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The difficulty of describing excitons in semiconducting SWNTs analytically lies with the fact that excitons

can neither be considered strictly 1D nor 2D objects. However, the situation changes in the case of metallic

nanotubes where, by virtue of screening from gapless metallic subbands, the radius of the exciton becomes much

larger than the radius of the nanotube Rex ≫ R. Taking advantage of this, we develop the theory of excitons

in metallic nanotubes, determining that their binding energy is about 0.08v/R, in agreement with the existing

experimental data. Additionally, because of the presence of the gapless subbands, there are processes where

bound excitons are scattered into unbound electron-hole pairs belonging to the gapless subbands. Such processes

lead to a finite exciton lifetime and the broadening of its spectral function. We calculate the corresponding decay

rate of the excitons.

PACS numbers: 73.21.Hb, 73.22.-f

I. INTRODUCTION

Exciton is a bound state of an electron and a hole formed by

their Coulomb attraction–the solid state analogy of a hydro-

gen atom, but with a larger size and a smaller binding energy.

The smaller binding energy is due to the screening of the mu-

tual Coulomb interaction by bound electrons of the medium,

described by its dielectric constant. Excitons typically exist

in insulators and weakly doped semiconductors. Metallic and

strongly doped semiconducting materials disfavor formation

of excitons. This is the result of two factors. First, as the con-

duction band is populated (e.g. by doping), screening by free

charges strongly reduces the magnitude of the electron-hole

Coulomb interaction and decreases its binding energy. Sec-

ond, population of the conduction band reduces the number

of quantum states available to accommodate the electron af-

ter its (virtual) scattering off the hole, further decreasing the

binding energy, to the point where no meaningful bound state

may be formed anymore.

This situation changes in quasi-one-dimensional systems,

such as metallic nanotubes,1 where formation of excitons oc-

curs in subbands different from the subbands that are respon-

sible for metallic screening. Such separation occurs as a result

of quantization of the circumferential momentum. This makes

exciton a well-defined excitation. Excitons in metallic single-

walled carbon nanotudes (SWNTs) were experimentally ob-

served in Refs. 2,3. Their binding energy was found to be

about 50 meV, an order of magnitude smaller than the typi-

cal bandgaps ∆ of semiconducting nanotubes. Theoretically,

excitons in metallic SWNTs were first studied by Ando under

the effective-mass approximation.4 Later, the binding energy

of the exciton was addressed by first principles calculations5–7

and also by the density matrix theory,8 with the latter results

being in agreement with experimental measurements. A brief

review of excitonic effects in metallic SWNTs was given in

Ref. 9. However, to our knowledge, no simple analytical de-

scription of excitons in metallic nanotubes has been devel-

oped. It is the purpose of the present paper to fill this gap.

Let us illustrate the difficulty of describing excitons analyt-

ically in semiconducting SWNTs, stemming from the fact that

excitons can neither be considered one-dimensional (1D) nor

two-dimensional (2D) excitations. Indeed, consider the lowest

energy subbands with the spectrum ε(p) = ±
√

∆2 + v2p2,

and expand it near the bottom of the subband,

√

∆2 + v2p2 ≈ ∆+
p2

2µ
, µ =

∆

v2
. (1)

The bandgap is typically, ∆ ∼ v/R, where R is the radius of

the nanotube. For convenience, we set ~ = 1 throughout the

the paper. (In particular, in the zone-folding tight-binding ap-

proximation both the (8,0) and (10,0) zigzag nanotubes have

∆ = v/3R).

Because the electron-hole interaction energy is U(r) =
−e2/r, the exciton binding energy Eb can be estimated by

minimizing,

−Eb ≈ min

[

v2p2

2∆
− e2

r

]

, (2)

taking into account the uncertainty relation, r ∼ 1/p. This

yields,

Eb ∼
(

e2

v

)2

∆. (3)

Since e2/v ∼ 1, we obtain that Eb ∼ ∆ and, consequently,

the exciton radius Rex ∼ v/Eb ∼ R. Because to consider

excitons to be 1D one would need to haveRex ≫ R, and con-

versely, to view them as 2D one would require Rex ≪ R, the

semiconducting problem falls instead between the two limits

where a numerical analysis is necessary. However, as we are

going to see below, the situation changes in case of metal-

lic nanotubes where–by virtue of screening by the metallic

subbands–the exciton binding energy decreases significantly

(as already evidenced by the experimental data). As a result,

the radius of the exciton increases, Rex ≫ R, and treatment

of the exciton as a quasi-one-dimensional object becomes pos-

sible. This is what makes analytic solution viable.

In this paper, we determine the binding energy and life-

time of an exciton in metallic SWNTs taking into account

the screening effects within the Random Phase Approxima-

tion (RPA). A problematic feature of the1D Coulomb prob-

lem is the r−1 singularity in the potential energy, which is not

integrable (unlike in the 3D situation). This feature was first
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addressed by Loudon11 and later further extensively studied

by others.12–16 Loudon introduced the truncated Coulomb in-

teraction e2/(|x| + a0) with a positive constant a0 to ensure

that Coulomb potential is regular at small distances x→ 0. In

our problem, the nanotube radius R appears naturally and no

other cutoff is needed. Using a variational ansatz with a Gaus-

sian trial function, we show below that the binding energy is

(the value of ∆ corresponds to an armchair metallic nanotube)

Eb ≈ 0.08∆, ∆ =
v

R
. (4)

The 1/R dependence of the binding energy exhibits a good

agreement with the results obtained in Ref. 8 with the den-

sity matrix theory, see Table I. In contrast, ab initio methods

only yield rather crude estimates of the binding energy.2,5,6

This is because computational limitations do not permit cal-

culations for large nanotubes. In addition, the technique of

photoluminescence (PL) spectroscopy cannot be applied to

obtain binding energies of metallic nanotubes, which makes

it challenging to determine the binding energy of excitons in

metallic SWNTs. This is because the exciton is likely to un-

dergo a nonradiative decay to the nearby linear subbands in-

stead of electron-hole recombination process with a photon

released. Nonetheless, the exciton binding energies experi-

mentally observed2,3 have the same order of magnitude as our

predicted by our calculations.

TABLE I: Analytically and numerically calculated (or experimen-

tally measured) binding energies of the excitons in different metallic

carbon nanotubes (M-NTs). The values in parenthesis are extrapo-

lated from the binding energy for the (13, 1) nanotube obtained in

Ref. 8 and reported in it Eb ∝ 1/R dependence of the binding en-

ergy on the radius of a metallic nanotube.

M-NTs (n,m)
Binding energies Eb (meV)

This paper Density matrix ab initio Exper.

(12,0) 86 (88) ∼ 506 –

(13,1) 76 788 – ∼ 503

(10,10) 60 (61) ∼ 506 –

(21,21) 28 (29) – ∼ 502

Furthermore, we explore stability of excitons in metallic

SWNTs, the question that is of fundamental interest but which

remains unexplored in the existing theoretical works. The

mechanism of a finite lifetime of the exciton can be illus-

trated by Fig. 1. The m-th subband, corresponding to the in-

teger angular quantum number m, has the energy εm(p) =

±v
√

m2/R2 + p2. Exciton bound states are formed between

gapped, m 6= 0, subbands, and the lowest m = ±1 exciton

is indicated by a dashed line on Fig. 1. This energy over-

laps with the gapless m = 0 subbands. Accordingly, elastic

transition of the electron and the hole from gapped to gapless

subbands opens up a decay channel for the exciton.

To better understand the role of the Coulomb interaction in

the formation and decay of the exciton, the following picture

is helpful. The exciton is produced by multiple virtual scatter-

ing events of the electron and the hole within the gapped sub-

bands. Such transitions are controlled by the Coulomb cou-

pling V0, the subscript indicating that no angular momentum

change takes place. These intrasubband transitions determine

the binding energy of the exciton, see Fig. 2, left panel. The

intersubband transitions–shown on the right panel in Fig. 2–

appear as a result of the “dipolar” Coulomb interaction V1 and

occur with a change ±1 of the angular momentum of the elec-

tron (and with the opposite change of the angular momentum

of the hole). We obtain that the ratio of the binding energy to

the half-width of the exciton spectral function is

Γ ≈ 0.015∆. (5)

Such a ratio indicates that excitons in metallic SWNTs are

well-defined excitations. This is consistent with experimental

results obtained through ultrafast luminescence.19 Below we

derive our main results, Eqs. (4) and (5).

II. THE HAMILTONIAN OF THE SYSTEM

The Coulomb interaction potential between two electrons

located on the surface of a nanotube of radius R at (x1, ϑ1)
and (x2, ϑ2) is given by,

V (x, ϑ) =
e2

√

x2 + 4R2 sin2(ϑ/2)
, (6)

where x = x1 − x2 and ϑ = ϑ1 − ϑ2 are the relative distance

along the nanotube axis and the relative angle around the cir-

cumference of the natotube. (In case of an electron-hole pair,

the sign of the interaction (6) is reversed.) If R becomes large

compared with a characteristic distance of the electron and the

hole trajectories, the interaction approaches the Coulomb po-

tential on a flat two-dimensional plane. On the other hand,

if R becomes small, Eq. (6) reduces to the “1D hydrogen”

problem studied by Loudon.11 The Coulomb interaction on

the cylinder–the problem interpolating between 1D and 2D–

was previously considered by Mahan20 and Petersen.21

What is different in our case is the need to take into ac-

count screening, introduced by the gapless subbands of metal-

lic SWNTs. This is most conveniently done by transitioning to

the momentum space. The Fourier transform of the Coulomb

interaction (6) yields the following expression,4,22

Vm(q) =

∞
∫

−∞

dx e−iqx

π
∫

−π

dϑ

2π
e−imϑ e2

√

x2 + 4R2 sin2(ϑ/2)
,

= 2e2K|m|(qR)I|m|(qR), (7)

where m is an integer number, and Im and Km are the mod-

ified Bessel functions of the first kind and second kind, re-

spectively. However, because of the presence of conduction

electrons in the gapless subbands, which move around in re-

sponse to the “bare” Coulomb interaction Vm(q), the actual
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FIG. 1: Exciton state emerges due to the final state interaction of

electron and hole with energy below the parabolic subband.

FIG. 2: Scattering processes shown within the massive subband (via

U0 coupling) and between massive and massless subbands (via U1

coupling).

(screened) interaction is modified: Vm(q) → Um(ω, q). This

screened interaction disturbs equilibrium of the system and

induces density variations, which within the linear response

are proportional to the strength of the interaction, nm(ω, q) =
Πm(ω, q)Um(ω, q), with the coefficient Πm(ω, q) referred to

as the polarization function (i.e. density-density correlation

function) associated with the change m in the angular mo-

mentum and the change q in the linear momentum. The

central tenet of RPA is the assumption of the mean field,

which predicts that the variation of the density nm(ω, q) in-

duces the additional potential in the system: eϕ(ω, q) =
Vm(q)nm(ω, q) = Vm(q)Πm(ω, q)Um(ω, q). This additional

potential together with the bare potential constitutes the total

interaction: eφ(ω, q) + Vm(q) = Um(ω, q). This gives,

Um(ω, q) =
Vm(q)

1− Vm(q)Πm(ω, q)
. (8)

The formation of the exciton is mostly facilitated by the

strongest interaction V0, which at low qR ≪ 1 becomes log-

arithmically strong, V0(q) ≈ −2e2 ln (qR). In contrast, the

higher interaction harmonics, m 6= 0, remain constant in this

limit, Vm → e2/|m|. The screening of the V0 interaction is

determined by the uniform harmonics of the polarization func-

tion with no change in the angular momentum, given by (see

Appendix for details),

Π0(ω, q) =
N

πv

q2v2

ω2 − q2v2
, (9)

where N = 4 accounts for two spin directions and the pres-

ence of the two Dirac points within the Brillouin zone.

A large spatial radius of the excitonRex makes it sufficient

to consider only the static limit of Eq. (9), where ω is disre-

garded compared with qv. Indeed, frequencies involved are of

the order of the exciton binding energy, ω ∼ Eb = 1/(µR2
ex),

where the effective mass µ ∼ 1/(vR), according to Eq. (1).

On the other hand, the involved momenta are q ∼ 1/Rex. Ac-

cordingly, the ratio ω2/q2v2 ∼ R2/R2
ex ≪ 1. The screened

Coulomb interaction in this static limit assumes the form,

U0(q) =
2e2K0(qR)I0(qR)

1 + αK0(qR)I0(qR)
, α =

2Ne2

πv
≈ 6.9, (10)

where we introduced the dimensionless interaction strength

α = 2Ne2/πv where v is taken to be the same as velocity of

electrons propagating in graphene, v = 8× 105 m/s.

To similarly calculate the screening of the V1 interaction,

one needs to know the polarization function associated with

the ±1 change of the angular momentum. While the intrasub-

band value of Π0(ω, q) at low ω and qv, as seen from Eq. (9),

depends on which one of the two quantities tends to zero faster

than the other, there is no such ambiguity for the intersub-

band polarization function Π1(ω, q): as shown in Appendix,

Π1(0, 0) = −1.16N/(πv). This gives for the screened inter-

subband interaction,

U1 =
e2

1 + 1.16 e2N
πv

≈ 0.2 e2. (11)

In the limit of large wavelengths, qR ≪ 1, the two inter-

actions approach each other, U0(0) ≈ U1. It should be

pointed out, however, that while the U1 interaction remains

almost constant for finite but small q, the interaction U1(q) is

rather sensitive to q, with the derivative dU1(q)/dq diverging

at q → 0.

Note that in the absence of spectrum curvature, the po-

larization function Π0(ω, q) of one-dimensional subbands

is independent of temperature. It is also unmodified by

the electron-electron interactions.10 On the other hand, the

polarization constant Π1(0, 0), which involves gapped sub-

bands, has a negligible temperature dependence. Indeed,

the population of thermally excited electron-hole pairs ∼
exp(−∆/kBT ), where ∆ is much larger than the thermal en-

ergy at room temperature. For these reasons it is sufficient

to consider the screening of the Coulomb interaction at zero

temperature. Similarly, small levels of doping, µ≪ ∆, do not

affect the strength of the Coulomb interaction.

Having determined the magnitude of the electron-electron

(and, therefore, electron-hole) interaction, we can proceed

to calculate the energy and the lifetime of the exciton. The
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Hamiltonian of the system has the following form:

Ĥ =
∑

p

(

p2

2µ
+∆

)

(â†pâp − b̂†pb̂p)

+
∑

p

vp (R̂†
pR̂p − L̂†

pL̂p)

+
1

L

∑

p,k

U0(p− k)â†kb
†
pb̂kâp

+
U1

2L

∑

p,k

(R̂†
kb

†
pL̂kâp + a†pL̂

†
kb̂pR̂k)

+
U1

2L

∑

p,k

(L̂†
kb

†
pR̂kâp + â†pR̂

†
k b̂pL̂k). (12)

Here âp and b̂p are the operators for the particles residing on

the upper and lower subbands with m = 1 (or m = −1);

the operators R̂p and L̂p correspond to right and left moving

particles of massless (m = 0) subbands; the U0(q) interac-

tion describes scattering within the massive subbands whereas

U1 coupling describes processes where scattering occurs be-

tween massive and massless subbands. Note that of all of the

Coulomb interaction terms we have retained only those that

are responsible for the formation of the excition with zero to-

tal momentum: for example, the U0-term describes scattering

of the electron with momentum p (âp) and the hole with mo-

mentum −p (b̂†p) into a pair of new states with momenta k and

−k.

The intersubband terms in the Hamiltonian (12) have the

extra prefactor 1/2 compared with the intrasubband transi-

tions. The origin of this difference lies in the pseudospin

nature of the underlying Hamiltonian of the two-dimensional

graphene crystal that forms the nanotube. (The pseudospin

arises from the existence of two atomic sublattices in the

graphene honeycomb arrangement of carbon atoms.) As a

result, two states of the same energy and opposite momenta

are orthogonal to each other. More generally, the amplitude

of the transition between the states having momenta p and

p + q and the same sign of energy is suppressed by the fac-

tor cos[(θp+q − θp)/2], where θp is the angle that the mo-

mentum p makes with the x-axis. When graphene is rolled

into a nanotube, the circumferential momenta are quantized,

py = m/R. The gapless states m = 0 are those that move

along the x-axis: p = (p, 0) with θp = 0 or π. In contrast,

in the gapped subbands, p = (p,m/R), with the relevant mo-

menta are near the bottom/top of the subbands: p≪ 1/R. Ac-

cordingly, the relevant states are those that have θp ≈ ±π/2.

Correspondingly, each particle transitioning between a gap-

less state and a gapped state (close to the bottom of the sub-

band) introduces a factor cos (π/4) = 1/
√
2 into the ampli-

tude of the scattering. For the two-particle Coulomb interac-

tion U1, the total additional coefficient is, therefore, 1/2.

III. BINDING ENERGY AND LIFETIME

The wave function of the exciton is sought in the form

|ψ〉 =
∑

q

fqâ
†
q b̂q|0〉+

∑

q>0

gqR̂
†
qL̂q|0〉+

∑

q<0

gqL̂
†
qR̂q|0〉,

(13)

where |0〉 is the ground state of the system where all individ-

ual electron states with the positive energy are empty and all

states with the negative energy are occupied. The function fp
describes the amplitude of the electron-hole pair to be in the

gapped states whereas the function gq describes the likelihood

of the pair to reside in the massless states. Note that in the last

two terms we have explicitly taken into account that in the

ground state |0〉 the left-moving states are occupied as long as

q is positive whereas the right-moving states are occupied if q
is negative. Because the system is symmetric with respect to

the symmetry between left- and right-moving states, the func-

tion gq must be symmetric: gq = g−q .

The Schrödinger equation Ĥ |0〉 = E|0〉 separates into two

coupled equations for the functions fq and gq:

(

E − 2∆− q2/µ
)

fq = − 1

L

∑

p

U0(q − p)fp −
U1

2L

∑

p

gp,

(E − 2v|q|) gq = −U1

2L

∑

p

fp. (14)

Excluding gq from these equations and replacing the sums

by the integrals,
∑

p → L
∫

dp/2π, we arrive at the following

integral equation for the function fq,

(

E − 2∆− q2/µ
)

fq =

∞
∫

−∞

dp

2π
fp

[

−U0(p− q),

+
U2
1

4

∞
∫

−∞

dp′

2π

1

E − 2|p′|v + iη

]

.

(15)

The singularities at E = 2|p′|v lead to the imaginary part

in the energy E − iΓ/2 of the exciton. Because the resulting

imaginary part is small compared with the bandgap, Γ ≪ ∆,

it is sufficient to keep the infinitesimal η in the denominator

and utilize the Sokhotski identity, Im 1/(E − 2|p′|v + iη) =
−iπδ(E − 2|p′|v), for the calculation of the integral’s imag-

inary part. In contrast, the real part, which arises from the

principal value of the integral, can be ignored. Although the

real part appears to diverge logarithmically, such divergence

is the artefact of our assumption that U1 is constant. This ap-

proximation that in any case fails for transferred momenta of

the order 1/R, which should, therefore, be used as the upper

cut-off for the logarithmic integral. Finally, because the en-

ergy involved is largeE ∼ 2∆ = 2v/R (rather than the small

binding energy Eb), the logarithm is of the order 1 and the

real part of the last term in the brackets in Eq. (15) merely

adds a contribution ∼ U2
1 /8πv. This second-order correction
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is small compared to the main contribution from the U0 term

and may be ignored. Hence, we obtain from Eq. (15),

(

E − 2∆− q2

µ

)

fq = −
∞
∫

−∞

dp

2π

[

U0(p− q) + i
U2
1

8v

]

fp.

(16)

Below, the binding energy and the lifetime of the exciton,

E = 2∆− Eb − iΓ/2, (17)

are determined from the ground state eigenvalue E of this

equation.

A. The shallow potential approximation

The fastest way to estimate the exciton binding energy is

by utilizing the well-known in quantum mechanics shallow

well approximation which in the momentum space amounts to

replacing the interactionU0(q) with its zero-momentum value

U0 ≡ U0(0). Equation (16) then becomes exactly solvable

and yields,

Eb + iΓ/2 =
µ

4

[

U0 + i
U2
1

8v

]2

≈ µ

4

[

U2
0 + i

U0U
2
1

4v

]

. (18)

The effective mass, cf. Eq. (1), can now be expressed via the

bandgap, µ = ∆/v2 and the interaction constants U0 ≈ πv/4
and U1 ≈ 0.2 e2, given by Eqs. (10) and (11). This gives,

Eb =
π2

64
∆, Γ/Eb ≈ 0.19. (19)

It is clear, however, that the value Eb = 0.15∆ that follows

from Eq. (19), significantly overestimates the binding energy

of the exciton: as evidenced by Eq. (10), the functionU0(q) is

irregular at q → 0 where it has an infinite derivative. For this

reason, the integrand in Eq. (16) in fact contributes much less

to the integral where p departs from q than predicted by the

shallow potential approximation. To make a better approxi-

mation, we are now going to utilize the variational approach.

B. The variational solution

To apply the variational approach to Eq. (16) we choose the

Gaussian trial function,

f(x) =

(

β

π

)1/4

e−βx2/2, (20)

or, equivalently, in the momentum space, fp =

(4π/β)1/4e−p2/2β . According to Eq. (16), the ground

state energy of the exciton is the sum of the kinetic energy,

T =

∞
∫

−∞

dp

2π

p2

µ
f2
p =

β

2µ
, (21)

and the expectation value of the potential energy. The latter

is a complex quantity: U0(x) − i
U2

1

8v δ(x). The imaginary part

determines the exciton lifetime,

Γ/2 =
U2
1

8v
[f(0)]2 =

U2
1

8v

√

β

π
, (22)

while the real part yields, with the help of the momentum rep-

resentation, the following integral:

U0 =

∞
∫

−∞

dx U0(x)[f(x)]
2 =

∞
∫

−∞

dp

2π
U0(p)e

−p2/4β . (23)

The binding energy should be found by minimizing the sum

T −U0 with respect to β. The integral in U0 cannot be calcu-

lated exactly, but can be approximated rather accurately. First,

it is convenient to utilize the dimensionless variables s = pR
and t =

√
βR to recast the average potential energy (10) in

the form:

U0 =
2e2

πR

∞
∫

0

ds e−s2/4t2 K0(s)I0(s)

1 + αK0(s)I0(s)
, (24)

Next, we anticipate that for the large-radius excitons the small

values of t < 1 (and hence the small values of s) are rel-

evant (this expectation that is supported by the final result).

The function I0(s) ≈ 1 there whereas the Macdonald func-

tion has a logarithmic singularity, K0(s) ≈ ln (2/s) − γ,

where γ = 0.577 is the Euler constant. Finally, we notice

that the logarithm depends on its argument s rather weakly,

in comparison with the exponential e−s2/4t2 , and hence can

be approximated as a constant within the relevant range of the

s-integration,

∞
∫

0

ds e−s2/4t2 K0(s)I0(s)

1 + αK0(s)I0(s)
≈

√
π t ln (C/t)

1 + α ln (C/t)
, (25)

with some fitting parameterC. Numerical calculation demon-

strates that the value C = 3/2 provides excellent fit be-

tween the exact numerical integration of the left-hand side of

Eq. (25) and its right-hand side for the value α = 6.9 stated in

Eq. (10), which corresponds to N = 4 gapless modes.

Accordingly, we arrive at the following value of the binding

energy, −Eb = T − U0,

Eb =− t2

2µR2
+

2e2√
πR

t ln (C/t)

1 + α ln (C/t)

= ∆

[

− t
2

2
+

√
π

N

αt ln (C/t)

1 + α ln (C/t)

]

, (26)

where in the last line we used the definition of the coupling

constant α from Eq. (10) and also replaced the effective mass

µ = ∆/v2 in terms of the bandgap ∆ = v/R.

The binding energy (26) has a maximum at t = t0 = 0.36,

where the value Eb stated in Eq. (4) is reached. This binding

energy agrees well with the experimental measurements2. In
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turn, the obtained result justifies the approximations of a large

exciton radius. Indeed, according to the wave function (20),

the radius of the exciton is Rex ∼
√

2/β =
√
2R/t0 ≈ 4R.

The exciton radius increases when the Coulomb interaction

is further reduced if the nanotube is located on the surface

of a dielectric substrate. Correspondingly, the dimensionless

interaction strength will be modified as, α = 4Ne2/πv(κ +
1), where κ is the dielectric constant of the substrate. The

binding energy can still be calculated using Eq. (26). Table II

shows the calculated binding energies for several substrates.

The decay of the exciton into the linear subbands was first

studied numerically in Ref. [7] which concluded that such de-

cay processes lead to a negligible broadening. Our result in-

dicate otherwise and are also in a good agreement with exper-

iments reported in Ref. 19.

TABLE II: The binding energies of the excitons in (21, 21) armchair

nanotubes for different dielectric constant κ.

Substrates Dielectric constant κ Binding energy Eb (meV)

SiO2 2.5 22.4

SiC 3.75 18.7

Si/SiO2 4.4 17.9

GaAs 7 13.8

The value of the inverse lifetime now follows from Eq. (22):

Γ =
∆t0
4
√
π

U2
1

v2
, (27)

whose numerical value yields Eq. (5). The exciton acquires

a significant broadening, but nonetheless remains a well-

defined excitation. Interestingly, this ratio is numerically very

close to the value predicted by the shallow potential approxi-

mation.

IV. SUMMARY AND CONCLUSIONS

Because of the presence of the gapless subbands, excitons

in metallic carbon nanotubes acquire unique features that dis-

tinguish them from excitons in other solid state systems. First,

the quasi-one-dimensional nature of nanotubes makes screen-

ing by conduction electrons less effective than in conventional

metals. As a result, the electron-hole interaction remains sig-

nificant enough to ensure the formation of a bound pair. Sec-

ond, the separation (in the momentum space) of gapless states

(m = 0) from the subbands where the exciton is formed

(|m| = 1) and the fact that the latter subbands are fully gapped

allow the electron and the hole to explore fully the gapped sub-

bands, unlike what happens in a conventional doped semicon-

ductor where filling of the conduction band quickly depletes

the number of available electron states. Third, the screening

by the gapless states is nonetheless significant enough so that

the radius of the exciton is greater than the nanotube radius

with the binding energy of the order of 0.1∆. This allows

to treat excitons as quasi-one-dimensional objects, unlike ex-

citons in semiconducting nanotubes which are neither one-

dimensional nor two-dimensional objects. Fourth, the pres-

ence of the gapless subbands opens up a channel for exciton

attenuation where electron and hole can scatter off each other

into the gapless states. The presence of this channel leads to a

considerable broadening of the exciton but not so significant

as to smear it away completely.

This work was supported by DOE, Office of Basic Energy

Sciences, Grant No. DE-FG02-06ER46313.

Appendix A: Polarization function of a metallic nanotube

The screening of Coulomb interaction in a nanotube is de-

termined by its polarization function Πm(iω, q) which in the

zone-folding approximation can be obtained from the polar-

ization function of the underlying two-dimensional graphene

crystal. The low-energy excitations in graphene are described

by the Dirac Hamiltonian, Ĥ = vσ · p, where σ is the Pauli

matrix acting in the pseudospin space of the two triangular

sublattices of carbon atoms. The polarization function,

Π(iω,q) = NTTr
∑

iǫ

∫

d2p

(2π)2
Ĝ(0)(iǫ+iω,p+ q)Ĝ(0)(iǫ,p),

(A1)

relates to the product of two Green’s function of π-electrons

consisting of the contributions from both upper cone (β = 1)

and lower cone (β = −1),

G(0)(iǫ,p) =
1

iǫ− vp · σ̂ =
1

2

∑

β=±1

1 + βσ̂p
iǫ− βvp

, (A2)

where σ̂p = σ̂ · p/p is the projection of the pseudospin Pauli

matrix onto the direction of electron momentum. At zero tem-

perature T = 0 β′ = −β terms contribute,

Π(iω,q) =− N

4

∑

β

∫

d2p

(2π)2
β

iω + vβp+ vβ|p+ q|

× Tr[(1− βσp)(1 + β σp+q)]. (A3)

The retarded counterpart of the polarization operator can be

obtained through analytical continuation iω → ω + iη. How-

ever, since virtual transitions avoid all singular poles, small

imaginary constant iη can be disregarded for our purposes,

Π(ω,q) =
N

8π2

∑

β

∞
∫

−∞

d2p
β[cos(θp+q − θp)− 1]

ω + vβp+ vβ|p+ q| . (A4)

Within the zone folding approximation, which ignores any

curvature effects on the electronic spectrum arising from the

rolling of the graphene sheet, polarization function for a nan-

otube is obtained by quantizing the circumferential momenta,

qy = m/R, py = n/R, and replacing the integral with the
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sum,R
∫

dpy → ∑

m. Additionally, to relate the resulting po-

larization function to the one-dimensional density, the quan-

tity (A4) should be multiplied by the factor 2πR. Expressing

cosine function in terms of the momentum component, we ob-

tain:

Πm(ω, qx) =
N

2π

∑

n

∞
∫

−∞

dpx

[

1− (px + qx)px + (m+ n)n/R2

√

(p2x + n2/R2)
√

(px + qx)2 + (m+ n)2/R2

]

× v
√

(p2x +m2/R2) + v
√

(px + qx)2 + (m+ n)2/R2

ω2 − [v
√

(p2x +m2/R2) + v
√

(px + qx)2 + (m+ n)2/R2]2
. (A5)

Of interest to us here are the polarization function for m = 0
and m = ±1. For m = 0 and qx ≪ 1/R, only the n = 0
terms should be retained. For example, for qx > 0, the integral

only extends over the interval −qx < px < 1 (where the

integrand does not depend on px) and the expression (9) is

recovered, subscript in qx being omitted. (The same result

follows for qx < 0.)

For m = 1, because only the static and homogeneous limit

is important for our purposes, one can set ω = 0 and qx = 0
in Eq. (A5). The remaining px-integral is independent of R
and can be (together with the summation over m) calculated

numerically. This yields

Π1(0, 0) = −1.16
N

πv
(A6)

which yields the value of the screened U1 interaction as in

Eq. (11).

Note that the dominant contribution into the polarization

function (A6) comes from the lowest-order virtual transi-

tions, n = −1 and n = 0. Retaining only these contri-

butions, one would obtain the estimate Π1(0, 0) = − N
πv .

Another good order-of-magnitude estimate could be obtained

from the polarization function for graphene, Π(ω, q) =

−Nq2/(16
√

q2v2 − ω2). In the static limit, ω = 0, replacing

q → 1/R, and multiplying the result by 2πR, as explained

above, one would obtain, Π1(0, 0) = −πN
8v , which only over-

estimates the exact value (A6) by 6%.
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