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We study equilibrium and nonequilibrium properties of electron-phonon systems described by the Hubbard-
Holstein model using dynamical mean-field theory. In equilibrium, we benchmark the results for impurity
solvers based on the one-crossing approximation and slave-rotor approximation against non-perturbative nu-
merical renormalization group reference data. We also examine how well the low energy properties of the
electron-boson coupled systems can be reproduced by an effective static electron-electron interaction. The one-
crossing and slave-rotor approximations are then used to simulate insulator-to-metal transitions induced by a
sudden switch-on of the electron-phonon interaction. The slave-rotor results suggest the existence of a critical
electron-phonon coupling above which the system is transiently trapped in a non-thermal metallic state with
coherent quasi-particles. The same quench protocol in the one-crossing approximation results in a bad metallic
state.

PACS numbers: 05.70.Ln, 71.35.Lk,72.15.-v

I. INTRODUCTION

A Mott insulator can be realized in correlated lattice sys-
tems if the interaction energy is comparable to or larger than
the kinetic energy. In such systems, changes in thermody-
namic parameters may induce insulator-to-metal transitions
(IMTs), as has been demonstrated by varying temperature1 or
pressure.2,3 Laser-induced mechanisms provide another strat-
egy to manipulate quantum phases in strongly correlated ma-
terials.4–7 In these experiments, phase transitions or transitions
to metastable states are induced by a time-dependent pertur-
bation. The resulting dynamics often follows a highly non-
thermal trajectory and in the context of IMTs interesting ques-
tions arise concerning both the timescale and the pathway for
the non-adiabatic switching.

The essence of the correlation-induced IMT is encapsulated
in the Hubbard model.8,9 As the initial Mott insulating phase
has a large repulsive electron-electron interaction which local-
izes electrons, a transition to a metallic state can be achieved
by enhancing the screening originating either from the cou-
pling to lattice degrees of freedom10,11 or plasmonic excita-
tions.12,13 The theoretical description of these processes in-
volves extensions of the Hubbard model which incorporate the
effect of electron-phonon coupling14–16 or nonlocal Coulomb
interactions.13,17–19 The proper description of screening ef-
fects is particularly important due to the large change in the
number of mobile charge carriers during the excitation and
IMT.

In this work, we focus on IMTs triggered by a time-
dependent change in the strength of the electron-phonon
coupling. The later can be realized by terahertz driving
and is enhanced by anharmonic effects.20–23 We will con-
sider the Hubbard-Holstein model, where the electrons in-
teract through an on-site Coulomb repulsion and are linearly
coupled to dispersionless phonons. The equilibrium phase
diagram of the Hubbard-Holstein model contains metallic
and Mott-insulating phases as well as a bi-polaronic insulat-

ing phase.10,14 Equilibrium studies of the Hubbard-Holstein
model have revealed that the dynamical nature of the phonon-
induced effective electron-electron interaction cannot be ne-
glected, except in the large-phonon frequency limit,24 and
it is responsible for the different behavior in the high- and
low-energy regimes.15,16 Despite a strong influence of the
phonons on the high-energy part of the spectrum, the low-
energy physics can be described by the Hubbard model with
an appropriately determined reduced static interaction. In
this study, we consider time-dependent modulations of this
screened interaction and the resulting IMT. We aim to provide
a quantitative description of the nonequilibrium transition into
the metallic phase and the corresponding thermalization time.

Simulating the nonequilibrium dynamics of a strongly cor-
related electron system coupled to phononic degrees of free-
dom is a challenging problem. In weakly coupled systems,
phonons can either be treated by the Migdal approximation
with25,26 or without27–29 a self-consistent renormalization of
the phonon propagator. In the former case the mutual inter-
action between the electronic and phononic subsystems self-
consistently screens the static Coulomb interaction and renor-
malizes the phonon energy. Strongly interacting electron-
phonon coupled systems have been studied within the dynam-
ical mean field theory (DMFT) approximation.24,30 In con-
trast to the equilibrium case10,11 powerful exact solvers for
non-equilibrium electron-phonon coupled impurity problems
are lacking. It is thus important to benchmark and compare
the existing state-of-the-art impurity solvers which can be ex-
tended to non-equilibrium situations. Attempts to address
out-of-equilibrium dynamics using these generalized impurity
solvers face a several challenges. These difficulties stem from
the limited applicability range due to the employed trunca-
tions in the diagrammatic algorithms (e.g. violation of the en-
ergy conservation in the iterated perturbation theory at strong
electron-electron couplings31), or from the computational ex-
pense which prevents long-time simulations (e.g. in the case
of impurity solvers based on the auxiliary Hamiltonian32 or
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the matrix product state33 approach). In this study, we fo-
cus on the one-crossing approximation34–36 and slave-rotor9,37

based impurity solvers and compare equilibrium spectra and
phase diagrams against numerically exact reference calcula-
tions. As the quantum Monte Carlo solvers are limited to
the imaginary time axis, we compare the spectral functions
to results obtained by the numerical renormalization group
(NRG).38–40 This provides information about the parameter
regimes in which the approximate impurity solvers produce
reliable results. In the second part of this work, we com-
pare the time evolution predicted by the approximate impurity
solvers and address the question of nonequilibrium IMTs.

The outline of this paper is as follows. In Sec. II we intro-
duce the model Hamiltonian and the associated dimensionless
parameters. Sec. III explains the three approximate impurity
solvers used in the paper. In the first part of Sec. IV we show
extensive comparisons of the equilibrium spectral functions
obtained from different approximations. The second part is
devoted to the study of the low-energy properties of the cor-
related metal and the search for a purely electronic Hamilto-
nian which effectively describes the low energy physics. In
Sec. V we present the time evolution after a sudden quench of
the electron-phonon coupling and discuss the appearance of
a non-thermal transient state with an enhanced quasi-particle
weight in the slave-rotor calculations. Section VI contains an
assessment of the employed impurity solvers, while Sec. VII
is a brief conclusion.

II. MODEL HAMILTONIAN

The half-filled one-band Hubbard-Holstein model is de-
scribed by the Hamiltonian

HHH =− v
∑
〈ij〉σ

c†iσcjσ + U
∑
i

ni↑ni↓

+ ω0

∑
i

b†i bi + g
∑
iσ

ni
(
b†i + bi

)
, (1)

where c†iσ(ciσ) is the electron creation (annihilation) operator
at site i with spin σ = ± 1

2 , ni = ni↓ + ni↑ and b†i (bi) cre-
ates (annihilates) a phonon at site i. The first term of Eq. (1)
describes the hopping of an electron with spin σ from site j
to one of its nearest-neighbors i with amplitude v that deter-
mines the bandwidth W . The electrons interact with a local
Coulomb repulsion U . This electronic system is coupled to
Einstein phonons with frequency ω0 by a linear coupling g be-
tween the local density of electrons and the phonon displace-
ment. Throughout this paper, we use a bandwidth W = 4v
and set v (~/v) as the unit of energy (time), and ~ = 1.

The system is parametrized by three dimensionless parame-
ters, namely (i) the ratio between the electron-electron (el-el)
interaction and bandwidth U/W which controls the insulat-
ing tendency of the system, (ii) the dimensionless electron-
phonon (el-ph) coupling λ = g2/vω0 which measures the
gain of energy due to the el-ph coupling in the atomic limit,
and (iii) the adiabaticity of the phonon ω0/W which deter-
mines the relative speed of the phononic and electronic de-

grees of freedom. The equilibrium phase diagram10,11 (ex-
cluding symmetry broken phases41,42) at half-filling results
from a competition between these effects. For weak el-
ph coupling λ � U/(2v) the system exhibits a metal-to-
insulator (Mott) transition due to the el-el interaction. The
metallic and the Mott insulating states are driven into a bi-
polaronic insulating state by increasing the coupling λ to the
bosonic degrees of freedom. However, since phonons are cou-
pled to charge fluctuations, which are strongly suppressed in
insulators, the electronic correlation functions in metals are
expected to be more sensitive to the el-ph coupling than in
insulators. In the adiabatic limit, ω0/W � 1 the Migdal
theorem states that the vertex corrections are small and the
transition to the bi-polaronic state will occur at intermediate
el-ph coupling λ, while away from the adiabatic limit the crit-
ical coupling increases.12 In Sec. IV we will demonstrate the
characteristic behaviors in the various regimes of the phase
diagram by comparing the spectral functions obtained from
different approaches in order to assess the validity of the em-
ployed approximations throughout the parameter space.

III. NUMERICAL METHODS

Our numerical investigation is based on the dynamical
mean field theory (DMFT).43,44 This approximate method as-
sumes a spatially local self-energy and maps the lattice model
onto a self-consistent solution of a quantum impurity model
coupled to a bath. The formalism becomes exact in the limit
of infinite coordination number and our calculations with a
semi-circular density of states correspond to a Bethe lattice
in this limit. The main limitation which determines the accu-
racy of the DMFT solution in this limit is the impurity solver.
While in equilibrium powerful non-perturbative methods have
been developed to solve impurity problems coupled to bosonic
degrees of freedom, such as quantum Monte Carlo10,45 and
numerical renormalization group (NRG)40 solvers, there ex-
ists no numerically exact and efficient approach to treat the
nonequilibrium situation. For this reason, several approx-
imate nonequilibrium solvers have been developed. Each
one has specific merits, applicability restrictions, and numer-
ical demands. In order to understand their limitations, we
study DMFT solutions obtained from three different impurity
solvers. By comparing the equilibrium spectral functions and
by considering NRG results as an accurate reference point, we
obtain insights into the features that are properly described, as
well as the range of validity of the different solvers.

In the following we briefly describe the relevant properties
of the impurity solvers used in this work:

1. The strong-coupling perturbation method based on
a self-consistent diagrammatic expansion in the hy-
bridization function, which at the first (second) order is
known as the non-crossing (one-crossing) approxima-
tion NCA (OCA),34–36 has been extended to el-ph in-
teracting problems via an additional weak coupling ex-
pansion in the el-ph coupling.13,46,47 A detailed descrip-
tion of this combined strong/weak coupling approach
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can be found in Ref. 13. In the following, we will em-
ploy the OCA approximation, since the description of
the correlated metal is significantly improved in com-
parison to the NCA counterpart. By construction, this
method is limited to strong el-el interactions and to the
weak el-ph coupling (WC) regime and will be referred
to as OCA-WC. For strong electron-phonon coupling,
a complementary approach10,24 can be formulated us-
ing the Lang-Firsov transformation.48 However, since
this approximation is not well-behaved in the small-ω0

limit, we defer the discussion of this method to Ap-
pendix C.

2. The slave-rotor (SR) decomposition has been employed
to solve the impurity problem in Refs. 9 and 37. In
this work, we fix the ratio between the spin degener-
acy and the rotor flavor to N = 3 to adjust the phase
diagram at g = 0. In the self-consistent weak el-ph
coupling approximation, one can substitute the interact-
ing phononic Green’s function, instead of the dissipa-
tive propagator, into the slave-rotor method, see Ref. 9.
To obtain the interacting phononic Green’s function, we
employ the updating procedure of the weak-coupling
expansion described in Ref. 13. The combination of the
weak el-ph coupling expansion and the slave-rotor de-
composition restricts this impurity solver (denoted SR-
WC) to the physics in the weak el-ph coupling regime.

3. The numerical renormalization group (NRG)
method38–40 can be easily extended to incorporate
local phonon modes by expanding the impurity basis
with a vibrational degree of freedom.14,49–52 This
approach has found many applications in the context
of quantum transport through vibrating molecules and
for bulk systems via the DMFT mapping.53–60 The
phonon cutoff needs to be increased until convergence
is reached. This implies that the calculations become
numerically costly when the phonon mode softens
close to the transition into the polaronic state. In
this work, most calculations are performed with a
phonon cutoff set at ten, with the NRG discretization
parameter Λ = 2 (or Λ = 2.5 for mapping out the
phase diagrams), keeping all multiplets up to an upper
cutoff energy 8 (in units of the characteristic energy
scale at the N -th step of the iteration), with Nz = 4
interleaved discretization grids.61,62 To study finite
temperatures, we made use of the full-density-matrix
algorithm.63–65

In the SR-WC and OCA-WC approaches, we employ
the non-equilibrium Keldysh formalism to describe the time
evolution.44 The spectral properties are obtained by the real-
time propagation of the solution and a partial Fourier trans-
form. For example, the spectral function is obtained as

A(ω, t) = − 1

π
Im
∫ tmax

0

dt′eiωt′GR(t+ t′, t), (2)

where the typical value for the integration window is given by
tmax = 40 for OCA-WC and tmax = 60 for SR-WC. The asso-
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Figure 1. DMFT phase diagram of the Hubbard-Holstein model
obtained for ω0 = 0.2 using SR-WC (purple circles points),
OCA-WC (brown square points), NRG (orange triangle points) and
QMC10 (blue diamond points with error bars) impurity solvers. The
arrows mark the el-ph couplings for which the analysis of the spectral
functions is presented in Fig. 2. The additional green line represents
the SR-WC phase boundary at β = 20. The NRG phase boundary
was determined for a larger discretization Λ = 2.5 and broadening
α = 0.3 parameter than in the rest of the manuscript.

ciated phononic spectral function is computed by substituting
the electronic Green’s function by its phononic counterpart.

In the NRG calculations, the spectral functions are com-
puted through the Lehmann decomposition, and using the
full-density-matrix approach to approximate the thermal den-
sity matrix for temperature T . The raw spectra in form of
weighted δ peaks are broadened using a log-Gaussian kernel
with α = 0.15 (or α = 0.3 for mapping out the phase di-
agrams) and further with a Gaussian kernel with a width of
order T .

IV. EQUILIBRIUM

A. Phase diagram

Figure 1 presents the phase diagram of the Hubbard-
Holstein model obtained by different impurity solvers at in-
verse temperature β = 1/T = 30. The lines delimit the co-
existence regime [Uc1, Uc2] for the transition between the cor-
related metal and the Mott insulator. These critical Hubbard
interactions depend on the el-ph coupling g and are renormal-
ized towards larger values upon enhancing g. This is due to
the retarded phonon-mediated el-el attraction which results in
a reduction of the effective Coulomb repulsion. Intuitively,
by increasing the el-ph coupling electrons can excite more
phonons which gives rise to a larger el-el attraction and a re-
duction in the repulsive Coulomb interaction.

We note some deviations between the slope of the numer-
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ically exact Uc1-curve and Uc2-curve from QMC10 and the
corresponding NRG result. This is a consequence of the NRG
truncation at the initial steps of the iteration and the usage of
a bigger discretization Λ = 2.5 and broadening α = 0.3 pa-
rameters in the scan of the phase diagram (due to the compu-
tational cost). While we will use the NRG data as the bench-
mark in the following discussion, it should be kept in mind
that the corresponding spectra involve some approximations
in the larger el-ph coupling regime and that these approxima-
tions tend to overestimate the metallic character.

Integrating out the phononic degrees of freedom from the
action obtained from Eq. (1) shows that reproducing the spec-
tral properties of the Hubbard-Holstein model within a purely
electronic system is possible if the effective Hubbard interac-
tion has the frequency dependence

Ueff(ω) = U − 2g2ω0

ω2
0 − ω2

. (3)

In the anti-adiabatic limit ω0/W → ∞, this dynamical Hub-
bard interaction simplifies to the static value Ueff = U −
2g2/ω0. Away from this limit, however, the competition be-
tween different energy scales leads to nontrivial low-energy
physics. It is thus an interesting problem to define a static ef-
fective Coulomb repulsion which reproduces the low-energy
spectral properties of the original Hubbard-Holstein model. In
Sec. IV C we will describe an approach to calculate this inter-
action.

The comparison of the phase boundary in Fig. 1 between
SR-WC and OCA-WC reveals that both approaches capture
the renormalization of the metal-insulator transition line. Al-
ready in the purely electronic model (g = 0) the coexistence
region is different for both approaches, originating from the
different approximate treatments of charge fluctuations. To
be precise, these approximations are: 1) the use of the non-
crossing approximation in the auxiliary space of the slave-
rotor method, and 2) the one-crossing approximation in the
OCA-WC formalism. Besides, it is evident that the coex-
istence regime of the OCA-WC phase diagram shrinks by
enhancing the el-ph coupling while the coexistence region
within the SR-WC approach is roughly constant as a func-
tion of the el-ph coupling. From now on we will study SR-
WC and OCA-WC results at the temperatures where a decent
agreement in the location of the phase-boundary is obtained,
namely β = 20 in SR-WC and β = 30 in the OCA-WC,
cf. green SR-WC and dark red OCA-WC phase boundaries in
Fig. 1.

B. Spectral properties

In this section, we present a comparison of the equilibrium
spectral functions obtained from the different approximations.
The analysis is restricted to weak and intermediate el-ph cou-
plings, because of the weak (el-ph) coupling methods, namely
OCA-WC and SR-WC break down as we approach the bi-
polaronic transition.

Low-frequency phonons The first comparison in Fig. 2
shows spectra in the Mott insulating and strongly corre-
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Figure 2. Equilibrium spectral function A(ω) obtained from
OCA-WC (solid red lines), NRG (dashed blue lines), and SR-
WC (dashed-dotted green lines) for U ∈ {4.2, 4.6, 5.5}, g ∈
{0.134, 0.268, 0.4, 0.44} and fixed phonon frequency ω0 = 0.2.
Panels on the same row show results for the same Hubbard inter-
action, while the vertically aligned panels correspond to a fixed el-ph
coupling. For U = 4.2 and λ = 0.968 the OCA-WC calculation
fails to converge.

lated metallic regimes for increasing el-ph couplings at fixed
phonon frequency ω0 = 0.2. In the insulating phase, see the
first row in Fig. 2 for U = 5.5, due to the strong el-el re-
pulsion, the phonon-mediated deformations of the spectrum
are barely noticeable. The OCA-WC spectral function in this
phase nicely agrees with the reference NRG spectral func-
tion for all couplings. A slight difference can be observed at
the edge of the band, where NRG exhibits a slightly broader
tail, which originates from the NRG broadening. The SR-WC
shows a consistent behavior but the bandwidth of the Hub-
bard band is smaller due to the symmetry of the employed
rotor.37 The comparison of the spectra closer to the metal-
to-insulator transition is complicated due to the fact that the
numerical value of the critical Hubbard interaction Uc differs
among the methods, see the second row in Fig. 2 for U = 4.6
and the phase diagram in Fig. 1. For the weakest el-ph cou-
pling, λ = 0.09, the NRG calculations exhibit a strongly
renormalized quasi-particle peak, which is not yet manifest in
the OCA-WC spectrum, while the presented SR-WC results
are at higher temperatures, see Fig. 1. At the stronger el-ph
interactions, λ ≥ 0.36, the quasi-particle peak is present in all
approximations, but its weight is consistently larger in NRG.

As the el-ph interaction is increased a spectral feature ap-
pears at the lower edge of the Hubbard band and it is most
pronounced in the SR-WC, while it is absent in the NRG. The
comparison at the lowest interaction strength U = 4.2 shows
a similar trend, however, the convergence in the OCA-WC ap-
proximation was much slower and we failed to converge the
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Figure 3. Equilibrium spectral function A(ω) obtained from OCA-
WC (solid red lines), NRG (dashed blue lines), and SR-WC (dashed-
dotted green lines) for U ∈ {4.2, 4.6, 5.5}, g ∈ {0.3, 0.6, 0.9} and
fixed phonon frequency ω0 = 1.0. Missing data for OCA-WC indi-
cate that a converged solution could not be obtained.

OCA-WC result for the strongest depicted el-ph interaction
λ = 0.968. The non-convergence originates from the lack
of small parameters in the strong coupling expansion as we
cross the metal-insulator transition and approach the polaronic
regime.

High-frequency phonons While in the adiabatic limit
(ω0/W � 1) the vertex corrections are suppressed, as the
phonon energy gets comparable to the electronic energy scale,
we expect that the phonon effects become more pronounced.
To demonstrate the effect on the spectral functions we present
a similar comparison as before, but for the phonon frequency
ω0 set equal to the hopping v, ω0 = v = 1 while keeping
the same dimensionless el-ph coupling λ, see Fig. 3. As the
el-ph coupling is increased the deformation of the Hubbard
bands becomes more evident. It leads to a splitting of the
Hubbard band into two peaks and we interpret the lower peak
as a polaronic feature. This feature is already present in the in-
sulating phase U = 5.5, where the agreement between NRG
and OCA-WC is reasonably good. However, for the strongest
el-ph interaction λ = 0.81 the splitting between the peaks
differs substantially. Even though one would like to attribute
the higher energy features to additional discrete phonon ex-
citations the numerical data do not support this picture since
the splitting is larger than the bare phonon energy ω0. NRG
and OCA-WC spectra mainly disagree in the energies of these
sidebands. In contrast, the SR-WC results are different: they
show only a shoulder-like feature at the lower edge of the up-
per Hubbard band.

The strongly correlated metal at U = 4.6 and U = 4.2 ex-
hibits a rich internal structure of the upper Hubbard band with
several peaks, that become sharper when increasing the el-ph
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a),c), and e) present spectral densities for U = 4.6 while panels b),
d), and f) show the corresponding results for U = 5.5. The el-ph
coupling strength is fixed at λ = 0.81.

interaction λ. These structures extend the Hubbard bands to
higher energies and therefore systems with the same dimen-
sionless el-ph coupling λ have a slightly larger bandwidth for
larger phonon frequency ω0 in the weak-coupling regime, see
also Fig. 4. This is a direct consequence of the fact that the
spectral function is normalized to unity. The different meth-
ods do not agree on the detailed shape of these high-energy
features. This disagreement originates from the different ap-
proximations, but also from the broadening used in the NRG
and the finite Fourier window employed in the calculation of
the spectral functions in the SR-WC and OCA-WC approxi-
mations.

In order to illustrate the evolution of the spectral function
for different interaction strengths within a given approxima-
tion we present in Appendix A the same data set as in Figs. 2
and 3, but reorganized such that each plot shows the evolution
of the spectral function with increasing el-ph interaction for a
given approximation.

Effect of the phonon frequency To demonstrate the effect of
the phonon frequency ω0 on the electronic properties we com-
pare the spectral function A(ω) for ω0 = 0.2 and ω0 = 1.0
obtained from different approximations at a fixed dimension-
less el-ph coupling λ in Fig. 4. For the strongly correlated
metal, the main effect of the increased phonon frequency ω0

is the enhancement of polaronic effects leading to the inter-
nal structures in the Hubbard band and the associated increase
in the bandwidth. In NRG and OCA-WC, the quasi-particle
weight is increased for high-frequency phononic modes, while
in the SR-WC it remains almost constant. In the Mott insu-
lating phase, at U = 5.5, NRG and OCA-WC show a renor-
malization of the Hubbard gap, while in SR-WC this effect is
much smaller.
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C. Quasi-particle weight and effective static interaction

The effective low-energy physics in the strongly corre-
lated metal is determined by the quasi-particle weight Z =
[1 − ∂<Σ/∂ω|ω=0]−1, which in the DMFT context is also
the inverse of the effective single-particle mass Z = m/m∗,
where m (m∗) is the single-particle (effective) mass. The ef-
fect of the el-ph interaction on the quasi-particle weight Z
is twofold: a) the phonon-mediated effective interaction is
screened, see Eq. (3), and the reduced static interaction leads
to an enhanced quasi-particle weight Z, b) the dressing of the
quasi-particle with the phonon cloud leads to an enhanced ef-
fective mass m∗ or equivalently to a reduced quasi-particle
weight Z. In the atomic limit, the renormalization is given by
the Lang-Firsov factor ZB = exp

(
− g2/ω0

)
.66 The overall

effect of the el-ph interaction on the low-energy physics is a
non-trivial problem due to the competition between these two
mechanisms. Here we will follow Ref. 15, where it was pro-
posed that the low-energy physics of the Hubbard-Holstein
problem can be effectively described by a purely electronic
system with a renormalized interaction and that retardation
effects only affect the high-energy region of the spectrum.

Due to the finite propagation time tmax, the evaluation of
the quasi-particle weight from the derivative of the self-energy
becomes a tedious task, and the subsequent non-equilibrium
analysis exacerbates this problem. Here we instead propose an
analysis based on the integral over the low-energy part of the
photo-emission spectrum (PES) I(ω). The latter is computed
as67

I(ω) = Im
∫

dt1dt2
2π

S(t1)S(t2)eiω(t1−t2)G<(t1 − t2), (4)

for a Gaussian probe pulse with the time resolution δ given
by S(t) = exp(t2/δ2), where δ is set to be smaller than
the phonon period (2π/ω0) and we have used the time-
translational invariance. In order to have a practical measure-
ment of the quasi-particle weight also out of equilibrium we
use the low-energy integral I =

∫ 0.2

−0.2
I(ω)dω as the matching

condition between the el-ph coupled system and the effective
electronic system. The integration interval has been chosen to
specifically focus on the low-energy properties of the quasi-
particle, excluding any putative phononic sidebands from the
analysis. We have carefully checked that the qualitative con-
clusion does not depend on the integration interval. In other
words, the effective interaction of the purely electronic Hub-
bard model is determined by matching the low-energy integral
I to the result obtained from the Hubbard-Holstein model.

In Fig. 5 and Fig. 6 we present the analysis for SR-WC
and OCA-WC, respectively. The interaction strengths in the
Hubbard-Holstein case are U = 4.6, corresponding to the
Mott insulating phase without el-ph coupling, and U = 4.2,
which is a strongly correlated metal without el-ph coupling.
The increase of the el-ph coupling g leads to an enhanced inte-
gral I over the quasi-particle, see Fig. 5(a) and Fig. 6(a). The
effective electronic interaction Ueff(g, U) is then determined
by matching the low-energy integral I from the Hubbard-
Holstein problem with the one obtained from the Hubbard
model I(Ueff) = I(g, U). As can be seen from Fig. 6(a)
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Figure 5. a) SR-WC results for the integral over the low-energy PES
I =

∫ 0.2

−0.2
I(ω)dω obtained from the purely electronic model (red

line) and the electron-boson coupled system (horizontal lines) for
U ∈ {4.2 (solid bars with circles), 4.6 (dashed bars with triangles)}
and different el-ph couplings g ∈ {0.134, 0.268, 0.4, 0.44} , whose
values are given in the color-bar. Comparison of the spectral func-
tion for the Hubbard-Holstein model (blue full line) at g = 0.4 and
U = 4.6 (b) and U = 4.2 (c) and the Hubbard model with the ef-
fective interaction Ueff ≈ 4.49 (b) and Ueff = 4.11 (c). The phonon
frequency is ω0 = 0.2.

this condition is not always fulfilled since for the Mott state
the low-energy integral I from the Hubbard-Holstein model
can lie within the jump induced by the first order IMT. A di-
rect comparison of the PES is presented in subplots b), c) of
Fig. 5 and Fig. 6 for the SR-WC and OCA-WC methods, re-
spectively. These panels confirm the main result of Ref. 15
that the low-energy spectrum of the two models is practically
identical. This serves as a confirmation that the integral over
the quasi-particle peak I is a reliable matching condition for
the low-energy physics of the Hubbard-Holstein and Hubbard
model. In the following section, we will use this insight for
an analysis of the non-equilibrium dynamics to see how the
low-energy physics is affected by an external perturbation and
to check if one can always find a purely electronic system
that matches the low-energy physics of the Hubbard-Holstein
problem.

V. NON-EQUILIBRIUM

We now turn to the study of non-thermal IMTs, by inves-
tigating the temporal response of the system after a sudden
quench of the el-ph coupling in the adiabatic limit (ω0 = 0.2).
We abruptly increase the coupling parameter from g = 0 to
a nonzero final value. Using this protocol, we investigate the
transient properties of systems close to the metal-to-insulator
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Figure 6. Similar analysis as in Fig. 5 for the OCA-WC method. The
effective interaction for U = 4.6, g = 0.4 is Ueff ≈ 4.4 (b), while
for U = 4.2, g = 0.4 it is given by Ueff = 4.04 (c). The phonon
frequency is ω0 = 0.2.

transition and in the coexistence regime.

A. Double occupation and kinetic energy

We will first consider the time evolution of the double oc-
cupancy and kinetic energy for initial states in the correlated
metallic (U = 4.4, g = 0) and insulating (U = 4.6, g = 0)
phases. After switching on the el-ph coupling, the phonons
screen the Hubbard repulsion, see Eq. (3), and consequently,
the effective repulsion is reduced. The nontrivial question
is whether the system relaxes into a new thermal state and
whether the screening can induce an IMT.

1. Correlated metal (U = 4.4)

The dynamics after a quench to g = 0.44 is shown for
OCA-WC and SR-WC in Fig. 7. As expected from the re-
duction of the effective interaction, the double occupation in-
creases, and the kinetic energy is suppressed as the system
evolves towards a putative metastable state. The transient
evolution is characterized by strong oscillations which can be
linked to the following two processes:

a) Creation of holon-doublon pairs by the quench. In par-
ticular, for the initial metallic state, the oscillation frequency
is determined by the energy difference between the quasi-
particle band and the Hubbard bands, and thus the oscillations
can be associated with excitations between these bands. This
picture is also confirmed by the occupation dynamics, which
exhibits long-lived oscillations on these two energy scales,
namely from the lower to the upper Hubbard band and from
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Figure 7. Time-dependent double-occupancy a) and kinetic en-
ergy b) within OCA-WC (solid line) and SR-WC (dashed line) at
U ∈ {4.4, 4.6}, ω0 = 0.2, g = 0.44 and β = {20 (SR-WC),
30 (OCA-WC)}.

the quasi-particle peak to the upper Hubbard band. This sce-
nario is further supported by the fact that the spectral function
is almost fixed for t > 15.

b) The creation of holon-doublon pairs leads to enhanced
fluctuations of the phononic field and increases the polaronic
tendencies of the system.

In order to compare the non-thermal state after the quench
to the associated equilibrium states we present the time evo-
lution of the double occupancy as a function of time (bars)
together with a plot of the equilibrium hysteresis region of the
double occupancy in the Hubbard (initial Hamiltonian, solid
blue line) and Hubbard-Holstein model (final Hamiltonian,
red solid line), see Fig. 8. The latter corresponds to equilib-
rium results at β = 20 (SR-WC) and 30 (OCA-WC) and the
final g. In both SR-WC and OCA-WC, the initial trend is an
increase of the double occupancy and an approach to the equi-
librium value of the final el-ph coupled Hamiltonian after the
quench. In the initial metallic phase (U = 4.4), the two meth-
ods also agree for longer times, where the double occupancy
is slightly enhanced and the quasi-particle peak in the spec-
tral function is reduced, see Fig. 9. However, in the long-time
limit, the SR-WC exceeds the equilibrium value in contrast
to the OCA-WC results. For the initial insulating phase at
longer times these two methods start to quantitatively deviate:
SR-WC shows a stronger increase in the double occupancy
than OCA-WC and the transient value even exceeds the equi-
librium reference. Note that the solid red line in Fig. 8 is the
reference system at β = 20 or 30 and not the expected final
thermal state of the system. While this implies that the associ-
ated thermal states have higher effective temperatures, further
validation of this scenario requires longer simulation times.
The difference in the double occupancy for long times is not
so surprising since the time evolution is governed by a subtle
interplay of various factors, like the reduction of the effective
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Figure 8. Time evolution of the double-occupancy (colored bar)
within SR-WC a) and OCA-WC b) at β = {20 (SR-WC), 30 (OCA-
WC)}. The color bar represents time. Blue lines indicate the
phase transition of the Hubbard model and red lines show the cor-
responding results for the Hubbard-Holstein model at ω0 = 0.2 and
g = 0.44.

el-el interaction, the increase in the charge fluctuations and the
renormalization of the phonon frequency. The two approx-
imations yield a different competition between these effects
and therefore it is hard to give a quantitative description of
the expected final thermal state and the effective temperature.
Nevertheless, the qualitative behavior is consistent: the non-
adiabatic switching of the el-ph coupling reduces the effective
interaction of the system which thus relaxes into a more metal-
lic state. In Sec. V B, we will show that the quasi-equilibration
of our transient state survives at low energies and we conse-
quently will associate a transient effective temperature to this
energy range. Our results will show that the reduction of the
static el-el repulsion in systems which are initially in the cor-
related metal phase is not dramatic, see Sec. V C. Therefore in
strongly correlated metals, we identify the largest contribution
as coming from the charge fluctuations and the renormalized
phonon frequency.

2. Mott insulator (U = 4.6)

If we start in the insulating phase of the el-ph uncoupled
system (U = 4.6), the transient evolution exhibits an increase
in the double occupancies, both within the OCA-WC and SR-
WC description, see Fig. 7 a) and Fig. 8. In the OCA-WC
simulation this enhancement is gradual and monotonic, which
can be explained by the small reduction of the Hubbard inter-
action as a result of the coupling to phonons, see Sec. V C. In
contrast, for SR-WC the increase of the double occupancy is
accompanied by shallow oscillations which are a consequence
of two processes: a) the build-up of the coherent quasi-particle
peak, and b) a pronounced renormalization of the phonon fre-
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Figure 9. a-c) SR-WC results for the time-dependent spectral func-
tions (A(ω, t)) at U ∈ {4.4, 4.6, 5.5}, ω0 = 0.2 and final el-ph
coupling g = 0.44. d-f) Analogous OCA-WC results as a function
of time at U ∈ {4.4, 4.6, 5.5}, ω0 = 0.2 and final el-ph coupling
g = 0.44. The color bar represents time. g-i) Difference between the
initial (t = 2) and final (t = 24) spectral functions plotted in a-f) at
U ∈ {4.4, 4.6, 5.5}, ω0 = 0.2 from left to right for SR-WC (dashed
black line) and OCA-WC (orange solid line).

quency due to the appearance of conducting electrons. The
double occupation increases almost to the reference value of
the Hubbard-Holstein model with g = 0.44, see Fig. 8 a), and
indicates that the evolution of the system is towards the cor-
related metallic phase. In the absence of el-el interactions a
roughly similar timescale governs the coherent oscillations of
local observables which thermalize in less than ten cycles.25

In the Hubbard-Holstein system, however, investigating the
full thermalization is numerically demanding, and will not be
pursued here.

B. Time-dependent spectral function

As shown in Sec. IV C, in equilibrium, the height of the
quasi-particle peak can be reproduced by a purely electronic
system by introducing a properly renormalized interaction.
We now apply an equivalent protocol also out of equilibrium
to investigate the time dependence of the effective interaction.
Figure 9 shows the time-dependent spectral functions at var-
ious Hubbard interactions for the SR-WC and OCA-WC ap-
proximations.

a. Initial metallic phase Figures 9 a) and d) present the
temporal evolution of the spectral functions for U = 4.4 and
final el-ph interaction g = 0.4. The initial spectrum has
a three-peak structure and the relative weight of the quasi-
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particle band and the Hubbard bands change weakly after the
quench. This redistribution of spectral weight is accompa-
nied by an enhancement of the quasi-particle peak as the static
Coulomb repulsion is effectively reduced. At t & 15 the
phonon cloud dresses the formed polarons, and subsequently,
the height of the quasi-particle peak decreases. This is also
accompanied by slow oscillations of the double occupancy as
seen in Figs. 7 a) and 8. Whether the polaron dressing effect
dominates the reduced interaction at longer times is an inter-
esting question which we leave to future investigations.

The non-thermal nature of the transient state is further evi-
denced through the ratio between the non-equilibrium spectral
functions of the occupied (A<) and unoccupied (A>) states
as shown in Fig. 10. For a thermal state, the fluctuation-
dissipation theorem68 requires that

A<(ω, t)

A>(ω, t)
= e−βeffω, (5)

where Teff = 1/βeff is the temperature of the equilibrated
system. In a nonequilibrium situation, this ratio can be used
to define an effective temperature. In Fig. 10 a) and c) we
plot it at U = 4.4 for SR-WC and OCA-WC, respectively. At
low energies, both the SR-WC and OCA-WC exhibit an al-
most negligible transient response and the linear fits to Eq. (5)
yield βeff = 0.98 (SR-WC) and βeff = 4.3 (OCA-WC). Both
approximations consistently have substantially higher low-
energy effective temperatures than in the initial state, where
β = 20 (SR-WC) and β = 30 (OCA-WC). Figure 10 further-
more shows that at ω & 0.8 the energy distribution function
is non-thermal. In the U = 4.6 case, OCA-WC exhibits a
time-dependent distribution which is consistent with cooling
of doublons in the energy region of the Hubbard bands. In
contrast, the SR-WC distribution changes mainly in the quasi-
particle region and around the edges of the Hubbard bands and
shows a rather robust partial inversion of the population in the
Hubbard band region.

In the following, we will classify the initial insulating
states of the Hubbard model into two categories which
are distinguished by whether or not their el-el repulsion is
larger (smaller) than the critical interaction of the thermal
electron-phonon coupled system (UHH

c2 ≈ 4.72 for SR-WC
and UHH

c2 ≈ 4.74 for OCA).
b. Initial deep Mott insulating phase As a representa-

tive of the first category (U > UHH
c2 ), we show the time-

dependent spectral function at U = 5.5 in Figs. 9 c) and f) for
the OCA-WC and SR-WC, respectively. It is evident that due
to the small charge fluctuations in this Mott insulating phase,
the transient modulation of the el-ph coupling can hardly me-
diate low-energy excitations. On energy scales of the order
of U , OCA-WC yields a redistribution of the band which is
quickly damped. This response is not significant in SR-WC,
being barely noticeable in Fig. 9 c). This can be partially
traced back to the shortcomings of the SR-WC in describing
the correct Hubbard bands.

c. Initial Mott insulating phase close to IMT The closer
the Hubbard interaction is to UHH

c2 the more the low-energy
density varies. For (U < UHH

c2 ) we present results at U = 4.6
in Figs. 9 b), and e). In this parameter regime, the two-peak
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Figure 10. a-b) SR-WC results for A<(ω, t)/A>(ω, t) at U ∈
{4.4, 4.6}, ω0 = 0.2 and final el-ph coupling g = 0.44. c-d) Anal-
ogous OCA-WC results as a function of time at U ∈ {4.4, 4.6},
ω0 = 0.2 and final el-ph coupling g = 0.44. The color bar rep-
resents time. Dashed black and brown lines are low-energy linear
fits of exp(−βeffω) to A<(ω, t)/A>(ω, t) at t = 1.5 and t = 24,
respectively.

insulating spectrum of the Mott insulator gives way to the for-
mation of a quasi-particle peak which grows more dramati-
cally in SR-WC than in OCA-WC. In this regime, the band
renormalization is recognizable in both SR-WC and OCA-
WC. In both approximations, the major redistribution of the
spectral density occurs at the band edges, see lower panels
of Fig. 9. However, the renormalization of the spectral func-
tion in SR-WC facilitates the build-up of the quasi-particle
peak as even small el-ph excitations can assist the process.
In OCA-WC the transferred energy should, in order to accu-
mulate low-energy spectral densities, be of order W/2 since
we have to excite holon/doublon pairs to enhance the phonon
fluctuations. In the adiabatic regime, this amount of energy is
mainly accessible through multi-phonon processes with a low
probability of excitations as the charge-fluctuations in OCA-
WC are suppressed, see also the discussions in Sec. IV.

The ratio between occupied and unoccupied states provides
information about the non-thermal pathway of the IMTs at
U = 4.6, see Fig. 10 b) and d). Both the OCA-WC and the
SR-WC results exhibit exponential behaviors at low-energies
and their associated effective temperatures vary in time. This
change of the effective temperature is stronger in SR-WC than
in OCA-WC as the growth of the quasi-particle height is more
pronounced in the former approximation, see also Fig. 9. At
higher-energies, SR-WC presents drastic changes around the
band-edge reflecting the strong redistribution of the spectral
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Figure 11. a) SR-WC results for the time-dependent integral over the
low-energy PES I(t) =

∫ 0.2

−0.2
I(ω, t)dω over the associated value

at t = 15 as a function of time at U ∈ {4.2, 4.4, 4.6}. b) SR-WC
results for the integral over the low-energy PES obtained from the
purely electronic model (red line) and the electron-boson coupled
system (colored bars) for U ∈ {4.4, 4.6} , ω0 = 0.2, g = 0.44 and
β = 20.

weight to the quasi-particle peak, while OCA-WC exhibits
considerable changes atW/2 resembling the cooling and dou-
blon/holon recombination dynamics expected in a metallic
system.

C. Quasi-particle weight and effective static interaction

To further investigate the low-energy excitations of the
system, we employ the matching condition introduced in
Sec. IV C to analyze the transient effective el-el interaction.
The generalization of the PES to the nonequilibrium situation
is given by67

I(ω, t) = Im
∫

dt1dt2
2π

S(t1)S(t2)eiω(t1−t2)G<(t+t1, t+t2).

(6)
The lower panels of Figs. 11 and 12 present the time-

dependent integral over the low-energy PES I(t) =∫ 0.2

−0.2
I(ω, t)dω as a function of time (bars). In the strongly

correlated metal (U = 4.4) the change in the quasi-particle
weight is small after t > 15 and the matching condition sug-
gests a very slow evolution of the effective Hubbard interac-
tion towards the thermal value. However the non-thermal tra-
jectories are very distinct especially for short times in both
approximations. Within OCA-WC the quasi-particle weight
increases and therefore the effective Hubbard interaction is
reduced as a function of time, which demonstrates the dom-
inant role of screening of the Coulomb repulsion due to the
formation of the phonon cloud. Within SR-WC the effective
el-el repulsion is reduced considerably at short times and the
later time evolution exhibits a small but gradual decrease of
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Figure 12. a) OCA-WC results for the time-dependent integral over
the low-energy PES I(t) =

∫ 0.2

−0.2
I(ω, t)dω over the associated

value at t = 15 as a function of time at U ∈ {4.2, 4.4, 4.6, 4.8},
ω0 = 0.2, g = 0.44 and β = 30. b) OCA-WC results for the integral
over the low-energy PES obtained from the purely electronic model
(red line) and the electron-boson coupled system (colored bars) for
U ∈ {4.4, 4.6} and β = 30.

the quasi-particle weight, which can be related to the dressing
of the quasi-particles.

In the Mott-insulating phase, U < UHH
c2 , at U = 4.6 the

picture is quite different for SR-WC and OCA-WC. In the
former, the quasi-particle weight is strongly modified sug-
gesting a strong reduction of the effective el-el interaction
as a function of time. In this regime, the system traverses
the first-order phase transition on a non-thermal path. In this
regime, the phonon screening is the dominant process lead-
ing to a strong redistribution of spectral weight to a metal-
like PES. The OCA-WC shows a similar trend, but without a
complete switching from insulator to metal and in fact a rather
small increase in the quasi-particle weight. We have checked
that within the OCA-WC approximation on the reachable
timescales the full transition cannot be achieved no matter
how close the initial state is to the critical interaction. The
overestimation of the insulating nature of the state is a well-
known artifact of the NCA and OCA approximation in equi-
librium and the above behavior might be a non-equilibrium
manifestation of this artifact.

In addition, comparing the ratio I(t)/I(15) of both SR-WC
and OCA-WC, see upper panels of Figs. 11 and 12, also sug-
gests that the increase of the quasi-particle weight is more pro-
nounced for Hubbard interactions UH

c2 < U < UHH
c2 , where

U
H(HH)
c2 is the critical interaction in the Hubbard (Hubbard-

Holstein) model. We thus conclude that transitions from Mott
insulators to non-thermal correlated metals are achievable in
this range of interactions. Note however that the relative
change is significantly larger in the SR-WC approach than in
the OCA-WC (different y-axis scales for both plots).
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VI. DISCUSSION ON IMPURITY SOLVERS

One purpose of this work was the comparison between
different impurity solvers: OCA-WC, SR-WC, and NRG. In
equilibrium, we have used the NRG results as reference data
to assess the validity of the OCA-WC and SR-WC solvers
in various parameter regimes and to reveal the equilibrium
properties of the spectral function. We have found that in
the Mott insulating regime the spectral properties obtained
within OCA-WC are in excellent agreement with the NRG
counterparts, while SR-WC exhibits shortcomings in captur-
ing the shape of the Hubbard bands. We have pointed out that
this drawback is a consequence of employing the non-crossing
approximation in the auxiliary Hilbert space of the problem.
Nevertheless, the presented SR-WC diagram features a more
accurate metal-Mott insulator phase boundaries than the result
obtained with OCA-WC. Here, we have to note that the ratio
between the spin degeneracy and the rotor flavor is determined
to have the correct IMT at g = 0 and the remaining phase
boundary is calculated without further adjustment. The un-
derestimation of the critical Hubbard interactions in the OCA-
WC approach is a feature of the perturbative strong-coupling
(hybridization) expansion on which OCA-WC is based. In
the correlated metallic phase as well as in the vicinity of the
Mott transition, the interplay between various degrees of free-
dom and the approximations inherent in the impurity solvers
results in nontrivial effects on the spectral function. We have
shown that as a consequence of the self-consistent electron-
phonon interaction, the electronic charge fluctuations effec-
tively reduce the vibrational frequency of the phonons almost
proportionally to g2/U in the weak electron-phonon coupling
regime. We furthermore studied the low-energy physics of
the system and determined a purely-electronic static interac-
tion which reproduces the low-energy spectral properties of
the Hubbard-Holstein model in the adiabatic regime.15

Out of equilibrium, the main discrepancies are observed
in the regime where the quasi-particle peak is formed along
the non-thermal trajectory. In this regime, spectral weight is
transiently transferred from the Hubbard bands to low ener-
gies and starts forming a quasi-particle peak. The build-up
of this peak is much more pronounced within SR-WC than in
OCA-WC. We have discussed that this distinct response is a
result of the associated energy of the transferred spectral den-
sities in these two approximations. While within SR-WC the
spectral weight lost at the inner edge of the Hubbard bands
is transfered to the quasi-particle peak, in OCA-WC the ac-
cumulated low-energy spectral weight is mostly originating
from the middle of the Hubbard bands. Questions concern-
ing the long-time thermalization of these induced non-thermal
metallic states, as well as their associated lifetimes, may be
the subject of future investigations. The overall investigation
of this dynamics revealed considerable discrepancies between
the two methods, which illustrates the uncertainties associated
with the use of the current state-of-the-art nonequilibrium im-
purity solvers.

VII. CONCLUSIONS

In conclusion, we have employed the DMFT framework to
investigate electron-phonon coupled systems described by the
Hubbard-Holstein model in the weak el-ph coupling regime,
both in and out of equilibrium. In an initially uncoupled sys-
tem (g = 0), we have switched on the electron-phonon cou-
pling to a moderate value and investigated the temporal evo-
lution of the system in various parameter regimes. We have
shown that in the correlated metallic phase of the uncoupled
system, the initial dynamics produces a spectral-density re-
duction of the Hubbard-bands and enhancement of the quasi-
particle peak which continues, at most, until the phonon char-
acteristic time (π/ω0) and is accompanied by an increase in
the double occupancy. These quasi-particles are later dressed
by the phonon cloud with the electron-mediated reduced fre-
quency which results in a reduction of the low-energy spectral
density. For the Mott insulating initial phase with a large el-el
interaction, due to the very small charge fluctuations as well as
negligible thermal excitations, the system does not show a dra-
matic redistribution of spectral weight. However, close to the
metal-to-insulator transitions and using the SR-WC solver, the
initially uncoupled insulating state develops a quasi-particle
peak along a nonthermal trajectory. By assessing the quasi-
equilibrium condition we have shown that the transient state
is following a non-thermal pathway with distinguishable be-
havior at low and high energies. We have also discussed that
the quasi-particle weight (approximated via the integrations of
the PES) suggest a static Hubbard interaction which gradually
decreases toward the correlated metallic phase.

Experiments on light-induced IMT transitions typically ob-
serve the formation of a bad-metallic phase after ultra-fast
laser excitations of Mott insulators.4–7,69,70 Due to the energy
injected by the pumping pulse, hot electron carriers will be
created and the role of the electron-lattice coupling, ampli-
fied by the larger induced charge fluctuations, is mainly to
cool down these charge carries, which results in a slow re-
duction of the in-gap density of states.8 This observation is
very much consistent with our presented picture in the large
U regime. Experiments also report considerable conductiv-
ity enhancements in complex oxide heterostructures which
undergo a structural change by a phonon-driven laser pulse.
These structural phase transitions6,71 which are accompanied
by less heating, due to small excitation energy of (usually
driven) acoustic phonons, can be effectively understood by a
reduction of the el-el interaction and thus qualitatively support
the present analysis. Investigations of the relaxation dynamics
of heavy fermions, on the other hand, highlight the importance
of the low-energy physics in determining the thermalization
timescale.72 This is indeed one of our main conclusions re-
garding the possibility of enhancing the metallic tendencies
in an insulating system with a small gap. But whether the
slow long time dynamics due to phonon dressing is the dom-
inant factor controlling the relaxation time is a relevant ques-
tion which requires extending our formalism to the study of
Kondo-lattice type problems. It would also be very interest-
ing to study multi-band systems to understand the interplay
between charge, orbital and phonon degrees of freedom in in-
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ducing nontrivial metallic behaviors near the Mott transition.
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Figure 13. Equilibrium spectral function A(ω) ob-
tained from OCA-WC, NRG, and SR-WC for λ ∈
{0.09 (red lines), 0.36 (blue lines), 0.81 (green lines)}, ω0 = 0.2
and U ∈ {4.2, 4.6, 5.5}. Panels on the same row are computed
using the indicated approximation. The vertically aligned panels
describe systems at a fixed Hubbard interaction.

Appendix A: Equilibrium spectral functions

In order to illustrate the evolution of the spectral functions
with increasing electron-phonon interaction strength within a
given approximation we rearranged the data from Sec. IV B.
The adiabatic cases for ω0 = 0.2 are presented in Fig. 13 and
those for the high phonon frequency ω0 = 1.0 in Fig. 14. The
spectral features are discussed in Sec. IV B.

Appendix B: Renormalized phonon frequency

1. Derivation of scaling relation within SR-WC

To determine the relationship between the renormalized
phonon frequency and other physical parameters of the sys-
tem, we will consider the SR-based formalism. Within
DMFT, the major contribution of the phonon softening for lo-
cal electron-phonon interactions is coming from space-local
terms. The associated effective action can be written as

Snph =

∫
C

dt
[
Xph(t)D−1

0 (t, t)Xph(t)−
√

2g(t)n(t)Xph(t)

+U
∑
σ

nσnσ

]
, (B1)
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Figure 14. Equilibrium spectral function A(ω) ob-
tained from OCA-WC, NRG, and SR-WC for λ ∈
{0.09 (red lines), 0.36 (blue lines), 0.81 (green lines)}, ω0 = 1.0
and U ∈ {4.2, 4.6, 5.5}. Panels on the same row are computed
within the mentioned approximation. The vertically aligned panels
describe systems at a fixed electron-phonon coupling. Missing
OCA-WC data indicate that the solutions cannot be converged.

where C denotes the Keldysh contour, σ stands for the spin
index, Xph is the phonon displacement operator given by
Xph = (b + b†)/

√
2, and D−1

0 is the noninteracting phonon
propagator defined as D0 = −(∂2

t + ω2
0)/2ω0. Here we have

dropped the site indices for simplicity. Within the slave-rotor
decomposition9,37 the above action can be rewritten as

SLθph =

∫
C

dt
[
−UL2(t) +Xph(t)D−1

0 (t, t)Xph(t)

−
√

2g(t)L(t)Xph(t) + ηL(t) + L(t)∂tθ
]
,

(B2)

where θ is the canonical angle of the rotor angular momen-
tum (L), and η is the Lagrange multiplier that maintains the
charge-conservation. Performing the functional integral over
the rotor angular momentum yields

Sθph =

∫
C

dt
[
Xph(t)D−1

0 (t, t)Xph(t)

+
1

2

(
∂tθ + η −

√
2g(t)Xph(t)

) 1

U

(
∂tθ + η −

√
2g(t)Xph(t)

)]
.

(B3)

Incorporating the quadratic terms in Xph from the second
term of Sθph into its first term, we obtain a renormalized
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phonon Green’s function satisfying

Dr = −∂
2
t + ω2

0

2ω0
+
g2

U
, (B4)

g2

U �ω0

≈ −∂
2
t + ω2

r

2ωr
. (B5)

In the limit 2g2/U � ω0, we therefore estimate the phonon
softening as

ωr ≈ ω0 −
g2

U
. (B6)

Away from this regime, the associated charge fluctuations in-
duced by ∂tθ produce nonlinear effects.

2. Results

As a result of the feedback between the electronic and
phononic subsystems, the effective phonon frequency (ωr) is
renormalized. In this section, we compare how well the renor-
malization of the phonon frequency is captured within each of
the approximations. The renormalized frequency is extracted
from the position of the peak in the phonon spectrum. We start
with the observation that within SR-WC one finds an explicit
scaling for the phonon softening,

ω0 − ωr = α
g2

U
, (B7)

which originates from the interaction between charge fluctu-
ations (as described by the rotor) and phonons. Here, α is
a proportionality factor which depends on the model param-
eters. The basic assumption is that charge fluctuations are
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reduced, as expected within the Mott phase, which leads to
the emergent small parameter g2/(Uω0). To zeroth order in
the charge-phonon coupling, we obtain α = 1, and therefore
the value of this fitting parameter can be taken as a measure
for the effective interaction between the charge and phonon
sectors. In Fig. 15, we illustrate to which extent Eq. (B7)
holds within the SR-WC, OCA-WC, and NRG approxima-
tions. A roughly linear dependence between ω0 − ωr and g2

U
is found in all methods, although the associated slopes for
NRG and SR-WC are larger (αSR/NRG ≈ 0.5) than for the
OCA-WC formalism (αOCA ≈ 0.3). This difference can be
attributed to the strong-coupling diagrammatic nature of the
OCA, which underestimates the charge fluctuations responsi-
ble for the phonon softening. The deviation from the linear
fitting for SR-WC and NRG is more evident when g2/U is
comparable or larger than ω0. This behavior is rooted in the
moderate interplay between the local charge-fluctuations and
the phonon displacement.

Appendix C: Strong coupling expansion combined with the
Lang-Firsov transformation

In the hybridization expansion, an alternative to the weak
coupling expansion in the electron-phonon coupling (e.g.
NCA-WC and OCA-WC), is to apply a Lang-Firsov (LF)48

decoupling of the electron-phonon interaction, i.e., a trans-
formation to polaron operators. In combination with the hy-
bridization expansion this transformation enables numerically
exact simulations of the Hubbard-Holstein model in DMFT,10

using continuous time quantum Monte Carlo (CTQMC).73

Out of equilibrium, it has been used in combination with

NCA and OCA to study doublon relaxation in the single band
Hubbard-Holstein model.24

We have implemented NCA-LF and OCA-LF in the sim-
plest approximation, described in detail in Ref. 24, which ef-
fectively amounts to dress each pair of fermionic creation-
annihilation operators in the perturbation theory with an ad-
ditional bosonic factor, see Eq. (30) in Ref. 24, and a phonon
induced shift U → U − 2g2/ω0 of the Hubbard interaction.
The resulting approximation is different from the weak cou-
pling expansion in the electron-phonon coupling g, since it
captures the Mott to bipolaronic transition at large g.24 How-
ever, as we will show, it gives qualitatively correct results only
in the large-U and large-ω0 regime.

The Monte-Carlo sampling of the bare strong coupling ex-
pansion is exact and accounts for all bosonic contributions10

by connecting all fermionic operators in the partition func-
tion expansion with the bosonic “weight” factors generated
by the Lang-Firsov transformation. The dressed strong cou-
pling approach, however, performs an expansion where the
atomic propagator is dressed with low order self-energy ex-
pansions in the hybridization function, re-summed to infinite
order using the Dyson equation. The bosonic weight factors
of operator pairs are only accounted for within each strong-
coupling self-energy diagram. This is an approximation since
the bosonic weight factors associated with pairings of fermion
operators between self-energy insertions in the Dyson equa-
tion are neglected. This is also the case in the diagrams for
the single-particle Green’s function. For this reason, NCA-LF
and OCA-LF are accurate only if the bosonic weight factors
decay fast, or oscillate rapidly, which is the case in the limit
of large ω0.

To demonstrate the limitations of NCA-LF and OCA-LF
we map out the metal-insulator phase boundary at low g, see
Fig. 16. In NCA-LF the transition is a crossover, whose
center Uc is determined here by the maxima of the sec-
ond order derivative in the double occupancy, i.e. Uc =
maxU |∂2

U 〈n̂↑n̂↓〉|, while the extent of the crossover region
is determined by the corresponding width at half maximum.
Small phonon frequencies (ω0 = 0.2) yield a decreasing Uc
with increasing g, while at large frequencies Uc approaches
the expected high frequency limit, Uc ≈ Uc(g=0) + 2g2

ω0
, hav-

ing the opposite slope in g. We note that the reduction in Uc
upon increasing g at low ω0 is qualitatively different from the
exact Monte Carlo result in Fig. 1.

While all NCA based approximations under-estimate
Uc(g = 0), this is improved when using OCA. The hysteresis
region of OCA-LF at ω0 = 0.2 is shown in the inset of Fig. 16.
However, while Uc(g = 0) is closer the CTQMC result, the
Uc dependence on g remains qualitatively wrong as for NCA-
LF. We conclude that LF based second order strong coupling
approximation (OCA-LF) does not qualitatively capture the
metal to Mott phase boundary in the weak electron-phonon
coupling and small-ω0 regime.

Although the behavior near the IMT is not correctly de-
scribed in OCA-LF we find that the results of this method
are qualitatively correct in the strong coupling regime and
for large enough ω0. Since it is the only real-time non-
equilibrium approach that captures the Mott to bipolaronic
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transition, a comparison of its equilibrium spectral function
with NRG is of interest. Due to the strong electron-phonon
interaction, sharp polaronic features are expected in the spec-
trum, which can be smeared out by NRG broadening of the
raw spectra. Therefore, in the following, we present spec-
tra in Fig. 17 and 18 for the reduced broadening α = 0.05

averaged over six different discretization parameters Λ ∈
{1.8, 1.9, 2.0, 2.1, 2.2, 2.3}, in order to distinguish sharp fea-
tures.

At U = 10 and β = 30 and large phonon frequency
ω0 = 1, the NRG spectral function shows a fine structure
of the Hubbard band and a broad tail at high energies, in
qualitative agreement with the OCA-LF result. For weaker
electron-phonon interaction the separation between the peaks
is larger than the phonon frequency ω0 = 1, see for instance
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Figure 19. (Color online) Spectral functions from NRG at four dif-
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reduced broadening parameter α = 0.05, at U = 10, β = 30, and
ω0 = 0.2 for varying electron phonon coupling strength g2/ω0 ∈
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λ = 0.81, 1.0 in Fig. 17, while for the strongest electron-
phonon interaction the separation between the peaks is clearly
given by the phonon quanta ω0. Reducing the phonon fre-
quency to ω0 = 0.2 yields stronger discrepancies between
NRG and OCA-LF, see Fig. 18. Phonon peaks can be ob-
served in the OCA-LF spectral function, while in the NRG re-
sult they are completely washed out. For weak broadening the
position of the peak depends on the discretization parameter
Λ and it is hard to obtain discretization-parameter indepen-
dent results, see also Fig. 19 for the comparison of the spectra
for different discretization parameters Λ. The main reason for
the discrepancy is, however, the expected inaccuracy of the
OCA-LF method in the adiabatic regime, where the bosonic
weight factors are slowly-varying so that the approximations
inherent in the perturbative approach become more severe, in-
dependent of the value of U .
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