

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Diagrammatic approach to nonlinear optical response with application to Weyl semimetals

Daniel E. Parker, Takahiro Morimoto, Joseph Orenstein, and Joel E. Moore Phys. Rev. B **99**, 045121 — Published 10 January 2019 DOI: 10.1103/PhysRevB.99.045121

Diagrammatic approach to nonlinear optical response with application to Weyl semimetals

Daniel E. Parker,^{1,*} Takahiro Morimoto,^{1,2,†} Joseph Orenstein,^{1,2,‡} and Joel E. Moore^{1,2,§}

¹Department of Physics, University of California, Berkeley, CA 94720, USA

²Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Dated: October 26, 2018)

Nonlinear optical responses are a crucial probe of physical systems including periodic solids. In the absence of electron-electron interactions, they are calculable with standard perturbation theory starting from the band structure of Bloch electrons, but the resulting formulas are often large and unwieldy, involving many energy denominators from intermediate states. This work gives a Feynman diagram approach to calculating non-linear responses. This diagrammatic method is a systematic way to perform perturbation theory, which often offers shorter derivations and also provides a natural interpretation of nonlinear responses in terms of physical processes. Applying this method to secondorder responses concisely reproduces formulas for the second-harmonic, shift current. We then apply this method to third-order responses and derive formulas for third-harmonic generation and selffocusing of light, which can be directly applied to tight-binding models. Third-order responses in the semiclasscial regime include a Berry curvature quadrupole term, whose importance is discussed including symmetry considerations and when the Berry curvature quadrupole becomes the leading contribution. The method is applied to compute third-order optical responses for a model Weyl semimetal, where we find a new topological contribution that diverges in a clean material, as well as resonances with a peculiar linear character.

CONTENTS

1

2

3

4

5

6

7

8	I.	Introduction	1	35	
9	II.	Setup & Feynman Rules	3	36]
10		A. Band Theory and Notation	3		
11		B. Electromagnetic Interactions	3	37	
12		C. Feynman Rules	4		
13		D. Assumptions and Caveats	5		
				38	
14	III.	First Order Conductivity	6		
15		A. Derivation from Diagrams	6	39	0
16		B. Derivation of the Diagrams	7	40	nat
	TT 7		0	41	mea
17	IV.	Second Order Response	8	42	que
18		A. Second-Harmonic Generation	8	43	con
19		B. Shift Current	9	44	resp
	V	Third Order Besponse	0	45	on
20	۷.	A Third Harmonia Concration	9 11	46	То
21		D. Salf Equation	11	47	essa
22		B. Sen-Focusing	11	48	froi
23	VI	Semiclassical Limit	12	49	els
23	, 1.	A Semiclassical Derivation	12	50	F
24		B Length Gauge	13	51	the
25		C. Symmetry Considerations	15	52	alo
20		D. Longth versus Velocity Courses	15	53	mo
27		D. Length versus velocity Gauges	10	54	bat
28	VII	Numerical Example	15	55	lan
20	, 11.		10	56	teri
29	VIII.	Discussion and Conclusions	17	57	sys
				58	Sin
30		Acknowledgments	18	59	teri
		-		60	abs
31	А.	The Position Operator and The Berry		61	diff
32		Connection	18	62	a n

33	1. The Position Operator as Covariant	
34	Derivative	18
35	2. Generalized Berry Connections	19
36	B. Useful Integrals	20
37	References	21
38	I. INTRODUCTION	

Optical response provides a window into the quantum ture of materials. The exquisite control and precise asurements enabled by modern optical techniques freently couple with theoretical predictions to test and firm models of quantum materials. Nonlinear optical ponses $^{1-4}$, in particular, give a wealth of information dynamics, symmetry, and—recently—topology $^{5-17}$. fully reap the benefits of optical techniques, it is necary to accurately predict optical responses in solids m theory, including both simplified tight-binding modand advanced computational approaches.

Historically, optical responses were understood first at linear order, and then extended to nonlinear orders ngside the development of the laser in the 1960s. For lecular systems, normal quantum-mechanical perturtion theory suffices, and a convenient diagrammatic guage became popular, capturing optical processes in ms of electrons changing energy levels¹⁸. In crystalline tems, however, there are several additional wrinkles. nply defining the perturbation corresponding to an exnal electric field is a subtle task. Like in a molecule, sorbing a photon can cause an electron to jump to a ferent band, but can also cause the electron to move to hearby k-point on the same band. The latter requires 63 connecting adjacent points in k-space, and thus involves 117 structure is manifest, immediately distinguishing one-, the Berry connection 19,20 . 64

65 perturbation was written carefully in order to treat non-120 the need for sum rules. 66 linear responses. There are two standard ways of writing 121 an electromagnetic perturbation within the framework 68 69 of independent electrons and dipole fields. First, the so-70 called *length gauge*

$$\widehat{H}_E = \widehat{H}_0 + e\boldsymbol{E}(t) \cdot \widehat{\boldsymbol{r}} \tag{1}$$

⁷¹ uses the single-particle position operator \hat{r} whereas the ⁷² second, the *velocity gauge*, uses the minimal substitution 73 scheme

$$\widehat{H}_A = \widehat{H}_0(\boldsymbol{k} - e\boldsymbol{A}(t)) \tag{2}$$

where the vector potential A(t) is chosen so that E(t) =74 $\partial_t \mathbf{A}(t)$. As usual, each gauge is well-suited for a differ-75 ent set of tasks. The length gauge is better for analytical 76 answers, semi-classical limits, and some questions involv-77 ing topology, whereas the velocity gauge gives a cleaner 78 resonance structure and is easier to implement numeri-79 80 cally, especially for tight-binding models.

Over time, there has been a competition between the 81 two approaches. The velocity gauge was initially favored 82 $_{83}$ in the 1980s due to easier calculation (see e.g.^{21,22}). Velocity gauge calculations, however, often contain spurious 84 divergences at zero frequency, which can be eliminated 85 only with somewhat opaque sum rules. The position op-86 erator was defined carefully in the work of Blount in the 87 $1960s^{23}$, and its relation to the Berry connection was un-88 89 ۹N was harnessed by Sipe and Shkrebtii to develop a widely 91 used approach to calculate second-order responses within 92 93 94 95 (SHG)^{9,27}—are of great current interest for a wide va-96 97 with putative dangers associated with the velocity gauge 98 when truncating the number of bands, ensured the pri-¹⁵⁷ 99 macy of the length gauge. 100

101 102 103 104 105 106 107 responses. As noted above, diagrammatic methods have 166 to the Weyl cones. 108 a long history in the subject. The formulation here, how-167 109 110 111 112 113

¹¹⁸ two-, and three-photon terms, and the expressions can It is only relatively recently that the electromagnetic ¹¹⁹ be directly implemented in tight-binding models without

> One motivation for this work is providing tools to bet-¹²² ter understand optical responses. A large body of re-¹²³ cent work has followed the theme of studying optical re-¹²⁴ sponses in situations where they become particularly sim-¹²⁵ ple: semiclassics and Weyl semimetals. In semiclassics, ¹²⁶ the limit of a single band where $\omega \to 0$, optical responses can be understood from the semiclassical equations of 127 motion (EOM) that describe wavepackets of Bloch elec-128 trons. Berry curvature gives an additional contribution 129 130 to these equations of motion called the anomalous ve-¹³¹ locity, which leads to the Hall conductivity in linear $_{\rm 132}\ \rm response^{31}.$ At second order, the anomalous velocity is ¹³³ responsible for the circular photogalvanic effect (CPGE), $_{134}$ and non-linear Kerr rotation that is proportional to the ¹³⁵ dipole of Berry curvature^{10–12}.

The next-to-simplest situation is that of two-band 136 137 models, where interband responses give rise to reso-¹³⁸ nances. Perhaps the most intriguing two-band models ¹³⁹ are those for Weyl semimetals. These materials support 140 three-dimensional gapless points called Weyl nodes that ¹⁴¹ are sources and sinks of Berry curvature^{32,33}. Simple 142 tight-binding models often suffice to describe their prop-143 erties. However, the fact that the Fermi surface vanishes 144 at the Weyl nodes puts them firmly beyond the semi-145 classical regime. Due to their nontrivial Berry curvature 146 structure, Weyl semimetals host a variety of non-trivial derstood deeply by the early 1990s, giving rise to the ¹⁴⁷ linear responses, including the chiral magnetic effect^{34,35} modern theory of polarization^{24,25}. This understanding ¹⁴⁸ and gyrotropic magnetic effect^{36,37}. As one might ex-149 pect, there is an even richer set of nonlinear optical re-¹⁵⁰ sponses due to the Berry curvature^{13,14,27}. These effects the length gauge⁵. The wide variety of physical effects ¹⁵¹ can be realized, for instance, in the monopnic TaAs, in the second-order response—including shift current⁶⁻⁹, ¹⁵² a Weyl semimetal with inversion breaking^{38,39}. Recent injection current^{13,14,26}, and second-harmonic generation, ¹⁵³ optical experiments on TaAs revealed that TaAs shows $_{\rm 154}$ CPGE responses closely tied to its Weyl node structure 16 riety of systems. These convenient formulae⁵, together ¹⁵⁵ and giant SHG, with the largest $\chi^{(2)}$ of any known $_{156}$ material 15,17 .

Below we connect the Feynman diagram formulation of ¹⁵⁸ optical response to both semiclassics and Weyl semimet-Recent work²⁸⁻³⁰ has re-examined the roots of the ¹⁵⁹ als. In the semiclassical limit we show that, with particproblem, providing careful prescriptions for both gauges 160 ular symmetries, the largest term in the third-order reand how to translate between them. It is now possible to 161 sponse has a topological origin as the quadrupole of the use either gauge correctly, depending on the problem at ¹⁶² Berry Curvature. We also examine the third-harmonic hand. In this work we focus primarily on the relatively 163 response of a Weyl semimetal. We find that the offunderappreciated velocity gauge, developing a convenient $_{164}$ diagonal component σ^{zxxx} has large two-photon and Feynman diagram prescription for calculating nonlinear ¹⁶⁵ three-photon resonances with peculiar linear profiles due

The remainder of this paper is organized as folever, has several key differences from previous work to 168 lows. Section II introduces notation and the Feynman implement the correct form of the electromagnetic inter- 169 rules. Sections III-V derive non-linear optical responses action and fully account for the effects of the Berry con- 170 through third order using Feynman diagrams and pronection. Our goal is to show that any second- or third- 171 vide some physically interesting limits. Section VI con-¹¹⁴ order optical response can be calculated from diagrams ¹⁷² siders the semiclassical limit, its relation to the length ¹¹⁵ in only a few lines. Two practical advantages of the re- ¹⁷³ gauge, and some topological considerations at third or-¹¹⁶ sulting velocity-gauge expressions is that the resonance ¹⁷⁴ der. Section VII presents a numerical example of a Weyl

TABLE I. The Feynman rules for non-linear electromagnetic perturbations in a crystal. Following the pattern, a new vertex with N incoming photons will appear at Nth order. Energy must be integrated around each internal loop, and conserved at each vertex. The output vertex can appear with each additional external photon.

¹⁷⁵ semimetal and, lastly, Section VIII concludes with some 176 heuristic rules for choosing a gauge, and other comments. 213

SETUP & FEYNMAN RULES II. 177

178 179 180 considerations involved carry over to Fermi liquid the- 219 ward as it might naively seem because one must carefully ¹⁸¹ ory. We first recall some key definitions to set notation, ²²⁰ consider what notion of derivative should be employed in

182 then discuss perturbation theory in an external electric 183 field for velocity gauge, and derive the Feynman rules. 184 We also comment on the assumptions and caveats of the 185 framework.s

Band Theory and Notation Α.

Consider a crystalline material in d dimensions de-187 188 scribed by band theory. The second-quantized Hamil-189 tonian is then

$$\widehat{H}_0 = \sum_{a \in \mathbb{Z}} \int [d\mathbf{k}] \, \varepsilon_a(\mathbf{k}) c^{\dagger}_{\mathbf{k}a} c_{\mathbf{k}a} \tag{3}$$

¹⁹⁰ where $\int [d\mathbf{k}] = (2\pi)^{-d} \int d^d \mathbf{k}$ indicates the properly-¹⁹¹ normalized integral over the *d*-dimensional first Brillouin ¹⁹² zone, the sum runs over all bands, and the c^{\dagger} and cs's ¹⁹³ are single-particle fermion creation and annihilation op-¹⁹⁴ erators, satisfying the usual anticommutation relations

$$\{c_{\boldsymbol{k}a}, c^{\dagger}_{\boldsymbol{k}'b}\} = (2\pi)^d \delta_{ab} \delta(\boldsymbol{k} - \boldsymbol{k}').$$
(4)

195 (Latin indices a, b, c, d are used to label bands hence-¹⁹⁶ forth.) We assume that the crystal is infinite in extent, ¹⁹⁷ without boundary.

Because the Hamiltonian (3) involves only a single rais-¹⁹⁹ ing and lowering operator, Fermion number is a symme-200 try of the system. We may thus write all observables ²⁰¹ in terms of the single-particle wavefunctions. As usual, ²⁰² Bloch's Theorem says the single-electron wavefunctions 203 may be written as

$$\psi_{\mathbf{k}a}(\mathbf{r}) = \langle 0 | \widehat{\Psi}(\mathbf{r}) c_{\mathbf{k}a}^{\dagger} | 0 \rangle = e^{i\mathbf{k} \cdot \mathbf{r}} u_{\mathbf{k}a}(\mathbf{r}), \quad a \in \mathbb{Z}, k \in \mathrm{BZ}$$
(5)

204 where $\widehat{\Psi}(\mathbf{r})$ annihilatess an electron at \mathbf{r} , and the u's $_{\rm 205}$ are periodic functions on the unit cell $^{40}.~$ The $u{\rm 's}$ are ²⁰⁶ eigenfunctions of the k-dependent Hamiltonian $\widehat{H}_0(\mathbf{k}) =$ 207 $e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}\widehat{H}_0e^{i\boldsymbol{k}\cdot\boldsymbol{r}}$:

$$\widehat{H}_0(\boldsymbol{k}) \ u_{\boldsymbol{k}a}(\boldsymbol{r}) = \varepsilon_{\boldsymbol{k}_a} u_{\boldsymbol{k}a}(\boldsymbol{r}). \tag{6}$$

208 Despite our assumption of independent electrons, we ²⁰⁹ work in a fully many-body framework. This is necessary any number of photons and gains a power of $ie(k\hbar\omega_k)^{-1}$ for 210 to implement Feynman diagrams but also, as discussed ²¹¹ below, makes the generalization to the interacting case ²¹² transparent.

В. **Electromagnetic Interactions**

Suppose there is an external electric field which we 214 ²¹⁵ treat classically. We adopt the velocity gauge with the ²¹⁶ minimal coupling Hamiltonian (2). To capture nonlinear We will work in a band theory picture of non- 217 responses, we expand in powers of the vector potential interacting electrons for simplicity, though most of the 218 in a Taylor series. This is, however, not as straightfor-

²²¹ the series. The answer is that one should use the (Berry) ²²² covariant derivative \widehat{D} when working in k-space. The 223 derivation of this fact and the definition of the covari-²²⁴ ant derivative are reviewed in Appendix A. Appendix A 225 shows that the covariant derivative \widehat{D} is related to the ²²⁶ single-electron position operator via $\hat{r} = iD$, and that it 227 acts naturally on operators via

$$\widehat{\boldsymbol{D}}[\widehat{\mathcal{O}}] = [\widehat{\boldsymbol{D}}, \widehat{\mathcal{O}}], \tag{7}$$

254

²²⁸ where the commutator has matrix elements

$$[\widehat{D}^{\mu},\widehat{\mathcal{O}}]_{ab} = \frac{\partial \mathcal{O}_{ab}}{\partial k^{\mu}} - i[\mathcal{A}^{\alpha},\widehat{\mathcal{O}}]_{ab}$$
(8)

229 where \mathcal{A} is the Berry connection whose matrix elements ²³⁰ are $\mathcal{A}_{ab} = i \langle u_{ka} | \partial_k u_{kb} \rangle$. Note that the covariant deriva-231 tive of an operator is *not* the derivative of its matrix $_{256}$ tensors from the Hamiltonian \hat{H}_0 . This is an ideal task 232 elements.

In terms of the covariant derivatives, the Hamiltonian 233 234 can be written as a Taylor series in terms of the electric 235 field as

$$\widehat{H}_A = \widehat{H}_0 + \widehat{V}_E(t) = \widehat{H}_0 + \sum_{n=1}^{\infty} \frac{1}{n!} \left[\prod_{k=1}^n \frac{e}{\hbar} A^{\alpha_k} \widehat{D}^{\alpha_k} \right] \widehat{H}_0,$$
(9)

236 where $\alpha_k \in \{x, y, z\}$ is a spatial index with an implicit ²³⁷ sum, and \widehat{D} is the (Berry) covariant derivative. (Greek ²³⁸ indices $\mu, \alpha, \beta, \ldots$ will always represent spatial indices ²³⁹ with an implicit summation henceforth.)

Equation (7) can be used to write the velocity operator 240 ²⁴¹ of the *unperturbed* Hamiltonian as

$$\widehat{\boldsymbol{v}} = [\widehat{\boldsymbol{D}}, H_0] = -i[\widehat{\boldsymbol{r}}, \widehat{H}_0].$$
(10)

²⁴² For convenience, we define higher derivatives of the un-243 perturbed Hamiltonian by

$$\widehat{h}^{\alpha_1\dots\alpha_N} = \widehat{D}^{\alpha_1}\cdots \widehat{D}^{\alpha_N}[\widehat{H}_0].$$
(11)

The perturbation due to the external field can then be 244 245 written as

$$\widehat{V}_E(t) = \frac{e}{\hbar} A^{\alpha}(t) \widehat{h}^{\alpha} + \frac{1}{2} \left(\frac{e}{\hbar}\right)^2 A^{\alpha}(t) A^{\beta}(t) \widehat{h}^{\alpha\beta} + \cdots$$
(12)

Fourier transforming and using $E(\omega) = i\omega A(\omega)$, we have

$$\widehat{V}_E(t) = \sum_{n=1}^{\infty} \frac{1}{n!} \prod_{k=1}^n \int d\omega_k e^{-i\omega_k t} \left(\frac{ie}{\hbar\omega_k}\right) E^{\alpha_k}(\omega_k) \widehat{h}^{\alpha_1 \dots \alpha_n}.$$
(13)

²⁴⁷ It is essential that—in the velocity gauge—a seemingly 248 new perturbation appears at each order in the electric $_{249}$ field. Physically, the *n*th term corresponds to the simul- $_{250}$ taneous interaction of N photons with an electron.

The electromagnetic response of a crystal is character-

of the current operator. The conductivity tensors are defined as the coefficients in an expansion of the current in powers of the external field:

$$\langle \widehat{J}^{\mu} \rangle (\omega) = \int d\omega_1 \ \sigma^{\mu\alpha}(\omega;\omega_1) E^{\alpha}(\omega_1)$$
 (14)

+
$$\int d\omega_1 d\omega_2 \ \sigma^{\mu\alpha\beta}(\omega;\omega_1,\omega_2) E^{\alpha}(\omega_1) E^{\alpha}(\omega_2) + \cdots$$
 (15)

 $_{251}$ where the first argument of the conductivity tensor σ is ²⁵² the "output" frequency ω and the others $(\omega_1, \omega_2, \dots)$ are ²⁵³ the frequencies of the incident light.

С. Feynman Rules

The task in front of us is to compute the conductivity 257 for perturbation theory, as we start with a free fermion 258 system and have a perturbation naturally stratified in ²⁵⁹ power of the external field. In the literature, the current ²⁶⁰ operator has commonly been computed with a density ²⁶¹ matrix formalism in the single-particle picture^{3,5}. How-262 ever, we shall adopt a path-integral and Feynman dia-²⁶³ gram approach that is shorter and more physically trans-²⁶⁴ parent. The two approaches are, of course, equivalent.

Formally, the partition function of the perturbed sys-265 tem may be written as a path integral 266

$$Z[\mathbf{E}] = \int \mathcal{D}c^{\dagger}\mathcal{D}c \exp\left(-i\int dt H_{A}(t)\right)$$

$$H_{A}(t) = \int [d\mathbf{k}] c_{k}^{\dagger}(t)H_{0}c_{k}(t) + c_{k}^{\dagger}(t)V_{E}(t)c_{k}(t).$$
(16)

The expectation of the current is then

$$\langle \widehat{J}^{\mu} \rangle (t) = \frac{1}{Z} \operatorname{Tr} \left[\mathcal{T} e \widehat{v}_{E}^{\mu}(t) e^{-i \int \widehat{H}(t') dt'} \right]$$

$$= \frac{1}{Z} \int \mathcal{D} c^{\dagger} \mathcal{D} c \left[e v_{E}^{\mu}(t) \right] \exp \left(-i \int dt' H_{A}(t') \right)$$

$$(17)$$

where \mathcal{T} represents time-ordering of operators. Here \hat{v}_E is the velocity operator in the *perturbed* system—which itself depends on the electric field:

$$\widehat{v}_{E}^{\mu}(t) = \widehat{D}^{\mu}[\widehat{H}_{0} + \widehat{V}_{E}(t)]$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{k=1}^{n} \int d\omega_{k} e^{i\omega_{k}t} \left(\frac{e}{\hbar\omega_{k}}\right) E^{\alpha_{k}}(\omega_{k}) \widehat{h}^{\mu\alpha_{1}\cdots\alpha_{n}}$$
(18)

In terms of functional derivatives, the conductivities are then given by

$$\sigma^{\mu\alpha_{1}...\alpha_{n}}(\omega;\omega_{k}) \tag{19}$$

$$= \int \frac{dt}{2\pi} e^{i\omega t} \prod_{k=1}^{n} \int \frac{dt_{k}}{2\pi} e^{i\omega_{k}t_{k}} \frac{\delta}{\delta E_{k}^{\alpha}(t_{k})} \left\langle \widehat{J}^{\mu} \right\rangle(t) \Big|_{\boldsymbol{E}=0}.$$

ized by the conductivity tensors. Incident electric fields 267 As a brief technical aside, one would usually take funcproduce a current, giving rise to a non-zero expectation 266 tional derivatives in the frequency domain, but due to 269 the explicit time-dependence in the Hamiltonian, it is 317 neccesary to compute first in the time-domain and then 270 Fourier transform. 271

Considering the form of (17), we are performing a dual 272 $_{273}$ expansion in E, as both the exponent and the velocity 274 operator depend on the electric field. As is usual in quantum field theory, the effect of the functional derivatives in 275 (19) turns out to be purely combinatorial and can be en-276 tirely captured in terms of Feynman diagrams. The only 277 wrinkle is that, since we are computing a non-standard 278 type of current, there is an extra vertex corresponding to 279 the "output" velocity operator. 280

Explicitly, the value of the Nth non-linear conductivity 281 can be computed by drawing all connected diagrams such 282 that: 283

1. There are N + 1 external photons. 284

- 2. All electrons are internal and compose one loop. 285
- 3. Exactly one vertex is crossed to indicate the output 336 286 current \widehat{J}^{μ} ; all other vertices are dotted. 287
- 288 289 I are chosen to avoid double-counting. 290
- 291 I. 292

mon in particle physics and thus merits some explana- ³⁴⁷ reason the velocity gauge cannot be used. 294 tion. First, since $c \gg v_F$, the Fermi velocity, a negligible 348 295 297 298 ³⁰⁰ must return to their equilibrium positions after a per-³⁵³ into play before those currents can be observed, corrupt-301 302 exactly one fermion loop are permitted. Fourth, we treat 355 field could create a population of excitons whose recom-303 the photon as a classical background field without dy- 356 bination interferes with the motion of electrons. This ³⁰⁴ namics, whose propagator is unity. However, the electron ³⁵⁷ type of issue makes it difficult to observe phenomena 305 propagator is the usual one for free fermions

$$G_{\boldsymbol{k}a}(\omega) = \frac{1}{\omega - \varepsilon_a(\boldsymbol{k})} \tag{20}$$

306 307 may never cross the inside of a fermion loop. 308

309 310 many diagrammatic methods, this method involves no 367 the linear conductivity to the current-current correlation $_{311}$ divergences beyond simple poles and does not require $_{368}$ function $\langle JJ \rangle$. Nonlinear conductivity generalizes this to 312 313 third-order responses are no more than a few lines. The 370 ent operators, so we are effective computing correlators $_{314}$ only non-trivial part consists of one new contour inte- $_{371}$ of the form $\langle J(JJJ) \rangle$ (at the third order). $_{315}$ gral at each order, which are performed for the reader's $_{372}$ A brief comment on the effect of scattering is also in ³¹⁶ convenience in Appendix B.

D. Assumptions and Caveats

Though the method of Feynman diagrams outlined 318 ³¹⁹ here is convenient, it is important to recognize the as-₃₂₀ sumptions that went into it and thus determine its range ³²¹ of validity. The use of the velocity gauge is associated 322 with several problems: spurious divergences and inac-323 curate approximations. The conductivities computed in ³²⁴ velocity gauge are apparently divergent with $\sigma^{(N)} \sim \frac{1}{\omega^N}$. 325 These divergences are spurious, but eliminating them re-326 guires the use of sum rules. These sum rules are now 327 understood as identities needed to convert from velocity $_{328}$ to length gauges (see the Appendix of 28). However, they ³²⁹ are still inconvenient to apply beyond first order, so when $_{330}$ taking the $\omega \to 0$ limit, it is best to work in the length ³³¹ gauge. This is carried out carefully in Section VI.

The velocity gauge has often been considered badly behaved under approximations. When materials are modelled by effective Hamiltonians focusing on a few bands 334 close to the Fermi level (such as two band models for Dirac semimetals), then effective optical responses calculated in the length gauge are generally accurate, while 337 those in the velocity gauge can suffer from corrections 338 4. Diagrams are symmetrized over all incoming pho-³³⁹ the same size as the response, rendering them practically tons (α_k, ω_k) . The factors on the vertices in Table 340 useless. It was shown in²⁹ that this inaccuracy only arises ³⁴¹ with models where the effective Hamiltonian is not de-³⁴² fined on the full Brillouin zone, ruining periodicity, or 5. The value of edges and vertices are given in Table 343 from the application of incorrect sum rules. In practice, 344 this prevents some two-band models of topological ma-³⁴⁵ terials from being studied with velocity gauge. However, 293 This procedure is slightly different from what is com- 346 if enough care is taken in defining the model, there is no

One should also take care with dynamical effects. We amount of momentum is exchanged through interactions. ³⁴⁹ have taken a perturbative approach to what is actually We thus consider only energy conservation at each ver- 350 a non-equilibrium problem. The currents described here tex. Second, we assume electrons are bound to the solid, 351 are only the initial current created after an incident pulse so only photons may be external. Third, since electrons 352 of light. In practice, other dynamical effects may come turbation and are non-interacting, only diagrams with 354 ing or distorting the current. For instance, a strong laser ³⁵⁸ which manifest as electrical currents rather than opti-³⁵⁹ cal responses, such as the shift current. We should note, 360 however, that the perturbation theory with equilibrium ³⁶¹ Green's functions accurately describe the nonlinear con-³⁶² ductivities, since they are obtained as finite order perwhere the k-index is suppressed below for notational con- $_{363}$ turbation in the external electric field $E(\omega)$ with respect venience. We will see below that, in practice, photons 364 to the equilibrium state. Namely, one could say that ³⁶⁵ our diagrammatic approach generalizes the Kubo formula This method is simple to apply in practice. Unlike 366 for linear response. Normally the Kubo formula relates regularization. The computation of the first, second, and 369 the setting where the input and output current are differ-

³⁷³ order. In a real material, impurities, photons and other

³⁷⁴ effects will perturb the free fermion band-structure. If 416
³⁷⁵ these effects are sufficiently weak, as is often the case,
³⁷⁶ one can simply replace the electron propagator with a
³⁷⁷ dressed version

$$G_a(\omega) = \frac{1}{\omega - \varepsilon_a} \to \frac{1}{\omega - \varepsilon_a + i\Sigma_a(\omega)}$$
(21)

³⁷⁸ where Σ_a is the self-energy of the electron, and is calcu-³⁷⁹ lable within Fermi liquid theory. In practice it is usually ³⁸⁰ unnecessary to understand the full frequency dependence ³⁸¹ of the self-energy. The phenomenological approximation ³⁸² $i\Sigma(\omega) = i\gamma \rightarrow i0^+$ is therefore often made. All the above ³⁸³ calculations can be carried out with this phenomeno-³⁸⁴ logical scattering factor included by slightly moving the ³⁸⁵ poles, i.e. simply substituting $\omega_1 \rightarrow \omega_1 + i\gamma$, etc. One ³⁸⁶ should note that for two-photon poles, the scattering fac-³⁸⁷ tor contributes twice, so

$$\frac{1}{\omega_1 + \omega_2 - \varepsilon} \to \frac{1}{\omega_1 + \omega_2 - \varepsilon - 2i\gamma}.$$
 (22)

³⁸⁸ It was pointed out in²⁹ that this factor of two can actu-³⁸⁹ ally have a significant effect on the shape of resonances, ³⁹⁰ especially at low frequency, and is therefore crucial when ³⁹¹ making experimental predictions.

This procedure is essentially the same as incorporat-392 ing interactions into the model. In principle, the tech-393 nique developed here works in the fully interacting case, 394 once the propagator and velocity operator are appropri-395 ³⁹⁶ ately modified. However, performing this analytically re-³⁹⁷ quires either weak interactions (i.e. a Fermi liquid) or a ³⁹⁸ quadratic Hamiltonian, such as in a mean-field approxi-³⁹⁹ mation. The BCS model of superconductivity falls into the later category, and non-linear responses of supercon-400 ductors will be the topic of future work. 401

Equipped with the Feynman rules, it is straightforward
to compute the non-linear conductivity tensors at any order. At first-order there are two diagrams, four at second
order, and eight at third order. Each corresponds to a
unique physical process that contributes independently
to the overall response.

408 III. FIRST ORDER CONDUCTIVITY

As a pedagogical demonstration of our framework, we 410 re-derive the first-order conductivity. Using the rules, 411 the answer is almost immediate. As an additional con-412 firmation, however, we offer a complementary derivation 413 starting from the definition of the conductivity. One can 414 see this as a derivation of the Feynman rules at first or-415 der.

A. Derivation from Diagrams

There are two Feynman diagrams at first order:

The frequency integrals are performed with standard techniques (see Appendix B) to find

$$I_1 = \int d\omega' G_a(\omega') = f_a \tag{24}$$

$$I_2(\omega_1) = \int d\omega' G_b(\omega' + \omega_1) G_a(\omega') = \frac{f_{ab}}{\omega_1 - \varepsilon_{ab}} \quad (25)$$

⁴¹⁷ where $f_a = f(\varepsilon_{ka})$ is the Fermi factor and $f_{ab} = f_a - f_b$, ⁴¹⁸ $\varepsilon_{ab} = \varepsilon_a - \varepsilon_b$ are difference of Fermi factors and energies ⁴¹⁹ respectively. Therefore the conductivity is

$$\sigma^{\mu\alpha}(\omega;\omega) = \frac{ie^2}{\hbar\omega} \sum_{a\neq b} \int [d\mathbf{k}] f_a h_{aa}^{\mu\alpha} + \frac{h_{ab}^{\alpha} h_{ba}^{\mu} f_{ab}}{\omega - \varepsilon_{ab}}.$$
 (26)

⁴²⁰ (The sum over band indices is only performed over the ⁴²¹ indices appearing in each term; the first term is summed ⁴²² over a while the second is summed over both a and b. ⁴²³ This notational abbreviation is used from now on.)

⁴²⁴ To connect this to familiar results, we convert to the ⁴²⁵ length gauge and consider the $\omega \to 0$ limit, expressing all ⁴²⁶ matrix elements in terms of the velocity matrix elements, ⁴²⁷ $v_{ab}^{\mu} = h_{ab}^{\mu}$. Using the identity

$$h_{ab}^{\mu\alpha} = [D^{\alpha}, v^{\mu}]_{ab} = \partial^{\alpha} v_{ab}^{\mu} - i[A^{\alpha}, v^{\mu}]_{ab}$$
(27)

and the fact $v^{\mu}_{ab} = -i\varepsilon_{ba}A^{\mu}_{ab}$, the conductivity becomes

$$\sigma^{\mu\alpha}(\omega;\omega) = (28)$$

$$\frac{ie^2}{\hbar\omega} \sum_{a,b} \int [d\mathbf{k}] f_a \partial^{\alpha} v^{\mu}_{aa} + f_{ab} v^{\alpha}_{ab} v^{\mu}_{ba} \left(\frac{1}{\varepsilon_{ba}} - \frac{1}{\omega - \varepsilon_{ab}}\right).$$

⁴²⁸ Combining the term in parentheses into a single fraction ⁴²⁹ eliminates the spurious divergence:

$$\sigma^{\mu\alpha}(\omega,\omega) = \frac{ie^2}{\hbar} \sum_{a,b} \frac{f_a \partial^\alpha v_{aa}^\mu}{\omega} + \frac{f_{ab} v_{ab}^\alpha v_{ba}^\mu}{(\omega - \varepsilon_{ab})\varepsilon_{ba}} \qquad (29)$$

⁴³⁰ This is the standard result in the length gauge⁵.

In the $\omega \to 0$ limit, the second term becomes $f_{ab}v^{\alpha}_{ab}v^{\mu}_{ba}/(\varepsilon^2_{ba}) + O(\omega^2) = f_a \mathcal{F}^{\mu\alpha}_{aa} + O(\omega^2)$, the Berry curvature. We then have

$$\lim_{\omega \to 0} \sigma^{\mu\alpha}(\omega;\omega) =$$

$$\frac{ie^2}{\hbar} \sum_{a} \int [d\mathbf{k}] \frac{-\partial^{\alpha} f_a v_{aa}^{\mu}}{\omega - i\gamma} + f_a \mathcal{F}_{aa}^{\mu\alpha}$$
(30)

⁴³¹ The first term corresponds to the Drude weight, and the
⁴³² second term is responsible for the Hall conductivity. This
⁴³³ formula matches what is derived from semiclassics in a
⁴³⁴ Boltzmann equation approach, which is examined in Sec⁴³⁵ tion VI.

436

B. Derivation of the Diagrams

We now give an alternative derivation of Eq. (23) from the definition of the current operator. This is essentially equivalent to a derivation of the Feynman rules and may be skipped by a reader already convinced of their validity. We start from the time-domain conductivity

$$\sigma^{\mu\alpha}(t;t_1) = \frac{\delta}{\delta E^{\alpha}(t_1)} \left\langle \widehat{J}^{\mu} \right\rangle(t) \Big|_{\boldsymbol{E}=0}.$$
 (31)

 $_{\rm 437}$ We must therefore evaluate the expectation value of

$$\frac{\delta \widehat{v}_E^{\mu}(t)}{\delta E^{\alpha}(t_1)} - \widehat{v}_E^{\mu}(t) \frac{\delta}{\delta E^{\alpha}(t_1)} \int dt' \ \widehat{H}(t') \tag{32}$$

at $\boldsymbol{E} = 0$. Writing $\hat{H}(t') = \hat{H}_0 + \hat{V}_E(t')$, and using (13), the second term requires the derivative

$$\frac{\delta}{\delta E^{\alpha}(t_{1})} \widehat{V}_{E}(t)$$

$$= \frac{ie}{\hbar} \int d\omega_{1} \frac{e^{-i\omega_{1}(t-t_{1})}}{\omega_{1}}$$

$$\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{k=1}^{n} \int d\omega_{k} e^{-i\omega_{k}t} E^{\alpha_{k}} \widehat{h}^{\alpha\alpha_{1}...\alpha_{n}}$$

$$= \frac{ie}{\hbar} \int d\omega_{1} \frac{e^{-i\omega_{1}(t-t_{1})}}{\omega_{1}} \widehat{h}^{\alpha} + O(\boldsymbol{E}).$$
(33)

Starting from (18) for the first term of (32), one computes

$$\frac{\delta}{\delta E^{\alpha}(t_{1})} \widehat{v}_{E}^{\mu}(t) \tag{34}$$

$$= \frac{ie}{\hbar} \int d\omega_{1} \frac{e^{-i\omega_{1}(t-t_{1})}}{\omega_{1}} \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{k=1}^{n} \int d\omega_{k} e^{-i\omega_{k}t} E^{\alpha_{k}} \widehat{h}^{\mu\alpha\alpha_{1}...\alpha_{n}}(t)$$

$$= \frac{ie}{\hbar} \int d\omega_{1} \frac{e^{-i\omega_{1}(t-t_{1})}}{\omega_{1}} \widehat{h}^{\mu\alpha}(t) + O(\mathbf{E}).$$

Hence the conductivity is

$$\sigma^{\mu\alpha}(t;t_{1})$$

$$= -e \int dt' \frac{ie}{\hbar} \int d\omega_{1} \frac{e^{-i\omega_{1}(t'-t_{1})}}{\omega_{1}} \langle \hat{h}^{\mu}(t) \hat{h}^{\alpha}(t') \rangle$$

$$+ e \frac{ie}{\hbar} \int d\omega_{1} \frac{e^{-i\omega_{1}(t-t_{1})}}{\omega_{1}} \langle \hat{h}^{\mu\alpha}(t) \rangle ,$$
(35)

 $_{\rm 438}$ where brackets denote expectations with respect to the $_{\rm 439}$ unperturbed Hamiltonian.

To proceed, we must evaluate the expectation values that in terms of the electron propagator

$$\langle c_{\mathbf{k}a}^{\dagger}(t)c_{\mathbf{k}b}(t')\rangle = \delta_{ab} \int d\omega \ e^{i\omega(t-t')}G_{\mathbf{k}a}(\omega). \tag{36}$$

Hence

$$\langle \hat{h}^{\mu\alpha}(t) \rangle = \sum_{a,b} \int [d\mathbf{k}] \langle c^{\dagger}_{ka}(t) h^{\mu\alpha}_{ab} c_{kb}(t) \rangle$$
 (37)

$$= \sum_{a} \int [d\mathbf{k}] h_{aa}^{\mu\alpha} \int d\omega \ G_{ka}(\omega) \qquad (38)$$

and, applying Wick's theorem,

$$\begin{split} \langle \hat{h}^{\mu}(t) \hat{h}^{\alpha}(t') \rangle & (39) \\ &= \sum_{a,b,c,d} \int [d\mathbf{k}] \langle c^{\dagger}_{ka}(t) h^{\mu}_{ab} c_{kb}(t) c^{\dagger}_{kc}(t') h^{\alpha}_{cd} c_{kd}(t') \rangle \\ &= \sum_{a,b} \int [d\mathbf{k}] h^{\mu}_{ba} G_{ka}(t-t') h^{\alpha}_{ab} G_{kb}(t'-t) \\ &= -\sum_{a,b} \int [d\mathbf{k}] \int d\omega'' e^{-i\omega''(t_1-t')} \int d\omega' e^{-i\omega'(t'-t_1)} \\ &\times h^{\mu}_{ba} G_{ka}(\omega'') h^{\alpha}_{ab} G_{kb}(\omega'). \end{split}$$

⁴⁴² In the last step we dropped terms corresponding to dis-⁴⁴³ connected diagrams, which contribute zero in expecta-⁴⁴⁴ tion.

We have now reduced everything to the propagators
and matrix elements of derivatives of the Hamiltonian—
the elements present in the Feynman rules. The last step
is to Fourier transform the conductivity to frequencyspace to eliminate exponential factors. Thus

$$\sigma^{\mu\alpha}(\omega;\omega_{1})$$

$$= \int \frac{dt}{2\pi} e^{i\omega t} \int \frac{dt'}{2\pi} e^{i\omega_{1}t_{1}} \frac{ie^{2}}{\hbar} \left[\int d\omega_{1} \frac{e^{-i\omega_{1}(t-t_{1})}}{\omega-1} \langle \hat{h}^{\mu\alpha}(t) \rangle - \int dt' \int d\omega_{1} \frac{e^{-i\omega_{1}(t'-t_{1})}}{\omega_{1}} \langle \hat{h}^{\mu}(t) \hat{h}^{\alpha}(t') \rangle \right]$$

$$= \frac{ie^{2}}{\hbar\omega} \sum_{a,b} \int [d\mathbf{k}] \left[\int d\omega' h^{\mu\alpha}_{aa} G_{a}(\omega') + \int d\omega' h^{\alpha}_{ab} G_{a}(\omega') h^{\mu}_{ba} G_{b}(\omega'-\omega_{1}) \right] \delta(\omega-\omega_{1})$$

$$(40)$$

 $_{450}$ where in the first step all the t integrals have been per- $_{451}$ formed to create δ -functions in frequency, eliminating $_{452}$ t, t', ω' and ω'' and $\omega_1 \to \omega'$ in the second step. This pre-⁴⁵³ cisely matches (23), which was obtained immediately by ⁴⁵⁴ Feynman diagrams. The diagrams serve to eliminate the 455 tedious steps of collapsing Fourier transforms into delta ⁴⁵⁶ functions, thereby greatly streamlining calculations.

SECOND ORDER RESPONSE 457 IV.

We now turn to the second-order response and demonstrate the second-order conductivity is concisely reproduced by the diagramatic formalism. There are four diagrams that contribute:

$$\sigma^{\mu\alpha\beta}(\omega;\omega_1,\omega_2) = \tag{41}$$

⁴⁵⁸ There is an overall constraint $\omega = \omega_{12} \equiv \omega_1 + \omega_2$.

The frequency integrals, which are called I_1, I_2 , and 497 $_{460}$ I_3 are performed in Appendix B. Indeed, only the tri- $_{498}$ one-photon and two-photon resonances. That is, if the 461 angle diagram contributes a new integral, I_3 , computed 499 incident light is at frequency ω , then there will be a $_{462}$ in (B24); the others appeared at first order. The most 500 second-order response at both ω and 2ω . One-photon $_{463}$ convenient form of I_3 depends on the situation. For in-464 stance, one can use partial fractions to split each term 502 (41), while two-photon resonances are due to the third 465 into separate resonances. However, for now we adopt a 503 and fourth diagrams. The first diagram only contributes ⁴⁶⁶ more compact representation with a triple resonance:

$$I_{3}(\omega_{1},\omega_{2}) = \frac{(\omega_{1} - \varepsilon_{bc})f_{ab} + (\omega_{2} - \varepsilon_{ba})f_{cb}}{(\omega_{2} - \varepsilon_{ba})(\omega_{1} - \varepsilon_{cb})(\omega - \varepsilon_{ca})}$$
(42)

We thus arrive at a formula for the second-order conductivity

$$\sigma^{\mu\alpha\beta}(\omega;\omega_1,\omega_2) = \tag{43}$$

$$\begin{aligned} \frac{-e^3}{\hbar^2 \omega_1 \omega_2} \sum_{a,b,c} \int [d\mathbf{k}] \frac{1}{2} f_a h_{aa}^{\mu\alpha\beta} + f_{ab} \frac{h_{ab}^{\alpha} h_{ba}^{\mu\beta}}{\omega_1 - \varepsilon_{ab}} + f_{ab} \frac{\frac{1}{2} h_{ab}^{\alpha\beta} h_{ba}^{\mu}}{\omega - \varepsilon_{ab}} \\ + h_{ab}^{\alpha} h_{bc}^{\beta} h_{ca}^{\mu} \frac{(\omega_1 - \varepsilon_{bc}) f_{ab} + (\omega_2 - \varepsilon_{ba}) f_{cb}}{(\omega_1 - \varepsilon_{cb}) (\omega_2 - \varepsilon_{ba}) (\omega - \varepsilon_{ca})} \\ + \left((\alpha, \omega_1) \leftrightarrow (\beta, \omega_2) \right) \end{aligned}$$

⁴⁶⁷ As above, the sum over bands a, b, c should only be em-468 ployed when necessary. For instance, the term $f_a h_{aa}^{\mu\alpha\beta}$ is 469 only summed over a, and not b, c.

Let us pause for a moment to interpret the structure of 470 ⁴⁷¹ this formula. Each term is a product of a matrix-element $_{472}$ part and a resonance part from one of the integrals I_1, I_2 $_{473}$ or I_3 . This natural separation allows us to easily consider various physical limits, wherein the resonance structure simplifies but the matrix elements remain unchanged. 475 The terms are arranged by powers of ω . The first term 476 corresponds to the derivative of the Drude weight, the "Drude weight dipole". The second and third terms are 478 one- and two-photon resonances respectively, which are 479 large when two bands are separated by energies of ω_1 or 480 $\omega_1 + \omega_2$. The last term, corresponding to the triangle 482 diagram, is more complex. We will see below that it is ⁴⁸³ still the sum of one-photon and two-photon resonances.⁴¹ ⁴⁸⁴ Also note that there is an overall pole $(\omega_1 \omega_2)^{-1}$. Except 485 in the first term, this second order pole is only an apparent divergence, and dissappears when the $\omega \to 0$ limit is carefully taken. However, the divergence is physical in 487 the first term. Section VI considers this point carefully. 488 To provide convenient equations for important limits, 489 490 as well as to gain a better understanding of the reso-⁴⁹¹ nance structure, we next examine two limits: second-

harmonic generation and the shift current. Again, this ⁴⁹³ merely amounts to taking the limit of the resonance inte- $_{\rm 494}$ grals I_2 and $I_3,$ and other limits can be carried out with ⁴⁹⁵ comparable ease.

Second-Harmonic Generation Α.

The second-harmonic response is generated by both $_{\rm 501}$ resonances come from the second and fourth diagrams in ⁵⁰⁴ resonantly near $\omega = 0$. To capture these resonances care- $_{505}$ fully, we use an alternative form for the integral I_3 which 506 makes them manifest.

Defining $\rho_1 = \omega_1/\omega, \rho_2 = \omega_2/\omega$. We may apply the

partial fraction identity

$$\frac{1}{(A-\omega_1)(B-\omega_2)} = (44)$$
$$\frac{1}{(A-\rho_1 B)(B-\omega_2)} - \frac{\rho_1}{(A-\rho_1 B)(A-\omega_1)}$$

 $_{\rm 507}$ to write

$$I_{3}(\omega_{1},\omega_{2}) = \frac{1}{\omega - \varepsilon_{ca}} \left[\frac{f_{a}}{\varepsilon_{ab} - \rho_{1}\varepsilon_{ac}} + \frac{f_{c}}{\varepsilon_{bc} - \rho_{2}\varepsilon_{ac}} \right] + \frac{\rho_{1}}{\omega_{1} - \varepsilon_{ba}} \left[\frac{f_{a}}{\varepsilon_{ba} + \rho_{1}\varepsilon_{ac}} + \frac{f_{b}}{\rho_{2}\varepsilon_{ab} + \rho_{1}\varepsilon_{cb}} \right] (45) + \frac{\rho_{2}}{\omega_{2} - \varepsilon_{cb}} \left[\frac{f_{c}}{\varepsilon_{cb} + \rho_{2}\varepsilon_{ac}} - \frac{f_{b}}{\rho_{1}\varepsilon_{cb} + \rho_{2}\varepsilon_{ab}} \right].$$

Here the first-term is a resonance due to absorbing both photons simultaneously, while the latter two are resonances in ω_1 or ω_2 only. So far, this is general, and can be used in (43) in place of (42). In the case of second harmonic generation, we take $\omega_1 = \omega_2 = \omega$, so $\rho_1 = \rho_2 = \frac{1}{2}$. After several cancellations,

$$I_{3}(\omega,\omega) \tag{46}$$
$$= \frac{1}{\varepsilon_{ab} + \varepsilon_{cb}} \left[\frac{2f_{ac}}{2\omega - \varepsilon_{ca}} + \frac{f_{bc}}{\omega - \varepsilon_{cb}} + \frac{f_{ba}}{\omega - \varepsilon_{ba}} \right].$$

Starting from the general equation (43), using $I_3(\omega, \omega)$, and writing out the frequency-symmetrization $(\alpha, \omega_0) \leftrightarrow (\beta, \omega_0)$ yields

$$\sigma^{\mu\alpha\beta}(2\omega;\omega,\omega) =$$

$$-\frac{e^{3}}{2\hbar^{2}\omega^{2}}\sum_{a,b,c}\int [d\mathbf{k}] f_{a}h_{aa}^{\mu\alpha\beta} + f_{ab}\frac{h_{ab}^{\alpha}h_{ba}^{\beta\beta} + h_{ab}^{\beta}h_{ba}^{\mu\alpha}}{\omega - \varepsilon_{ab}}$$

$$+ f_{ab}\frac{h_{ab}^{\alpha\beta}h_{ba}^{\mu}}{2\omega - \varepsilon_{ab}} + \frac{\left(h_{ab}^{\alpha}h_{bc}^{\beta} + h_{ab}^{\alpha}h_{bc}^{\beta}\right)h_{ca}^{\mu\alpha}}{\varepsilon_{ab} + \varepsilon_{cb}}$$

$$\times \left[\frac{2f_{ac}}{2\omega - \varepsilon_{ca}} + \frac{f_{bc}}{\omega - \varepsilon_{cb}} + \frac{f_{ba}}{\omega - \varepsilon_{ba}}\right].$$
(47)

⁵⁰⁸ This result is equivalent to velocity-gauge formulas for ⁵⁰⁹ the second-harmonic present in the literature^{27,29}, but ⁵¹⁰ did not involve any sum rules.

511

B. Shift Current

Another interesting limit to consider is the so-called ⁵¹² Another interesting limit to consider is the so-called ⁵¹³ shift current, $\sigma^{\mu\alpha\beta}(0;\omega,-\omega)$. It can be thought of as the ⁵¹⁴ "solar panel" response where incident light generates a ⁵¹⁵ DC current, and has been of recent interest in the context ⁵¹⁶ of two-band systems where it has a particularly simple ⁵¹⁷ form⁹.

As with the second harmonic, the only real task is to 519 determine what happens to the pole structure. Starting 520 from (45), one finds

$$I_3(\omega, -\omega) = \frac{1}{\varepsilon_{ac}} \left[\frac{f_{ab}}{(\omega - \varepsilon_{ba})} - \frac{f_{cb}}{(\omega - \varepsilon_{bc})} \right].$$
(48)

Then, symmetrizing explicitly,

$$\sigma^{\mu\alpha\beta}(0;\omega,-\omega) =$$

$$\frac{e^{3}}{\hbar^{2}\omega^{2}} \sum_{a,b,c} \int [d\mathbf{k}] f_{a}h^{\mu\alpha\beta}_{aa} + f_{ab}\frac{h^{\alpha}_{ab}h^{\mu\beta}_{ba}}{\omega - \varepsilon_{ab}}$$

$$+ f_{ab}\frac{h^{\beta}_{ab}h^{\mu\alpha}_{ba}}{-\omega - \varepsilon_{ab}} + f_{ab}\frac{h^{\alpha\beta}_{ab}h^{\mu}_{ba}}{\varepsilon_{ba}}$$

$$+ \frac{h^{\alpha}_{ab}h^{\beta}_{bc}h^{\alpha}_{ca}}{\varepsilon_{ac}} \left[\frac{f_{ab}}{(\omega - \varepsilon_{ba})} - \frac{f_{cb}}{(\omega - \varepsilon_{bc})}\right]$$

$$+ \frac{h^{\beta}_{ab}h^{\alpha}_{bc}h^{\alpha}_{ca}}{\varepsilon_{ac}} \left[\frac{f_{ab}}{(-\omega - \varepsilon_{ba})} - \frac{f_{cb}}{(-\omega - \varepsilon_{bc})}\right].$$

$$(49)$$

This result agrees with known expressions for the shift 521 522 current found in the literature. One can easily check $_{\rm 523}$ this reduces to the correct two-band limit that has been ⁵²⁴ studied in previous work⁹. It is worth contrasting this 525 result to the alternative (but equivalent) length-gauge ⁵²⁶ results in, e.g. Ref.⁵. The results there involve a maxi-527 mum of two bands in each term, whereas here there are ⁵²⁸ three band terms. Converting between the two gauges ⁵²⁹ requires the use of sum rules, which exchange some in-530 traband matrix elements with interband ones, and visa ⁵³¹ versa. Specifically, one can convert to the shift current ⁵³² formula in⁵ by focusing on the interband resonance from the band a to b, where we collect terms involving $\frac{f_{ab}}{(\omega - \varepsilon_{ba})}$ 533 $_{\rm 534}$ after switching indices $a\leftrightarrow c$ in the term $\frac{f_{cb}}{(\omega-\varepsilon_{bc})}$ and use $_{535}$ the second-order sum rule in Eq. (13) of⁸. Moreover. ⁵³⁶ since the conductivity does not depend on the choice of ⁵³⁷ gauge, one may conclude that saying a particular term ⁵³⁸ involves a certain number of bands is gauge-dependent ⁵³⁹ information and therefore not necessarily physical. This 540 demonstates Eq. (49) is equivalent to previously known expressions for the shift current in the literature.

The injection current is a second-order process that desecond-order process that desecond-o

V. THIRD ORDER RESPONSE

553

It is at third order that the diagrammatic method espoused here becomes the most useful. Unlike at secondorder, the third order response is generically allowed by str symmetry and expected to be present to some degree in all materials. Third order optical responses are relatively unstudied, especially in the case of non-zero Berry connection. Understanding this area is our main focus in this 564 to be split into manifestly one-photon, two-photon, and 569 (semiclassical) and two-band (Weyl semimetal) limits. 565 three-photons parts, so that the origin of each resonance 570 There are eight diagrams that contribute at third or-

561 paper. Using our diagrammatic formalism, we derive ex- 566 is clear. We then examine the limits of third harmonic ⁵⁶² pressions for the third-order response where each term is ⁵⁶⁷ generation and self-focusing of light. In subsequent sec-563 associated with an individual process. This allows them 568 tions we begin to interpret these formulas in the one band

571 der.

$$\sigma^{\mu\alpha\beta\gamma}(\omega;\omega_{1},\omega_{2},\omega_{3}) =$$

$$(50)$$

$$(51)$$

$$(51)$$

$$(52)$$

$$= \frac{e}{3!\omega_{1}\omega_{2}\omega_{3}} \left(\frac{ie}{\hbar}\right)^{3} \sum_{a} \int [d\mathbf{k}] \int d\omega' G_{a}(\omega')h_{ab}^{\alpha\beta\gamma}G_{b}(\omega'+\omega_{1})h_{ba}^{\mu\beta\gamma}$$

$$(54)$$

$$+ \frac{e}{2!\omega_{1}\omega_{2}\omega_{3}} \left(\frac{ie}{\hbar}\right)^{3} \sum_{a,b} \int [d\mathbf{k}] \int d\omega' G_{a}(\omega')h_{ab}^{\alpha\beta}G_{b}(\omega'+\omega_{12})h_{ba}^{\mu\gamma}$$

$$(54)$$

$$+ \frac{e}{3!\omega_{1}\omega_{2}\omega_{3}} \left(\frac{ie}{\hbar}\right)^{3} \sum_{a,b} \int [d\mathbf{k}] \int d\omega' G_{a}(\omega')h_{ab}^{\alpha\beta}G_{b}(\omega'+\omega_{12})h_{ba}^{\mu\gamma}$$

$$(55)$$

$$+ \frac{e}{3!\omega_{1}\omega_{2}\omega_{3}} \left(\frac{ie}{\hbar}\right)^{3} \sum_{a,b} \int [d\mathbf{k}] \int d\omega' G_{a}(\omega')h_{ab}^{\alpha\beta}G_{b}(\omega'+\omega_{12})h_{ba}^{\mu\gamma}$$

$$(56)$$

$$+\frac{e}{\omega_1\omega_2\omega_3}\left(\frac{ie}{\hbar}\right)^3\sum_{a,b,c}\int [d\mathbf{k}]\int d\omega' \ G_a(\omega')h^{\alpha}_{ab}G_b(\omega'+\omega_1)h^{\beta}_{bc}G_c(\omega'+\omega_{12})h^{\mu\gamma}_{bc}$$
(57)

$$+\frac{e}{2!\omega_1\omega_2\omega_3}\left(\frac{ie}{\hbar}\right)^3\sum_{a,b,c}\int [d\mathbf{k}]\int d\omega' \ G_a(\omega')h^{\alpha}_{ab}G_a(\omega'+\omega_1)h^{\beta\gamma}_{bc}G_c(\omega'+\omega_{123})h^{\mu}_{ca} \tag{58}$$

$$+ \frac{e}{2!\omega_1\omega_2\omega_3} \left(\frac{ie}{\hbar}\right)^3 \sum_{a,b,c} \int [d\mathbf{k}] \int d\omega' \ G_a(\omega') h_{ab}^{\alpha\beta} G_a(\omega'+\omega_{12}) h_{bc}^{\gamma} G_c(\omega'+\omega_{123}) h_{ca}^{\mu}$$
(59)

$$+ \frac{e}{\omega_1 \omega_2 \omega_3} \left(\frac{ie}{\hbar}\right)^3 \sum_{a,b,c,d} \int [d\mathbf{k}] \int d\omega' \ G_a(\omega') h^{\alpha}_{ab} G_b(\omega' + \omega_1) h^{\beta}_{bc} G_c(\omega' + \omega_{12}) h^{\gamma}_{cd} G_d(\omega' + \omega_{123}) h^{\mu}_{da} \tag{60}$$

 $_{572}$ The ω' integrals are evaluated in Appendix B. For concision, however, we shall leave the expression in terms of I_3 $_{573}$ and I_4 . We must also symmetrize under all possible combinations of incoming photons, which amounts to the six ⁵⁷⁴ permutations of (α, ω_1) , (β, ω_2) , and (γ, ω_3) . We will denote this permutation symmetry by $\frac{1}{3!}S_3$. The full third-order ⁵⁷⁵ non-linear response is thus

$$\sigma^{\mu\alpha\beta\gamma}(\omega;\omega_{1},\omega_{2},\omega_{3}) = \frac{1}{3!}S_{3}\frac{-ie^{4}}{\hbar^{3}\omega_{1}\omega_{2}\omega_{3}}\sum_{a,b,c,d}\int [d\mathbf{k}] \frac{1}{6}f_{a}h_{aa}^{\mu\alpha\beta\gamma} + \frac{\frac{1}{2}f_{ab}h_{ab}^{\alpha}h_{ba}^{\mu\beta\gamma}}{\omega_{1}-\varepsilon_{ab}} + \frac{\frac{1}{2}f_{ab}h_{ab}^{\alpha\beta}h_{ba}^{\mu\gamma}}{\omega_{12}-\varepsilon_{ab}} + \frac{\frac{1}{6}f_{ab}h_{ab}^{\alpha\beta\gamma}h_{ba}^{\mu}}{\omega-\varepsilon_{ab}} + h_{ab}^{\alpha}h_{bc}^{\beta}h_{bc}^{\mu}I_{3}(\omega_{1},\omega_{2}) + \frac{1}{2}h_{ab}^{\alpha\beta}h_{bc}^{\gamma}h_{bc}^{\mu}I_{3}(\omega_{12},\omega_{3}) + \frac{1}{2}h_{ab}^{\alpha}h_{bc}^{\beta\gamma}h_{bc}^{\mu}I_{3}(\omega_{1},\omega_{23}) + h_{ab}^{\alpha}h_{bc}^{\beta}h_{cd}^{\gamma}h_{da}^{\mu}I_{4}(\omega_{1},\omega_{2},\omega_{3}).$$
(61)

Α. **Third-Harmonic Generation**

One physical limit of interest is third-harmonic generation, when there is a single incoming frequency. There are 577 ⁵⁷⁸ many simplifications in this case, giving rise to a relatively simple expression. In particular, the integral for the box $_{579}$ diagram, I_4 , can be separated into one-, two- and three-photon resonances as

$$I_{4}(\omega,\omega,\omega) = \frac{f_{ab}}{(\omega-\varepsilon_{ba})(\varepsilon_{ab}+\varepsilon_{cb})(2\varepsilon_{ab}+\varepsilon_{db})} + \frac{f_{bc}}{(\omega-\varepsilon_{cb})(\varepsilon_{ab}+\varepsilon_{cb})(\varepsilon_{bc}+\varepsilon_{dc})} + \frac{f_{dc}}{(\omega-\varepsilon_{dc})(\varepsilon_{cb}+\varepsilon_{cd})(2\varepsilon_{cb}+\varepsilon_{cd})(2\varepsilon_{dc}+\varepsilon_{ac})} + \frac{4f_{db}}{(2\omega-\varepsilon_{db})(2\varepsilon_{ab}+\varepsilon_{db})(2\varepsilon_{bc}+\varepsilon_{dc})} + \frac{4f_{ca}}{(2\omega-\varepsilon_{ca})(\varepsilon_{cb}+\varepsilon_{ab})(2\varepsilon_{dc}+\varepsilon_{ac})} + \frac{9f_{da}}{(3\omega-\varepsilon_{da})(2\varepsilon_{ab}+\varepsilon_{db})(2\varepsilon_{dc}+\varepsilon_{ac})}$$
(62)

We can similarly decompose the integrals for the triangle diagrams. The case $I_3(\omega, \omega)$ is given in Equation (47). Similarly,

$$I_{3}(\omega, 2\omega) = \frac{1}{2\varepsilon_{ab} + \varepsilon_{cb}} \left[\frac{3f_{ac}}{3\omega - \varepsilon_{ca}} + \frac{2f_{cb}}{2\omega - \varepsilon_{cb}} + \frac{f_{ba}}{\omega - \varepsilon_{ba}} \right]$$
(63)

$$I_3(2\omega,\omega) = \frac{1}{2\varepsilon_{cb} + \varepsilon_{ab}} \left[\frac{3f_{ac}}{3\omega - \varepsilon_{ca}} + \frac{2f_{ba}}{2\omega - \varepsilon_{ba}} + \frac{f_{cb}}{\omega - \varepsilon_{cb}} \right].$$
(64)

Combining these and applying the permutation symmetry yields

$$\sigma^{\mu\alpha\beta\gamma}(3\omega;\omega,\omega,\omega) =$$

$$-ie^{4} \sum_{\alpha} \int_{a} \int_{a} \int_{a} \int_{a} \int_{a} h_{ba}^{\mu\beta\gamma} + h_{ab}^{\beta} h_{ba}^{\mu\gamma\alpha} + h_{ab}^{\gamma} h_{ba}^{\mu\alpha\beta} \Big] = \int_{a} \int_{a} \int_{a} \int_{a} \int_{a} h_{ab}^{\mu\gamma} h_{ba}^{\mu\beta} + h_{ab}^{\gamma\alpha} h_{ba}^{\mu\alpha} \Big]$$
(65)

$$\frac{1}{\hbar^{3}\omega^{3}}\sum_{a,b,c,d}\int [d\mathbf{k}] f_{a}h_{aa}^{\mu\alpha\beta\gamma} + f_{ab} \left[\frac{ab \ ba}{\omega} + ab \ ba}{\omega} + c_{ab} \right] + f_{ab} \left[\frac{ab \ ba}{2\omega} + c_{ab} \ ba}{2\omega} \right]$$
(66)

$$+\left[\left(h_{ab}^{\alpha}h_{bc}^{\beta}+h_{ab}^{\beta}h_{bc}^{\alpha}\right)h_{ca}^{\mu\gamma}+\left(h_{ab}^{\beta}h_{bc}^{\gamma}+h_{ab}^{\gamma}h_{bc}^{\beta}\right)h_{ca}^{\mu\beta}+\left(h_{ab}^{\gamma}h_{bc}^{\alpha}+h_{ab}^{\alpha}h_{bc}^{\gamma}\right)h_{ca}^{\mu\alpha}\right]I_{3}(\omega,\omega)$$

$$(67)$$

$$+ \left[h_{ab}^{\alpha} h_{bc}^{\beta\gamma} h_{ca}^{\mu} + h_{ab}^{\beta} h_{bc}^{\gamma\alpha} h_{ca}^{\mu} + h_{ab}^{\gamma} h_{bc}^{\alpha\beta} h_{ca}^{\mu} \right] \left(I_3(\omega, 2\omega) + I_3(-\omega, -2\omega) \right)$$

$$\tag{68}$$

$$+ \left[h^{\alpha}_{ab}h^{\beta}_{bc}h^{\gamma}_{cd} + h^{\alpha}_{ab}h^{\gamma}_{bc}h^{\beta}_{cd} + h^{\beta}_{ab}h^{\gamma}_{bc}h^{\alpha}_{cd} + h^{\beta}_{ab}h^{\alpha}_{bc}h^{\gamma}_{cd} + h^{\gamma}_{ab}h^{\alpha}_{bc}h^{\beta}_{cd} + h^{\gamma}_{ab}h^{\beta}_{bc}h^{\alpha}_{cd}\right]h^{\mu}_{da}I_4(\omega,\omega,\omega).$$

$$\tag{69}$$

в. Self-Focusing

Another common third-order response is the self-focusing of light, which is the modification to the linear conduc-581 $_{582}$ tivitiy due to nonlinear effects. For instance, the process wherein an excited electron absorbs photons of energy ω 583 and then $-\omega$,

(70)

⁵⁸⁴ can masquarade as the diagram for first order conductivity from Equation (23). To describe this effect, one can define ⁵⁸⁵ the effective conductivity, via $\langle J^{\mu} \rangle (\omega) = \sigma_{\text{eff}}^{\mu\alpha}(\omega) E^{\alpha}(\omega)$ where

$$\sigma_{\text{eff}}^{\mu\alpha}(\omega) = \sigma^{\mu\alpha}(\omega) + \sigma^{\mu\alpha\beta\gamma}(\omega;\omega,-\omega,\omega)E^{\beta}(-\omega)E^{\gamma}(\omega) + O(E^4).$$
(71)

⁵⁸⁶ The third-order correction term, $\sigma^{\mu\alpha\beta\gamma}(\omega;\omega,-\omega,\omega)$, is also called the self-focusing effect.

In the self-focusing limit, the conductivity is a sum of resonances at 0ω , 1ω and 2ω , corresponding to the sums and differences of the incident frequencies. Unfortunately, the minus sign from the $-\omega$ photons lifts the permutation symmetry between the various incident photons, creating a more complex resonance structure than in the thirdharmonic case. It is convenient to express the conductivity in terms of the following expressions:

$$I_{3}(\omega,-\omega) = \frac{1}{\varepsilon_{ac}} \left[\frac{f_{ab}}{\omega - \varepsilon_{ba}} + \frac{f_{bc}}{\omega - \varepsilon_{bc}} \right], \quad I_{3}(0,\omega) = \frac{1}{\varepsilon_{ab}} \left[\frac{f_{ac}}{\omega - \varepsilon_{ca}} + \frac{f_{cb}}{\omega - \varepsilon_{cb}} \right], \quad I_{3}(\omega,0) = \frac{1}{\varepsilon_{bc}} \left[\frac{f_{ab}}{\omega - \varepsilon_{ba}} + \frac{f_{ca}}{\omega - \varepsilon_{ca}} \right], \quad I_{3}(\omega,0) = \frac{1}{\varepsilon_{bc}} \left[\frac{f_{ab}}{\omega - \varepsilon_{ba}} + \frac{f_{ca}}{\omega - \varepsilon_{ca}} \right], \quad I_{3}(\omega,0) = \frac{1}{\varepsilon_{bc}} \left[\frac{f_{ab}}{\omega - \varepsilon_{ba}} + \frac{f_{ca}}{\omega - \varepsilon_{ca}} \right], \quad I_{3}(\omega,0) = \frac{1}{\varepsilon_{bc}} \left[\frac{f_{ab}}{\omega - \varepsilon_{ba}} + \frac{f_{ca}}{\omega - \varepsilon_{ca}} \right], \quad I_{3}(\omega,0) = \frac{1}{\varepsilon_{bc}} \left[\frac{f_{ab}}{\omega - \varepsilon_{ba}} + \frac{f_{ca}}{\omega - \varepsilon_{ca}} \right],$$

576

580

and $I_3(\omega, \omega)$, which is given by (47). For the box diagram, one must also consider

$$I_{4}(-\omega,\omega,\omega)$$

$$= \frac{1}{\varepsilon_{ac}(\varepsilon_{ab}+\varepsilon_{ad})} \left[\frac{f_{ba}}{\omega-\varepsilon_{ab}} + \frac{f_{ad}}{\omega-\varepsilon_{da}} \right] + \frac{1}{\varepsilon_{ac}(\varepsilon_{cb}+\varepsilon_{cd})} \left[\frac{f_{cb}}{\omega-\varepsilon_{dc}} + \frac{f_{cd}}{\omega-\varepsilon_{dc}} \right] + \frac{4f_{db}}{(2\omega-\varepsilon_{db})(\varepsilon_{bc}+\varepsilon_{dc})(\varepsilon_{ab}+\varepsilon_{ad})},$$

$$I_{4}(\omega,-\omega,\omega) = \frac{1}{\varepsilon_{ac}\varepsilon_{bd}} \left[\frac{f_{ab}}{\omega-\varepsilon_{bc}} + \frac{f_{bc}}{\omega-\varepsilon_{bc}} + \frac{f_{da}}{\omega-\varepsilon_{dc}} + \frac{f_{cd}}{\omega-\varepsilon_{dc}} \right]$$

$$(73)$$

$$I_{4}(\omega,\omega,-\omega)$$

$$= \frac{1}{\varepsilon_{db}(\varepsilon_{ad}+\varepsilon_{ac})} \left[\frac{f_{cd}}{\omega-\varepsilon_{cd}} + \frac{f_{ad}}{\omega-\varepsilon_{da}} \right] + \frac{1}{\varepsilon_{bd}(\varepsilon_{ab}+\varepsilon_{ac})} \left[\frac{f_{ba}}{\omega-\varepsilon_{ba}} + \frac{f_{cb}}{\omega-\varepsilon_{cb}} \right] + \frac{4f_{ac}}{(2\omega-\varepsilon_{ca})(\varepsilon_{ab}+\varepsilon_{cb})(\varepsilon_{ad}+\varepsilon_{cd})}.$$

$$(75)$$

Then, applying the symmetrization over $(\alpha, \omega), (\beta, -\omega), (\gamma, \omega)$, the self-focusing is

$$\begin{aligned} & \sigma^{\mu\alpha\beta\gamma}(\omega;\omega,-\omega,\omega) = \end{aligned} \tag{76}$$

$$& \frac{ie^4}{3!h^3\omega^3} \sum_{a,b,c,d} \int [d\mathbf{k}] f_a h^{\mu\alpha\beta\gamma}_{aa} + f_{ab} \left[\frac{h^{\alpha}_{ab} h^{\mu\beta\gamma}_{ba}}{\omega - \varepsilon_{ab}} + \frac{h^{\beta}_{ab} h^{\mu\gamma\alpha}_{ba}}{(-\omega) + \varepsilon_{ab}} + \frac{h^{\gamma}_{ab} h^{\mu\alpha\beta}_{ba}}{\omega - \varepsilon_{ab}} \right] \\ & + f_{ab} \left[\frac{h^{\alpha\beta}_{ab} h^{\mu\gamma}}{0 - \varepsilon_{ab}} + \frac{h^{\beta\gamma}_{ab} h^{\mu\alpha}_{ba}}{0 - \varepsilon_{ab}} + \frac{h^{\gamma\alpha}_{ab} h^{\mu\beta}_{ba}}{2\omega - \varepsilon_{ab}} \right] \\ & + \left[\left(h^{\alpha}_{ab} h^{\beta}_{bc} h^{\mu\gamma}_{ca} + h^{\gamma}_{ab} h^{\beta}_{bc} h^{\mu\alpha}_{ca} \right) I_3(\omega, -\omega) + \left(h^{\beta}_{ab} h^{\alpha}_{bc} h^{\mu\gamma}_{ca} + h^{\beta}_{ab} h^{\gamma}_{bc} h^{\mu\alpha}_{ca} \right) I_3(-\omega, \omega) + \left(h^{\gamma}_{ab} h^{\alpha}_{bc} h^{\mu\beta}_{ca} + h^{\alpha}_{ab} h^{\gamma}_{bc} h^{\mu\beta}_{ca} \right) I_3(\omega, \omega) \right] \\ & + \left[\left(h^{\alpha\beta}_{ab} h^{\beta}_{bc} h^{\mu\alpha}_{ca} + h^{\beta}_{ab} h^{\alpha}_{bc} h^{\mu\alpha}_{ca} \right) I_3(0, \omega) + h^{\gamma\alpha}_{ab} h^{\beta}_{bc} h^{\mu\alpha}_{ca} I(2\omega, -\omega) \right] \\ & + \left[\left(h^{\alpha\beta}_{ab} h^{\beta\gamma}_{bc} h^{\mu}_{ca} + h^{\gamma}_{ab} h^{\alpha\beta}_{bc} h^{\mu}_{ca} \right) I(\omega, 0) + h^{\beta}_{ab} h^{\gamma\alpha}_{bc} h^{\mu}_{ca} I(-\omega, 2\omega) \right] \\ & + \left[\left(h^{\alpha}_{ab} h^{\beta}_{bc} h^{\gamma}_{cd} + h^{\gamma}_{ab} h^{\beta}_{bc} h^{\alpha}_{cd} \right) h^{\mu}_{da} I_4(\omega, -\omega, \omega) + \left(h^{\beta}_{ab} h^{\gamma\alpha}_{bc} h^{\alpha}_{cd} + h^{\beta}_{ab} h^{\alpha}_{bc} h^{\gamma}_{cd} \right) h^{\mu}_{da} I_4(-\omega, \omega, \omega) \right] \end{aligned}$$

605

 $_{587}$ Note that there is an exact permutation symmetry $\alpha \leftrightarrow \gamma$ since the second and forth frequencies are both ω .

588

VI. SEMICLASSICAL LIMIT

This section carefully examines the semiclassical limit 589 ⁵⁹⁰ of non-linear optical responses. This crucial physical ⁵⁹¹ limit, where on focusing on independent bands in the ⁵⁹² limit $\omega \to 0$, has been the subject of much recent work, 593 as described in the introduction. The goal of this section is to carefully take this limit. Per the discussion in 594 Section IID, this is most easily carried out in the length 595 gauge. The alternative is to start from the velocity gauge 596 and apply many sum rules. However, the source of these 597 sum rules is expanding the change of gauge which con-598 verts from velocity to length gauge²⁸, so it clear that the 599 length gauge is the natural physical setting for this limit. 600 We will start with a purely semiclassical derivation, then 601 ⁶⁰² show that this matches the results from the length gauge, ⁶⁰⁴ third-order semiclassical conductivity.

A. Semiclassical Derivation

We work with a single band and ignore interband contributions. Recall that the equations for semi-classical electron dynamics in an electric field (but no magnetic field) are given by

$$\begin{split} \hbar rac{d}{dt} m{r} &= m{
abla}_{m{k}} arepsilon_{m{k}} + e m{E} imes m{\Omega}(m{k}), \ \hbar rac{d}{dt} m{k} &= -e m{E} \end{split}$$

⁶⁰⁶ where $\boldsymbol{E} = \boldsymbol{E}(t)$ is the applied electric field and $\boldsymbol{\Omega}$ is the ⁶⁰⁷ standard vector representation for the Berry curvature ⁶⁰⁸ in three dimensions. In the notation of this paper, for a ⁶⁰⁹ single band $a, \ \Omega_a^{\alpha} = \varepsilon^{\alpha\beta\gamma} \mathcal{F}_{aa}^{\beta\gamma}$ where ε is the Levi-Civita ⁶¹⁰ symbol, so $(\boldsymbol{E} \times \boldsymbol{\Omega})^{\mu} = \mathcal{F}^{\mu\alpha} E_{\alpha}$.

⁶¹¹ We take a Boltzmann equation approach, writing the ⁶¹² charge and current density as, respectively,

$$\rho(t) = -i \int [d\mathbf{k}] f(t), \text{ and } \mathbf{J}(t) = -e \int [d\mathbf{k}] \frac{d\mathbf{r}}{dt} f(t)$$
(77)

and lastly comment on the topological properties of the $_{613}$ where $f = f(t, \mathbf{k})$ is the distribution function of electhird-order semiclassical conductivity. $_{614}$ trons, and is taken to be Fermi-Dirac distribution $f_{\rm FD}$ $_{615}$ in equilibrium. The time-evolution of f is given by the $_{643}$ 616 Boltzmann Equation

$$\frac{d\boldsymbol{k}}{dt} \cdot \boldsymbol{\nabla}_{\boldsymbol{k}} f + \partial_t f = \frac{f_{\rm FD} - f}{\tau}$$
(78)

 $_{617}$ for some relaxation time $\tau.$

We take a monochromatic perturbation $\boldsymbol{E}(t)$ 618 ⁶¹⁹ $E^{\alpha} \boldsymbol{e}_{\alpha} e^{i\omega t}$. Expanding $f(t) = \sum_{K \in \mathbb{Z}} f^{(K)} e^{-i\omega K t'}$ and ⁶²⁰ equating terms of the same order in (78), we have

$$-e\mathbf{E}\cdot\nabla_{k}f^{(K)} + (-iK\omega)f^{(K+1)} = -\frac{1}{\tau}f^{(K+1)}.$$
 (79)

621 With the initial condition $f^{(0)} = f_{\rm FD}$, this gives an order-653 622 by-order solution as

$$f^{(K+1)} = \frac{-i}{K\omega + i\gamma} e \boldsymbol{E} \cdot \boldsymbol{\nabla} f^{(K)}$$
(80)

₆₂₃ where $\gamma = 1/\tau$ is a dissipation rate. The first-order cur-624 rent is thus

$$\boldsymbol{J}^{\mu}(\omega) = -e \int [d\boldsymbol{k}] v^{\mu} f^{(1)} + F^{\mu\alpha} E_{\alpha} f^{(0)} \qquad (81)$$

⁶²⁵ so, integrating by parts, the linear conductivity is

$$\sigma^{\mu\alpha}(\omega;\omega) = \frac{e^2}{\hbar} \int [d\mathbf{k}] f_{\rm FD} \left(-i \frac{\partial^{\alpha} v^{\mu}}{\omega + i\gamma} - F^{\mu\alpha} \right) \quad (82)$$

626 One can check this exactly reproduces the fully quantum ₆₂₇ equation for $\sigma^{\mu\alpha}$, Equation (30), for the case of a single 628 band.

At higher orders, the semiclassical conductivities are essentially the same, comprised of a "Drude-like" and "Berry-curvature"-like term:

$$\sigma^{\mu\alpha\beta} = e^{3} \int [d\boldsymbol{k}] f_{\rm FD} \left(\frac{\partial^{\beta} \partial^{\alpha} v^{\mu}}{(2\widetilde{\omega})\widetilde{\omega}} - i \frac{\partial^{\beta} F^{\mu\alpha}}{\widetilde{\omega}} \right)$$
(83)
$$\sigma^{\mu\alpha\beta\gamma} = e^{4} \int [d\boldsymbol{k}] f_{\rm FD} \left(i \frac{\partial^{\gamma} \partial^{\beta} \partial^{\alpha} v^{\mu}}{(3\widetilde{\omega})(2\widetilde{\omega})\widetilde{\omega}} + \frac{\partial^{\gamma} \partial^{\beta} F^{\mu\alpha}}{(2\widetilde{\omega})\widetilde{\omega}} \right)$$
(84)

629 where $\widetilde{\omega}$ should be read as $\omega + i\gamma$.

We will show that these equations reproduce the lead-630 ₆₃₁ ing order divergences at $\omega \to 0$ for the quantum calcula-632 tions of the second- and third-order conductivities. How-633 ever, the numerous other terms in the quantum formulas 634 are not captured here due to their essential interband nature. It would be interesting to examine a modified semi- $_{62}$ where S_n symmetrizes over all incoming frequencies 635 classical picture involving interband corrections, which 663 $\{(\alpha_k, \omega_k) : 1 \le k \le n\}$. 636 should be able to reproduce more of the full response. 637 638 639 change sign, so at second order only the derivative of the 666 relation between the position operator and the covari-640 Berry curvature survives, while at third order only the 667 and derivative $\hat{r} = i\hat{D}$, which is described in Appendix ⁶⁴¹ velocity term remains. One can extrapolate the pattern ⁶⁶⁸ A. The form of the commutators in (89) is almost the $_{642}$ in (84) to all orders in semiclassics.

B. Length Gauge

Let us now derive the semiclassical limit starting in $_{645}$ the length gauge formulation, (1). We adopt the stan-646 dard density-matrix approach pioneered by Sipe and ⁶⁴⁷ Shkrebtii⁵, defining the single-particle reduced density 648 matrix

$$\rho_{\boldsymbol{k}ab}(t) = \langle c^{\dagger}_{\boldsymbol{k}a}(t)c_{\boldsymbol{k}b}(t)\rangle \,. \tag{85}$$

⁶⁴⁹ Then the current is given by $J^{\mu}(t) = e \operatorname{Tr} [\widehat{v}^{\mu} \rho(t)]$, where ⁶⁵⁰ the trace is taken over the single-particle Hilbert space, ⁶⁵¹ i.e. it stands for the integral of the Brillouin zone and 652 sum over bands.

The time-dependence of the density matrix in the in-⁶⁵⁴ teraction picture is given by the Schwinger-Tomonaga 655 Equation

$$i\frac{d}{dt}\widehat{\rho}_{I}(t) = \left[\widehat{H}_{E,I}(t),\widehat{\rho}_{I}(t)\right],\tag{86}$$

 $_{656}$ where the subscript I indicates the interaction picture: $_{657} \widehat{\mathcal{O}}_I(t) = U(t)^{\dagger} \widehat{\mathcal{O}} U(t)$ for $U(t) = e^{-it\widehat{H}_0}$. We can solve 658 (86) within the framework of perturbation theory by em-⁶⁵⁹ ploying Dyson series. Expand $\hat{\rho} = \sum_{K} \hat{\rho}^{(K)}$ as a power ⁶⁶⁰ series in power of the electric field. We can then integrate 661 (86) to find an order-by-order solution

$$\widehat{\rho}^{(K+1)}(t) = -i \int_{-\infty}^{t} d\tau \,\left[\widehat{H}_{E,I}(\tau), \widehat{\rho}_{I}^{(K)}(\tau)\right]. \tag{87}$$

This also requires an initial condition $\hat{\rho}^{(0)} = \delta_{ab} f_a$, taken to be the Fermi-Dirac distribution. We can now write a computable expression for the current. At *n*th order, the current can be written as a nested commutator

$$J^{\mu}(t) = e \prod_{k=1}^{n} \int_{-\infty}^{\tau_{k-1}} d\tau_k (ieE^{\alpha_k})$$

$$\times \operatorname{Tr} \left\{ \left[\cdots \left[\widehat{v}^{\mu}, \widehat{r}^{\alpha_1}(\tau_1) \right] \cdots, \widehat{r}^{\alpha_n}(\tau_n) \right] \widehat{\rho}_0 \right\}$$
(88)

where $\tau_{-1} \equiv t$. Rearranging commutators and Fourier transforming, the nth nonlinear conductivity can then be written

$$\sigma^{\mu\alpha_1\dots\alpha_n}(\omega;\omega_1,\dots,\omega_n) = \frac{1}{n!} \mathcal{S}_n e \prod_{k=1}^n \int_{-\infty}^{\tau_{k-1}} d\tau_k e^{-i\omega_k\tau_k}$$
(89)
$$\times (ie) \operatorname{Tr}\left\{\widehat{\rho}_0\left[\widehat{r}^{\alpha_n}(\tau_n),\cdots,\left[\widehat{r}^{\alpha_1}(\tau_1),\widehat{v}^{\mu}\right]\cdots\right]\right\}$$

Our task is now to evaluate this commutator at leading 664 Under time-reversal symmetry, ∇_k , v, F, and k all 665 order in ω . This is done most expediently by using the ⁶⁶⁹ same as the covariant derivative repeatedly acting on the

 \hat{r}_{1} pendence. The time-evolved operator $\hat{r}(t) = U(t)^{\dagger} \hat{r} U(t)$ 691 first two terms is therefore 672 is easily computed by noting that, in the energy basis, 673 $U(t)_{ab} = e^{-i\varepsilon_{ka}(t)}\delta_{ab}$ is a one-parameter family of gauge 674 transformations. Equation (A7) implies

$$i\widehat{\boldsymbol{D}}(t) = i\boldsymbol{\nabla} + \boldsymbol{A}'(t), \boldsymbol{A}'(t) = e^{iH_0t}\boldsymbol{A}e^{-iH_0t} + t\nabla H_0 \quad (90)$$

where $(\nabla \hat{H}_0)_{ab} = \delta_{ab} \nabla_k \varepsilon_a(k)$ is the regular gradient of the matrix elements. In components, this implies the identity

$$[\widehat{r}^{\alpha}(\tau), \mathcal{O}]_{ab} = (i\partial^{\alpha} + \tau \Delta^{\alpha}_{ab}) \mathcal{O}_{ab} \qquad (91)$$
$$+ \sum_{c} e^{i\varepsilon_{ac}t} A^{\alpha}_{ac} \mathcal{O}_{cb} - \mathcal{O}_{ac} A^{\alpha}_{cb} e^{i\varepsilon_{cb}t},$$

675 where we have defined $\Delta^{\alpha}_{ab} \equiv h^{\alpha}_{aa} - h^{\alpha}_{bb} = \partial^{\alpha} \varepsilon_{ab}$. Employing (91) with $\widehat{\mathcal{O}} = \widehat{v}^{\mu}$,

$$\sigma^{\mu\alpha}(\omega;\omega) = \frac{ie^2}{\hbar} \sum_{a,b} \int [d\mathbf{k}] f_a \int_{-\infty}^0 e^{-i\omega\tau}$$
(92)

$$\times \left(i\partial^{\alpha} v^{\mu} + e^{i\varepsilon_{ab}\tau} A^{\alpha}_{ab} v^{\mu}_{ba} - e^{i\varepsilon_{ba}\tau} v^{\mu}_{ab} A^{\alpha}_{ba} \right).$$

676 As is customary, when performing the time integral, a $_{\rm 677}$ phenomenological relaxation rate $\omega \rightarrow \omega + i \gamma$ is added so ⁶⁷ phenomenonogical relaxation rate $\omega \to \omega + i\gamma$ is added so ⁶⁷⁸ that $\int_{-\infty}^{0} d\tau \ e^{i(\zeta - \omega - i\gamma)\tau} = \frac{i}{\omega + i\gamma - \zeta}$. Therefore the linear ⁶⁷⁹ conductivity is 679 conductivity is

$$\sigma^{\mu\alpha}(\omega;\omega) = \frac{ie^2}{\hbar} \sum_{a \neq b} \int [d\mathbf{k}] f_a \frac{\partial^{\alpha} v^{\mu}}{\omega + i\gamma} + f_{ab} \frac{A^{\alpha}_{ab} v^{\mu}_{ba}}{\varepsilon_{ab} - \omega - i\gamma}.$$
(93)

680 The first term reproduce the Drude formula, and the second term is almost $[A^{\alpha}, A^{\mu}]$. This is equivalent to ⁶⁸² the expression derived in the velocity gauge, Equation 683 (29). Under the limit $\omega \ll \varepsilon_{ab}$, one arrives at (28), which matches the semiclassical result (82) at linear order in E.

At nonlinear order, one must evaluate further nested commutators. Since we are only interested in the $\omega \rightarrow$ 0 limit, we will limit ourselves to the leading order terms. However, this procedure can be easily continued to give expressions for the general conductivity tensors in the length gauge; such a calculation is carried out in^{28} . At second order, we consider the expression $[\hat{r}^{\beta}(\tau_2), [\hat{r}^{\alpha}(\tau_1), \hat{v}^{\mu}]]_{aa}$. Expanding,

$$[\hat{r}^{\beta}(\tau_{2}), [\hat{r}^{\alpha}(\tau_{1}), \hat{v}^{\mu}]]_{aa} = i\partial^{\beta}i\partial^{\alpha}v^{\mu}_{aa}$$

$$+ i\partial^{\beta} [A^{\alpha}(\tau_{1}), v^{\mu}]_{aa}$$

$$+ [A^{\beta}(\tau_{2}), (r^{\alpha}(\tau_{1})v^{\mu})]_{aa}$$

$$+ [A^{\beta}(\tau_{2}), [A^{\alpha}(\tau_{1}), v^{\mu}]]_{aa}$$

⁶⁸⁵ where $A^{\alpha}_{ab}(\tau) \equiv e^{i\varepsilon_{ab}\tau}A^{\alpha}_{ab}$ is the time-evolved operator. ⁶⁸⁶ Each factor of $e^{i\varepsilon_{ab}\tau}$ is Fourier transformed to a denom-⁷⁰⁰ Here the first term is the third derivative of the ⁶⁸⁷ inator of the form $\frac{1}{\omega - \varepsilon_{ab}}$. However, the number of such ⁷⁰¹ Drude weight while the second is the Berry curvature ⁶⁸⁸ exponential factors is different in each term. The first ⁷⁰² quadrapole. Of course, this matches the semiclassical re-⁶⁸⁹ term has none, the second term has one, and the latter ⁷⁰³ sult (84).

670 velocity operator—but we must account for the time de- 690 terms generically have two. The Fourier transform of the

$$\frac{\partial^{\beta}\partial^{\alpha}v_{aa}^{\mu}}{\omega\omega_{2}} + \sum_{b\neq a} \frac{-i\partial^{\beta}}{\omega_{2}} \left[\frac{A_{ab}^{\alpha}v_{ba}^{\mu}}{\omega - \varepsilon_{ba}} - \frac{v_{ab}^{\mu}A_{ba}^{\alpha}}{\omega - \varepsilon_{ab}} \right].$$
(95)

After Fourier transforming the third and fourth terms, either there are factors $\frac{1}{\varepsilon_{cd}-\omega}$, which are $O(\omega^0)$ and hence subleading or, when c = d there are poles $\frac{1}{\omega}$, which cancel out due to the commutator in the $\omega \to 0$ limit. Hence only the terms (95) survive in the semiclassical limit, so

$$\lim_{\omega,\omega_i\to 0} \sigma^{\mu\alpha\beta}(\omega,\omega_1,\omega_2) = \frac{-e^3}{\hbar^2} \sum_{a,b} \int [d\mathbf{k}] \frac{f_a \partial^\beta \partial^\alpha v_{aa}^\mu}{\omega\omega_2}$$

$$+ f_a \frac{-i\partial^\beta}{\omega_2} \left[\frac{A^\alpha_{ab} v^\mu_{ba}}{\omega - \varepsilon_{ba}} - \frac{v^\mu_{ab} A^\alpha_{ba}}{\omega - \varepsilon_{ab}} \right] + O(\omega^0)$$
(96)

or

$$\lim_{\omega,\omega_i\to 0} \sigma^{\mu\alpha\beta}(\omega,\omega_1,\omega_2) = \frac{-e^3}{\hbar^2} \sum_a \int [d\mathbf{k}] \frac{f_a \partial^\beta \partial^\alpha v_{aa}^\mu}{\omega\omega_2}$$

$$+ f_a \frac{-i\partial^\beta}{\omega_2} \mathcal{F}_{aa}^{\alpha\mu} + O(\omega^0).$$
(97)

⁶⁹⁴ prediction (83). The first term is the derivative of the ⁶⁹⁵ Drude weight, while the second is the Berry curvature ⁶⁹⁶ dipole, which was studied in semiclassics^{10,11} and with ⁶⁹⁷ a Floquet formalism¹². As mentioned above, this is the ⁶⁹⁸ only term that survive in the presence of time-reversal 699 symmetry.

At third order, one must consider

$$\left[\hat{r}^{\gamma}(\tau_3), \left[\hat{r}^{\beta}(\tau_2), \left[\hat{r}^{\alpha}(\tau_1), \hat{v}^{\mu} \right] \right] \right]_{aa}$$

$$= i \partial^{\gamma} i \partial^{\beta} i \partial^{\alpha} v_{aa}^{\mu} + i \partial^{\gamma} i \partial^{\beta} [A^{\alpha}(\tau), v^{\mu}]_{aa} + \cdots .$$

$$(98)$$

Due to the same logic that applied at second order, only these first few times survive at lowest order in ω . Hence

$$\sigma^{\mu\alpha\beta\gamma}(\omega;\omega_{1},\omega_{2},\omega_{3}) = \frac{e^{4}}{\hbar^{3}} \sum_{a,b} \int [d\mathbf{k}] f_{a} \frac{\partial^{\gamma}\partial^{\beta}\partial^{\alpha}v_{aa}^{\mu}}{\omega\omega_{23}\omega_{3}}$$

$$(99)$$

$$- i f_{a} \frac{\partial^{\gamma}\partial^{\beta}}{\omega_{23}\omega_{3}} \left[\frac{A_{ab}^{\alpha}v_{ba}^{\mu}}{\omega - \varepsilon_{ba}} - \frac{v_{ab}^{\mu}A_{ba}^{\alpha}}{\omega - \varepsilon_{ab}} \right] + O(\omega^{-1})$$

SO

$$\lim_{\omega_i \to 0} \sigma^{\mu \alpha \beta \gamma}(\omega; \omega_1, \omega_2, \omega_3) =$$
(100)

$$\frac{e^4}{\hbar^3} \sum_{a,b} \int [d\mathbf{k}] f_a \frac{\partial^{\gamma} \partial^{\beta} \partial^{\alpha} v_{aa}^{\mu}}{\omega_{23} \omega_{3\omega}} - i f_a \frac{\partial^{\gamma} \partial^{\beta}}{\omega_{23} \omega_{3}} \mathcal{F}_{aa}^{\alpha\mu} + O(\omega^{-1})$$

704

C. Symmetry Considerations

This subsection considers the effect of symmetry on 743 705 ⁷⁰⁶ the two terms of the semiclassical third order response. ⁷⁴⁴ straightforwardly accomplished in the length gauge and 707 $_{708}$ and reflection in the *b* direction \mathcal{R}^b . The semiclassical $_{746}$ tion approach. A few comments on the relation be- $_{709}$ response involves the group velocity v^m , Berry curvature $_{747}$ tween the length and velocity gauge are in order. It $_{710} \mathcal{F}^{\alpha\mu}$, and k-derivatives thereof, so we start by looking at $_{748}$ was shown in 29 that on can convert between the two 711 their transformations under symmetry. Their transfor- 749 gauges with the time-dependent unitary transformation ⁷¹² mation laws can be deduced from the fact that v^{μ} and $_{750} S(t) = e^{-\frac{e}{\hbar}A(t)\cdot D}$. The equivalence of expectations of $_{713} \partial^{\alpha}$ are vectors, while the Berry curvature behaves as a $_{751}$ any physical observable O in the two gauges leads to ⁷¹⁴ psuedovector defined by $\mathcal{F}^{\beta} \equiv \varepsilon_{\beta\alpha\mu} \mathcal{F}^{\alpha\mu}/2$.

The effect of inversion \mathcal{I} is

$$v^{\mu} \to -v^{\mu} \tag{101}$$

742

762

$$\mathcal{F}^{\beta} \to \mathcal{F}^{\beta} \tag{102}$$

$$\partial^{\alpha} \to -\partial^{\alpha}.$$
 (103)

Applying time reversal \mathcal{T} gives

$$v^{\mu} \to -v^{\mu} \tag{104}$$

$$\mathcal{F}^{\mu} \rightarrow -\mathcal{F}^{\mu}$$
 (105)

$$\partial^{-} \to -\partial^{-}. \tag{106}$$

Lastly, the reflection \mathcal{R}^b leads to

$$v^{\mu} \to (-1)^{\delta_{b\mu}} v^{\mu} \tag{107}$$

$$\mathcal{F}^{\beta} \to -(-1)^{\delta_{b\beta}} \mathcal{F}^{\beta} \tag{108}$$

$$\partial^{\alpha} \to (-1)^{\delta_{b\alpha}} \partial^{\alpha}. \tag{109}$$

716 and the Berry curvature term (the first and the second 766 the frameworks of either tight-binding models or Den-717 terms in Eq. (100), respectively) are both even under 767 sity Functional Theory (DFT). Tight-binding models are $_{718} \mathcal{I}$, and even and odd under \mathcal{T} , respectively. Under \mathcal{R}^b , $_{768}$ usually simple enough to perform analytical calculations 719 either both terms are even or both terms are odd, de- 769 and, when chosen wisely, will reproduce the main qualita-720 pending on the component of nonlinear conductivity and 770 tive features of a material, such as the frequencies of reso-721 722

723 724 726 ing. Next we need a symmetry such that the group ve- 776 simple tight-binding model of a Weyl semimetal where 727 locity term is odd and the Berry curvature is even. Such 777 the leading contribution is topological in origin. ⁷²⁸ a symmetry is obtained by combining \mathcal{R}^b in which both ⁷⁷⁸ The primary feature of Weyl semimetals are their ⁷²⁹ terms are odd and \mathcal{T} . For example, σ^{zxxx} has a nonzero ⁷⁷⁹ paired Weyl- and anti-Weyl cones, whose linear disper-730 contribution only from the Berry curvature term when 780 sion acts as a sources and sinks of Berry curvature. As 731 732 tries are broken. This situation can be realized in ma-782 and second order optical responses have been studied in $_{733}$ terials with antiferomagnetic order in z direction. Since $_{783}$ Weyl semimetals, many with a topological origin. Here $_{734} \sigma^{zxxx}$ is measured as intensity dependent Hall conduc- $_{784}$ we study the third-order response σ^{zxxx} , for which the ⁷³⁵ tivity or intensity dependent transmission of circular po-⁷⁸⁵ leading contribution comes from the (topological) Berry ⁷³⁶ larized light, measuring these quantities in suitable anti-⁷⁸⁶ curvature. To our knowledge, this is the first prediction ⁷³⁷ ferromagnetic materials will allow us to access the Berry ⁷⁸⁷ for a third-order response in Weyl semimetals. 738 curvature effect in third order responses. This Berry cur-788 Consider the following two-band Hamiltonian for a ⁷³⁹ vature effect might be measured in the magnetic Weyl ⁷⁸⁹ Weyl semimetal with a Wilson mass: ⁷⁴⁰ semimetal Mn_3Sn^{42-44} since it breaks \mathcal{T} and some candi-⁷⁴¹ date AFM structures breaks \mathcal{R}^z while preserving \mathcal{TR}^{z45} .

D. Length versus Velocity Gauges

Overall, we have shown that the semiclassical limit is We focus on the effect of inversion \mathcal{I} , time-reveral \mathcal{T} , ⁷⁴⁵ matches the answer from the simple Boltzmann equa- $_{752}$ sum rules of the form²⁸

$$\int [d\mathbf{k}] \operatorname{Tr} \left\{ D^{\alpha_1} \cdots D^{\alpha_n} \left[\mathcal{O} \widehat{\rho}_{\mathbf{k}}(t) \right] \right\} = 0 \qquad (110)$$

⁷⁵³ where $\rho_{k}(t)$ is the single-particle density matrix defined ⁷⁵⁴ above. Expanding this with $\mathcal{D} = i \nabla + \mathcal{A}$ leads to the ⁷⁵⁵ sum rules of Aversa and Sipe⁴⁶. In particular, one can 756 use $\mathcal{O} = \hat{v}^m$ to convert from velocity to length gauge 757 at order n. This will eliminate terms like $h^{\mu\alpha}$ in favor 758 of $\partial^{\alpha} v^{\mu} + \cdots$. However, this algebra is quite involved 759 in practice, so it is usually better to choose the correct ⁷⁶⁰ gauge from the outset rather than painstakingly changing ⁷⁶¹ gauge after writing the answer to a computation.

VII. NUMERICAL EXAMPLE

This section applies the techniques developed in this 763 764 paper to a model of Weyl semimetals. Numerical cal-715 These constraints indicate that the group velocity term 765 culations of nonlinear optics are usually done within the direction of mirror plane. For example, in σ^{zxxx} , π_1 nances. For more quantitative predictions in specific maboth are odd under \mathcal{R}^z , and both are even under \mathcal{R}^y . 772 terials, DFT is the favored technique. Velocity gauge for-An interesting question is when the group velocity term 773 mulas are particularly well-suited for tight-binding modvanishes, whereupon the Berry curvature contribution 774 els, where operators such as $h^{\mu\alpha}$ may be computed andominates, if it is non-zero. First, this requires \mathcal{T} break- $_{775}$ alytically. We will therefore present the example of a

 \mathcal{TR}^z symmetry is preserved and both \mathcal{T} and \mathcal{R}^z symme- ⁷⁸¹ mentioned in the introduction, a wide variety of linear

$$H(\boldsymbol{k}) = d_0 I + \boldsymbol{d}(\boldsymbol{k}) \cdot \boldsymbol{\sigma} \tag{111}$$

where $\boldsymbol{\sigma} = \{\sigma_x, \sigma_y, \sigma_z\}$ is the vector of Pauli matrices, $\boldsymbol{d} = \{d_x, d_y, d_z\}$, and

$$\begin{aligned} d_0(\mathbf{k}) &= t \sin a k_y \\ d_x(\mathbf{k}) &= \sin a k_x \\ d_y(\mathbf{k}) &= \sin a k_y \\ d_z(\mathbf{k}) &= \cos a k_z + m \left(2 - \cos a k_x - \cos a k_y\right), \end{aligned}$$

⁷⁹⁰ where *a* is the lattice spacing. Generically, this model ⁷⁹¹ supports four Weyl-anti-Weyl pairs, but we gap out three ⁷⁹² of them by adding Wilson mass term where we set m =⁷⁹³ 1⁴⁷. The remaining Weyl nodes are at $\mathbf{k} = (0, 0, \pm \pi/2)$. ⁷⁹⁴ The parameter *t* controls the tilting of the Weyl nodes. ⁷⁹⁵ In Section VI C, we showed that materials where time-⁷⁹⁶ reversal symmetry \mathcal{T} and a mirror symmetry \mathcal{R}^z are bro-⁷⁹⁷ ken, but their product \mathcal{TR}^z is preserved, then the leading ⁷⁹⁸ order contribution at third order in the $\omega \to 0$ limit is

$$\sigma^{\mu\alpha\beta\gamma}(\omega;\omega_1,\omega_2,\omega_3) \tag{112}$$
$$= -i\frac{e^4}{\hbar^3}\sum_a \int [d\mathbf{k}] \frac{f_a \partial^\gamma \partial^\beta \mathcal{F}^{\alpha\mu}_{aa}}{(\omega_3 + i\gamma)(\omega_2 + \omega_3 + 2i\gamma)} + O(\omega^{-1}).$$

⁷⁹⁹ Whenever the tilting parameters t is nonzero, the model ⁸⁰⁰ satisfies these considerations and thus we expect a topo-⁸⁰¹ logical leading response in the off-diagonal component of ⁸⁰² the third-harmonic response $\sigma^{zxxx}(3\omega; \omega, \omega, \omega)$. (Here z ⁸⁰³ is the direction of the emitted light.) The tilting is se-⁸⁰⁴ lected to be in the y-direction so that both nodes are ⁸⁰⁵ tilted the same way, making the resonances symmetry-⁸⁰⁶ allowed.

We compute the response via numerically integrating Equation (65) for the third-harmonic on a mesh of k-points until convergence is achieved. This involves end energies, wavefunctions, and higher derivatives of the Hamiltonian, which may all be computed analytically. As usual for a two-band model, the energies and wavefunctions are, up to normalization,

$$\varepsilon_{\pm}(\boldsymbol{k}) = d_0 \pm |\boldsymbol{d}|, \quad |u_{\pm}\rangle = \begin{pmatrix} \frac{d_3 \pm |\boldsymbol{d}|}{d_1 + id_2} \\ 1 \end{pmatrix}.$$
 (113)

The velocity operators are easily found by differentiating:

$$h^{x}(\mathbf{k}) = ta\cos ak_{y}I + a\cos ak_{x}\sigma_{x} + ma\sin ak_{x}\sigma_{z},$$
(114)

$$h^{y}(\mathbf{k}) = a\cos ak_{y}\sigma_{y} + ma\sin ak_{y}\sigma_{z}, \qquad (115)$$

$$h^z(\mathbf{k}) = -a\sin k_z \sigma_z. \tag{116}$$

Higher derivatives are similarly straightforward. For example,

h

$$h^{xx}(\mathbf{k}) = -ta^2 \sin ak_y I - a^2 \sin ak_x \sigma_x \qquad (117)$$

$$+ ma^2 \cos ak_x \sigma_z, \tag{118}$$

$$xxx(\mathbf{k}) = -a^2 h^x(\mathbf{k}),$$
 (119)

$$h^{xxxx}(\mathbf{k}) = -a^2 h^{xx}(\mathbf{k}).$$
 (120)

FIG. 1. (Top) Band structure of Equation (111) along the $k_x = 0$, $k_z = \pi/2$ plane. A (tilted) Weyl node is visible at $k_y = 0$. The dispersion is approximately linear for $|\varepsilon| \leq 8\mu$. (Middle) Linear conductivity in the x-direction. The Drude peak is visible at low frequencies, the conductivity increases linearly for $\omega \gg 2\mu$. (Bottom) Off-diagonal component of the third harmonic response. The $O(\omega^{-2})$ divergence due to the Berry curvature is visible at low frequencies, and wide resonances are visible at $\omega \sim 2\mu/3$ and $\omega \sim \mu$. The parameters used for all data are $\mu = 0.1$, $\gamma = 0.001$, t = 0.1, m = a = 1.

material and the third-harmonic response σ^{zxxx} . 816

817 818 819 820 821 822 823 824 825 to onset in the range $2\mu - t \leq \omega \leq 2\mu + t$. 826

The third harmonic response is shown in the bottom ⁸⁸⁵ DFT. 827 panel of FIG. 1, and displays several features of interest. 828 At low frequency, where $\omega \sim \gamma$, we observe the predicted 829 divergence (112), in accordance with the semiclassical 830 considerations of Section VI. The divergence is visible 831 in both the real and imaginary parts due to the phe-832 nomenological broadening. Resonances are visible near 833 $\omega \sim \mu$ and $\omega \sim 2\mu/3$, due to two- and three-photon pro-834 cesses respectively. The top panel of FIG. 1 indicates 835 these processes schematically. 836

One can see that the two-photon process becomes res-837 onant around $\omega \sim 2\mu/3 - t$, corresponding to the side of 838 the Weyl cone with the smaller bandgap, and continues 839 up to $\omega \sim 2\mu/3 + t$, when the resonance is on the other 840 side of the cone. This causes a peculiar linear increase 841 842 similar considerations apply to the third-order response 843 in the range $\mu - t \leq \omega \leq \mu + t$. As the tilting is in-844 creased, the range of this linear regime grows. This not 845 too surprising, since a similar linear onset due to the tilt 846 is present at first order. To our knowledge, this is the first 847 prediction of a third-order response in Weyl semimetals. 848 849 850 moment of the Berry curvature. 851

852 ⁸⁵³ third-harmonic contribution here, the equations for the ⁹⁰⁸ the velocity gauge suffers from (cancelling) apparent di-854 can just as easily evaluate the self-focusing correction, 910 length gauge is often preferable. 855 totally off-diagonal components such as σ^{zyxz} , or other ₉₁₁ 856 857 858 859 860 is maintained. 861

862 ⁸⁶³ response formulas in previous sections require the matrix ⁹¹⁸ tion operator and a resonance; virtually every term uses 864 865 866 867 868 869 ⁸⁷⁰ and matrix elements of the velocity operators—and fre-⁹²⁵ tion operator. In any material with non-vanishing Berry $_{871}$ quently achieves predictions within 1% - 10% of exper- $_{926}$ connection, these old-style diagrams will miss important 872 imental values. Naively, this is somewhat surprising, as 927 contributions to nonlinear responses, including some res-

⁸¹⁵ Figure 1 shows the well-understood linear reponse of the ⁸⁷³ DFT does not necessarily give good wavefunctions, but 874 only energies. Nevertheless, tools such as the "GW" ap-The linear response of Weyl semimetals is shown in 875 proximation or the use of specific functionals permit acthe middle panel of FIG 1. This response is already well- 876 curate determination of the wavefunctions in many cases. understood⁴⁸. The conductivity exhibits a typical Drude 377 With sufficiently fine k-space meshes, one can in principle peak at low frequencies, and $\Re[\sigma^{xx}] \sim \omega$ at higher fre- π^{37} converge the numerical derivatives required and make acquencies. This is due to the interband resonance that 879 curate predictions for non-linear optical responses within becomes possible once the frequency exceeeds twice the *** DFT⁵⁰. Another option is to use the technique of "Wanchemical potential. Due to the tilting, the Fermi surface set nierization" to produce accurate tight-binding models by with $\mu = 0.1$ is an ellipse with a smaller bandgap on one ⁸⁸² Fourier transforming Wannier functions derived *ab ini*side than another. This causes the linear conducitivity *** tio⁵¹. In sum, the nonlinear optical responses presented ⁸⁸⁴ here are may, in principle, be accurately computed within

DISCUSSION AND CONCLUSIONS VIII.

886

887 This work has elucidated a diagrammatic approach to ⁸⁸⁸ nonlinear optical responses and applied it to predict the ⁸⁸⁹ third order optical response of Weyl semimetals. In this ⁸⁹⁰ final section we will reiterate the main results of the paper ⁸⁹¹ and discuss the choice of gauge.

As mentioned in the introduction, the choice of the 802 ⁸⁹³ length or velocity gauge in optical response calcula-⁸⁹⁴ tions is a longstanding issue. The modern definitions ⁸⁹⁵ of the gauges—which depend crucially on the Berry ⁸⁹⁶ connection—permit the use of either gauge to compute in Re σ^{zxxx} in the range $2\mu/3 - t \le \omega \le 2\mu/3 + t$, and ₈₉₇ optical responses. Therefore one is now free to choose the ⁸⁹⁸ best gauge for the problem at hand. The computations ⁸⁹⁹ in this work suggest a few rules of thumb for when each ⁹⁰⁰ gauge should be applied. Equations in the velocity gauge ⁹⁰¹ have a natural separation between matrix elements and ⁹⁰² resonances, and contain only simple poles, making them ⁹⁰³ preferable whenever it is necessary to separately examine Again, the key topological feature is the divergence at 904 one-, two-, and three-photon resonances. Since the only low frequency, which is proportional to the quadrupole 905 matrix elements that appear are derivatives of the Hamil-⁹⁰⁶ tonian, the velocity gauge is particularly well-suited for One should note that, although we have focused on the $_{907}$ tight-binding calculations. However, in the $\omega \to 0$ limit, third-order response from Section V are generic. One 909 vergences. Hence, for analytical work in this limit the

Let us comment on why our diagrammatic approach effects such as the AC Kerr effect. Similarly, any other 912 necessarily employs the velocity gauge. The key issue is tight-binding model can be used instead of (111). The $_{913}$ the presence of the position operator \hat{r} , which acts on only restriction is that it must be defined on the entire 914 all operators to the right by differentiation. The vertices Brillouin zone, so that the equivalence with length-gauge 915 needed in the length gauge become complicated quite 916 quickly, as they involve not only the position and velocity Let us comment briefly on the use of DFT. The optical 917 operators, but objects such as the derivatives of the posielements of derivatives of the Hamiltonian operator (11). ⁹¹⁹ its own, unique, vertex. A naive diagrammatic approach Using the covariant derivative (8), these can be written in 920 to nonlinear response in the length gauge is therefore terms of the matrix elements of the velocity operator and ⁹²¹ impractical. One should note that, historically, diagramthe Berry connection. There are well-established tech- ⁹²² matic methods have indeed employed the length gauge¹⁸. niques for calculating linear responses within DFT⁴⁹— ⁹²³ However, these techniques do not account for the Berry which already involves computing the Berry connection ⁹²⁴ connection, but only the fully interband parts of the posi928 onances.

18

The diagrammatic method of this work provides an ef- 982 929 930 ficient computational framework to calculate nonlinear 983 Jonah Haber for useful discussions. This work was pri-931 for any component and frequency, without unphysical 932 diverjoao2018nonjoao2018nongences. We have provided 933 convenient formulae for the general second and third or-934 der responses, as well as the particular cases of second 935 harmonic, shift current, third harmonic and self-focusing. 936 To interpret these equations, we examined the semiclassi-937 cal limit and linked it to the length gauge. On a technical 939 level, the method of this work should often be the shortest way to compute nonlinear optical responses. 940

The expressions for nonlinear optical responses given 941 here are equivalent to those previously given in the liter-942 ature in all cases we are aware of (so long as the correct definitions for the length and velocity gauges are em-944 ployed). We have checked that our formalism explicitly 945 $_{946}$ reproduces the results of Refs^{5,10,11,13,52,53}, as well as the equivalence of our equations for the first-order conductiv-947 ity, shift current, and second-harmonic generation with 948 those present in the literature. This is exactly what is 949 expected. After all, one can recover many other schemes 950 for computing non-linear responses as limits of ours, in-951 952 cluding (i) Boltzmann/semiclassical transport theory, (ii) 953 quantum mechanical perturbation theory in the length or velocity gauge, (iii) Floquet formalism. Recent work⁵⁴ 954 develops a diagrammatic expansion for non-linear optical 955 responses in the Keldysh formalism which reduces to our 956 957 formalism when the applied electric fields are periodic in time (i.e. plane-waves). We expect, however, that our ⁹⁵⁹ results hold for general wavepackets E(t) so long as the 960 duration of the wavepacket and measurement are much ⁹⁶¹ less than the timescale associated with dissipation.

Optical responses are most useful when connected to 1012 962 ⁹⁶³ experiment. To this end, we have predicted the third ⁹⁶⁴ harmonic response of a Weyl semimetal. At small fre-⁹⁶⁵ guencies, the third harmonic response is dominated by a ⁹⁶⁶ divergent term due to the quadrupole of the Berry curvature, and hence of topological origin. There are also large ⁹⁶⁸ resonant contributions from both two- and three-photon ⁹⁶⁹ processes, with a peculiar linear character.

The results of this work can be expanded in both 970 technical and practical directions. Technically, the dia-971 grammatic formalism enables interacting electrons to be 972 treated on the same level as free ones; we are currently 973 expanding these results to the case of Fermi liquids and 974 possibly even magnetic fields. On a practical level, third 975 order responses are somewhat understudied at present, 976 despite being present in most materials and technolog-977 ically important. The formulae and techniques of this 978 ⁹⁷⁹ work should enable or simplify prediction of the third ⁹⁸⁰ order optical response in a wide variety of materials.

ACKNOWLEDGMENTS

The authors thank Adolfo Grushin, Daniel Passos, and responses in the velocity gauge. The results are general 984 marily funded by the U.S. Department of Energy, Of-985 fice of Science, Office of Basic Energy Sciences, Mate-986 rials Sciences and Engineering Division under Contract 987 No. DE-AC02-05-CH11231 (Quantum materials pro-988 gram KC2202). T.M was supported by the Gordon and 989 Betty Moore Foundations EPiQS Initiative Theory Cen-⁹⁹⁰ ter Grant to UC Berkeley. J.O. received support from ⁹⁹¹ the Gordon and Betty Moore Foundations EPiQS Initia-⁹⁹² tive through Grant GBMF4537. D.E.P. received support $_{993}$ from the NSF GRFP, DGE 1752814.

Appendix A: The Position Operator and The Berry 995 Connection

This Appendix discusses the position operator and its ⁹⁹⁷ close relation to the Berry connection, giving some math-⁹⁹⁸ ematical details thereof.

The Position Operator as Covariant Derivative 1.

Suppose we have a crystal with a finite number of 1000 1001 bands, N, which are all close to the Fermi level and sepa- $_{1002}$ rated from all other bands by a large energy gap. We can $_{\tt 1003}$ then consider those N bands as an effective model for the 1004 material. What form does the single-particle position op-1005 erator take in this situation? The correct answer to this 1006 question was known at least as early as 1962, where it is ¹⁰⁰⁷ discussed in the classic paper of Blount²³. Morally, just ¹⁰⁰⁸ as derivatives and polynomials are exchanged by Fourier 1009 transforms, the real-space position operator \hat{r} should be- $_{1010}$ come a k-derivative. We briefly recall Blount's deriva-1011 tion, adapted to modern notation.

Any wavefunction $|f\rangle$ can be written in terms of the 1013 Bloch functions $\psi_{\mathbf{k}a}$ as

$$\langle \boldsymbol{r}|f\rangle = f(\boldsymbol{r}) = \sum_{a} \int [d\boldsymbol{k}] \psi_{\boldsymbol{k}a} f_a(\boldsymbol{k})$$
 (A1)

Then

$$\begin{aligned} \langle \boldsymbol{r} | \hat{\boldsymbol{r}} | f \rangle &= \sum_{a} \int [d\boldsymbol{k}] \ \psi_{\boldsymbol{k}a}(\boldsymbol{r}) \boldsymbol{r} f_{a}(\boldsymbol{k}) \\ &= \sum_{a} \int [d\boldsymbol{k}] \ \left[-i \partial_{\boldsymbol{k}} \left(e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \right) \right] u_{\boldsymbol{k}a}(\boldsymbol{r}) f_{a}(\boldsymbol{k}) \end{aligned}$$

Integrating by parts (the surface term vanishes because the Brillouin zone is a closed manifold)

$$\begin{aligned} \langle \boldsymbol{r} | \hat{\boldsymbol{r}} | f \rangle &= \sum_{a} \int [d\boldsymbol{k}] \; e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \left[i\partial_{\boldsymbol{k}} u_{\boldsymbol{k}a}(\boldsymbol{r}) + u_{\boldsymbol{k}a}(\boldsymbol{r}) i\partial_{\boldsymbol{k}} f \right] \\ &= \sum_{a,b} \int [d\boldsymbol{k}] \; \psi_{\boldsymbol{k}b}(\boldsymbol{r}) \left[\delta_{ab} i\partial_{\boldsymbol{k}} + u_{\boldsymbol{k}b} i\partial_{\boldsymbol{k}} u_{\boldsymbol{k}a} \right] f_{a}. \end{aligned}$$

¹⁰¹⁴ We can therefore identify

$$\widehat{\boldsymbol{r}} = i\widehat{\boldsymbol{\mathcal{D}}} = i\left[\boldsymbol{\nabla}_{\boldsymbol{k}} - i\boldsymbol{\mathcal{A}}\right] \tag{A2}$$

1015 where

$$\mathcal{A}_{ab} = i \left\langle u_{\mathbf{k}a} | \partial_{\mathbf{k}} u_{\mathbf{k}b} \right\rangle. \tag{A3}$$

1016 To be clear, in (A2), $\nabla_{k} = \delta_{ab} \nabla_{k} \delta(k'-k)$ is the gra- 1056 1017 dient operator which acts on all matrix elements to the 1057 working with an infinite dimensional Hilbert bundle over ¹⁰¹⁸ right. Here we have used the standard notation ψ_{ka} for ¹⁰⁵⁸ the Brillouin torus. The exterior derivative d is a pro-1019 the Bloch functions, but nowhere was the fact that they 1059 vides a (curvature-free) connection on the Hilbert bun-1020 are eigenvectors of the Hamiltonian necessary. Indeed, 1050 dle. When we select an N-dimensional effective Hilbert 1021 nothing about the Hamiltonian was needed! The con- 1061 space, there is a projection map ¹⁰²² nection we have defined is a generalization of the Berry 1023 connection to the case of multiple bands; \mathcal{D} is a U(N) $_{1024}$ connection. It depends only on the choice of which N bands are involved and not on any details of the dynam-1025 ics 1026

1027 ¹⁰²⁸ of basis. Suppose U is a general change of basis, i.e. a ¹⁰⁶⁴ bundle which acts on \mathbb{C}^{N} -valued differential forms ω as⁵⁷ ¹⁰²⁹ U(N) gauge transformation: $\psi'_{ka'} = U_{a'a}(k)\psi_{ka}$ where 1030 the $U_{a'a}$'s vary smoothly with \tilde{k} . Gauge transforms act ¹⁰³¹ naturally on basis vectors, and therefore act through the 1032 dual representation on wavefunctions, which are coeffi-1033 cients. Concretely, $\langle \boldsymbol{r}|f\rangle = \sum_{a} \int [d\boldsymbol{k}] \psi_{\boldsymbol{k}a} f_{a}$ transforms 1034 to

$$\sum_{a'} \int [d\boldsymbol{k}] \psi'_{\boldsymbol{k}a'} f_{a'} = \sum_{a,a'} \int [d\boldsymbol{k}] \psi_{\boldsymbol{k}a} U_{aa'}(\boldsymbol{k}) f_{a'}. \quad (A4)$$

¹⁰³⁵ Hence wavefunctions transform as $f \to U^{\dagger} f$. We there-1036 fore mandate that $\widehat{\mathcal{D}}f$, which is itself a wavefunction, 1037 must transform as

$$\widehat{\mathcal{D}}f \to U^{\dagger}\widehat{\mathcal{D}}f = \left(U^{\dagger}\widehat{\mathcal{D}}U\right)\left(U^{\dagger}f\right)$$
 (A5)

1038 under a gauge transformation. The action of D gives

$$\left[U^{\dagger}U\boldsymbol{\nabla}_{\boldsymbol{k}}+U^{\dagger}\left(\boldsymbol{\nabla}_{\boldsymbol{k}}U\right)-iU^{\dagger}\boldsymbol{A}U\right]\left(U^{\dagger}f\right).$$
 (A6)

1039 Comparing with $\left[\boldsymbol{\nabla}_{\boldsymbol{k}} - i\boldsymbol{A}' \right] \left(U^{\dagger} f \right)$ we find

$$\boldsymbol{A}' = U^{\dagger} \boldsymbol{A} U + i U^{\dagger} \boldsymbol{\nabla}_{\boldsymbol{k}} U \tag{A7}$$

1040 1041 1042 ator correctly, this connection allows us to define the 1088 there is a residual $U(1)^N$ gauge freedom. This allows us $_{1043}$ k-derivatives of operators. The connection acts on op- $_{1089}$ to define the second connection, which is Abelian and is 1044 erators naturally via

$$\hat{\boldsymbol{D}}[\mathcal{O}] = [\hat{\boldsymbol{D}}, \mathcal{O}].$$
 (A8)

This is used extensively in the main text.

2. **Generalized Berry Connections** 1046

 $_{1049}$ to consult Chapter 7 of 55 or Appendix D of $^{56}.$ The nor-¹⁰⁵⁰ mal Berry connection²⁰ is a U(1) connection defined for 2) 1051 a single band. For our setting of N bands, there are two ¹⁰⁵² possible generalizations to consider: a $U(1)^N$ connection 1053 or a U(N) connection, the latter of which we have de-1054 scribed above. Let us see how each of these arise and 1055 what role they play physically.

From the perspective of differential geometry, we are

$$P = \frac{1}{N} \sum_{a=1}^{N} \int [d\mathbf{k}] |u_{\mathbf{k}a}\rangle \langle u_{\mathbf{k}a}|$$
(A9)

¹⁰⁶² from the Hilbert bundle to the \mathbb{C}^N bundle of interest, and This is particularly clear once we consider a change 1063 this projection naturally induces a connection on the \mathbb{C}^N

$$D\,\omega = Pd\,\omega = (d + i\mathcal{A})\,\omega \tag{A10}$$

1065 An important, yet subtle, point is that the considera-1066 tions above do not uniquely define a connection. There 1067 is still a residual freedom corresponding to the choice of 1068 origin in the (real space) unit cell. This is intimately 1069 related to the modern theory of polarization and is care-¹⁰⁷⁰ fully considered from a mathematical point of view in⁵⁸. Due to the non-Abelian nature of the U(N) connec-1071 1072 tion, its gauge-invariant quantities are Wilson loops, ¹⁰⁷³ which cannot be computed directly from the curvature. 1074 It would be interesting to compute these and determine ¹⁰⁷⁵ if they have any physical meaning or utility. However, ¹⁰⁷⁶ it seems unlikely that expressions involving Wilson loops 1077 are buried inside nonlinear conductivities. In the special 1078 case of degenerate bands, the Wilson loops have been ¹⁰⁷⁹ used, for instance, to classify topological parts of Fermisurface oscillations under magnetic fields⁵⁹. 1080

1081 Now let us identify the second, Abelian, connection. In 1082 practice, one virtually always chooses to work in the en-1083 ergy basis with Bloch functions u_{ka} . However, as is well- $\mathbf{A}' = U^{\dagger} \mathbf{A} U + i U^{\dagger} \nabla_{\mathbf{k}} U$ (A7) (A7) to see the are only defined up to a phase. The functions that $\widehat{\mathbf{D}}$ is a U(N) non-Abelian connection. The choice of the energy basis does not completely fix the connection. Beyond being necessary to define the position oper- 1087 gauge, but only up to a change of phase in each band; 1090 denoted by a non-calligraphic letter:

$$\boldsymbol{D}(\boldsymbol{k})_{ab} = \delta_{ab} \left[\boldsymbol{\nabla}_{\boldsymbol{k}} - i\boldsymbol{A}_{aa} \right]$$
(A11)

¹⁰⁹¹ where A is the same as above, but this is now *diagonal* in ¹⁰⁹² the band indices. Under a $U(1)^N$ gauge transformation $U(\mathbf{k}) = \delta_{ab} e^{i\theta_a(\mathbf{k})}$, Equation (A7) reduces to

$$\boldsymbol{A}_{aa} = \boldsymbol{A}_{aa} - \boldsymbol{\nabla}_{\boldsymbol{k}} \boldsymbol{\theta}_a(\boldsymbol{k}). \tag{A12}$$

Let us give a few more mathematical comments. Read- 1094 So the Abelian connection transforms as $D \rightarrow D'$ 1047 1048 ers curious for a more formal treatment are recommended 1095 $e^{-i\theta_a} D_{aa} e^{i\theta_a} = D$ and is thus gauge invariant. This $1096 U(1)^N$ connection is nothing more than one copy of the 1145 evaluation of the integrals with straightforward contour ¹⁰⁹⁷ normal Berry connection for each band. As above, we get ¹¹⁴⁶ integral techniques.

1098 an associated connection on operators given by $D[\widehat{\mathcal{O}}] =$ $[\boldsymbol{D},\widehat{\mathcal{O}}]$, and $\boldsymbol{D}[\widehat{\mathcal{O}}]$ will be gauge-invariant whenever \mathcal{O} is. 1099 Let us briefly contrast the U(N) and $U(1)^N$ connec-1100 1101 tions and identify when each should be used. The non-Abelian connection \mathcal{D} is a strictly more complicated ob-1102 1103 ject than the Abelian connection D. In general, objects 1104 involving ${\cal D}$ will be gauge-covariant after choosing the en-1105 ergy basis, but objects with D may be gauge-invariant. ¹¹⁰⁶ For example, the curvature

$$\mathcal{F}^{\mathcal{D}} = i[\mathcal{D}, \mathcal{D}] \to (\mathcal{F}^{\mathcal{D}})' = U^{\dagger} \mathcal{F}^{\mathcal{D}} U,$$
 (A13)

¹¹⁰⁷ is gauge-covariant, whereas in the Abelian case

$$F^{D} = i[D, D] \to (F^{D})' = e^{-i\theta_{a}} F^{D}_{ab} \delta_{ab} e^{i\theta_{b}} = F^{D}_{(A1)}$$

1109 Abelian versus Abelian connections.) As any observable 1149 integral is then analytically continued to a sum ¹¹¹⁰ must be strictly gauge-invariant, so it is necessarily much 1111 easier to produce observables out of the second connec-¹¹¹² tion. In an ideal world, we would be able to work only with D and not \mathcal{D} . Indeed, for a single band when 1113 N = 1, this is the case. There is some hope of elimi- 1150 To evaluate this sum, note that the Fermi-Dirac Distribu-1114 ¹¹¹⁵ nating \mathcal{D} , because for all operators that act diagonally ¹¹⁵¹ tion $f(z) = \frac{1}{e^{\beta z} - 1}$ has poles at exactly these complex fre-¹¹¹⁶ in band space, with $\widehat{\mathcal{O}} = \delta_{ab}\mathcal{O}_{aa}$, the induced connection ¹¹⁵² quencies $i\omega_n$, each with residue $-1/\beta$. We can therefore $_{1117} \mathcal{D}$ reduces to D. However, this is a vain hope: measur- $_{1153}$ use the following trick of trading the sum for a contour ¹¹¹⁸ ing electromagnetic responses inevitably involves the off- ¹¹⁵⁴ integral. Consider diagonal components \mathcal{A}_{ab} , and we must use the full gen-1120 erality of the non-Abelian connection. Moreover, when ¹¹²¹ bands are degenerate or cross, such as at a Dirac point, 1122 there is no unique way to define the Bloch wavefunctions of each band. These points, which play a crucial role 1155 where the contour is the circle of radius R and 1123 in topological band structures, therefore cannot be fully 1124 described via this $U(1)^N$ connection. 1125

In a philosophical sense, the presence of the non-1126 Abelian connection helps to explain why non-linear con- 1156 The integral on the right-hand side is easy to evalute. 1127 ¹¹²⁸ ductivity responses are often devoid of simple forms: they ¹¹⁵⁷ The poles of $f(z)F_1(z)$, shown in Figure 2 are at $z_n = i\omega_n$ ¹¹²⁹ must be gauge-invariant, but their "building blocks" are ¹¹⁵⁸ with residue $R_n = -\frac{1}{\beta}F_1(i\omega_n)$, coming from the Fermi-1130 combinations that cancel out among themselves. More $_{1160} f(\varepsilon_a)$. So 1131 optimistically, however, one can harness this gauge in-1132 variance. We will use it to conceptually simplify our 1133 perturbation theory approach to non-linear conductivi-1134 ties in the length gauge. A theme from recent years is 1135 that the converse is also true: once a new gauge invari-¹¹³⁷ ant combination has been isolated, it is usually physically ¹¹³⁸ measurable, perhaps in a limit. To search for new and ¹¹³⁹ interesting quantities to measure, one need only consider 1140 what combinations are gauge invariant.

Appendix B: Useful Integrals

1141

In this section we will evaluate the loop integrals in the 1142 ¹¹⁴³ Feynman diagrams. Following Chapter 3 of Mahan⁶⁰. ¹¹⁴⁴ we work with Matsubara frequencies, which allows the We wish to evaluate integrals such as

$$I_1 = \int d\omega \ G_a(\omega) = \int d\omega \ \frac{1}{\omega - \varepsilon_a}$$
(B1)

$$I_2(\omega_1) = \int d\omega \ G_a(\omega)G_b(\omega + \omega_1)$$
(B2)

$$I_{3}(\omega_{1},\omega_{2}) = \int d\omega \ G_{a}(\omega)G_{b}(\omega+\omega_{1})G_{c}(\omega+\omega_{1}+\omega_{2})$$
(B3)

$$I_4(\omega_1, \omega_2, \omega_3) = \int d\omega \ G_a(\omega) G_b(\omega + \omega_1) G_c(\omega + \omega_1 + \omega_2)$$
(B4)

$$\times G_d(\omega + \omega_1 + \omega_2 + \omega_3) \tag{B5}$$

(A14) ¹¹⁴⁷ In imaginary time, fermions only have frequencies at odd ¹¹⁰⁸ is gauge-invariant. (This is a standard fact for non- ¹¹⁴⁸ imaginary integers: $i\omega_n = i(2n+1)\pi/\beta$ for $n \in \mathbb{Z}$. The

$$I_1 \to S_1 = \frac{1}{\beta} \sum_{n \in \mathbb{Z}} \frac{1}{i\omega_n - \varepsilon_a}.$$
 (B6)

$$0 = J_1 = \lim_{R \to \infty} \oint_{C_R} \frac{dz}{2\pi i} f(z) F_1(z)$$
(B7)

$$F_1(z) = \frac{1}{z - \varepsilon_a}.$$
 (B8)

only gauge-covariant, and so much be composed of tricky 1159 Dirac distribution, and then $z_1 = \varepsilon_a$ with residue $R_1 =$

$$0 = J_1 = -\frac{1}{\beta} \sum_{n \in \mathbb{Z}} F_1(i\omega_n) + f(\varepsilon_a).$$
(B9)

$$I_1 = S_1 = f(\varepsilon_a), \tag{B10}$$

¹¹⁶² where the first equality is true since the analytic contin-1163 uation back is trivial here.

Precisely the same technique will work for the more 1164 1165 complex integrals with one extra residue for each Green's 1166 function. For I_2 we analytically continue to

$$S_2(i\omega_1) = \frac{1}{\beta} \sum_{n \in \mathbb{Z}} \frac{1}{z - \varepsilon_a} \frac{1}{z + i\omega_1 - \varepsilon_b}.$$
 (B11)

FIG. 2. Depiction of the poles of the function $f(z)F_1(z)$ and the integration contour. The poles z_n are on the $i\omega$ axis and the pole z_1 is on the ω axis.

Since $i\omega_1$ is due to an incoming photon, it is a bosonic Matsubara frequency and thus an *even* integer instead of odd: $i\omega_1 = i(2M)\pi/\beta$ for some integer M. Now consider

$$0 = J_2 = \lim_{R \to \infty} \oint_{C_R} \frac{dz}{2\pi i} f(z) F_2(z)$$
(B12)

$$F_2(z) = \frac{1}{z - \varepsilon_a} \frac{1}{z + i\omega_1 - \varepsilon_b}.$$
 (B13)

¹¹⁶⁷ The function $f(z)F_2(z)$ has poles and residues

$$z_n = i\omega_n;$$
 $R_n = -\frac{1}{\beta}F_2(i\omega_n)$ (B14)¹

$$z_{1} = \varepsilon_{a}; \qquad R_{1} = \frac{f(\varepsilon_{a})}{\varepsilon_{a} + i\omega_{1} - \varepsilon_{b}} = \frac{-f(\varepsilon_{a})}{\varepsilon_{ba} - i\omega_{1}}$$
(B15)
$$z_{2} = \varepsilon_{a} - i\omega_{1}; \qquad R_{2} = \frac{f(\varepsilon_{b} - i\omega_{1})}{\varepsilon_{b} - i\omega_{1} - \varepsilon_{a}} = \frac{f(\varepsilon_{b})}{\varepsilon_{ba} - i\omega_{1}}.$$
(B16)

¹¹⁶⁸ In the last equality for R_2 , the fact $e^{\beta(i\omega_1)} = 1$ implies ¹¹⁶⁹ $f_a(\varepsilon_a - i\omega_1) = f(\varepsilon_b)$. Therefore

$$S_2(i\omega_1) = R_1 + R_2 = \frac{f_{ab}}{i\omega_1 - \varepsilon_{ab}}.$$
 (B17)

1170 Analytically continuing back we then have

$$I_2(\omega_1) = \frac{f_{ab}}{\omega_1 - \varepsilon_{ab}}.$$
 (B18)

¹¹⁷¹ The generalization to I_3 and I_4 follows the same pat-¹¹⁷² tern. For I_3 we consider the contour integral against

$$F_3(z) = \frac{1}{z - \varepsilon_a} \frac{1}{z + i\omega_1 - \varepsilon_b} \frac{1}{z + i\omega_{12} - \varepsilon_c}$$
(B19)

where $\omega_{12} = \omega_1 + \omega_2$. Then $f(z)F_3(z)$ has poles and residues

$$z_n = i\omega_n;$$
 $R_n = -\frac{1}{\beta}F_3(i\omega_n)$ (B20)

$$z_1 = \varepsilon_a;$$
 $R_1 = \frac{f(\varepsilon_a)}{(\varepsilon_{ab} + i\omega_1)(\varepsilon_{ac} + i\omega_{12})}$ (B21)

$$z_2 = \varepsilon_b - i\omega_1; \quad R_2 = \frac{f(\varepsilon_b)}{(\varepsilon_{ba} - i\omega_1)(\varepsilon_{bc} + i\omega_2)} \quad (B22)$$

$$z_3 = \varepsilon_c - i\omega_{12}; \quad R_3 = \frac{f(\varepsilon_c)}{(\varepsilon_{ca} - i\omega_{12})(\varepsilon_{cb} - i\omega_2)}.$$
 (B23)

Then $S_3(i\omega_1, i\omega_2) = R_1 + R_2 + R_3$. Analytically continuing back to real frequency,

$$I_3(\omega_1, \omega_2) = \frac{f(\varepsilon_a)}{(\varepsilon_{ab} + \omega_1)(\varepsilon_{ac} + \omega_{12})}$$
(B24)

$$-\frac{f(\varepsilon_b)}{(\varepsilon_{ab}+\omega_1)(\varepsilon_{bc}+\omega_2)} + \frac{f(\varepsilon_c)}{(\varepsilon_{ac}+\omega_{12})(\varepsilon_{bc}+\omega_2)}.$$
 (B25)

¹¹⁷³ Employing the same procedure, S_4 is made up of 4 ¹¹⁷⁴ poles, which sum to give

$$I_{4}(\omega_{1}, \omega_{2}, \omega_{3})$$
(B26)
$$= \frac{f(\varepsilon_{a})}{(\varepsilon_{ab} + \omega_{1})(\varepsilon_{ac} + \omega_{12})(\varepsilon_{ad} + \omega_{123})}$$
$$+ \frac{f(\varepsilon_{b})}{(\varepsilon_{ba} - \omega_{1})(\varepsilon_{bc} + \omega_{2})(\varepsilon_{bd} + \omega_{23})}$$
$$+ \frac{f(\varepsilon_{c})}{(\varepsilon_{ca} - \omega_{12})(\varepsilon_{cb} - \omega_{2})(\varepsilon_{cd} + \omega_{3})}$$
$$+ \frac{f(\varepsilon_{d})}{(\varepsilon_{da} - \omega_{123})(\varepsilon_{db} - \omega_{23})(\varepsilon_{dc} - \omega_{3})}.$$

- 1175 * daniel_parker@berkeley.edu
- ¹¹⁷⁶ [†] tmorimoto@berkeley.edu
- ¹¹⁷⁷ [‡] jworenstein@lbl.gov
- ¹¹⁷⁸ § jemoore@berkeley.edu
- ¹¹⁷⁹ ¹ R. W. Boyd, *Nonlinear optics* (Academic press, London, 1188 2003).
- ¹¹⁸¹ ² N. Bloembergen, Nonlinear optics (World Scientific, Sin- 1190 gapore, 1996). 1191
- ³ P. N. Butcher and D. Cotter, *The elements of nonlinear* 1192
- ¹¹⁸⁴ optics, Vol. 9 (Cambridge university press, 1991).
- ¹¹⁸⁵⁴ P. J. Sturman and V. M. Fridkin, *Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials*, Vol. 8
 ¹¹⁸⁷ (CRC Press, Philadelphia, 1992).
 - ⁵ J. Sipe and A. Shkrebtii, Physical Review B **61**, 5337 (2000).
 - ⁶ S. M. Young and A. M. Rappe, Phys. Rev. Lett. **109**, 116601 (2012).
 - ⁷ S. M. Young, F. Zheng, and A. M. Rappe, Phys. Rev.

- Lett. 109, 236601 (2012). 1193
- A. M. Cook, B. M. Fregoso, F. De Juan, S. Coh, and J. E. 1258 1194 Moore, Nature communications 8, 14176 (2017). 1195 1259
- T. Morimoto and N. Nagaosa, Science Advances 2, 1260 1196 e1501524 (2016). 1197 1261
- 10 J. Orenstein and J. E. Moore, Phys. Rev. B 87, 165110 1262 1198 (2013).1199 1263
- 11 I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 1264 1200 (2015).1201 1265
- 12T. Morimoto, S. Zhong, J. Orenstein, and J. E. Moore, 1266 1202 Physical Review B 94, 245121 (2016). 1267 1203
- 13C.-K. Chan, N. H. Lindner, G. Refael, and P. A. Lee, 1268 1204 Phys. Rev. B 95, 041104 (2017). 1205 1269
- 14F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore, 1270 1206 Nature Communications 8 (2017). 1271 1207
- 15L. Wu, S. Patankar, T. Morimoto, N. L. Nair, E. Thewalt, 1272 1208 A. Little, J. G. Analytis, J. E. Moore, and J. Orenstein, 1273 1209 Nature Physics 13, 350 (2017). 1274 1210
- 16 Q. Ma, S.-Y. Xu, C.-K. Chan, C.-L. Zhang, G. Chang, 1275 1211
- Y. Lin, W. Xie, T. Palacios, H. Lin, S. Jia, et al., Nature 1276 1212 Physics 13, 842 (2017). 1277 1213
- 17S. Patankar, L. Wu, B. Lu, M. Rai, J. D. Tran, T. Mori- 1278 1214
- moto, D. Parker, A. Grushin, N. L. Nair, J. G. Analytis, 1279 1215
- J. E. Moore, J. Orenstein, and D. H. Torchinsky, ArXiv 1280 1216 1281
- e-prints (2018), arXiv:1804.06973 [cond-mat.mtrl-sci]. 1217 18
- J. F. Ward, Rev. Mod. Phys. 37, 1 (1965). 1218 19
- M. V. Berry, Proceedings of the Royal Society of London. 1283 1219 A. Mathematical and Physical Sciences 392, 45 (1984). 1284 1220 20
- B. Simon, Physical Review Letters 51, 2167 (1983). 1221 21
- W. Kraut and R. von Baltz, Physical Review B 19, 1548 1286 1222 (1979).1223 1287
- 22R. von Baltz and W. Kraut, Physical Review B 23, 5590 1288 1224 (1981).1225 1289
- 23 E. Blount, in Solid state physics, Vol. 13 (Elsevier, 1962) 1290 1226 pp. 305-373. 1227 1291
- 24R. Resta, Rev. Mod. Phys. 66, 899 (1994). 1228
- 25R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1293 1229 1651 (1993). 1294 1230
- 26K. Taguchi, T. Imaeda, M. Sato, and Y. Tanaka, Phys. 1295 1231 Rev. B 93, 201202 (2016). 1296 1232
- X. Yang, K. Burch, and Y. Ran, arXiv:1712.09363 (2017). 1297 1233
- 28G. Ventura, D. Passos, J. L. dos Santos, J. V. P. Lopes, 1298 1234 and N. Peres, Physical Review B 96, 035431 (2017). 1299 1235
- D. Passos, G. Ventura, J. Lopes, J. Santos, and N. Peres, 1300 1236 arXiv preprint arXiv:1712.04924 (2017). 1301 1237
- A. Taghizadeh and T. G. Pedersen, Physical Review B 97, 1302 1238 205432 (2018). 1303 1239
- 31 N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and 1304 1240 N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010). 1241 1305
- 32S. Murakami, New J. Phys. 9, 356 (2007). 1242
- 33X. Wan, A. M. Turner, A. Vishwanath, and S. Y. 1307 1243 Savrasov, Phys. Rev. B 83, 205101 (2011). 1244
- 34K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. 1245 Rev. D 78, 074033 (2008). 1246
- 35D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 1247 (2013).1248 36
- S. Zhong, J. E. Moore, and I. Souza, Physical review let-1249 ters 116, 077201 (2016). 1250
- 37 J. Ma and D. Pesin, Physical Review B 92, 235205 (2015). 1251
- 38H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, 1252 Phys. Rev. X 5, 011029 (2015). 1253
- 39 X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, 1254 H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, 1255
- Phys. Rev. X 5, 031023 (2015). 1256

We note that the Bloch wavefunctions are not necessarily periodic in \mathbf{k} . In fact, the natural gauge choice is given by the convention $u_{\mathbf{k}+\mathbf{G}a}(\mathbf{r}) = e^{-i\mathbf{G}\cdot\mathbf{r}}u_{\mathbf{k}a}(\mathbf{r})$. This gauge choice should be adopted when trying to compute polarization and related quantities in tight-binding models.

1257

1282

1285

1292

- However, this term is familiar from atomic physics: the second-order response of a molecular system has the same form as this last term, but without the Brillouin zone integral. Of course, the meaning of the matrix elements is different in that situation.
- 42S. Nakatsuji, N. Kiyohara, and T. Higo, Nature 527, 212 (2015).
- N. Kiyohara, T. Tomita, and S. Nakatsuji, Physical Review Applied 5, 064009 (2016).
- 44 A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, et al., Science advances 2, e1501870 (2016).
- 45M.-T. Suzuki, T. Koretsune, M. Ochi, and R. Arita, Phys. Rev. B 95, 094406 (2017).
- 46C. Aversa and J. Sipe, Physical Review B 52, 14636 (1995).
- 47O. Vafek and A. Vishwanath, Annual Review of Condensed Matter Physics 5, 83 (2014).
- 48P. Hosur, S. A. Parameswaran, and A. Vishwanath, Phys. Rev. Lett. 108, 046602 (2012).
- 49M. Rohlfing and S. G. Louie, Physical Review B 62, 4927 (2000).
- 50T. Rangel, B. M. Fregoso, B. S. Mendoza, T. Morimoto, J. E. Moore, and J. B. Neaton, Physical review letters 119, 067402 (2017).
- 51J. Ibañez-Azpiroz, S. S. Tsirkin, and I. Souza, arXiv preprint arXiv:1804.04030 (2018).
- 52K. Taguchi, T. Imaeda, M. Sato, and Y. Tanaka, Phys. Rev. B 93, 201202 (2016).
- 53H. Ishizuka, T. Havata, M. Ueda, and N. Nagaosa, Phys. Rev. Lett. 117, 216601 (2016).
- 54S. João and J. Lopes, arXiv preprint arXiv:1810.03732 (2018).
- 55A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J. Zwanziger, The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics (Springer Science & Business Media, 2013).
- 56D. S. Freed and G. W. Moore, in Annales Henri Poincaré, Vol. 14 (Springer, 2013) pp. 1927–2023.
- J. Avron, L. Sadun, J. Segert, and B. Simon, Communications in mathematical physics 124, 595 (1989).
- G. W. Moore, arXiv preprint arXiv:1706.01149 (2017).
- 59A. Alexandradinata, C. Wang, W. Duan, and L. Glazman, arXiv preprint arXiv:1707.08586 (2017).
- 60G. D. Mahan, Many-particle physics (Springer Science & 1306 Business Media, 2013).