
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Boundary conditions of viscous electron flow
Egor I. Kiselev and Jörg Schmalian

Phys. Rev. B 99, 035430 — Published 22 January 2019
DOI: 10.1103/PhysRevB.99.035430

http://dx.doi.org/10.1103/PhysRevB.99.035430


The boundary conditions of viscous electron flow

Egor I. Kiselev1 and Jörg Schmalian1, 2

1Institut für Theorie der Kondensierten Materie,
Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany

2Institut für Festkörperphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany

The sensitivity of charge, heat, or momentum transport to the sample geometry is a hallmark
of viscous electron flow. Therefore hydrodynamic electronics requires a detailed understanding
of electron flow in finite geometries. The solution of the corresponding generalized Navier-Stokes
equations depends sensitively on the nature of boundary conditions. The latter can be characterized
by a slip length ζ with extreme cases being no-slip (ζ → 0) and no-stress (ζ →∞) conditions.
We develop a kinetic theory that determines the temperature dependent slip length at a rough
interface for Dirac liquids, e.g. graphene, and for Fermi liquids. For strongly disordered edges that
scatter electrons in a fully-diffuse way, we find that the slip length is of the order of the momentum
conserving mean free path lee that determines the electron viscosity. For boundaries with nearly
specular scattering ζ is parametrically large compared to lee. Since for all quantum fluids lee diverges
as T → 0, the ultimate low-temperature flow is always in the no-stress regime. Only at intermediate
T and for sufficiently large sample sizes can the slip lengths be short enough such that no-slip
conditions are appropriate. We discuss numerical examples for several experimentally investigated
systems. To identify hydrodynamic flow governed by no-stress boundary conditions, we propse the
transport through an infinitely long strip containing an impenetrable circular obstacle.

I. INTRODUCTION

The fluid flow of liquids is governed by the laws of
hydrodynamics. If collisions are sufficiently strong and
lead to local thermalization, yet respect the laws of
charge, energy, and momentum conservation, hydrody-
namics should apply [1]. Inhomogeneous flow velocity
profiles of the Couette and Poiseuille type, vorticity of
flow, or turbulent flow are among the indicators of hydro-
dynamic behavior. Starting with the pioneering work by
Gurzhi [2] in 1968, the theoretical foundations of electron
hydrodynamics have been discussed for a range electronic
systems [3–19]. For electron hydrodynamics to apply,
electron-electron collissions should dominate. Thus, the
temperature should be below Tph where electron-phonon
scattering starts violating energy and momentum conser-
vation of the electronic subsystem. At the same time T
should be above Timp where impurities dominate, violat-
ing momentum conservation. Only if Timp < Tph is there
a window for hydrodynamic electronics, explaining the
need for ultra-clean materials.

Examples for recent experimental investigations of hy-
drodynamic electronics include the observation of non-
local momentum relaxation in the delafossite PdCoO2

[20] and the Weyl semimetal WP2 [21], systems that are
special because of their exceptionally low residual resis-
tivity. In parallel, advances in the fabrication of high-
quality graphene led to the observation of hydrodynamic
Coulomb drag [22], violations of the Wiedeman Franz
law for the thermal transport [23] and the Mott relation
for the thermoelectric transport [24], a negative local re-
sistance due to flow with vorticity [25], and superballis-
tic flow [26]. In graphene at the charge neutrality point
and other Dirac systems, electron-hole puddles form due
to disorder effects [27]. These puddles result in a local
variation of the chemical potential δµ. To observe hy-

drodynamic effects, |δµ| < kBT must hold - a condition
that seems to have been achieved in current experiments
[23] (for a more careful discussion see Ref. [17]). A key
common feature of all those experiments is the fact that
finite geometries strongly affect the electron flow. In fact
the sensitivity of the flow profile to boundaries has been
a key strategy to identify hydrodynamic flow.

The theoretical modelling of viscous electron flow is
often based on the solution of kinetic equations [6, 11–
14, 22, 28]. A very efficient description, particularly ap-
propriate for complex geometries is based on the Navier-
Stokes equations for the flow velocity u (r, t). For Lorentz
and Galilei-invariant systems the Navier-Stokes equa-
tions are dictated by symmetry [1]. In the general set-
ting, they can be derived from the kinetic equation, see
e.g. Ref. [6, 11]. Not surprisingly, the solutions of these
equations depend sensitively on the imposed conditions
at the sample boundaries. Let S be the boundary of
the sample. Popular boundary conditions are the no-slip
condition

utα
∣∣
S

= 0, (1)

where ut = u − (u · n)n is the tangential velocity of a
boundary with normal vector n, and the no-stress condi-
tion

nβ
∂utα
∂xβ

∣∣∣∣
S

= 0. (2)

The no-slip condition is the relevant one for most liquid-
solid interfaces. Liquid particles at the surface do not
move with the fluid flow, an effect either explained in
terms of surface roughness or due to attractive interac-
tions between solid and liquid particles, see Ref. [29, 30].
On the other hand, the liquid flow near a liquid-gas in-
terface is often characterized by the no-stress condition,



2

Figure 1: Velocity profile u (y) of an electron liquid near the
edge of a sample. The boundary condition for u (y) is given
by Eq. (3) so that u (y = 0) = ζ ∂u

∂y
. The slip length ζ charac-

terizes the behavior of a liquid near the edge. It corresponds
to the length where the extrapolated velocity vanishes. Also
depicted is the Knudsen layer - an approximately one mean
free path thin layer along the boundary, where the collisions
of particles with the wall are as important as collisions among
each other (see also Fig. 6).

i.e. the tangential stress at the interface is continuous.
As discussed by Maxwell [31], a boundary condition, that
includes both cases as limits is

utα
∣∣
S

= ζ nβ
∂utα
∂xβ

∣∣∣∣
S

, (3)

where ζ is the slip length. It corresponds to the length
where the extrapolated boundary velocity vanishes (see
Fig. 1). Clearly, ζ → 0 and ζ →∞ correspond to no-slip
and no-stress conditions, respectively. Since the origin of
tangential stress in a fluid is purely viscous, one expects
that the slip length is another quantity that can be deter-
mined from kinetic theory, like diffusivities or viscosities.
Indeed, for rarified gases, Maxwell found that ζ is es-
sentially given by the momentum-conserving mean free
path, a result fully consistent with numerical simulations
[32]. Other systems where a finite slip length is of rele-
vance are classical fluids affected by soft hydrodynamic
modes [33, 34] polymer melts [35], phononic liquids [36]
and 3He at low temperatures in the normal and super-
fluid state [37–40]. Ref. [41] reports that in the quantum
Hall regime no-stress conditions must be applied to agree
with known results for the quantized Hall conductance.

Let us demonstrate the importance of a finite slip
length for the fluid flow in a simple example. Consider
the flow of a two-dimensional system that is governed by
the linear, stationary limit of the Navier Stokes equation.
For a strip of width w, oriented along the x-direction, we
have ∂p/∂x = −η∂2ux/∂y

2. [42] Solving for ux with the
boundary condition (3) we obtain

ux =
1

8η

(
w2 + 4ζw − 4y2

) ∂p
∂x
, (4)

Figure 2: Flow profiles of a wire of thickness w through
which passes a current I. For no-slip boundary conditions
a parabolic flow profile, typical for Poiseuille flow, is realized.
With growing slip length the flow profile becomes flat, i.e.
more similar to Ohmic flow.

if ∂p/∂x is constant. The total heat current I is propor-
tional to the integral over the flow velocity

I ∝
ˆ w/2

−w/2
dy ux =

1

2η

(
w3

6
+ ζw2

)
∂p

∂x
. (5)

The second contribution stems from a finite slip veloc-
ity at the boundaries. Only if ζ � w, does the typical
Poiseuille scaling I ∝ w3 (or wd+1 for arbitrary dimen-
sions) hold. Clearly, any hydrodynamic effect, such as
e.g. the Gurzhi effect (as the I ∝ wd+1 scaling is called
in the context of electron flow), that depends on stress
created by momentum dissipation at the boundaries, is
critically influenced by ζ. To illustrate the importance
of boundary conditions, expressed in terms of the slip
length, we show in Fig. 2 the flow profiles of a wire of
thickness w through which passes a current I for different
slip lengths.

In the context of electron hydrodynamics, the nature
of the boundary conditions is unclear. On the one hand,
Poiseuille type flow, observed in Refs. [20, 21] supports
at the least a very small slip length if compared to the
characteristic size of the system. On the other hand, the
absence of such flow in graphene was taken as evidence
for a no-stress boundary with a very large slip length [25].

In this paper we develop a kinetic theory to determine
the slip length ζ for Dirac and Fermi liquids in two limits.
In the first limit only a small fraction of tangetial momen-
tum is transferred to the wall in electron-wall collisions,
which are assumed to be elastic. This limit we call the
nearly specular limit. In the opposite, the diffuse, limit
all tangential momentum is lost. The two limits corre-
spond to samples with almost smooth and strongly dis-
ordered edges. We find that the slip lengths grow with
decreasing temperatures. For graphene at charge neu-
trality, in the nearly specular limit ζ ∼ ln6 (TΛ/T ) /T 4,
whereas in the diffuse limit ζ ∼ lee ∼ ln3 (TΛ/T ) /T . The
logarithmic factor stems from a renormalization of the
group velocity of electrons caused by interaction effects
[46]. TΛ = Λ/kB , where Λ is an energy cut-off. For real-
istic parameters of graphene, the slip lengths are larger
than 1µm below 100K, which leads us to the conclusion
that for most geometries used so far it is more appro-
priate to assume no-stress than no-slip conditions at the
boundaries. In addition we discuss the slip length of three
and two dimensional Fermi liquids, the latter describing
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graphene at a finite chemical potential µ� kBT and po-
tentially the delafossite PdCoO2 of Ref. [20]. We find
that in three dimensions the slip length grows as T−2 in
both the diffuse scattering and the nearly specular scat-
tering limits, yet with a coefficient that depends on the
nature of the boundary scattering. For a two dimensional
Fermi liquid the slip length behaves as T−2/ ln (εF /kBT ),
due to the well known logarithmic suppression of the
quasiparticle liftime [43]. Comparing Dirac and Fermi
liquid, we find that in the diffuse scattering limit, the
slip lengths of graphene away from charge neutrality are
larger then those of charge neutral graphene below 100K.
In the nearly specular limit, the slip length of charge neu-
tral graphene is larger than that of graphene away from
charge neutrality at very low temperatures, however, here
ζ is very large for both systems. If the momentum dis-
sipation is due to edge roughness, we find that graphene
at a finite chemical potential µ is more susceptible to
the magnitude of the roughness, because here the elec-
tron wavelengths - governed by the energy scale µ - are
smaller than the thermal electron wavelengths of charge
neutral graphene. Summing up, we find that the slip
length for electronic flow can always be written in the
form

ζ = f (κ) lee (6)

with dimensionless ratio κ = h2h′d−1/λd+1 . κ depends
on the two length scales h and h′ that characterize the in-
terface scattering (see Eq. (21) and Fig. 4) and the elec-
tron wavelength λ, respectively. The latter is strongly
temperature dependent for graphene at the neutrality
point (λ = ~v/(kBT )), while it corresponds to the Fermi
wave length in the case of Fermi liquids (λ = 1/kF). Here
v is the renormalized group velocity of the electrons (see
Eq. (11) and the discussion below Eq. (12)). For the
dimensionless function f (κ) we find f (κ� 1) = f0/κ,
while f (κ→∞)→ f∞. We determine f∞ using the as-
sumption of diffuse scattering. The numerical values for
the coefficients f0 and f∞ depend sensitively on the elec-
tronic dispersion relation and dimensionality of the sys-
tem, but the overall behavior is found to be generic. We
find for Dirac systems at the neutrality point f0 ≈ 0.008
and f∞ ≈ 0.6. For two-dimensional Fermi liquids holds
f0 ≈ 1.1 and f∞ ≈ 1.2, while we obtain for three-
dimensional Fermi liquids f0 ≈ 3 and f∞ ≈ 0.5. For
a boundary with intermediate scattering strength we ex-
pect f (κ) to smoothly interpolate between the two limits,
with a crossover for κ ∼ O (1).

Thermal currents in charge neutral graphene

In a Galilei-invariant system, the drift velocity u is
proportional to the electric current:

j = neu, (7)

where n is the particle density. This means that the
hydrodynamic flow of a Fermi liquid can be probed by

measuring the electric current j. A key aspect of electron
hydrodynamics in graphene at charge neutrality is that
here the heat current takes the place of mass or charge
current in conventional systems. The heat current is pro-
portional to the momentum density and therefore con-
served in electron-electron interactions. As a result the
thermal conductivity at the neutrality point is infinite,
if the momentum is not dissipated by other mechanisms
such as impurities or boundary scattering [44]. This is a
direct consequence of the linear dispersion of graphene.
The drift velocity u is connected to the heat current [11]
via

jE =
3nEu

2 + u2/v2
. (8)

Furthermore, at charge neutrality, no hydrodynamic flow
u can be excited by applying an electric field because the
same number of hole-like excitations flows in one direc-
tion as electrons in the other. A temperature difference,
however, can be thermodynamically related to a pres-
sure difference. This qualitatively different behavior of
the thermal and electric AC conductivity is the reason
for the dramatic violation of the Wiedemann-Franz law
observed in Ref. [23]. Thus, a temperature gradient must
be applied to a graphene sample in order to excite a drift
flow u [28]. To see this, we use the differentials of the
grand canonical potential and the Gibbs-Duhem relation
Ω = −pV . One easily finds ∇p = s∇T + n∇µ, where n
is the particle density and s is the entropy density. Both
quantities, s and n, are spatially uniform. The density n
vanishes at charge neutrality (see Appendix A) and we
are left with

∇p = s∇T. (9)

Then, in the linear and stationary regime, the Navier-
Stokes equation governing the incompressible hydrody-
namic flow [5, 11] reads

s∇T = η∆u, (10)

and the temperature gradient is playing the role of the
external stress that causes the flow. Such a situation is
considered in section IV, where we investigate the heat
flow through an infinitely long strip with an impenetra-
ble circular obstacle. No-stress boundary conditions are
applied and viscous forces alone create a temperature
gradient.

Finally, we add that the optical conductivity of Dirac
systems [4, 5] can be considered to be a bulk signature of
hydrodynamic behavior, because the current relaxation
mechanism is unrelated to momentum conservation and
therefore independent of boundary scattering. Further-
more, the second-order nonlinear conductivity of a Dirac
electron system is expected to have unusual properties in
the hydrodynamic regime [45].
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II. THEORY

A. Boundary conditions for the distribution
function

We now discuss how to obtain a boundary condition
of the form of Eq. (3) from a kinetic theory. he techni-
aspects of the determination of the viscosity are outlined
in Appendix B. Our program is to first determine the
boundary conditions for the underlying kinetic theory of
the electron distribution function, developing an under-
standing of how the kinetic distribution behaves at the
boundary, and then to connect to hydrodynamics. To be
specific, we perform the subsequent analysis for graphene
at the neutrality point. Below we also summerize the cor-
responding results for Fermi liquids.

The behavior of electrons in graphene is gouverned by
the massless Dirac Hamiltonian in two spatial dimensions

H0 = v0~k · σab, (11)

and the Coulomb repulsion between electrons. v0 is the
bare group velocity. a and b are sublattice (pseudospin)
indices. Here and hereafter we supress the valley degree
of freedom. Together with the spin degeneracy, we take it
into account in the final results as a global prefactor N =
4. The non-interacting part of the graphene Hamiltonian
(11) is diagonalized by a unitary transformation

Uk =
1√
2

[
ok −ok
1 1

]
, (12)

where ok = (kx + iky) /
√
k2
x + k2

y, which results in a
spectrum ελk = λv0~k. λ = ±1 is the band index.
This spectrum exhibits a fourfold spin-valley degener-
acy. In the remainder of the text, whenever we are
concerned with graphene at the charge neutrality point,
we use the approach of [46] in which interaction effects
give rise to a renormalization of the velocity v0 → v =
v0 (1 + α ln (Λ/kBT )), accompanied by the renormaliza-
tion of the coupling constant α0 → α = e2/(4πε~v).

Consider a semi-infinite graphene sheet in the region
y > 0 with an edge along the x-axis (Fig. 3). At a
formal level the kinetic equation for graphene electrons in
the presence of a boundary contains two collision terms:
the electron-electron collision term Ce.e. [f ] due to the
Coulomb interaction and the electron-edge collision term
Cedge [f ]. In the absence of electric and magnetic fields
the kinetic equation takes the form(

∂

∂t
− vλ · ∇

)
fλ,k (r) = −Ce.e.λk [f ]− Cedgeλk [f ] ,

(13)
where vλ = λvk/ |k| is the group velocity. The problem
of solving Eq. (13) seems rather challenging. It is, how-
ever, possible to reduce Cedge [f ] to a boundary condition
for fλ,k (x = 0) [47]. This boundary condition relates the
distribution function of reflected electrons f>k , which is

Figure 3: We consider the flow of an electron liquid through
a graphene sample that extends over the region y > 0. The
drift velocity is oriented along the x-axis. The sample edge
at y = 0 is a source of momentum dissipation.

defined for vyλ > 0, to that of the incident electrons f<k ,
defined for vyλ < 0. Once f>k and f<k are found as solu-
tions of the kinetic equation with the appropriate bound-
ary condition, the hydrodynamic boundary condition in
the form of Eq. (3) follows from the fact that the mo-
mentum current perpendicular to the impenetrable edge
must vanish at y = 0:

0 = 2N

ˆ
<

ddk

(2π)
vy+,kkxf

<
+,k (y = 0)

+2N

ˆ
>

ddk

(2π)
vy+,kkxf

>
+,k (y = 0) . (14)

Here, the factor of two accounts for the particle and hole
bands and the factor of N is due to the spin-valley degen-
eracy. The subscripts ≷ denote that the integrals have
to be taken over the regions in momentum space where
vyλ,k > 0, or vyλ,k < 0, respectively. In order to derive (3)
we must take into account that the distribution functions
f
≶
k depend on u, as well as on its spatial derivatives.

1. Nearly specular limit

Under the assumtion that the relevant momentum
relaxation at the wall stems from the irregular shape
of the boundary, the boundary conditions can be ob-
tained from the scattering behavior of the electronic wave
function near a rough surface. Early phenomenological
parametrizations of the scattering behavior near such a
surface go back to Maxwell [31] and Fuchs [48]. Here,
we follow a more microscopic approach along the lines of
Refs. [49, 50].

Let the rough surface be oriented along the x-axis and
its shape be given by the function ξ (x) (see Fig. 4).
Before we can address the question of the boundary con-
ditions for the distribution function, we need to know
the behavior of the Dirac wave function, i.e. that of low
energy excitations, at the sample edge. It was shown in
Ref. [51] within a tight-binding approach that for almost
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Figure 4: The disordered edge of a graphene sample is
described by the function ξ (x) and characterized by its
mean height h and correlation length h′. Both are much
smaller than the thermal wavelenght of the graphene elec-
trons. On average, the edge can be described by the distribu-
tion ξ (x1) ξ (0) = h2 exp

(
− x2

h′2

)
.

any cut through the honeycomb lattice the appropriate
boundary condition is, quantitatively very similar to that
of the zig-zag edge. The only exception would be an arm-
chair edge that extends without disturbance over a large
distance - something wich is unprobable for a disordered
edge and is excluded here. This means that the wave
function on one sublattice a = 1 vanishes at the bound-
ary, whereas the wave function on the other sublattice
a = 2 remains undetermined, or vice versa. The valley
degrees of freedom are not mixed. To derive the bound-
ary condition for the distribution function fλ,k, it suffices
to impose the condition

ψa=1 (x, y = ξ (x)) = 0. (15)

The deviations ξ (x) must be larger than the interatomic
distances, but small compared to the typical wavelength
of Dirac electrons at low temperatures. The boundary
condition (15) can then be expanded in ξ (x):

ψ1 (x, 0) + ξ (x)
∂ψ1 (x, y)

∂y

∣∣∣∣∣
y=0

= 0. (16)

We consider elastic scattering at the boundary only,
therefore it is usefull to introduce the projection of a
wave function onto quasi-free plane-wave states with a
given energy ε:

ψ1,ε (x) =
∑
λ

ˆ
d2k

(2π)
2 δ (ε− ελ,k) γk,λU1,λ (k) eik·r.

(17)
Here, ελ,k = λv~k is the electron dispersion and Ua,λ (k)
transforms the wavefunctions γk,λ from the band basis
into the sublattice basis. ψk,a =

∑
λ γk,λUa,λ (k) is the

Bloch function projected onto the sublattice. Inserting

ψ1,ε (x) into (16), carrying out the kx integration, and
performing a Fourier transform, we obtain to second or-
der in ξ (x) a relation between the wavefunctions γkx,|ky|,λ
and γkx,−|ky|,λ on the boundary. This relation holds for
λ = ±1 separately, because of the elasticity of the scat-
tering process. Then, an average over the edge shapes
ξ (x1) ξ (x2) is taken, so that translation invariance along
the edge is restored:

ξ (k1) ξ (k2) = 2πδ (k1 + k2)W (k1) . (18)

Thus, W (k) describes the correlation of the surface
roughness. The squared moduli of the wavefunctions are
directly related to the kinetic distribution function on the
boundary:

fk,λ =
(

2πvykx,λ

)−1 ∣∣γkx,ky(ε,kx),λ

∣∣2. (19)

The prefactor
(

2πvykx,λ

)−1

stems from a variable change
kx, ε → k. In this fashion we arrive at the boundary
condition

f> (kx, ky) = f< (kx,−ky) (20)

−4f< (kx,−ky) ky

ˆ
dk′x
2π

k′yW (kx − k′x)

+4ky

ˆ
dk′x
2π

k′yW (kx − k′x) f<
(
k′x,−k′y

)
,

where ≷ stands for the sign of the velocity component in
the y-direction. Except for the matrix elements Ua,λ (k),
which ultimately cancel out, and the fact that two bands
λ = ±1 have to be kept track of, the calculation is
completely analogous to the one presented by Falkovsky
in [50]. The domain of integration in (20) ranges from

k′x = −ε/v to k′x = ε/v where ky =

√
(ε/v)

2 − k2
x. Inter-

changing the sublattice index in Eq. (15) does not alter
the result of Eq. (20).

We assume that the edge correlation function
ξ (x1) ξ (x2) is given by a Gaussian distribution

ξ (x1) ξ (0) = h2e−
x2

h′2 , (21)

where h is the typical amplitude of ξ(x) and h′ is their
correlation length. We then have

W (kx) =
√
πh2h′e−

1
4k

2
xh
′2
. (22)

In graphene at charge neutrality the characteristic energy
of excitations is εT ∼ kBT . If the lengths h, h′ are of the
order of a few interatomic distances, we can safely assume
for the thermal wavelength λT = v~/εT that

h′ � λT , (23)

and therefore that W (kx) is a flat function:

W (kx) ≈
√
πh2h′. (24)
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The presence of the small parameter h2h′/λ3
T is the rea-

son, why our analysis of the slip length in the nearly
specular limit is well controlled. The boundary condi-
tion (20) does conserve the number of particles and has
essentially the form of the boundary condition proposed
by Fuchs [48], where

p (k) = 1− 4ky

ˆ
dk′x
2π

k′yW (kx − k′x) (25)

takes the role of a specularity parameter which depends
on the angle of incidence.

2. Diffuse limit

An alternative boundary condition is valid in the limit
of totaly diffuse boundary scattering. Here, it is sufficient
to assume that the distribution of electrons departing
from the wall does not depend on the particle directions,
i.e.

f>λ,k = f>λ (|k|) . (26)

Clearly, in such a case all tangential momentum is lost in
an electron-wall collision. The diffuse limit is appropri-
ate, if the sample edge is very rough and one makes no
assumption on the elasticity of the scattering processes.

B. Kinetic equation at a boundary

Next, we determine the electron flow behavior that
characterizes the transfer of momentum near the surface
within a kinetic theory. Generally, within the Chapman-
Enskog approach [52, 53], the bulk kinetic distribution
function has the form

f
∣∣
b

= f l.e. − ∂f0

∂ε
Ψ, (27)

where f l.e. is the local equilibrium distribution function,
which is found by setting the collision integral to zero,
and f0 the distribution function for the global equilib-
rium. For graphene electrons

f l.e.λ,k =
1

eβ(ελ,k−u(r,t)·k−µ) + 1
(28)

and f0 is the Fermi-Dirac distribution. The inverse tem-
perature β = 1/(kBT ) is not to be confused with the
coordinate index β. Ψ is a non-equilibrium contribution
describing the response to shear and other forces. The
response to shear forces is characterized by the viscosity
η of a system, defined via the relation

ταβ = −η ∂uα
∂xβ

(29)

between the stress (momentum current) tensor ταβ =

N~v
∑
λ

´
d2k

(2π)2
(λkαkβ/k) fkλ and the gradient of the

drift velocity. In the absence of a wall, the kinetic dis-
tribution function for graphene at charge neutrality and
due to electron-electron Coulomb interaction was calcu-
lated in [6] (the main points are summerized in Appendix
B). In the presence of shear forces only, the bulk dis-
tribution to leading order in the fine structure constant
α = e2/ (ε~v) (not to be confused with the coordinate
index α) and the drift velocity u is given by

fλ,k
∣∣
b

= f l.e.λ,k + βf0
λ,k

(
1− f0

λ,k

)
Ψ, (30)

where

Ψ =
λ

2
√

2
(C0 + C1βvk) IαβXαβ

Xαβ =
∂uα
∂xβ

+
∂uβ
∂xα

− δαβ∇ · u

Iαβ =
√

2

(
kαkβ
k2
− 1

2
δαβ

)
. (31)

Here, C0 and C1 are dimensionless numerical coefficients -
the ψ0 and ψ1 of Appendix B - that are found by solving
the kinetic equation [6] (see Appendix B). C0 and C1

correspond to the zero modes of the collinear part of the
collision integral and are dominant at leading order in
the fine structure constant α. The expression (30) can
be used to determine the viscosity of graphene electrons

η = N

(
π3C0 + 27ζ(3)πC1

)
48π2β2v2~

≈ 0.449N

4α2v2~
(kBT )

2
, (32)

with N = 4 being the spin valley degeneracy.
In the presence of the sample edge, we expect correc-

tions of the order h2h′ to the bulk distribution function
stemming from the edge, therefore we make for the dis-
tribution function f<λ,k (y = 0) of particles impinging on
the edge the ansatz

f<λ,k (y = 0) = fλ,k
∣∣
b

+O
(
h2h′k3

T

)
A (IαβXαβ) , (33)

where A (IαβXαβ) is some function of gradients of the
drift velocity u and momenta ki. As we will show later,
this correction contributes to the slip-length only to sec-
ond order in h2h′ and we can ignore the contribution
A (IαβXαβ). In other words, one can safely assume that
the distribution function of the electrons that move to-
wards the sample edge is governed by the bulk distri-
bution function. Thus, the loss of tangential momen-
tum is described by the boundary condition (20) and we
do not need to make any assumtions on the influence
of the boundary on momentum currents. Inserting (33)
into (20) we obtain an expression for f>λ,k (y = 0). In
this way we know the distribution function at the edge
fλ,k (y = 0).
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C. The slip length

1. The nearly specular limit

Knowing the functions f<λ,k (y = 0) and f>λ,k (y = 0) as
a function of ux (y = 0) and ∂yux|y=0, we find the hydro-
dynamic boundary condition with the help of Eq. (14).
It is also possible to obtain a boundary condition of the
form (3) by avereging over the momentum:

3nE
2v2

ux = 2N

ˆ
<

ddk

(2π)
kxf

<
+,k (y = 0)

+2N

ˆ
>

ddk

(2π)
kxf

>
+,k (y = 0) . (34)

Note, that the drift velocity is related to the mo-
mentum density gk =

∑
λ

´
d2k′/ (2π)

2
(~k) fλ,k via

(3nE/2v)u ≈ gk, where nE is the energy density [11].
In the nearly specular limit, the two approaches (34) and
(14) give the same result. In the diffuse scattering limit
the second equation (14) will give the better result, be-
cause the additional factor sin (ϕ) in the integrands - due
to vy+,k - gives more weight to contributions from parti-
cles with an incidence angle near π/2. These particles are
least influenced by the Knudsen boundary layer - a one
mean free path broad region along the sample edge where
the distribution function significantly deviates from its
bulk values. Therefore our assumption that the loss of
tangential momentum is determined directly at the wall,
by the boundary condition (20), is appropriate here.

Performing the average, we see that only those parts of
fλ,k (y = 0) contribute, which are proportional to cos (ϕ).
Therefore, for a flatW (kx), the last right hand side term
of (20) does not contribute to the momentum current
average (14). After performing the integrations we have
from (14)

0 = −
(
h2h′

λ3
T

)
Aux + η

∂ux
∂y
−
(
h2h′

λ3
T

)
B
∂ux
∂y

, (35)

where we have defined the thermal wavelength λT = βv~
and A = N31π11/2

672β3v3~2 . It is again clear, that h2h′/λ3
T plays

the role of a small dimensionless parameter. Physically,
the presence of the small parameter h2h′/λ3

T shows that
the edge behaves as if it was smooth, if its roughness is
on average much smaller than the typical wavelength of
scattered electrons. Solving for ux, we write the above
equation in the form of (3). To leading order in h2h′/λ3

T
the slip length is given by

ζ =

(
λ3
T

h2h′

)
χ ≈ 0.008

(
λ3
T

h2h′

)
lee, (36)

where χ = 672β3v3~2

N31π11/2 η. We used lee = v~/
(
κ1α

2kBT
)

for the mean free path due to electron scattering with
numerical coefficient κ1 = 1.950 (see Appendix B).

2. The diffuse limit

The overall procedure to find the boundary condition
in the diffuse limit is analogous to the nearly specular
case. Due to the condition (26) only impinging particles
with a negative velocity contribute to the average over
the momentum current. In distinction to the nearly spec-
ular case however, we do not have a small parameter and
therefore assume that the incident electron’s behavior is
described by the bulk distribution function up to right at
the edge. In the theory of classical gases, this assumption
leads to the famous Maxwell boundary condition [31] for
rarified gas flow (see also [54, 56]). The momentum cur-
rent averaged over the distribution function given in Eq.
(26) yields

ζ =
π2β3v3~2

3Nζ(3)
η ≈ 0.6lee. (37)

Again, we used the electron mean free path lee =
v~/

(
κ1α

2kBT
)
.

3. Discussion

In the diffuse limit, as well as in the nearly specular
limit the slip length ζ approaches infinity as T → 0.
While in the diffusive limit ζ ∼ T−1 ln3 (TΛ/T ) with
TΛ = Λ/kB , in the nearly specular limit holds ζ ∼
T−4 ln6 (TΛ/T ), showing clearly that the mechanism of
scattering on a rough boundary is ineffective for electrons
with large wavelength. The slip lengths as functions of
temperature are shown in Fig. 5. In the renormalization
of the velocity v0 → v = v0 (1 + α ln (Λ/kBT )) and the
coupling constant α → αr = e2/(4πε~v) we used a cut-
off of Λ ∼ 1 eV. Also, we assumed a permittivity ε = 5ε0.
Our small parameter for the nearly specular limit h/λT
remains, below 100K, small up to an h ≈ 250Å (where
it is ≈ 1/5 at 100K).

In the diffusive limit, for the same parameter values as
above, ζ ranges from 100µm at 1K to 0.4µm at 100K.
In the nearly specular limit, for a small roughness of the
order of h = h′ = 10Å, ζ is comparable to the length
of the Trans-Siberian Railway at T = 1K and ranges
to 1mm at T = 100K. For a fairly rough edge of h =
h′ = 250Å we have at 1K ζ = 3.5 km and at T = 100K
the slip length ζ ≈ 0.6µm approaches the diffuse limit.
Such large values for ζ imply that one can effectively use
no-stress boundary conditions.

We finally note, that the specularity of different kinds
of edges of different materials is well studied [57]. For
oxygen-plasma-etched graphene specifically, values of 0.2
to 0.5 were reported for the specularity parameter q
(which gives the probability that a single scattering event
at the edge is specular) [58]. Therefore, under these
particular conditions the slip lengths are expected to lie
somewhere between the nearly specular and the diffuse
scattering limits.
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Figure 5: The figure shows the temperature dependence of
the slip length ζ for a) diffuse scattering at the boundary
for graphene at charge neutrality (continuous line) and at
finite chemical potential (dashed line) and b) scattering at a
microscopically rough edge with a typical roughness of h =
h′ = 250Å for graphene at charge neutrality. With decreasing
temperature, ζ grows as T−4 ln6 (TΛ/T ) in the nearly specular
and as T−1 ln (TΛ/T ) in the diffuse limits at charge neutrality.
Away from charge neutrality the slip length behaves as ζ ∼
T−2/ ln (εF /T ) in both limits, but is parametrically larger in
the nearly specular case.

D. Fermi liquids and graphene away from charge
neutrality

Our derivation of boundary conditions for the hydro-
dynamic flow of a Dirac liquid can also be applied to
the Fermi liquids, which includes graphene far away from
charge neutrality. Let us again assume that the y-axis is
orthogonal to the boundary of the sample, that the Fermi
liquid is contained in the region y > 0, and that the flow
is tangential to the boundary.

Following [59], we write the distribution function of
quasiparticles as

f = f0 (ε)− ∂f0

∂ε0
Ψ. (38)

Here, ε is the full quasiparticle energy which it-
self depends on the occupation numbers and ε0 =

vF~ (k − kF ) + εF . The funtion Ψ describes the response
to gradients of the drift velocity u. In the considered
geometry, it can be parametrized as

Ψ = +q (p) px
∂ε

∂py

∂ux
∂y

. (39)

The stress tensor is given by

τxy =

ˆ
ddk

(2π)
d

(pxv
y
F )

∂f0

∂ε0
Ψ. (40)

Comparing to the relation τxy = −η∂ux/∂y, we find for
the viscosity the expression

η = −
ˆ

ddk

(2π)
d

(pxv
y
F )

2
q (p)

∂f0

∂ε0
. (41)

For d = 3 we then have

η =
2

15
v2
F ρF εFm

∗τ (42)

and for d = 2

η =
1

4
v2
F ρF εFm

∗τ, (43)

where ρF is the density of states at the Fermi surface and

τ =

ˆ ∞
−∞

dx
q (x)(

2 cosh
(
x
2

))2 , (44)

with the dimensionless integration variable x = ε −
εF / (kBT ). The quantity q (x) must be found by solv-
ing the linearized kinetic equation.

For d = 3 it was shown in [59] that q (x) can be as-
sumed constant. This yields that the leading tempera-
ture dependence at εF � kBT is η ∝ q ∝ T−2. where
vF is the Fermi velocity. The detailed expressions for the
kinetic distribution function and viscosity can be found
in [59]. Compared to the case of graphene, the boundary
condition (20) holds as it is, except for the fact that the
integrations have to be performed over a two-dimensional
surface and only the λ = +1 part is relevant. Further-
more N = 2 due to the spin degeneracy.

In the nearly specular limit the role of the thermal
wavelength λT is played by the Fermi-wavevector kF , as
it determines the characteristic wavelength of the exita-
tions. The slip length as derived from (14) to leading
order in the parameter 1/h2h′2k4

F and to leading order
in temperature is

ζ =

(
1

h2h′2k4
F

)
χ ≈

(
1

h2h′2k4
F

)
3lee, (45)

where χ = 45π2

k4F ~ η. In the diffuse scattering limit, we find

ζ =
8π2

k4
F~

η ≈ 0.5lee. (46)
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We used lee = vF τ and ρF = m∗kF / (~π)
2. The temper-

ature dependence of the slip length in the diffuse scat-
tering limit as well as in the nearly specular limit is
ζ ∼ 1/T 2.

Poiseuille type flow was observed in the delafossite
PdCoO2 [20]. The same publication reports a viscosity
of up to 6 · 10−3 kg/(ms). With the help of Eq. (46) we
find a slip length of ζ = 0.45µm. This length is indeed
small compared to the sample widths of up to 60µm,
meaning that the slip velocity at the boundaries is negli-
gable, which, again, is fully consistent with the observed
Poiseuille behavior. A comparable value for the electron
viscosity and Poiseuille type flow in the Weyl material
WP2 was reported in [21]. The sample widths exeeded
the slip length as given by (46) and the observations were
consistent with our theory. A typical Fermi liquid, how-
ever, is expected to have a higher viscosity and a larger
slip length.

For d = 2 we can crudely estimate the time τ by the
quasiparticle lifetime τqp, which is known to be logarith-
mically suppresed at low temperatures compared to the
d = 3 result [43]. From the Refs. [60–62] we expect

τqp = A
εF~

(kBT )
2

1

ln
(

εF
kBT

) , (47)

where A is a coefficient of the order of unity. From (14)
we obtain in the nearly specular limit

ζ =

(
~3v3

F /ε
3
F

h2h′

)
χ ≈

(
1

h2h′k3
F

)
1.1lee, (48)

with χ = 2√
π
vF τ , and in the diffuse limit ζ = 3π

8 vF τ , so
that

ζ ≈ 1.2lee. (49)

These results also apply to graphene at finite chemical
potential. The viscosity of graphene can then be written
η = 1

8ρ
G
Fµ

2τ . Using the quasiparticle lifetime (47) with
A = 1 to estimate τ , the slip lengths for graphene at µ�
kBT in the diffusive limit are larger than for graphene
at charge neutrality. For µ = 0.25eV, they range from
0.8µm at 100K to 3mm at 1K (see Fig 5). The reason
for the larger slip lengths is the 1/

(
T 2 ln (εF /kBT )

)
tem-

perature dependence of τ . In the nearly specular case,
the small parameter ~3v3

F /
(
h2h′ε3F

)
= 1/(h2h′k3

F ) does
not depend on the thermal wavelength λT , but instead
on the wavelength at the Fermi surface. Since the edge
roughness h has to be compared to k−1

F � λT , the dif-
fusive limit - giving the minimal ζ, since all tangential
momentum is lost - can be saturated for much smaller
h than at charge neutrality. Still, ζ as given by (49) is
large enough to justify no-stress conditions for most ge-
ometries.

Our result explains the findings of [25], where in
graphene samples with widths up to 4µm no Gurzhi ef-
fect was observed up to 100K and strengthen the au-
thor’s conjecture that the small deviation of the resis-
tivity curves at about 100K indeed stems from a small

hydrodynamic contribution due to the Gurzhi effect (sup-
plement to [25]). The reason is that at about 100K the
slip length drops below 1µm and becomes smaller than
the sample width.

Let us finally note that the diffusive boundary condi-
tion gives the smallest possible slip length and is a “worst
case scenario” in the sense that all tangential momentum
is lost; be it due to elastic or inelastic scattering. While
the nearly specular scattering limit deals with the oppo-
site scenario and elastic scattering only, one could imag-
ine that considering larger and larger roughnesses h, the
slip length would saturate at some value ζmin, which is
close to the slip length of the diffusive scattering limit.

III. COMPARISON TO KNOWN RESULTS

Most calculations of slip in quantum fluids [36–40]
model interactions by a momentum conserving relaxation
time ansatz, similar to the one used in the Bhatnagar-
Gross-Krook equation [55]. The collision integral is re-
placed by the term −g/τ , where g is the deviation of the
distribution function not from the global, but from the
local equilibrium:

g = f − f l.e.. (50)

Within this approach, it was shown in [37] for a diffusely
scattering boundary that the slip length determined in
analogy to the Maxwell slip length (see [31, 54, 56]), i.e.
by assuming the validity of the bulk distribution func-
tion for ingoing particles up to the boundary, gives a
lower bound on the slip length ζ as calculated within the
Bhatnagar-Gross-Krook-like approach. For complete-
ness, we want to summerize the logic of [37] briefly and
discuss how it relates to our results.

The analysis applies to two or three dimsensions and
to arbitrary dispersion relations. Therefore we will not
specify dimensionality and dispersion until the end. Let
the y-axis be orthogonal to the sample boundary and the
quantum fluid be contained in the volume y > 0. The
kinetic equation becomes

vy
∂g

∂y
− vypx

∂f0

∂ε

∂ux
∂y

= −g
τ

(51)

and is a first order differential equation for g which is
easily solved as soon as the appropriate boundary condi-
tions are formulated. The idea is to describe the physics
of the Knudsen layer right at the boundary, where the
system is not in local equilibrium, but significantly influ-
enced by the scattering of particles at the sample edge.
At y → ∞ the Knudsen layer ends and the system en-
ters the hydrodynamic regime described by the Navier-
Stokes equations. Therefor the gradient of the drift ve-
locity u′ = ∂ux/∂y approaches a finite value u′ (∞) and
it holds

g (∞) = τvypx
∂f0

∂ε
u′ (∞) . (52)
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Figure 6: The Knudsen-layer - an approximately one mean
free path broad region along the momentum dissipating
boundary of a liquid - is depicted. The fluid behavior in the
Knudsen layer is not described by hydrodynamic equations.
The reasoning behind the introduction of the slip length ζ is
to pass the information about Knudsen layer physics to the
hydrodynamic equations. While the drift velocity u (y) in the
Knudsen layer is smaller than the surface velocity uS of Eq.
(3), the gradient ∂ux (y) /∂y approaches the value prescribed
by uS = ∂u/∂y|S at the very end of the layer. Extrapolating
this gradient up to zero velocity one obtains the slip length ζ.

In addition, one assumes that f (0) = f0 for positive
velocities vy > 0, which is equivalent to

g (0) = pxu (0)
∂f0

∂ε
, (53)

again holding for vy > 0. With these boundary condi-
tions, (51) is solved by

gvy>0 = pxu (0)
∂f0

∂ε
e
− y
τvy +

ˆ y

0

dy′pxu
′ (y′)

∂f0

∂ε
e
−|y

′−y|
τvy

gvy<0 = −
ˆ ∞
y

dy′pxu
′ (y′)

∂f0

∂ε
e
|y′−y|
τvy . (54)

The influx current of tangential momentum into the
Knudsen layer is given by −ηu′(∞). The authors of Ref
[37] further assume that this current is constant in the
whole Knudsen layer, and only at the boundary is it con-
verted into a tangential flow that creates a velocity slip.
In our treatment of the kinetic distribution at the nearly
specular boundary in section II B, where we showed that
the variation of the tangential momentum current gives a
contribution subleading in the small parameter h2L/λ3

T ,
we explicitly saw that this assumption holds. If it holds
in the totally diffuse case as well, we can write

−ηu′ (∞) =

ˆ
>

ddk

(2π)
d
vyp

2
xu (0)

∂f0

∂ε
e
− y
τvy

+

ˆ
>

ddk

(2π)
d
vyp

2
x

ˆ y

0

dy′u′ (y′)
∂f0

∂ε
e
−|y

′−y|
τvy

−
ˆ
<

ddk

(2π)
d

ˆ ∞
y

dy′vyp
2
xu
′ (y′)

∂f0

∂ε
e
|y′−y|
τvy .

(55)

Eq. (55) is an integral equation for u′ (y). Reference [37]
develops a method to extract from Eq. (55) information
about the slip length, without seeking an explicit solu-
tion: First, the function Ln (y) is introduced such that

Ln (y) = gN

ˆ
>

ddk

(2π)
d
vyp

2
x (τvy)

n−1

(
−∂f

0

∂ε

)
e
− y
τvy .

(56)
gN accounts for additional degeneracies. In the case of
graphene, a factor of gN = 2N in front of the integral
will account for excitations with positive and negative
energies and the spin-valley degeneracy. The viscosity
can be expressed as

η = τ

ˆ
ddk

(2π)
d
v2
yp

2
x

(
−∂f

0

∂ε

)
= 2L2 (0) . (57)

Definig the function Ψ (z) via the equation u′ (z) =
u′ (∞)(1 + Ψ (z)) and introducing y0 = u (0) /u′ (∞), one
can reduce Eq. (55) to

z0L1 (z)− L2 (z) = −
ˆ ∞

0

dz′Ψ (z′)L1 (|z − z′|) . (58)

Notice that since the drift velocity is expected to drop
compared to the hydrodynamic boundary value uS =
u′ (∞) ζ, the function Ψ (z) is expected to be positive
everywhere and to vanish for y →∞. For the slip length
ζ the following holds (see Fig. 6):

uS = u′ (∞) ζ = u (0) +

ˆ ∞
0

u′ (z′)− u′ (∞) dy′

ζ = y0 +

ˆ ∞
0

Ψ (y′) dy′. (59)

Together with (58) this yields

ζL1 (y)−L2 (y) = −
ˆ ∞

0

dy′Ψ (y′) (L2 (|y − y′|)− L1 (y)) .

(60)
One property of the functions Ln (y) is dLn (y) /dy =
−Ln−1 (y). Using this relationship, the above equation
can be integrated over the region y > 0 to yield

ζL2 (0)−L3 (0) =

ˆ ∞
0

dy′Ψ (y′) (L2 (y′)− L2 (0)) . (61)

Noticing that Ln (y > 0) < Ln (0) and remembering that
Ψ (z) is positive one obtains from (60)

ζ >
L2 (0)

L1 (0)
(62)

and from (61)

ζ <
L3 (0)

L2 (0)
. (63)

The equations (62) and (63) consitute a lower and an
upper bound on the slip length, which are typically not
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too far apart and therefore give a good estimate for
ζ. The lower bound can even be improved with the
help of the inequality Ln+1Ln−1 > L2

n: Realizing that
d/dy (Ln (y) /Ln+1 (y)) =

(
L2
n − Ln+1Ln−1

)
/L2

n+1 < 0,
we have Ln (y) /Ln (0) > Ln−1 (y) /Ln−1 (0). The com-
bination of equations (60) and (61) then yields

2ζ−L2 (0)

L1 (0)
−L3 (0)

L2 (0)
=

ˆ ∞
0

dy′Ψ (y′)

(
L2 (y′)

L2 (0)
− L1 (y′)

L1 (0)

)
(64)

and

ζ >
1

2

(
L2 (0)

L1 (0)
+
L3 (0)

L2 (0)

)
. (65)

As realized by the authors of [37], the lower bound (62)
is equivalent to the slip length of the Maxwell approach.
Remembering the general form of the distribution func-
tion (27) one easily sees that in the case of diffuse scat-
tering, and assuming that particles at the boundary are
described by the bulk distribution, Eq. (14) reads

0 = −1

2
η
∂ux
∂y

+

ˆ
ddk

(2π)
vyp

2
xu (0)

(
−∂f

0

∂ε

)
, (66)

where we have ommited the summation over the
two graphene bands. Approximating ζlower =
u (0) / (∂ux/∂y) (for the exact slip length we need to re-
place u (0) by uS), one obtains

ζlower =
η/2´

ddk
(2π)vyp

2
x

(
−∂f0

∂ε

) =
L2 (0)

L1 (0)
, (67)

which is the lower bound (62) and is, of course, iden-
tical to our result of Eq. (37). For graphene, the up-
per bound (63) and the lower bound are very close:
ζupper ≈ 1.15ζlower. A comparison of the slip length for
the classical kinetic gas given by (65) and (63) with exact
and numerical results was performed in [37]. The authors
report a deviation of less than 1%. For completeness, we
note that the ζ obtained from Eq. (34) is equivalent to
the lower bound set by ζ > L1 (0) /L0 (0), which is worse
than the lower bound (62).

IV. FLOW THROUGH A STRIP WITH A
CIRCULAR OBSTACLE

If the slip length of an electron liquid ζ is much larger
than the typical sample size, it is appropriate to use the
no-stress boundary condition of Eq. (2) to model the
interaction of the liquid with the wall. If this condi-
tion is applied, the conductivity of a clean sample with
a Poiseuille geometry is infinite, as is clear from Eq.
(5). However, if viscous shear forces act somewhere in
the sample, the conductivity becomes finite. This can
be used to identify hydrodynamic flow, even when the
Gurzhi effect should not be observable at large ζ. Viscous
shear forces arise, for example, if the fluid has to bypass

an impenetrable obstacle that is put somewhere in the
sample. As an illustration, we consider a graphene strip
that is infinitely extended in the x-direction and goes
from y = −w/2 to y = w/2. The obstacle shall be a disk
of radius a placed at the origin of the coordinate system.
No-stress boundary conditions shall apply at the inter-
face of obstacle and liquid as well as at y = ±w/2. We
calculate the pressure difference that arises due to viscous
shear forces between the ends of the strip at x = −∞ and
x = ∞. In what follows, graphene at charge neutrality
is considered but the calculation can be readily modi-
fied to suit the Fermi liquid case. In the former case the
flow should be probed using thermal transport, while it
is given by the electrical current in the latter case.

The full Navier-Stokes equation for graphene electrons
reads [6, 11]

w̃

v2
(∂tu+ (u · ∇)u) +∇p+

∂tp

v2
u− η∇2u = 0. (68)

w̃ is the enthalpy density w̃ = 3nE/2
2+|u|/v ≈ w̃0 = 3

2nE . To
begin with, we consider a liquid which is not bounded at
y = w/2. As is well known [63, 64], in two dimensions the
flow around a circular obstacle exhibits Stokes’ paradox:
the flux u is not a linear function of∇p for small∇p. The
usual way to circumvent this problem is to use Oseen’s
equation [63] in which the flow u is linearized around a
spatially constant flow U ∝ êx. The full flow u is then
written

u = U + q, (69)

and the linearized Navier-Stokes equation reads

w̃0

v2
(U · ∇) q +∇p− η∇2q = 0. (70)

In Appendix C we give the general solution to Eq. (70)
following the analysis of Ref. [65]. We also calculate the
flow around the obstacle for an arbitrary ζ on an infinite
domain. If the flow is not confined to the strip, the pres-
sure induced by the obstacle vanishes at infinity, where
p ∼ 1/r. If, however, the flow is bounded at y = ±w/2,
the obstacle does induce a pressure difference along the
strip. The boundary conditions imposed on the electron
flow by the two walls at y = ±w/2 are

qy (y = ±w/2) = 0

∂qx (y = ±w/2)

∂y
= 0. (71)

These boundary conditions can be implemented using the
method of images, known from electrostatics. The ex-
pression

qtot =

∞∑
j=−∞

q (x, y + jw) , (72)

with q (x, y) being the infinite domain solution obtained
in Eq. (C.1)-(C.9), does satisfy Eq. (70) everywhere
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Figure 7: The method of images can be used to solve Eq.
(70) for a strip-like sample geometry with a circular obstacle.
The sample and the electron flow are drawn in color, the
image fields are shown in light grey. Infinitely many image
solutions must be placed symmetrically around the obstacle
in the middle of the sample.

inside the strip and matches the conditions of Eq. (71). It
corresponds to infinitely many image fields placed along
the y-axis, symmetrically to the original obstacle at y = 0
(see Fig. 7). The solution qtot is only approximate, since
the boundary condition at the surface of the obstacle is
not matched exactly. It is matched, however, at r = a
and y = 0. Therefore, the error is of order ∼ a

w , i.e.
small, if the obstacle is small compared to the width of
the strip. The pressure distribution along the sample can
then be calculated from the function

φj = φ (x, y + jw) , (73)

which solves the Laplace equation and is defined in Eq.
(C.3). The pressure generated by every single image
field is p (x, y + jm) = U

(
w̃0/v

2
)
∂φj/∂x (for details see

Appednix C and Ref [65]). The total pressure at y = 0
is

ptot =

j=∞∑
j=−∞

p (x, jm)

=
πA0U

2

w

w̃0

v2
coth

(πx
w

)
+sgn(x)

π2A1U
2

w2

w̃0

v2
sinh

(πx
w

)−2

. (74)

The constants A0 and A1 are given in Eqs. (C.7) and
(C.8). While the pressure of any single image field
p (x, jm) vanishes for x → ±∞, the sum over all im-
age fields remains finite. The pressure difference across
the sample is then

∆p = ptot (x→∞)− ptot (x→ −∞) = 2
πA0U

2

w

w̃0

v2
.

(75)

Using Eqs. (C.7), (C.9) and expanding B0 for small U
(small Reynolds numbers), as well as taking the limit
ζ →∞ for the slip length at the obstacle, we obtain

∆p = − 8πU

3− 2
(
log
(
aU
4ν

)
+ γ
) w̃0

v2

ν

w
. (76)

ν is the kinematic viscosity ν =
(
v2/w̃0

)
η. As expected,

the pressure arising due to a small flow velocity U cannot
be linearized, which is a manifestation of Stoke’s paradox.
We want to link this result to an experimental setup in
which a heat flow through the sample will induce a tem-
perature difference. With the help of Eq. (9) we can
rewrite the pressure difference as a temperature differ-
ence. The flow velocity U is connected to the heat current
density through the formula [11]

jE =
3nEU

2 + U2/v2
≈ 3

2
nEU . (77)

With the total energy current being IE = jEw, we can
write for Eq. (76)

|∆T | =
16πIEη/

(
nEw

2s
)

9− 6
(

log
(

1
9
IEa
v2ηw

)
+ γ
) . (78)

γ ≈ 0.58 is the Euler constant. This result can be used to
determine the viscosity η. The entropy density is given
by [6]

s = N
9ζ (3)

π
kB

(kBT )
2

~2v2
.

Fig. 8 shows the dependece of the induced temper-
ature difference on the heat current through a 10µm
wide graphene sample at 50K for an obstacle of radius
a = 1µm. The dependence of the temperature difference
|∆T | on the radius a is shown in Fig. 9. The scaling
behavior of the current with a and w is non-trivial due
to the presence of a third length scale ν/U . Since no mo-
mentum is dissipated at the sample boundaries the tem-
perature difference along the sample, far enough from the
disc, does not depend on the length of the sample. The
temperature difference is induced in the region near the
disc only.

V. CONCLUSIONS

Hydrodynamic flow sensitively depends on the nature
of the boundary conditions for the velocity flow field.
These boundary conditions can efficiently be character-
ized by the slip length ζ introduced in Eq. (3). In order
to obtain a quantitative understanding of the slip length
in electron fluids, we have derived the slip lengths at dif-
ferent kinds of edges for Dirac and Fermi liquids. We
found that for viscous electronic flow the slip length can
always be written in the form

ζ = f (κ) lee (79)
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Figure 8: Temperature difference induced by a heat current
IE through a 10µm wide strip of charge neutral graphene at
50K with a circular obstace of radius 1µm at the center of the
strip (see Fig. 7). At a heat current of 0.1µm the Reynolds
number is ∼ 0.74, approaching unity.

Figure 9: Temperature difference for a fixed heat current of
IE = 0.5µW through a 10µm wide graphene channel at 50K
as a function of the obstacle radius a.

with dimensionless ratio κ = h2h′d−1/λd+1 . κ depends
on the two length scales h and h′ that characterize the
interface scattering and the electron wavelength λ, re-
spectively. For graphene at the neutrality point, the lat-
ter is strongly temperature dependent (λ = ~v/(kBT )),
while it corresponds to the Fermi wave length in the case
of Fermi liquids (λ = 1/kF). The dimensionless func-
tion f (κ) diverges for small κ: f (κ� 1) = f0/κ, while
it approaches a constant for strong interface scattering:
f (κ→∞)→ f∞. We determined f∞ using the assump-
tion of diffuse scattering. The numerical values for the co-
efficients f0 and f∞ depend sensitively on the electronic
dispersion relation and dimensionality of the system.

Since for all quantum fluids the mean free path diverges
as the temperature approaches zero, the ultimate behav-
ior of the slip length at low temperatures is ζ → ∞ and
the no-stress boundary conditions are appropriate. For
Dirac fluids in samples with weakly disordered edges even
the ratio ζ/lee diverges as T → 0. At intermediate tem-
peratures the slip lengths are such that no-slip boundary
conditions may be justified for large sample sizes. In par-
ticular, we show that the electron viscosity of PdCoO2

[20] and WP2 [21] is small enough, such that Poiseuille
type flow can manifest itself, as seen experimentally. The
linear Dirac spectrum and the typical sample sizes used
imply that graphene is essentially always in the regime
of no-stress conditions. If no-stress boundary conditions
apply, it is no longer possible to detect Poiseuille type
flow and the Gurzhi effect. However, hydrodynamic ef-
fects such as superballistic flow [26] and the negative lo-
cal resistivity due to vorticity can still be observed [25].
In addition we propose the flow through a channel with
a circular obstacle as an efficient approach to identify
hydrodyanmic flow. Thus, one of the most characteristic
features of the hydrodynamics of electron fluids is the na-
ture of the boundary condition of the flow velocity. The
fact that for a broad range of parameters the slip lengths
of quantum fluids are very large makes electron hydro-
dynamics distinct from its well studied classical counter-
part.
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Appendix A: Pressure and temperature gradients in
charge neutral graphene

In this appendix, we show how pressure gradients can
be related to temperature gradients in graphene at charge
neutrality. From the Gibbs-Duhem relation we know that
the pressure of a system is equal to minus the grand po-
tential density

Ω

V
= −p.

The standard expression for Ω/V can be integrated by
parts to give

Ω

V
= −β−1

∑
λ

ˆ
d2k

(2π)
2 ln

(
1 + e−β(ελ,k−µ)

)
= β−1

∑
λ

ˆ
d2k

(2π)
2 ki

∂

∂ki
ln
(

1 + e−β(ελ,k−µ)
)

− 1

4π
Λ2 (vΛ− µ) .

An upper cut-off Λ for the momentum integration over
the λ = −1 band was introduced. We therefore have

p =
∑
λ

ˆ
d2k

(2π)
2

λviki

1 + eβ(ελ,k−µ)

+
1

4π
Λ2 (vΛ− µ) .
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The first right hand side term is the expression for pres-
sure pkin as it enters the kinetic theory, the second term
is the Fermi pressure pΛ of the occupied lower Dirac cone:

p = pkin + pΛ.

The pressure gradient can be written

∇pkin =
∂pkin
∂T
∇T +

∂pint
∂µ
∇µ.

Since pΛ does not depend on temperature, the relation

s = −∂ (Ω/V )

∂T
=
∂pkin
∂T

holds, where s is the entropy density. On the other hand,
at charge neutrality (µ = 0) we have

∂pkin
∂µ

∣∣∣∣
µ=0

= −
∑
λ

ˆ
d2k

(2π)
2 (λviki)

∂

∂ελ,k

1

eβελ,k + 1

=
∑
λ

ˆ
d2k

(2π)
2

1

eβελ,k + 1
− 1

4π
Λ2,

where again the last term stems from the integration
boundary at λ = −1, k →∞. Being aware that∑

λ

ˆ
d2k

(2π)
2

1

eβελ,k + 1
=

ˆ 2π

0

dϕ

(2π)
2

ˆ Λ

kdk 1,

we have

∂pkin
∂µ

∣∣∣∣
µ=0

= 0,

and therefore

∇pkin = s∇T.

For simplicity, in the main text we refer to pkin as p.

Appendix B: Bulk distribution function for
graphene at charge neutrality

In what follows we summarize the main steps of the
calculation of the shear viscosity of graphene originally
determined in Ref. [6]. In addition to the analysis pre-
sented in Ref. [6], we also show the behavior at finite fre-
quency. The Hamiltonian for electrons in graphene that
interact via the long-range Coulomb repulsion consists of
the noninteracting part

H0 = v~
ˆ
k

∑
αβ,i

ψ†ai (k) (k · σ)ab ψbi (k) (B.1)

and the interaction

Hint =
1

2

ˆ
k,k′,q

∑
ab,ij

V (q)ψ†k+q,a,i, ψ
†
k′−q,b,jψk′,b,jψk,a,i

(B.2)

with V (q) = 2πe2

ε|q| . Here i = 1, ..., N = 4 refers to the
spin and valley flavors. H0 is diagonalized by a unitary
transformation Uk. The eigenvalues of H0 are εkλ =
±v~k where k = |k|. The quasiparticle states for the two
bands are γk = Ukψk, with

H0 = v~
ˆ
k

∑
λ=±,i

λkγ†k,λ,iγk,λ,i. (B.3)

In the band representation follows for the Coulomb in-
teraction

Hint =
1

2

ˆ
k,k′,q

∑
λµµ′λ′,ij

Tλµµ′λ′
(
k,k′,q

)
×γ†k+q,λ′,iγ

†
k′−q,µ,jγk′,µ′,jγk,λ,i (B.4)

where

Tλµµ′λ′
(
k,k′,q

)
= V (q)

(
Uk+qU

−1
k

)
λ′λ

(
Uk′−qU

−1
k′

)
µµ′

.

(B.5)
The goal is to determine the distribution function

fkλ (x, t) =
〈
γ†k,λγk,λ

〉
x,t

(B.6)

for a state with momentum k and band index λ at posi-
tion x. To this end we solve the Boltzmann equation

∂fkλ (x, t)

∂t
+ vk,λ ·

∂fkλ (x, t)

∂x
= −Ce.e.kλ (x, t) (B.7)

in the bulk of the sample. vk,λ = 1
~
∂εkλ
∂k = λv k

k is the
single particle velocity. The collision integral is

Ce.e.kλ (x, t) = iΣ<kλ (ελ (k)) (1− fkλ)+iΣ>kλ (ελ (k))nkλ.
(B.8)

where Σ
≷
kλ (ω) are the diagonal elements of the self en-

ergies for occupied and unoccupied states, respectively
[66].

The distribution function is then determined from the
kinetic equation using the Chapman-Enskog approach
[4–6]. If the system flows with velocity u (x), it holds
in the laboratory frame

fkλ (x, t) =
1

eβ(εkλ−~k·u(x)) + 1
+ δfkλ (x, t) . (B.9)

The driving force for the shear viscosity is the velocity
gradient:

Xαβ =
∂uα
∂xβ

+
∂uβ
∂xα

− δαβ∇ · u. (B.10)

To leading order in the velocity gradients follows

∂fkλ (x, t)

∂t
+
λβ~vk
23/2

eβ~vkIαβ (k)Xαβ

(eβ~vk + 1)
2 = −Cλ (k, t)

(B.11)
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with Iαβ (k) =
√

2
(
kαkβ
k2 −

1
2δαβ

)
. To solve the lin-

earized Boltzmann equation we make the ansatz in the
rest frame of the fluid:

fkλ (x, t) = f0 (λvk)+
λβ~
23/2

eβ~vkIαβ (k)Xαβ

(eβ~vk + 1)
2 ψ (β~vk, β~ω)

(B.12)
with Fermi function f0 (ε) = 1

eβε+1
. Similarly, ψ (K,Ω)

is a dimensionless function with dimensionless arguments

K = ~vk
kBT

and Ω = ~ω
kBT

. As shown in Ref. [6], ψ (K,Ω)
is determined by the linearized Boltzmann equation

eK

(eK + 1)
2 (−iΩψαβ (K,Ω) +KIαβ (K)) = 2πα2Jαβ (K)

(B.13)
whereψαβ (K,Ω) = ψ (K,Ω) Iαβ (K) and is not to be
confused with the creation and annihilation operators
ψ†ai (k), ψai (k). The scattering integral is given by (we
drop the frequency argument for the moment):

Jαβ (K) =

ˆ
K′Q

δ (K − |K + Q|+K ′ − |K′−Q|)F
(
K,K′,Q

)
× eKeK

′(
e|K′−Q| + 1

)
(eK′ + 1) (eK + 1)

(
e|K+Q| + 1

)
× (ψαβ (K + Q)− ψαβ (K′) + ψαβ (K′−Q)− ψαβ (K)) . (B.14)

Capital letters are used to denote dimensionless mo-
menta, i.e. K = β~vk etc. The Coulomb interaction
enters through the matrix element

α2F
(
K,K′,Q

)
= F1

(
K,Q−K′,Q

)
+ F2

(
K,K′,Q

)
,

(B.15)
where the functions Fi are the Ri=1,2 defined in Ref. [5].

Next we formulate the solution of the Boltzmann equa-
tion as a variational problem. The operator Ĵ with

Ĵ [ψαβ ] (K)αβ = Jαβ (K) (B.16)

is indeed self adjoint with respect to the scalar product

〈ϕ|ψ〉 =
∑
αβ

ˆ
K

ϕαβ (K)ψβα (K) . (B.17)

If one uses that F
(
K,K′,Q

)
is invariant under the sub-

stitution K→ K′ −Q and K→ K′ + Q, one finds that
the solution of the Boltzmann equation can be obtained
from the minimum, i.e. δQ[ψ]

δψ = 0, of the functional

Q [ψ] =
1

2

〈
ψ

∣∣∣∣∣−2πα2Ĵ − iΩ eK

(eK + 1)
2

∣∣∣∣∣ψ
〉

+ 〈S|ψ〉

(B.18)
with

Sαβ (k) =
KeK

(eK + 1)
2 Iαβ (k) . (B.19)

We now turn to the collision integral. It can be de-
vided into two parts: the so called collinear scattering
part, where the momenta of scattered particles are par-
allel, and the remaining scattering processes. The former
is dominant by a factor logα−1, where α is the coupling

constant. Separating the operator Ĵ into a part discrib-
ing only collinear scattering processes (c) and the non-
collinear part (nc) we write

α2Ĵ = α2 log (α)
−1
ĵc + α2ĵnc. (B.20)

Assume that the collinear part projects m so called zero
modes ψi, i ∈ {1, 2, ...m}onto zero, i.e.

ĵc
[
ψiαβ

]
= 0. (B.21)

We expand the function ψλ,k in eigenmodes of ĵc with
eigenvalues bn:

ψαβ = γ0ψ
0
αβ + ...+ γmψ

m
αβ +

∑
n>m

γnψ
n
αβ . (B.22)

Let us abbreviate the left hand side of the Boltzmann
equation (B.13) as Dαβ

Dαβ =
eK

(eK + 1)
2 (−iΩψαβ (K,Ω) +KIαβ (K)) (B.23)

For the Boltzmann equation we then have

Dαβ = 2πα2 logα
−1 ∑

n>m

γnbnψ
n
αβ + 2πα2ĵnc

[∑
n

γnψ
n
αβ

]
= 2πα2 logα

−1 ∑
n>m

γnbnψ
n
αβ + α2Cαβ . (B.24)

The operator ĵc is hermitian with respect to the scalar
product (B.17). Thus, it’s eigenfunctions are orthogonal
to each other. Taking the scalar product 〈D |ψn〉 one has

γn>m =
〈D |ψn〉 − α2 〈C|ψn〉
α2 log (α)

−1
bn

, (B.25)
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so that in the expansion (B.22) all eigenfunctions with
n > m are supressed by a factor 1/ log (α)

−1. In a first
approximation, we therefore retain the zero modes only.

It turns out [6] that the zero modes of the collinear
scattering operator are constant and linear in |K|.

ψ0
αβ = ψ0 (Ω) Iαβ (B.26)

and

ψ1
αβ = ψ1 (Ω)KIαβ . (B.27)

The ψ0 and ψ1 at Ω = 0 correspond to the coefficients
C0 and C1 of Eq. (31) of the main text. Thus, we obtain
to leading order

ψ (K,Ω) = (ψ0 (Ω) + ψ1 (Ω)K) Iαβ (K) . (B.28)

We can determine the functional Q within the space of
the two basis functions and obtain

Q =
1

2

∑
a,b=0,1

ψaXabψb +
∑
a=0,1

ψaSa (B.29)

with

Xab = α2
0Rab − iΩrab (B.30)

and

Rab = −2πJab (B.31)

and

rab =

〈
ψb

∣∣∣∣∣iΩ eK

(eK + 1)
2

∣∣∣∣∣ψb
〉
, (B.32)

where the indices a, b label the matrix elements of
the corresponding operators in the 2 × 2 Hilbert space
spanned by the modes ψ0 and ψ1. Once Xab and Sa
are known we obtain the distribution function from the
minimum of Q as

ψa =
∑
b

(
X−1

)
ab
Sb. (B.33)

It holds

∑
a=0,1

ψaSa = 〈S|ψ〉

=
∑
αβ

ˆ
K

Sαβ (K)ψβα (K)

=
π

12
ψ0 +

9ζ (3)

4π
ψ1, (B.34)

which gives S0 = π
12 and S1 = 9ζ(3)

4π . To determine rab
we start from

〈
ψ

∣∣∣∣∣iΩ eK

(eK + 1)
2

∣∣∣∣∣ψ
〉

= iΩ
∑
αβ

ˆ
K

ψαβ (K)ψβα (K)
eK

(eK + 1)
2

= iΩ

(
ψ2

0

log (2)

2π
+ 2ψ0ψ1

π

12
+ ψ2

1

9ζ (3)

4π

)
(B.35)

which gives

rab =

(
log(2)

2π
π
12

π
12

9ζ(3)
4π

)
(B.36)

Finally for the analysis of the matrix Rab we have to an-
alyze the collision integral

〈
ψ
∣∣∣2πα2

0Ĵ
∣∣∣ψ〉. This analysis

can be done numerically and yields

Rab '
(

0.874 0.623
0.623 1.671

)
(B.37)

In order to determine the viscosity we then consider the
relation between the stress tensor

ταβ = N~v
∑
λ

ˆ
d2k

(2π)
2

λkαkβ
k

fkλ (x, t) (B.38)

and the forcing Xαβ , which yields the shear viscosity η
with ταβ = ηXαβ . Inserting Eq. (B.12) for the distribu-
tion function yields at zero frequency:

η =
N (kBT )

2

8π~v2

ˆ ∞
0

dK
K2eK

(eK + 1)
2ψ (K)

=
N (kBT )

2

8π~v2

(
π2

6
ψ0 (0) +

9ζ (3)

2
ψ1 (0)

)
' 0.449

N (kBT )
2

4α2
0~v2

. (B.39)

This is the result given in Ref. [6]. For completeness, we
also give the expression at finite frequency:

η (ω) =
N (kBT )

2

4~v2

2∑
i=1

aikBT

−i~ω + κiα2kBT
(B.40)
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with a1 = 0.8598, κ1 = 1.9150 and a2 = 0.001159,
κ2 = 21.182. The fact that the viscosity is governed
by a sum of two Drude contributions is a consequence
having two relevant modes in our analysis. It is curious
that the second mode is much smaller in weight and con-
tributes only ∼ 10−4 to the static viscosity. This second
Drude contribution has a characteristic scattering rate
more than an order of magnitude larger than the first one.
For all practical purposes is the viscosity dominated by
the first Drude peak, which yields a characteristic scat-
tering rate

~τ−1
e.e. = κ1α

2kBT. (B.41)

In our discussion we use this scattering rate for electron-

electron scattering. For comparison, the scattering
rate that enters the conductivity is given by ~τ−1

e.e. =
3.646α2kBT [5]. We also note, that for finite frequencies
the above derivations of the slip lengths in the different
limits are valid with the replacement η → η (ω).

Appendix C: Flow around a circular obstacle:
Solution on an infinite domain

The general solution in polar coordinates (r, θ) to Eq.
(70) can be given in terms of modified Bessel functions
of the first and second kind, Im and Km:

qr = −U
∞∑
n=1

An
cos (nθ)

rn+1
− 1

4
U
∞∑
m=0

Bm

(
2

kr
+
∞∑
n=1

Φm,n (kr) cos (nθ)

)

qθ = −U
∞∑
n=1

An
sin (nθ)

rn+1
− 1

4
U

∞∑
m=0

∞∑
n=1

BmΨm,n (kr) sin (nθ) , (C.1)

Φm,n (kr) = (Km+1 +Km−1) (Im−n + Im+n) +Km (Im−n−1 + Im−n+1 + Im+n−1 + Im+n+1) ,

Ψm,n (kr) = (Km+1 −Km−1) (Im−n − Im+n) +Km (Im−n−1 − Im−n+1 − Im+n−1 + Im+n+1) , (C.2)

with k = U/ (2ν), where ν is the kinematic viscosity
ν =

(
v2/w̃0

)
η [65]. The Bessel functions in the above

equations have the argument (kr). The pressure is given
by

p = U
w̃0

v2

∂φ

∂x
, (C.3)

with

φ = UA0 log (r)− U
∞∑
n=1

An
n

cos (nθ)

rn
. (C.4)

For details of the calculation, we refer to Ref. [65]. The
Reynolds number of the problem is

R =
Ud

ν
= 4ka. (C.5)

In our case, the general boundary condition of Eq. (3)

reads

qr = −U cos (θ)

qθ = U sin (θ) + ζ
∂qθ
∂r

. (C.6)

Inserting the general solution (C.1) into the boundary
conditions (C.6) we derive an infinite set of coupled
equations for An, Bm. If the set is truncated at some
mmax and nmax = mmax + 1 the coefficients An≤nmax ,
Bm≤mmax are uniquely determined. The higher the
Reynolds number, the larger m, n have to be considered.
Here, we restrict ourselves to m = 0. While it might be
important to include terms with higher m, n to describe
the behavior near the obstacle, the pressure far away is
gouverned by the m = 0 term, which decays slowest (see
Eqs. (C.3) and (C.4)). For completeness, we give the
coefficients A0, A1 and B0:

A0 = −B0

2k
(C.7)

A1 = a2 − 1

2
a2B0 ((I0(ak) + I2(ak)K0(ak) + 2I1(ak)K1(ak)) (C.8)

B0 =
2(a+ ζ)

(a+ ζ)I0(ak)K0(ak) + (a+ 3ζ)I1(ak)K1(ak)
. (C.9)
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