab − ω − iγ
.

(93)
The first term reproduce the Drude formula, and the680

second term is almost [Aα, Aµ]. This is equivalent to681

the expression derived in the velocity gauge, Equation682

(29). Under the limit ω � εab, one arrives at (28), which683

matches the semiclassical result (82) at linear order in E.684

At nonlinear order, one must evaluate further nested
commutators. Since we are only interested in the ω →
0 limit, we will limit ourselves to the leading order
terms. However, this procedure can be easily contin-
ued to give expressions for the general conductivity ten-
sors in the length gauge; such a calculation is carried
out in28. At second order, we consider the expression
[r̂β(τ2), [r̂α(τ1), v̂µ]]aa. Expanding,

[r̂β(τ2), [r̂α(τ1), v̂µ]]aa = i∂βi∂αvµaa (94)

+ i∂β [Aα(τ1), vµ]aa

+
[
Aβ(τ2), (rα(τ1)vµ)

]
aa

+
[
Aβ(τ2), [Aα(τ1), vµ]

]
aa

where Aαab(τ) ≡ eiεabτAαab is the time-evolved operator.685

Each factor of eiεabτ is Fourier transformed to a denom-686

inator of the form 1
ω−εab . However, the number of such687

exponential factors is different in each term. The first688

term has none, the second term has one, and the latter689

terms generically have two. The Fourier transform of the690

first two terms is therefore691

∂β∂αvµaa
ωω2

+
∑
b 6=a

−i∂β
ω2

[
Aαabv

µ
ba

ω − εba
− vµabA

α
ba

ω − εab

]
. (95)

After Fourier transforming the third and fourth terms,
either there are factors 1

εcd−ω , which are O(ω0) and hence

subleading or, when c = d there are poles 1
ω , which cancel

out due to the commutator in the ω → 0 limit. Hence
only the terms (95) survive in the semiclassical limit, so

lim
ω,ωi→0

σµαβ(ω, ω1, ω2) =
−e3

~2

∑
a,b

∫
[dk]

fa∂
β∂αvµaa
ωω2

(96)

+ fa
−i∂β
ω2

[
Aαabv

µ
ba

ω − εba
− vµabA

α
ba

ω − εab

]
+O(ω0)

or

lim
ω,ωi→0

σµαβ(ω, ω1, ω2) =
−e3

~2

∑
a

∫
[dk]

fa∂
β∂αvµaa
ωω2

(97)

+ fa
−i∂β
ω2
Fαµaa +O(ω0).

The two terms are clearly just ie
~
∂β

ω2
acting on the first692

order expression — exactly in line with the semiclassical693

prediction (83). The first term is the derivative of the694

Drude weight, while the second is the Berry curvature695

dipole, which was studied in semiclassics10,11 and with696

a Floquet formalism12. As mentioned above, this is the697

only term that survive in the presence of time-reversal698

symmetry.699

At third order, one must consider[
r̂γ(τ3), [r̂β(τ2), [r̂α(τ1), v̂µ]]

]
aa

(98)

= i∂γi∂βi∂αvµaa + i∂γi∂β [Aα(τ), vµ]aa + · · · .
Due to the same logic that applied at second order, only
these first few times survive at lowest order in ω. Hence

σµαβγ(ω;ω1, ω2, ω3) =
e4

~3

∑
a,b

∫
[dk]fa

∂γ∂β∂αvµaa
ωω23ω3

(99)

− ifa
∂γ∂β

ω23ω3

[
Aαabv

µ
ba

ω − εba
− vµabA

α
ba

ω − εab

]
+O(ω−1)

so

lim
ω,ωi→0

σµαβγ(ω;ω1, ω2, ω3) = (100)

e4

~3

∑
a,b

∫
[dk]fa

∂γ∂β∂αvµaa
ω23ω3ω

− ifa
∂γ∂β

ω23ω3
Fαµaa +O(ω−1)

Here the first term is the third derivative of the700

Drude weight while the second is the Berry curvature701

quadrapole. Of course, this matches the semiclassical re-702

sult (84).703
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C. Symmetry Considerations704

This subsection considers the effect of symmetry on705

the two terms of the semiclassical third order response.706

We focus on the effect of inversion I, time-reveral T ,707

and reflection in the b direction Rb. The semiclassical708

response involves the group velocity vm, Berry curvature709

Fαµ, and k-derivatives thereof, so we start by looking at710

their transformations under symmetry. Their transfor-711

mation laws can be deduced from the fact that vµ and712

∂α are vectors, while the Berry curvature behaves as a713

psuedovector defined by Fβ ≡ εβαµFαµ/2.714

The effect of inversion I is

vµ → −vµ (101)

Fβ → Fβ (102)

∂α → −∂α. (103)

Applying time reversal T gives

vµ → −vµ (104)

Fβ → −Fβ (105)

∂α → −∂α. (106)

Lastly, the reflection Rb leads to

vµ → (−1)δbµvµ (107)

Fβ → −(−1)δbβFβ (108)

∂α → (−1)δbα∂α. (109)

These constraints indicate that the group velocity term715

and the Berry curvature term (the first and the second716

terms in Eq. (100), respectively) are both even under717

I, and even and odd under T , respectively. Under Rb,718

either both terms are even or both terms are odd, de-719

pending on the component of nonlinear conductivity and720

the direction of mirror plane. For example, in σzxxx,721

both are odd under Rz, and both are even under Ry.722

An interesting question is when the group velocity term723

vanishes, whereupon the Berry curvature contribution724

dominates, if it is non-zero. First, this requires T break-725

ing. Next we need a symmetry such that the group ve-726

locity term is odd and the Berry curvature is even. Such727

a symmetry is obtained by combining Rb in which both728

terms are odd and T . For example, σzxxx has a nonzero729

contribution only from the Berry curvature term when730

T Rz symmetry is preserved and both T and Rz symme-731

tries are broken. This situation can be realized in ma-732

terials with antiferomagnetic order in z direction. Since733

σzxxx is measured as intensity dependent Hall conduc-734

tivity or intensity dependent transmission of circular po-735

larized light, measuring these quantities in suitable anti-736

ferromagnetic materials will allow us to access the Berry737

curvature effect in third order responses. This Berry cur-738

vature effect might be measured in the magnetic Weyl739

semimetal Mn3Sn42–44 since it breaks T and some candi-740

date AFM structures breaks Rz while preserving T Rz45.741

D. Length versus Velocity Gauges742

Overall, we have shown that the semiclassical limit is743

straightforwardly accomplished in the length gauge and744

matches the answer from the simple Boltzmann equa-745

tion approach. A few comments on the relation be-746

tween the length and velocity gauge are in order. It747

was shown in29 that on can convert between the two748

gauges with the time-dependent unitary transformation749

S(t) = e−
e
~A(t)·D. The equivalence of expectations of750

any physical observable O in the two gauges leads to751

sum rules of the form28
752 ∫

[dk] Tr
{
Dα1 · · ·Dαn [Oρ̂k(t)]

}
= 0 (110)

where ρk(t) is the single-particle density matrix defined753

above. Expanding this with D = i∇ + A leads to the754

sum rules of Aversa and Sipe46. In particular, one can755

use O = v̂m to convert from velocity to length gauge756

at order n. This will eliminate terms like hµα in favor757

of ∂αvµ + · · · . However, this algebra is quite involved758

in practice, so it is usually better to choose the correct759

gauge from the outset rather than painstakingly changing760

gauge after writing the answer to a computation.761

VII. NUMERICAL EXAMPLE762

This section applies the techniques developed in this763

paper to a model of Weyl semimetals. Numerical cal-764

culations of nonlinear optics are usually done within765

the frameworks of either tight-binding models or Den-766

sity Functional Theory (DFT). Tight-binding models are767

usually simple enough to perform analytical calculations768

and, when chosen wisely, will reproduce the main qualita-769

tive features of a material, such as the frequencies of reso-770

nances. For more quantitative predictions in specific ma-771

terials, DFT is the favored technique. Velocity gauge for-772

mulas are particularly well-suited for tight-binding mod-773

els, where operators such as hµα may be computed an-774

alytically. We will therefore present the example of a775

simple tight-binding model of a Weyl semimetal where776

the leading contribution is topological in origin.777

The primary feature of Weyl semimetals are their778

paired Weyl- and anti-Weyl cones, whose linear disper-779

sion acts as a sources and sinks of Berry curvature. As780

mentioned in the introduction, a wide variety of linear781

and second order optical responses have been studied in782

Weyl semimetals, many with a topological origin. Here783

we study the third-order response σzxxx, for which the784

leading contribution comes from the (topological) Berry785

curvature. To our knowledge, this is the first prediction786

for a third-order response in Weyl semimetals.787

Consider the following two-band Hamiltonian for a788

Weyl semimetal with a Wilson mass:789

H(k) = d0I + d(k) · σ (111)
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where σ = {σx, σy, σz} is the vector of Pauli matrices,
d = {dx, dy, dz}, and

d0(k) = t sin aky

dx(k) = sin akx

dy(k) = sin aky

dz(k) = cos akz +m (2− cos akx − cos aky) ,

where a is the lattice spacing. Generically, this model790

supports four Weyl–anti-Weyl pairs, but we gap out three791

of them by adding Wilson mass term where we set m =792

147. The remaining Weyl nodes are at k = (0, 0,±π/2).793

The parameter t controls the tilting of the Weyl nodes.794

In Section VI C, we showed that materials where time-795

reversal symmetry T and a mirror symmetry Rz are bro-796

ken, but their product T Rz is preserved, then the leading797

order contribution at third order in the ω → 0 limit is798

σµαβγ(ω;ω1, ω2, ω3) (112)

= −i e
4

~3

∑
a

∫
[dk]

fa∂
γ∂βFαµaa

(ω3 + iγ) (ω2 + ω3 + 2iγ)
+O(ω−1).

Whenever the tilting parameters t is nonzero, the model799

satisfies these considerations and thus we expect a topo-800

logical leading response in the off-diagonal component of801

the third-harmonic response σzxxx(3ω;ω, ω, ω). (Here z802

is the direction of the emitted light.) The tilting is se-803

lected to be in the y-direction so that both nodes are804

tilted the same way, making the resonances symmetry-805

allowed.806807

We compute the response via numerically integrat-808

ing Equation (65) for the third-harmonic on a mesh of809

k-points until convergence is achieved. This involves810

evaulating the band energies, wavefunctions, and higher811

derivatives of the Hamiltonian, which may all be com-812

puted analytically. As usual for a two-band model, the813

energies and wavefunctions are, up to normalization,814

ε±(k) = d0 ± |d| , |u±〉 =

(
d3±|d|
d1+id2

1

)
. (113)

The velocity operators are easily found by differentiating:

hx(k) = ta cos akyI + a cos akxσx +ma sin akxσz,
(114)

hy(k) = a cos akyσy +ma sin akyσz, (115)

hz(k) = −a sin kzσz. (116)

Higher derivatives are similarly straightforward. For ex-
ample,

hxx(k) = −ta2 sin akyI − a2 sin akxσx (117)

+ma2 cos akxσz, (118)

hxxx(k) = −a2hx(k), (119)

hxxxx(k) = −a2hxx(k). (120)
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FIG. 1. (Top) Band structure of Equation (111) along the
kx = 0, kz = π/2 plane. A (tilted) Weyl node is visible at
ky = 0. The dispersion is approximately linear for |ε| ≤ 8µ.
(Middle) Linear conductivity in the x-direction. The Drude
peak is visible at low frequencies, the conductivity increases
linearly for ω � 2µ. (Bottom) Off-diagonal component of the
third harmonic response. The O(ω−2) divergence due to the
Berry curvature is visible at low frequencies, and wide reso-
nances are visible at ω ∼ 2µ/3 and ω ∼ µ. The parameters
used for all data are µ = 0.1, γ = 0.001, t = 0.1, m = a = 1.
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Figure 1 shows the well-understood linear reponse of the815

material and the third-harmonic response σzxxx.816

The linear response of Weyl semimetals is shown in817

the middle panel of FIG 1. This response is already well-818

understood48. The conductivity exhibits a typical Drude819

peak at low frequencies, and <[σxx] ∼ ω at higher fre-820

quencies. This is due to the interband resonance that821

becomes possible once the frequency exceeeds twice the822

chemical potential. Due to the tilting, the Fermi surface823

with µ = 0.1 is an ellipse with a smaller bandgap on one824

side than another. This causes the linear conducitivity825

to onset in the range 2µ− t ≤ ω ≤ 2µ+ t.826

The third harmonic response is shown in the bottom827

panel of FIG. 1, and displays several features of interest.828

At low frequency, where ω ∼ γ, we observe the predicted829

divergence (112), in accordance with the semiclassical830

considerations of Section VI. The divergence is visible831

in both the real and imaginary parts due to the phe-832

nomenological broadening. Resonances are visible near833

ω ∼ µ and ω ∼ 2µ/3, due to two- and three-photon pro-834

cesses respectively. The top panel of FIG. 1 indicates835

these processes schematically.836

One can see that the two-photon process becomes res-837

onant around ω ∼ 2µ/3− t, corresponding to the side of838

the Weyl cone with the smaller bandgap, and continues839

up to ω ∼ 2µ/3 + t, when the resonance is on the other840

side of the cone. This causes a peculiar linear increase841

in Reσzxxx in the range 2µ/3 − t ≤ ω ≤ 2µ/3 + t, and842

similar considerations apply to the third-order response843

in the range µ − t ≤ ω ≤ µ + t. As the tilting is in-844

creased, the range of this linear regime grows. This not845

too surprising, since a similar linear onset due to the tilt846

is present at first order. To our knowledge, this is the first847

prediction of a third-order response in Weyl semimetals.848

Again, the key topological feature is the divergence at849

low frequency, which is proportional to the quadrupole850

moment of the Berry curvature.851

One should note that, although we have focused on the852

third-harmonic contribution here, the equations for the853

third-order response from Section V are generic. One854

can just as easily evaluate the self-focusing correction,855

totally off-diagonal components such as σzyxz, or other856

effects such as the AC Kerr effect. Similarly, any other857

tight-binding model can be used instead of (111). The858

only restriction is that it must be defined on the entire859

Brillouin zone, so that the equivalence with length-gauge860

is maintained.861

Let us comment briefly on the use of DFT. The optical862

response formulas in previous sections require the matrix863

elements of derivatives of the Hamiltonian operator (11).864

Using the covariant derivative (8), these can be written in865

terms of the matrix elements of the velocity operator and866

the Berry connection. There are well-established tech-867

niques for calculating linear responses within DFT49—868

which already involves computing the Berry connection869

and matrix elements of the velocity operators—and fre-870

quently achieves predictions within 1% − 10% of exper-871

imental values. Naively, this is somewhat surprising, as872

DFT does not necessarily give good wavefunctions, but873

only energies. Nevertheless, tools such as the “GW” ap-874

proximation or the use of specific functionals permit ac-875

curate determination of the wavefunctions in many cases.876

With sufficiently fine k-space meshes, one can in principle877

converge the numerical derivatives required and make ac-878

curate predictions for non-linear optical responses within879

DFT50. Another option is to use the technique of “Wan-880

nierization” to produce accurate tight-binding models by881

Fourier transforming Wannier functions derived ab ini-882

tio51. In sum, the nonlinear optical responses presented883

here are may, in principle, be accurately computed within884

DFT.885

VIII. DISCUSSION AND CONCLUSIONS886

This work has elucidated a diagrammatic approach to887

nonlinear optical responses and applied it to predict the888

third order optical response of Weyl semimetals. In this889

final section we will reiterate the main results of the paper890

and discuss the choice of gauge.891

As mentioned in the introduction, the choice of the892

length or velocity gauge in optical response calcula-893

tions is a longstanding issue. The modern definitions894

of the gauges—which depend crucially on the Berry895

connection—permit the use of either gauge to compute896

optical responses. Therefore one is now free to choose the897

best gauge for the problem at hand. The computations898

in this work suggest a few rules of thumb for when each899

gauge should be applied. Equations in the velocity gauge900

have a natural separation between matrix elements and901

resonances, and contain only simple poles, making them902

preferable whenever it is necessary to separately examine903

one-, two-, and three-photon resonances. Since the only904

matrix elements that appear are derivatives of the Hamil-905

tonian, the velocity gauge is particularly well-suited for906

tight-binding calculations. However, in the ω → 0 limit,907

the velocity gauge suffers from (cancelling) apparent di-908

vergences. Hence, for analytical work in this limit the909

length gauge is often preferable.910

Let us comment on why our diagrammatic approach911

necessarily employs the velocity gauge. The key issue is912

the presence of the position operator r̂, which acts on913

all operators to the right by differentiation. The vertices914

needed in the length gauge become complicated quite915

quickly, as they involve not only the position and velocity916

operators, but objects such as the derivatives of the posi-917

tion operator and a resonance; virtually every term uses918

its own, unique, vertex. A naive diagrammatic approach919

to nonlinear response in the length gauge is therefore920

impractical. One should note that, historically, diagram-921

matic methods have indeed employed the length gauge18.922

However, these techniques do not account for the Berry923

connection, but only the fully interband parts of the posi-924

tion operator. In any material with non-vanishing Berry925

connection, these old-style diagrams will miss important926

contributions to nonlinear responses, including some res-927
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onances.928

The diagrammatic method of this work provides an ef-929

ficient computational framework to calculate nonlinear930

responses in the velocity gauge. The results are general931

for any component and frequency, without unphysical932

diverjoao2018nonjoao2018nongences. We have provided933

convenient formulae for the general second and third or-934

der responses, as well as the particular cases of second935

harmonic, shift current, third harmonic and self-focusing.936

To interpret these equations, we examined the semiclassi-937

cal limit and linked it to the length gauge. On a technical938

level, the method of this work should often be the short-939

est way to compute nonlinear optical responses.940

The expressions for nonlinear optical responses given941

here are equivalent to those previously given in the liter-942

ature in all cases we are aware of (so long as the correct943

definitions for the length and velocity gauges are em-944

ployed). We have checked that our formalism explicitly945

reproduces the results of Refs5,10,11,13,52,53, as well as the946

equivalence of our equations for the first-order conductiv-947

ity, shift current, and second-harmonic generation with948

those present in the literature. This is exactly what is949

expected. After all, one can recover many other schemes950

for computing non-linear responses as limits of ours, in-951

cluding (i) Boltzmann/semiclassical transport theory, (ii)952

quantum mechanical perturbation theory in the length953

or velocity gauge, (iii) Floquet formalism. Recent work54
954

develops a diagrammatic expansion for non-linear optical955

responses in the Keldysh formalism which reduces to our956

formalism when the applied electric fields are periodic in957

time (i.e. plane-waves). We expect, however, that our958

results hold for general wavepackets E(t) so long as the959

duration of the wavepacket and measurement are much960

less than the timescale associated with dissipation.961

Optical responses are most useful when connected to962

experiment. To this end, we have predicted the third963

harmonic response of a Weyl semimetal. At small fre-964

quencies, the third harmonic response is dominated by a965

divergent term due to the quadrupole of the Berry curva-966

ture, and hence of topological origin. There are also large967

resonant contributions from both two- and three-photon968

processes, with a peculiar linear character.969

The results of this work can be expanded in both970

technical and practical directions. Technically, the dia-971

grammatic formalism enables interacting electrons to be972

treated on the same level as free ones; we are currently973

expanding these results to the case of Fermi liquids and974

possibly even magnetic fields. On a practical level, third975

order responses are somewhat understudied at present,976

despite being present in most materials and technolog-977

ically important. The formulae and techniques of this978

work should enable or simplify prediction of the third979

order optical response in a wide variety of materials.980
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Appendix A: The Position Operator and The Berry994

Connection995

This Appendix discusses the position operator and its996

close relation to the Berry connection, giving some math-997

ematical details thereof.998

1. The Position Operator as Covariant Derivative999

Suppose we have a crystal with a finite number of1000

bands, N , which are all close to the Fermi level and sepa-1001

rated from all other bands by a large energy gap. We can1002

then consider those N bands as an effective model for the1003

material. What form does the single-particle position op-1004

erator take in this situation? The correct answer to this1005

question was known at least as early as 1962, where it is1006

discussed in the classic paper of Blount23. Morally, just1007

as derivatives and polynomials are exchanged by Fourier1008

transforms, the real-space position operator r̂ should be-1009

come a k-derivative. We briefly recall Blount’s deriva-1010

tion, adapted to modern notation.1011

Any wavefunction |f〉 can be written in terms of the1012

Bloch functions ψka as1013

〈r|f〉 = f(r) =
∑
a

∫
[dk]ψkafa(k) (A1)

Then

〈r|r̂|f〉 =
∑
a

∫
[dk] ψka(r)rfa(k)

=
∑
a

∫
[dk]

[
−i∂k

(
eik·r

)]
uka(r)fa(k)

Integrating by parts (the surface term vanishes because
the Brillouin zone is a closed manifold)

〈r|r̂|f〉 =
∑
a

∫
[dk] eik·r [i∂kuka(r) + uka(r)i∂kf ]

=
∑
a,b

∫
[dk] ψkb(r) [δabi∂k + ukbi∂kuka] fa.
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We can therefore identify1014

r̂ = iD̂ = i [∇k − iA] (A2)

where1015

Aab = i 〈uka|∂kukb〉 . (A3)

To be clear, in (A2), ∇k = δab∇kδ(k
′ − k) is the gra-1016

dient operator which acts on all matrix elements to the1017

right. Here we have used the standard notation ψka for1018

the Bloch functions, but nowhere was the fact that they1019

are eigenvectors of the Hamiltonian necessary. Indeed,1020

nothing about the Hamiltonian was needed! The con-1021

nection we have defined is a generalization of the Berry1022

connection to the case of multiple bands; D is a U(N)1023

connection. It depends only on the choice of which N1024

bands are involved and not on any details of the dynam-1025

ics.1026

This is particularly clear once we consider a change1027

of basis. Suppose U is a general change of basis, i.e. a1028

U(N) gauge transformation: ψ
′

ka′ = Ua′a(k)ψka where1029

the Ua′a’s vary smoothly with k. Gauge transforms act1030

naturally on basis vectors, and therefore act through the1031

dual representation on wavefunctions, which are coeffi-1032

cients. Concretely, 〈r|f〉 =
∑
a

∫
[dk]ψkafa transforms1033

to1034 ∑
a′

∫
[dk]ψ

′

ka′fa′ =
∑
a,a′

∫
[dk]ψkaUaa′(k)fa′ . (A4)

Hence wavefunctions transform as f → U†f . We there-1035

fore mandate that D̂f , which is itself a wavefunction,1036

must transform as1037

D̂f → U†D̂f =
(
U†D̂U

) (
U†f

)
(A5)

under a gauge transformation. The action of D gives1038 [
U†U∇k + U† (∇kU)− iU†AU

] (
U†f

)
. (A6)

Comparing with
[
∇k − iA′

] (
U†f

)
we find1039

A′ = U†AU + iU†∇kU (A7)

This confirms that D̂ is a U(N) non-Abelian connection.1040

Beyond being necessary to define the position oper-1041

ator correctly, this connection allows us to define the1042

k-derivatives of operators. The connection acts on op-1043

erators naturally via1044

D̂[Ô] = [D̂,O]. (A8)

This is used extensively in the main text.1045

2. Generalized Berry Connections1046

Let us give a few more mathematical comments. Read-1047

ers curious for a more formal treatment are recommended1048

to consult Chapter 7 of55 or Appendix D of56. The nor-1049

mal Berry connection20 is a U(1) connection defined for1050

a single band. For our setting of N bands, there are two1051

possible generalizations to consider: a U(1)N connection1052

or a U(N) connection, the latter of which we have de-1053

scribed above. Let us see how each of these arise and1054

what role they play physically.1055

From the perspective of differential geometry, we are1056

working with an infinite dimensional Hilbert bundle over1057

the Brillouin torus. The exterior derivative d is a pro-1058

vides a (curvature-free) connection on the Hilbert bun-1059

dle. When we select an N -dimensional effective Hilbert1060

space, there is a projection map1061

P =
1

N

N∑
a=1

∫
[dk] |uka〉 〈uka| (A9)

from the Hilbert bundle to the CN bundle of interest, and1062

this projection naturally induces a connection on the CN1063

bundle which acts on CN -valued differential forms ω as57
1064

Dω = Pdω = (d+ iA)ω (A10)

An important, yet subtle, point is that the considera-1065

tions above do not uniquely define a connection. There1066

is still a residual freedom corresponding to the choice of1067

origin in the (real space) unit cell. This is intimately1068

related to the modern theory of polarization and is care-1069

fully considered from a mathematical point of view in58.1070

Due to the non-Abelian nature of the U(N) connec-1071

tion, its gauge-invariant quantities are Wilson loops,1072

which cannot be computed directly from the curvature.1073

It would be interesting to compute these and determine1074

if they have any physical meaning or utility. However,1075

it seems unlikely that expressions involving Wilson loops1076

are buried inside nonlinear conductivities. In the special1077

case of degenerate bands, the Wilson loops have been1078

used, for instance, to classify topological parts of Fermi-1079

surface oscillations under magnetic fields59.1080

Now let us identify the second, Abelian, connection. In1081

practice, one virtually always chooses to work in the en-1082

ergy basis with Bloch functions uka. However, as is well-1083

known, these are only defined up to a phase. The func-1084

tions u′ka = eiθa(k)uka also satisfy (6). In other words,1085

the choice of the energy basis does not completely fix the1086

gauge, but only up to a change of phase in each band;1087

there is a residual U(1)N gauge freedom. This allows us1088

to define the second connection, which is Abelian and is1089

denoted by a non-calligraphic letter:1090

D̂(k)ab = δab [∇k − iAaa] (A11)

where A is the same as above, but this is now diagonal in1091

the band indices. Under a U(1)N gauge transformation1092

U(k) = δabe
iθa(k), Equation (A7) reduces to1093

Aaa = Aaa −∇kθa(k). (A12)

So the Abelian connection transforms as D → D′ =1094

e−iθaDaae
iθa = D and is thus gauge invariant. This1095
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U(1)N connection is nothing more than one copy of the1096

normal Berry connection for each band. As above, we get1097

an associated connection on operators given by D[Ô] =1098

[D, Ô], and D[Ô] will be gauge-invariant whenever O is.1099

Let us briefly contrast the U(N) and U(1)N connec-1100

tions and identify when each should be used. The non-1101

Abelian connection D is a strictly more complicated ob-1102

ject than the Abelian connection D. In general, objects1103

involving D will be gauge-covariant after choosing the en-1104

ergy basis, but objects with D may be gauge-invariant.1105

For example, the curvature1106

FD = i[D,D]→
(
FD)′ = U†FDU, (A13)

is gauge-covariant, whereas in the Abelian case1107

FD = i[D,D]→
(
FD

)′
= e−iθaFD

ab δabe
iθb = FD

(A14)
is gauge-invariant. (This is a standard fact for non-1108

Abelian versus Abelian connections.) As any observable1109

must be strictly gauge-invariant, so it is necessarily much1110

easier to produce observables out of the second connec-1111

tion. In an ideal world, we would be able to work only1112

with D and not D. Indeed, for a single band when1113

N = 1, this is the case. There is some hope of elimi-1114

nating D, because for all operators that act diagonally1115

in band space, with Ô = δabOaa, the induced connection1116

D reduces to D. However, this is a vain hope: measur-1117

ing electromagnetic responses inevitably involves the off-1118

diagonal components Aab, and we must use the full gen-1119

erality of the non-Abelian connection. Moreover, when1120

bands are degenerate or cross, such as at a Dirac point,1121

there is no unique way to define the Bloch wavefunctions1122

of each band. These points, which play a crucial role1123

in topological band structures, therefore cannot be fully1124

described via this U(1)N connection.1125

In a philosophical sense, the presence of the non-1126

Abelian connection helps to explain why non-linear con-1127

ductivity responses are often devoid of simple forms: they1128

must be gauge-invariant, but their “building blocks” are1129

only gauge-covariant, and so much be composed of tricky1130

combinations that cancel out among themselves. More1131

optimistically, however, one can harness this gauge in-1132

variance. We will use it to conceptually simplify our1133

perturbation theory approach to non-linear conductivi-1134

ties in the length gauge. A theme from recent years is1135

that the converse is also true: once a new gauge invari-1136

ant combination has been isolated, it is usually physically1137

measurable, perhaps in a limit. To search for new and1138

interesting quantities to measure, one need only consider1139

what combinations are gauge invariant.1140

Appendix B: Useful Integrals1141

In this section we will evaluate the loop integrals in the1142

Feynman diagrams. Following Chapter 3 of Mahan60,1143

we work with Matsubara frequencies, which allows the1144

evaluation of the integrals with straightforward contour1145

integral techniques.1146

We wish to evaluate integrals such as

I1 =

∫
dω Ga(ω) =

∫
dω

1

ω − εa
(B1)

I2(ω1) =

∫
dω Ga(ω)Gb(ω + ω1) (B2)

I3(ω1, ω2) =

∫
dω Ga(ω)Gb(ω + ω1)Gc(ω + ω1 + ω2)

(B3)

I4(ω1, ω2, ω3) =

∫
dω Ga(ω)Gb(ω + ω1)Gc(ω + ω1 + ω2)

(B4)

×Gd(ω + ω1 + ω2 + ω3) (B5)

In imaginary time, fermions only have frequencies at odd1147

imaginary integers: iωn = i(2n + 1)π/β for n ∈ Z. The1148

integral is then analytically continued to a sum1149

I1 → S1 =
1

β

∑
n∈Z

1

iωn − εa
. (B6)

To evaluate this sum, note that the Fermi-Dirac Distribu-1150

tion f(z) = 1
eβz−1

has poles at exactly these complex fre-1151

quencies iωn, each with residue −1/β. We can therefore1152

use the following trick of trading the sum for a contour1153

integral. Consider1154

0 = J1 = lim
R→∞

∮
CR

dz

2πi
f(z)F1(z) (B7)

where the contour is the circle of radius R and1155

F1(z) =
1

z − εa
. (B8)

The integral on the right-hand side is easy to evalute.1156

The poles of f(z)F1(z), shown in Figure 2 are at zn = iωn1157

with residue Rn = − 1
βF1(iωn), coming from the Fermi-1158

Dirac distribution, and then z1 = εa with residue R1 =1159

f(εa). So1160

0 = J1 = − 1

β

∑
n∈Z

F1(iωn) + f(εa). (B9)

Rearranging,1161

I1 = S1 = f(εa), (B10)

where the first equality is true since the analytic contin-1162

uation back is trivial here.1163

Precisely the same technique will work for the more1164

complex integrals with one extra residue for each Green’s1165

function. For I2 we analytically continue to1166

S2(iω1) =
1

β

∑
n∈Z

1

z − εa
1

z + iω1 − εb
. (B11)
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ω

iω

z1 = εa

R

FIG. 2. Depiction of the poles of the function f(z)F1(z) and
the integration contour. The poles zn are on the iω axis and
the pole z1 is on the ω axis.

Since iω1 is due to an incoming photon, it is a bosonic
Matsubara frequency and thus an even integer instead of
odd: iω1 = i(2M)π/β for some integer M . Now consider

0 = J2 = lim
R→∞

∮
CR

dz

2πi
f(z)F2(z) (B12)

F2(z) =
1

z − εa
1

z + iω1 − εb
. (B13)

The function f(z)F2(z) has poles and residues1167

zn = iωn; Rn = − 1

β
F2(iωn) (B14)

z1 = εa; R1 =
f(εa)

εa + iω1 − εb
=
−f(εa)

εba − iω1

(B15)

z2 = εa − iω1; R2 =
f(εb − iω1)

εb − iω1 − εa
=

f(εb)

εba − iω1
.

(B16)

In the last equality for R2, the fact eβ(iω1) = 1 implies1168

fa(εa − iω1) = f(εb). Therefore1169

S2(iω1) = R1 +R2 =
fab

iω1 − εab
. (B17)

Analytically continuing back we then have1170

I2(ω1) =
fab

ω1 − εab
. (B18)

The generalization to I3 and I4 follows the same pat-1171

tern. For I3 we consider the contour integral against1172

F3(z) =
1

z − εa
1

z + iω1 − εb
1

z + iω12 − εc
(B19)

where ω12 = ω1 + ω2. Then f(z)F3(z) has poles and
residues

zn = iωn; Rn = − 1

β
F3(iωn) (B20)

z1 = εa; R1 =
f(εa)

(εab + iω1)(εac + iω12)
(B21)

z2 = εb − iω1; R2 =
f(εb)

(εba − iω1)(εbc + iω2)
(B22)

z3 = εc − iω12; R3 =
f(εc)

(εca − iω12)(εcb − iω2)
. (B23)

Then S3(iω1, iω2) = R1 +R2 +R3. Analytically contin-
uing back to real frequency,

I3(ω1, ω2) =
f(εa)

(εab + ω1)(εac + ω12)
(B24)

− f(εb)

(εab + ω1)(εbc + ω2)
+

f(εc)

(εac + ω12)(εbc + ω2)
. (B25)

Employing the same procedure, S4 is made up of 41173

poles, which sum to give1174

I4(ω1, ω2, ω3) (B26)

=
f(εa)

(εab + ω1)(εac + ω12)(εad + ω123)

+
f(εb)

(εba − ω1)(εbc + ω2)(εbd + ω23)

+
f(εc)

(εca − ω12)(εcb − ω2)(εcd + ω3)

+
f(εd)

(εda − ω123)(εdb − ω23)(εdc − ω3)
.
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