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Excitons without effective mass: biased bilayer graphene
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Understanding the dynamics of excitons in two dimensional semiconductors requires a theory that
incorporates the essential physics distinct from their three-dimensional counterparts. In addition
to the modified dielectric environment, single-particle states with strongly non-parabolic dispersion
appear in many two-dimensional band structures, so that “effective mass” is ill-defined. Focusing on
electrostatically-biased bilayer graphene as an example where quartic (and higher) dispersion terms
are necessary, we present a semi-analytic theory used to investigate the properties of ground and
excited excitonic states. This includes determination of relative oscillator strengths and magnetic
moments (g-factors) which can be directly compared to recent experimental measurements.

Analytic solution of the electron Schrödinger equation
with the attractive Coulomb potential, yielding the Ry-
dberg spectrum of the hydrogen atom, was among the
first – and still monumental – achievements of quantum
mechanics beginning nearly one hundred years ago. De-
spite its nominal origin in atomic physics, this problem is
also very relevant to the solid-state, as a nearly identical
mathematical formulation determines the interaction of
charge carriers with immobile shallow impurities,1 and
also the electrostatic interaction between electrons and
holes themselves, resulting in their mutually bound state:
excitons, somewhat analogous to positronium.2 The pres-
ence of these excitons can be indirectly observed in ex-
periments, e.g. optical absorption or photoconduction
spectroscopy, as resonances at energy just below the in-
terband excitation edge (see Fig. 1).

The ‘envelope approximation’ often used to model
physical attributes of these examples assumes that
the effect of absorbing the periodic lattice potential
into quasiparticle dispersion only modifies the effective
mass, and the lowest-order parabolic relationship be-
tween (quasi)momentum and energy remains. How-
ever, parabolic dispersion is by no means the only pos-
sible outcome endowed by a periodic potential. Es-
pecially in two dimensional electronic materials, where
weak inter-subband k · p matrix elements suppress other-
wise strong band repulsion across a forbidden gap, non-
parabolic ‘Mexican hat’ or ‘caldera’-shaped bands are
quite common.3,4 As shown in Fig. 1, the extrema of these
dispersions are indeed approximately quadratic in the
radial k-direction, but completely flat (ignoring higher
order warping from remote bands) in the orthogonal az-
imuthal direction, yielding a divergent density of states.
Such unfamiliar behavior departs considerably from the
hydrogen atom problem and cannot be captured by sim-
ple mass renormalization. A generalized theory that cap-
tures such nontraditional quasiparticle dispersion is nec-
essary to promote the study of unusual excitonic behavior
in 2D van der Waals systems.

Motivated by recent experimental measurements of
field-tunable exciton spectrum in biased bilayer graphene
(BBG),5 where both electron and hole have nearly sym-
metrical ‘caldera’ dispersion, we present a general varia-
tional theory for the (screened) Coulomb problem in two
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FIG. 1. Single-particle electronic structure of biased bilayer
graphene near the K(K′)-point under bias 2V = 100 meV
shown in black. Red line is least-squares 8th-order polyno-
mial fit within the vertical dashed lines. Magnified region
(circled in green) emphasizes the nonparabolic dispersion and
energetic depth of band-edge extrema. Inset above shows
schematic optical absorption spectrum close to the interband
transition threshold, with a manifold of discrete exciton states
at lower energy.

dimensions when quasiparticle dispersion cannot be cap-
tured solely by a single lowest-order parabola ∝ k2. This
theory allows the calculation of exciton wavefunctions
and spectra, oscillator strengths, and valley-dependent
orbital magnetic moments in a transparent way not de-
pendent on opaque numerical schemes such as density-
functional theory (DFT).6

In general, a two-particle exciton wavefunction can be
viewed as the superposition of direct products of elec-
tron and hole quasiparticle states in momentum space,
weighted by an envelope function. As a result, an ex-
act evaluation of the exciton binding energy through the
field-theoretic Bethe-Salpeter equation7 using quasiparti-
cle states from DFT is computationally demanding, and
any physical insight into the problem would be obscured
behind the numerical details. Our theory focuses on the
dominant contributions so that, instead of pursuing ab-
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solute precision of the binding energy, it reveals insight
into the fundamental exciton physics. For BBG with an
analytic Hamiltonian, our theory is especially important
to explain excitonic evolution under electronic structure
tuning via external electrical gate bias.

In the following, we describe the appropriate Hamil-
tonian accounting for arbitrary nonparabolic dispersion
and attractive interaction between electron- and hole-
like quasiparticles. Then, we give analytic expressions
for its matrix elements in a generalized Gaussian ba-
sis, amenable to variational energy minimization. Im-
plementing this formalism to the specific case of bilayer
graphene, we incorporate the perpendicular electric field-
dependence of both band structure and Coulomb screen-
ing length to obtain envelope functions for both the
ground and first excited state. Perturbation theory ap-
plied to a tight-binding description then allows the calcu-
lation of analytic expressions for oscillator strength and
magnetic field-induced valley splitting, which can both be
quantitatively compared to experimental observations.
In order to maintain continuity in our discussion of the
underlying physics, we defer the lengthy technical details
of some derivations to the Supplemental Material (SM)8.

In this theory, the quasiparticle kinetic energy neces-
sarily acquires additional terms (quartic ∝ k4 and so
on) in higher order, appearing in the effective Hamilto-
nian through canonical substitution k → −i∇9,10 giving
H = −A1∇2+A2∇4−A3∇6+· · ·+V (r). The coefficients
Aξ of all salient orders can be calculated via least-squares
fitting (rather than the unsuitable Taylor expansion; see
SM) over a test range including the dispersion extrema
(kfit as shown in Fig. 1). Importantly, the size of this
range in reciprocal space must be consistent with the ex-
citon wavefunction radius in real space, which is readily
calculated from our theory below.

The presence of nonparabolic terms in the kinetic en-
ergy complicates the usual reduction of the two-particle
problem to a separable system of relative and center-
of-mass coordinates. Furthermore, in the rotationally-
invariant caldera dispersion, ‘mass’ is not well defined
along the azimuthal direction. However, relative posi-
tion r = re − rh and total momentum P = pe + ph are
still meaningful quantities. As detailed in SM, when both
electron and hole have identical dispersions as is nearly
the case in BBG, use of canonically conjugate variables
p = (pe−ph)/2 and R = (re+rh)/2 allow the two-particle
effective (classical) Hamiltonian to be written up to quar-
tic order as[
A1(

1

2
P 2 + 2p2) +A2(

1

8
P 4 + 3p2P 2 + 2p4) . . .

]
+ V (r)

P=0−−−→ 2
[
A1p

2 +A2p
4 . . .

]
+ V (r). (1)

Unlike the usual parabolic kinetic energy case, it is
not possible to eliminate all terms that mix momenta p
and P , so full separation into decoupled equations of mo-
tion fails here; in general, the free exciton dispersion will
be nonparabolic and the exciton wavefunction in rela-
tive coordinate ψ(r) will depend on total momentum P .

However, negligible photon momentum requires P ∼ 0
for analysis of behavior under optical excitation, which
is our focus.11

When the wavefunction is confined to two dimensions,
the electrostatic interaction is modified, as initially de-
rived by Rytova12 and later rediscovered by Keldysh.13

There are two asymptotic limits as elaborated by Cud-
azzo et al.14: at large relative distances, the potential
behaves like the usual Coulomb interaction, but close to
the origin it diverges only logarithmically. A screening
length r0, determined by the 2D polarizability, separates
these two limiting behaviors and is an important ingre-
dient in our calculation.

By considering photon-induced transition rate and
Kramers-Kronig relations in the usual way (see SM), the
2D screening length is generically given by

r0 =
q2~2

4π2ε0m2
0

∑

c,v

∫
|Pcv|2

E3
cv

d2k, (2)

where q is fundamental charge, ε0 is the vacuum per-
mittivity, and m0 is the free electron mass. In addition,
the generally k-dependent terms in the integrand are the
momentum matrix element Pcv and the energy gap Ecv,
with the latter indicating an inverse relationship with r0,
which further affects the binding energy.

Our full two-particle Hamiltonian, consisting of non-
parabolic kinetic energy operators and the Rytova-
Keldysh form of electron-hole interaction, is not
amenable to analytic diagonalization, so a variational
method is applied. First of all, in this quasi-rotationally
invariant system, the centrifugal term of the Laplacian

( 1
r2

d2

dφ2 → −m
2

r2 ) demands that the wavefunction behave

like r|m| for small r, where m is the angular momen-
tum quantum number. Using a modified stretched expo-
nential trial function r|m| exp[−(r/b)β ] exp(imφ), we find
that the expectation value of nonparabolic terms (∇4 and
higher) requires β ≥ 2 to avoid divergence. Values of β
significantly greater than 2 would cause a sharp wave-
function suppression at large distance and is disfavored
by the Coulombic potential asymptotics15.

By choosing the β = 2 Gaussian trial envelope wave-
function, we can calculate matrix elements of kinetic en-
ergy operators to arbitrary order with

〈ψi|(−i∇)2ξ|ψj〉 = π4ξ(ξ +m)!
(b2i b

2
j )
m+1

(b2i + b2j )
ξ+m+1

, (3)

where ξ = 0, 1, . . . indexes powers of the Laplacian.
When normalized by the ξ = 0 inner product, this yields
a single-particle variational kinetic energy (for bi = bj =
b) of

Km =
∑

ξ=1

Aξ2
ξ (ξ +m)!

m!
b−2ξ. (4)

Evaluating the expectation value of the potential en-
ergy requires deeper analysis. Here, we find the integral



3

representation provided by Cudazzo et al.14 especially
useful, where the Rytova-Keldysh potential is due to a
fictitious charge density distributed normal to the plane

qδ(r) e
−|z|/r0

2r0
. As detailed in SM, normalized diagonal

matrix elements in the m = 0 Gaussian basis can be an-
alytically calculated by inverting the order of integration
over r and z, yielding a generic 2D potential energy

U0 = − q2

8πε0ε̄r0

[
e−x

2 (
πerfi (x)− Ei

(
x2
))]

, (5)

where x2 = b2

8r20
and ε̄ is the relative permittivity of the

surrounding medium. Here, Ei(x) is the exponential inte-
gral function and erfi(x) is the imaginary error function.

An analytic expression for the Rytova-Keldysh poten-
tial matrix element with m = 1 is given in SM. For this
and higher quantum numbers, the kinetic energy expec-
tation values in Eq. (4) monotonically increase, whereas
the potential energy tends to decrease, leading to steadily
larger envelope wavefunctions and shallower binding en-
ergy.

Having presented the basic elements of our generic
approach, we now focus on the realistic example of
excitons in the BBG system, whose low energy electronic
structure is captured by the four coupled pz orbitals of
both atomic layers, each of which contains two carbon
sublattices, A and B. We follow the notation of McCann
and Koshino,16 using the basis ordering {A1, B1, A2, B2}
and write the 4 × 4 tight-binding effective Hamilto-
nian at the K-point as H0 + H1 + H2. H0 is the
nearest-neighbor pz-orbital Hamiltonian accounting for
lowest-order intra-/inter-layer coupling with hopping
parameters γ0 = 3 eV and γ1 = 0.4 eV, respectively,
and electric-field biasing with on-site energy ±V . This
dominant term determines the eigenstates and captures
the gross structure of the electron/hole dispersion E =

±
[
γ2
1

2 + 3
4 (aγ0k)2 + V 2 − 1

2

√
γ4

1 + 3(γ2
1 + 4V 2)(aγ0k)2

] 1
2

(with a = 2.46 Å the lattice constant), and is used to
extract the polynomial coefficients Aξ used in Eq. (4).
Additional terms H1 and H2 have only a minor effect
on the energy dispersion and the eigenstates, but are
essential perturbations to include in understanding
the exciton oscillator strength and orbital magnetic
moment. The former reflects next-nearest-neighbor
interlayer “skew” coupling γ3 = 0.3 eV between non-
dimer sites, resulting in trigonal warping of the bands.
The remaining H2 is responsible for the electron-hole
dispersion asymmetry, including the dimer/nondimer
on-site asymmetry energy ∆′ ≈ 0.02 eV and the skew
interlayer coupling γ4 = 0.14 eV between a non-dimer
and a dimer sites. Full matrix expressions for the
Hamiltonian are given in SM.

The simplicity of H0 allows analytic evaluation of the
momentum matrix element between the conduction and

FIG. 2. (a) Energy landscape of a single m = 0 Gaus-
sian trial function for the ground-state exciton envelope func-
tion of BBG, using Eqs. (4) and (5). Kinetic energy polyno-
mial coefficients Aξ, where ξ = 1, 2, 3, 4, are determined by
least-squares fitting the exact dispersion between our choice
of ±kfit, giving a real-space lengthscale shown as a dashed
white line. The energetic minima, indicating variational op-
timum lengthscale b0 > π/kfit, is shown as a solid black line.
Black dashed line presents half of the 2D screening length
r0 > b0. (b) Variational optimum lengthscale shown in blue
(left axis) for both ground-state (b0) and m = 1 excited state
(b1). Binding energy in green (right axis) accounts for re-
duction in bound-continuum energy due to Emin (see Fig. 1).
Dashed lines are energies of the single trial function, which are
improved by the lowest generalized eigenvalue of the problem
with an optimized 5-function basis (see text).

valence bands as (see detailed calculation in SM)

|〈Pcv(k, φ)〉|2 =

9γ2
1(aγ0k)2(V 2 cos2 φ+ E2 sin2 φ)

4[γ4
1 + 4(γ2

1 + 4V 2)(aγ0k)2]E2

(m0aγ0

~

)2

, (6)

where φ is the angle between quasimomentum k and the
photon polarization (chosen as parallel to the x-axis).
This result is notable for the absence of optical cou-
pling across the fundamental band gap at the K-point
(k = 0).17 It is often the case that symmetry is responsi-
ble for vanishing matrix elements, but here no such con-
straint exists. As we will show, symmetry-allowed terms
in perturbation H1 are responsible for nonzero interband
optical coupling and a bright m = 0 exciton.

With Pcv, the integration for the screening length r0

in Eq. (2) is straightforward but yields a cumbersome ex-
pression (see SM). Graphically, however, it is a featureless
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curve, as shown by the dashed black line in Fig. 2(a); this
length scale should be compared to the exciton Gaussian
width discussed below. Clearly, with increasing gate bias
(larger |V |), r0 decreases mainly due to the increased
band gap.

The transcendental functions in Eq. (5) with r0 as an
input require a numerical minimization of the total en-
ergy K0 + U0 to find the optimum value of variational
parameter b. In Fig. 2(a) we plot the energy of the
m = 0 Gaussian exciton for ε̄ = 4 (appropriate for BN
encapsulation) as a function of electric field bias, and in-
dicate the length scale b0 that minimizes it with a solid
curve. The dashed white curve is the equivalent length
scale determined by the reciprocal of the polynomial fit-
ting region π/kmin, showing consistency with our initial
assumptions.

This exciton size variation with bias field is repro-
duced in Fig. 2(b) as a solid blue line, along with the
equivalent result for m = 1. Both indicate increased
confinement with gate bias, consistent with increasing
variational binding energies (dashed green lines) of both
excitons using a single trial wavefunction. To improve
upon the single-function variational binding energies,
we augment the basis with four additional functions of
the same form but with optimized exponentially-spaced
length scales18 and solve for the lowest generalized eigen-
value of 〈i|H|j〉Ψ = E〈i|j〉Ψ, using Eq. (3) and a gener-
alization of Eq. (5) where 2/b2 → (1/b2i + 1/b2j ). Bind-
ing energies calculated in this way (solid green lines) can
typically be improved by only less than a few percent, in-
dicating the suitability of the chosen Gaussian-type basis
for this problem. The difference between the two exciton
binding energies (several meV) and its gate bias depen-
dence agree with the experimentally-measured value.5

Our envelope wavefunctions can now be used to exam-
ine the exciton “brightness”, by evaluating the oscillator
strength fx

m ∝ |
∫

Φm(k)Pcvd
2k|2/Ex,19 where Φm(k) is

the Fourier transform of exciton envelope function, and
Ex is the excitation energy of the exciton. Here we em-
ploy the Löwdin partitioning method to reduce the full
4 × 4 Hamiltonian to a 2 × 2 matrix in the non-dimer
{A1, B2} basis that captures the two gap-edge bands.16

Considering only the dominant term H0, the eigenstates
of this two-level system are

|c〉 =

[
cos η2

e2iφ sin η
2

]
, and |v〉 =

[
−e−2iφ sin η

2
cos η2

]
, (7)

where η ≈ 3(aγ0)2k2/4V γ1 (which vanishes at the K-
point). We must emphasize here that, to maintain the
adiabaticity of the wavefunction through the K-point,
k-dependent phase factors e±2iφ should not be assigned
arbitrarily among the components of the states6, which is
crucial in determining the exciton optical selection rules
(see SM). In this band basis, the matrix element of the
momentum operator m0

~ ∇k(H0 +H1) is

Pcv≈
m0

2~

[√
3aγ3−

3a2γ2
0γ1

γ2
1 + V 2

ke−iφ
]
. (8)
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FIG. 3. (a) Relative oscillator strengths of them = 0 andm =
1 excitons (blue curves) and their ratio (red dashed curve), as
a function of the gate bias energy 2V . (b) Valley g-factors of
the m = 0 and m = 1 excitons. Inset: k-dependent g-factor
differences of the conduction and valence bands, under bias
conditions V = 10, 30 and 100 meV. Here, the full scale of k

is normalized according to
√

3
2
aγ0kmax = γ1

2
, so that kmax is

less than 2% from the K point to the Γ point.

The two bracketed terms play different roles due to their
parity. Specifically, the first (k-independent) and the sec-
ond (k-linear) terms are relevant to the Φm=0 and Φm=1

envelope wavefunctions, respectively, to produce nonva-
nishing azimuthal integration of ΦmPcv. Importantly,
electromagnetic coupling of the m = 0 exciton ground
state depends crucially on the coupling parameter γ3.
Both oscillator strengths increase as a function of gate
bias, as shown in Fig. 3(a). Since γ3 ≈ 0.1γ0, fx

m=0 is
one order of magnitude smaller than fx

m=1, even though
the single particle excitation of the latter is of higher or-
der in k. At large gate bias when both excitons share
similar Ex, the ratio of their oscillator strengths can be
estimated solely from integration of ΦmPcv (see SM),

(√
6πm0aγ3
~b0

)2

(
12
√
πm0a2γ2

0γ1
~b21(γ2

1+V 2)

)2 =

(
1

2
√

6

b21
b0a

(γ2
1 + V 2)γ3

γ2
0γ1

)2

. (9)

For example, with a gate bias 2V = 100 meV, using
the variational values [see Fig. 2(b)] b0 ≈ 13 nm and
b1 ≈ 18 nm, Eq. (9) gives a ratio of ∼ 8% that matches
well with experimental observation.5

Lastly, we examine the exciton magnetic susceptibility.
Similar to positronium, the angular momentum of the en-
velope function has diminished contribution to the mag-
netic moment,2 due to the similar dispersion but opposite
charge of the electron and hole. On the other hand, the
difference between conduction and valence quasi-particle
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orbital g-factors can contribute to the magnetic suscep-
tibility through the Bloch part of the exciton wavefunc-
tion. Indeed, electron-hole asymmetry is induced by H2,
resulting in an exciton valley g-factor due to the opposite
magnetic moments at time-reversed K and K ′ valleys.

The orbital magnetic moment of a quasiparticle state20

gn(k)µB = i
e~

2m2
0

∑

` 6=n

Pn`(k)× P`n(k)

En(k)− E`(k)
(10)

is identical for the two bands in a generic two level sys-
tem, so we return to the full 4× 4 Hamiltonian and treat
H2 perturbatively. The difference between g-factors of
the electron and hole states is analytic (see SM) at the
K-point,

gv−gc≈
3m0a

2

~2γ2
1

[
γ2

0∆′
(

1+
4V 2

γ2
1

)
+2γ1γ0γ4

]
≈ 10, (11)

composed of two contributions within square brackets.
The first one ∝ ∆′ is due to the dimer-nondimer onsite
asymmetry resulting in different energy denominators for
conduction and valence bands in Eq. (10). The remaining
part is more dominant, involving interference between the
γ0- and γ4-dependent matrix elements in the momentum
operator, as evident by their product. As a result, the
difference between gv − gc at K and K ′ is ∼ 20. The
k-dependence of gv− gc is shown in the inset of Fig. 3(b)
under three different bias fields. As expected, the energy
denominators between the gap edge bands and remote
bands in Eq. (10) increase as k2 and quickly suppress the
value of gv(k)− gc(k) at large k.

The exciton valley g-factors contributed by the Bloch

wave part are calculated (see SM) by

gx
m = 2

∫
|Φm(k)|2[gv(k)− gc(k)]d2k (12)

for both the m = 0 and m = 1 excitons, and presented
in Fig. 3(b) as a function of the gate bias. As V in-
creases, excitons are more confined with smaller radii and
larger k-space distributions of their envelope wavefunc-
tions, which reduce the valley g-factors. gx

m=1 decreases
faster than gx

m=0 since Ψm=1 is linear in k and further
suppresses the contribution around k = 0. Note that the
Bloch wave contributions to both exciton g-factors do not
closely match the experimentally observed large g-factor
∼ 20 for m = 0 and a negligible magnetic susceptibility
for m = 1 excitons.5 In that experiment, broadband ex-
citation of a relatively high density of excitons and free
carriers may push the system into a strong correlation
regime and cause significant deviation from the expected
behavior of an isolated exciton. This extension to our
theory, however, is beyond the scope of discussion in this
Letter.

We end by emphasizing the generality of Eqs. (2),
(3), (4) and (5) applied to excitons in an ar-
bitrary two-dimensional semiconductor with approxi-
mately rotationally-invariant nonparabolic bands, such
as the ‘caldera’-like valence band in D3h three-six-enes
Ga1−xInxSySe1−y.

4 Other deviations from parabolic dis-
persion abound, including Rashba spin-split bands10,21,22

and anisotropic examples of recent interest such as in the
valence band of phosphorene3,23 or the ‘camel-back’ va-
lence band in 3D bulk tellurium,24 for which our matrix
element expressions can be appropriately modified; finite
thickness corrections due to multilayer geometry can also
be incorporated25.
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