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We propose a topological qubit in which braiding and readout are mediated by the 4π Majorana-
Josephson effect. The braidonium device consists of three Majorana nanowires that come together
to make a tri-junction. In order to control the superconducting phase differences at the tri-junction,
the nanowires are enclosed in a ring made of a conventional superconductor. In order to perform
initialization/readout, one of the nanowires is coupled to a fluxonium qubit through a topological
Josephson junction. We analyze how flux-based control and readout protocols can be used to
demonstrate braiding and qubit operation for realistic materials and circuit parameters.

I. INTRODUCTION

Topological quantum computation promises a path
towards robust quantum information storage and ma-
nipulation. Protection from local perturbations arises
from non-local information storage, while the robust-
ness of quantum gates is provided by path-independent
braiding operations1–10. One way to build topological
quantum computers involves end modes of topological
superconducting nanowires known as Majorana bound
states (MBSs)9,11–18. MBS are predicted to display non-
Abelian braiding statistics in quasi-one dimensional net-
works. Signatures of MBSs have been reported in exper-
iments such as zero bias conductance peaks in tunneling
19–21.

Josephson junctions formed between topological super-
conducting nanowires with a pair of MBS localized across
the junction are predicted to exhibit a 4π Josephson ef-
fect11,22. Evidence of the 4π Josephson effect has also
been reported in microwave measurements on topologi-
cal materials23,24.

The future demonstration of non-abelian statistics will
be implemented by braiding MBSs, which results in non-
Abelian transformations through the Hilbert space of de-
generate ground states3,10. The first braiding propos-
als involved interferometry of non-Abelian excitations
hosted by fractional quantum Hall states5–9. The next
set of proposals suggested probing the non-Abelian statis-
tics of MBSs hosted either in superconducting vortices
or in chiral edge modes of 2D topological superconduc-
tors25–32. Following experimental reports of MBS in one-
dimensional nanowires, a set of proposals has been devel-
oped based on nanowire tri-junctions by means of manip-
ulating the chemical potential or charging energy10,33–37.
Proposals that do not make use of a tri-junction include
measurement-based braiding using Majorana teleporta-
tion38,39, and nanowire networks which once again use
electrostatic gates to control the topological phase transi-
tion40. Since none of the above schemes have been imple-
mented experimentally, and every known scheme comes
with limitations, it is important to further conceptual-
ize braiding mechanisms in search for streamlined and
complimentary approaches.

In this paper, we conceptualize a braiding scheme that

uses the 4π topological Josephson effect to turn on and
off couplings between neighboring MBSs across a tri-
junction. Furthermore, we couple the tri-junction to a
Majorana-fluxonium qubit41 which is used to initialize
and readout the quantum information. Our device con-
stitutes a fully functional topological qubit for testing
the non-Abelian properties of topological superconduc-
tors. One major advantage of our scheme is that flux con-
trol is already prevalent in superconducting information
technology. In fact, rapid single flux quantum devices,
where classical information is encoded in a single quan-
tum of flux, has been developed nearly to the point of
commercialization42. Furthermore, the non-topological
components of our device such as the fluxonium qubit
have already been realized in experiment based on mag-
netic field-resilient elements compatible with Majorana
physics43,44. It should be stressed that, although other
flux controlled braiding devices have been proposed34,35,
our device is fundamentally different in that we utilize
flux to control the phase difference between Majorana
nanowires, and couple-decouple Majoranas on adjacent
wires via the 4π Josephson effect, instead of controlling
the charging energy of Majorana islands.

This paper is organized as fallows: in section II we
discuss the circuitry used for braiding, in section III we
demonstrate how the braiding cuircut is used to flip the
state of the topological qubit, in section IV we present
the design for the full qubit including readout and initial-
ization circuitry, in section V we describe the procedure
for initializtion and readout, in section VI we discuss the
effects of flux error and low frequency noise, and in sec-
tion VII we show how the ability to control phase dif-
ferences via the external magnetic flux depends on the
inductance, capcitance, and Josephson energy of the de-
vice. In section VIII we conclude.

II. THE BRAIDING CIRCUIT

Figure 1(a) depicts the flux capacitor-shaped45 4π-
Josephson braiding circuit. The device consists of a con-
ventional superconducting ring that is subdivided using
one dimensional spinless p-wave topologically supercon-
ducting nanowires (referred to as ‘p-wave wires’ in what
follows). The three nanowires come together at the center



2

of the ring making a multiterminal topological Josephson
tri-junction. The braiding ring hosts six MBSs, three at
the tri-junction and three at the outer ends of the p-wave
wires. Using the 4π Josephson effect we can couple and
uncouple the inner MBSs γf1, γf2, and γf3. When the
phases on any two arms of the junction are equal, the
MBSs on those arms are coupled, when the two arms are
out of phase by π the MBSs are uncoupled. These phase
differences are tuned by threading external magnetic flux
through the three loops formed by shorting the outer ends
of the three nanowires through a non-topological super-
conductor ring. To create MBSs it is necessary to apply
in-plane magnetic fields of the order 0.1-1T oriented so
that MBS exist in all arms of the junction. The ideal
angle between crossed nanowires is 30 degrees46 with the
field oriented half-way between the nanowires. Although
the out of plane fields are too weak to drive topolog-
ical transitions in the nanowires, care should be taken
to avoid or compensate flux in the qubit loops due to
the in-plane field. There has already been some work
in this direction47. In the future Zeeman splitting may
be generated by local nanomagnets eliminating the need
for large external in-plane magnetic fields. The max-
imum coupling of the inner MBSs is given by the 4π
Josephson energy scale EM which is determined by the
tunneling amplitude between the inner MBSs. For clar-
ity of the presentation we focus on the case where all
three 4π Josephson energies are the same and the trivial
2π Josephson effect is negligible. We note that the 2π
Josephson effect can displace the phase differences at the
tri-junction set by the external flux. However, this can
be easily avoided by ensuring that EJ � EL. This will
be discussed in more detail in section VII."

The length of the nanowire arms and their chemical
potential is set so that two MBSs on the same arm (e.g.
f1 and g1) have overlapping wave functions and hence
their occupation acquires a small, but finite energy gap
α. However, when two of the arms (e.g. 1 and 2) are cou-
pled, the occupation energy gap for the outer two MBSs
on those arms (g1 and g2) becomes α2/EM . Therefore,
on timescales of 1/α < t/2πh̄ < Em/α

2, the level repul-
sion of the outer two MBSs is negligible and their energies
are not distinguishable from zero. In this case, we will re-
fer to the outer MBSs as Majorana zero modes (MZMs)
and will use these for braiding since they are topologi-
cally protected during the aforementioned timescale. We
initialize the three fluxes Φ12,Φ23,Φ31 so that γf1 and
γf2 are coupled which means γg1 and γg2 are the MZMs
at the start of braiding while γf3 and γg3 are auxiliary
MBSs. For this reason, it is useful to work in the complex
fermion basis cg = 1/2(γg1 + iγg2), cf = 1/2(γf1 + iγf2),
and c3 = 1/2(γf3 + iγg3) as labeled in Fig. 1(a).

We will focus on the case of rigid superconductivity,
in which the phases φ12, φ23, and φ31 at the tri-junction
do not undergo quantum fluctuations. The rigidity con-
dition is satisfied when the inductive energy EL of the
outer superconducting ring dominates the charging en-
ergy EC , and the Majorana Josephson energy EM at
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Figure 1. (a) Topological Josephson tri-junction ring. The
light blue segments are p-wave wires. The MBSs are marked
by blue dots and labeled γn. The phase difference between
superconductors i and j is labeled φij , while the external flux
through the loop formed by superconductors i and j is labeled
Φij . The dotted yellow lines show the electron basis used in
the text labeled cn. (b) Braiding sequence with the location of
the MBSs (red and green dots) and the phase differences φij .
The inner MBS coupling is depicted by an orange bar. (c) The
solid red line shows the braiding path that is required by the
flux corral. The Hilbert space trajectory along the solid path
is equivalent to going twice around the dotted red triangle.
(d) The probability of being in a specific state x± ∈ {a, b, c, d}
during the double braid process.

the tri-junction (If either EL/EM or EL/EC is not large
enough, the phase differences can delocalize). Further-
more, we shall restrict ourselves to the “flux corral" condi-
tion in which the total flux through all three loops is zero
Φ12 + Φ23 + Φ31 = 0. With these restrictions, the exter-
nal fluxes directly control the phases at the tri-junction:
φij = Φij and the Majorana bound state Hamiltonian for
the braidonium ring is:

Ht
M = iEM

3∑
i=1

γfiγfi+1 cos

(
Φi,i+1

2

)
+ iα

3∑
i=1

γfiγgi

(1)

where the index i is defined modulo 3 (i.e. i = 3+1 = 1).

III. THE 4π JOSEPHSON BRAIDING
PROCEDURE

The braiding process consists of quasi-adiabatical tran-
sitions between flux configurations in which the tri-
junction has one coupling turned on (say Φ12 = 0) and
the other two off (Φ23 = π and Φ31 = −π). The steps
of the braiding procedure are depicted in Fig. 1(b)-(c).
Both panels show the external flux settings at the end of
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each step of the braiding process. Panel (b) shows the po-
sition of the two Majoranas being braided (red and green
dots) during the process, as well as the coupling between
the tri-junction arms (orange bar). During each time step
τ , the coupling between one pair of MBSs is slowly (adia-
batically) turned off while the coupling between another
pair is slowly turned on. In the first step, for example, the
external flux Φ12 is tunned from 0 to −π which turns off
the coupling between γf1 and γf2, at the same time Φ23

is tuned from −π to 0 which turns on the coupling be-
tween γf2 and γf3. As these couplings change, the green
Majorana loses weight in γg1 and gains weight in γg3. At
the end of the step it has moved completely from the left
arm to the right arm. The entire process braids the two
Majoranas twice around each other. Panel (c) shows the
braiding path through flux space. Although the fluxes at
t = 3τ and t = 0 are different, a single exchange has still
occurred at t = 3τ as the Hamiltonian (Eq. 1) is an even
function of the external flux parameters.

After the double exchange, c†g → −c†g. We will use this
change of sign to readout the state of our topological
qubit. In order to detect the change of sign, however,
we need to interfere linear combinations of |ng = 0〉 and
|ng = 1〉 which are in different parity sectors. Since parity
is conserved, the only way to form linear combinations of
these states is to introduce an additional pair of MZMs,
γr1 and γr2 which act as a parity reservoir elsewhere in
the device (see discussion below). By coupling one of
these reservoir MZMs (γr1 or γr2) to one of the initial
MZMs (γg1 or γg2) we can interfere the two occupation
states (|ng = 0, 1〉) without breaking parity conservation.
We describe the state of these MZMs using the complex
fermion basis |ng, nf , n3, nr〉 where ni is the occupation
of the ith electron (i ∈ {g, f, 3, r}). Considering only even
parity states, we have:

|a+〉 = |0000〉+ |1001〉 |a−〉 = |0000〉 − |1001〉
|b+〉 = |0101〉+ |1100〉 |b−〉 = |0101〉 − |1100〉 (2)
|c+〉 = |0110〉+ |1111〉 |c−〉 = |0110〉 − |1111〉
|d+〉 = |0011〉+ |1010〉 |d−〉 = |0011〉 − |1010〉

Each of these states is a linear combination of |ng = 0〉
and |ng = 1〉 so that the braiding procedure takes all (+)
type states (i.e. |a+〉) to (-) type states (i.e. |a−〉). A
topological qubit can be formed out of any linear com-
bination of (+) type states and the corresponding linear
combination of (-) type states. In Fig. 1(d) we show the
probability that the state of the tri-junction ψ(t) is in
a particular occupation state during the braiding proce-
dure. Here, we show the case where the qubit is formed
by |a+〉 and |a−〉 so that ψ(0) = |a+〉 and ψ(6τ) = |a−〉.

The time scale of the braiding procedure has to be
slow enough to be adiabatic but fast enough that we can
treat MBS as true zero modes (MZM). It takes approxi-
mately t ≈ 2πh̄/α for a Majorana to travel from one end
of the nanowire to the other. Therefore, each step of the
braiding procedure τ must last longer than 2πh̄/α. How-
ever, the energy gap between |ng = 0〉 and |ng = 1〉 is
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Figure 2. Probability of being in the expected state |a−〉 af-
ter the double braid plotted against the log of the duration
τ of each step (in units of 1/α) for different value of α. The
horizontal dotted black line marks perfect braiding. The ver-
tical dashed lines mark the time scales τ = 1/α (black) and
τ = EM/6α

2 (color corresponding to curve).

on the order of α2/EM , therefore if braiding lasts longer
than 2πh̄EM/α

2 we will start to lose coherence. Fig-
ure 2 shows the fidelity of the double braiding procedure.
As seen in Fig. 2, the fidelity plateaus near unity when
1 <∼ τα <∼ EM/6α (the factor of six comes from the fact
that the entire procedure takes 6τ to complete). The fur-
ther these limiting timescales are from each other (i.e. the
larger EM/α), the greater the range of acceptable time
scales for braiding. However, the smaller α, the slower
the process has to be, thus, the coherence of the device
must be longer. One will want to make α as small as al-
lowed by the fastest decoherence process, e.g. the quasi-
particle poisoning timescale48,49. Based on the induced
gap of the p-wave wires, we expect EM ∼ 0.1 meV20

which puts τ ∼ 100 ns.

IV. THE FULL QUBIT CIRCUIT

In the full braidonium qubit, in order to initialize and
readout the topological qubit, we propose to integrate
it with an ancilla Majorana-fluxonium qubit previously
proposed in Ref. [41]. The fluxonium will be coupled
to a transmission line via a microwave resonator made
of magnetic field-resilient superconductor, e.g. NbTiN.
A schematic of the entire system is depicted in Fig. 3.
The coupling between the fluxonium and the topologi-
cal qubit will also proceed via the 4π Josephson effect
which couples γr1 and γg2 to the phase φ24 across the
Josephson junction of the fluxonium. The coupling be-
tween γr1 and γr2 is much smaller than α so that they
can be treated as MZMs during braiding. The exter-
nal flux is controlled by four inductance coils (one for
the fluxonium qubit and three for the tri-junction). A
number of electrostatic gates could be used to tune the
chemical potential in various sections of the nanowires.
However, once the potentials on the gates are set, they
are not changed in the course of braiding. Unlike the tri-
junction ring, we want the fluxonium to undergo phase
slips and so the phase difference φ24 is not necessarily
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Figure 3. Full braidonium device. A fluxonium loop is cou-
pled to the transmission line via a microwave resonator. The
fluxonium loop is coupled to the tri-junction loop through the
p-wave wire (light blue lines). External flux (fast) through the
fluxonium loop and each of the three sections of the braiding
ring is controlled by on-chip coils. Several electrostatic gates
(slow) are used to tune the superconducting nanowires into
the topological regime. The location of MBSs are marked by
blue dots. Uncovered regions of semiconductor nanowire used
for the Josephson junctions are depicted as green lines.

equal to Φ24 the external flux through the fluxonium.
Therefore we have to include the non-topological part of
the fluxonium Hamiltonian

H l
NT (φ24,Φ24) = ElC∂

2
φ24
−ElL(φ24−Φ24)2−ElJ cos(φ24)

(3)
where the fluxonium loop parameters are ElJ the Joseph-
son energy, ElC = e2/2Cl the charging energy, and
ElL = h̄2/4e2Ll the inductive energy, with Cl being the
capacitance and Ll the inductance of the fluxonium loop.
Phase slips occur when ElC � ElL. The Majorana part
of the the full Hamiltonian is

HM = Ht
M + iαrγr1γr2 + iElm cos

(
φ24
2

)
γg2γr1 (4)

where ElM is the Majorana Josephson energy for the flux-
onium loop.

When ElJ ∼ Elm � ElC , E
l
L, the low energy spectrum

of the non-topological Hamiltonian for the loop is a har-
monic oscillator trapped in the potential wells formed

by the cosine functions41. We will use the first two
flux quanta occupation states (|nφ24

= 0〉 and |nφ24
= 1〉)

for initialization/readout. The full Hamiltonian H =
H l
NT + HM can be solved numerically as we will now

show.
We will rewrite Eq. 4 in the complex fermion basis.

Let us start with Eq. 1. We take c†g = (γg1 − iγg2)/2
to be the creation operator for the electron associated
with the Majoranas that will be braided. Then there
are two auxiliary electrons c†f = (γf1 − iγf2)/2 and c†3 =

(γf3 − iγg3)/2 which are not involved in the process but
which are nevertheless present. Using this notation we
can write the Majorana operators in terms of electron
operators.

γf1 = c†f + cf γf2 = i(c†f − cf )

γg1 = c†g + cg γg2 = i(c†g − cg)

γf3 = c†3 + c3 γg3 = i(c†3 − c3)

(5)

In terms of these electron operators, the tri-junction
Hamiltonian, Eq. 1, becomes

Ht
M (Φ12,Φ23) = α

(
n3 −

1

2

)
+ 2iα

(
c†fcg + cfc

†
g

)
+ EM

(
nf −

1

2

)
cos

(
Φ12

2

)
− EM

(
c†fc
†
3 + c†fc3

)(
cos

(
Φ23

2

)
+ i cos

(
Φ31

2

))
+ EM

(
cfc
†
3 + cfc3

)(
cos

(
Φ23

2

)
− i cos

(
Φ31

2

))
,

(6)

where nf = c†fcf and n3 = c†3c3 are number operators.
Defining the third number operator, ng = c†gcg, we can
now write the Hamiltonian in the basis |nf , ng, n3〉

Ht
M,e(Φ12,Φ23) =

EM

(
cos

(
Φ12

2

)
σzf + cos

(
Φ23

2

)
σzfσ

x
3 + cos

(
Φ31

2

)
σy3

)
+ α

(
σz3 + 2σyfδn3=1

)
,

Ht
M,o(Φ12,Φ23) =

EM

(
cos

(
Φ12

2

)
σzf + cos

(
Φ23

2

)
σzfσ

x
3 + cos

(
Φ31

2

)
σy3

)
+ α

(
σz3 + 2σyfδn3=0

)
,

(7)

where Ht
M,e and Ht

M,o correspond to the even and odd
sectors of 〈nf , ng, n3|Ht

M |n′f , n′g, n′3〉 and σia is the ith

Pauli matrix acting on the ath electron occupation ba-
sis |na〉. Notice that, by separating the Hamiltonian into
even and odd parity, we no longer need all three electron
occupations to describe the state. Two of the occupa-
tion numbers and the specification of either even or odd
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parity is enough. We have made the choice to remove ref-
erence to the |ng〉 occupation. Now we can write the full
Majorana Hamiltonian, Eq. 4, in terms of Pauli matrices
just as we did for Eq 1. We use the basis |nf , n3〉

⊗
|nr〉;

where c†r = 1/2(γr1 − iγr2). We obtain,

HM (Φ12,Φ23, φ24) =

EM

(
cos

(
Φ12

2

)
σzf + cos

(
Φ23

2

)
σzfσ

x
3 + cos

(
Φ31

2

)
σy3

)
+ α

(
σz3 + 2σyfδn3+nr=1

)
+ ElM cos

(
φ24
2

)
σyr + αrσ

z
r ,

(8)

where σir is the i-component Pauli matrix acting on the
reservoir occupation basis |nr〉. The parity reservoir cou-
ples the even and odd parity sectors of the tri-junction,
however, total parity is still separable. Here we have writ-
ten only the even parity sector which is used throughout
the text. Odd parity is very similar.

In order to finish preparing the full Hamiltonian for nu-
merical calculations, we need to deal with the quantum
phase φ24. With a change of variables φ24 → sφ24 + Φ24,
where s = (EC/EL)1/4, we can write the non-topological
part of the fluxonium Hamiltonian (Eq. 3) in the har-
monic oscillator basis,

〈φ24|nφ24
〉 =

1√
2nn!
√
π
e−

φ2

2 Hnφ24
(φ24) (9)

where Hn(φ) are the Hermite polynomials. In this basis
we have,

〈nφ24
|H l

NT (Φ24)|nφ24
+mφ24

〉 = ωl

(
nφ24

+
1

2

)
δmφ24 ,0

+ ElJ
(
Cnφ24 ,mφ24 (s) cos(Φ24) + Snφ24 ,mφ24 (s) sin(Φ24)

)
(10)

where ωl =
√
ElCE

l
L and

Cn,m(s) =

(−1)m/2
√

2nn!sm+1e−b
2/4√

2n+m(n+m)!
Lmn

(
s2

2

)
δ(Mod2(m),0),

Sn,m(s) =

(−1)(m−1)/2
√

2nn!sm+1e−b
2/4√

2n+m(n+m)!
Lmn

(
s2

2

)
δ(Mod2(m),1),

(11)

in which Lnm(b) are the Laguerre polynomials and
δMod2(m),0 is zero unless m is even while δMod2(m),1 is
zero unless m is odd. This Hamiltonian can be solved
numerically, after suitably truncating the Hilbert space.
Similarly, we can write the Majorana Hamiltonian in the
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Figure 4. (a) Energy levels as a function of Φ24. The color of
the curve reflects its electron occupation. Each curve repre-
sents two nearly degenerate fermion occupations. Red is both
|a+〉 and |d+〉, blue is |a−〉 and |d−〉, orange is |b+〉 and |c+〉,
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color scheme as the solid lines, but the fluxonium is in the
first excited state. (b) Energy difference between the states
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harmonic oscillator basis,

〈nφ24 |HM (Φ12,Φ23,Φ31,Φ24) |nφ24 +mφ24〉 =

α(σz3 + 2σyfδn3+ng,1)δmφ24 ,0 + EM cos

(
Φ12

2

)
σzfδmφ24 ,0

+ EM cos

(
Φ23

2

)
σzfσ

x
3 δmφ24 ,0 + EM cos

(
Φ31

2

)
σy3δmφ24 ,0

+ ElMCnφ24 ,mφ24

(s
2

)
cos

(
Φ24

2

)
σyl

− ElMSnφ24 ,mφ24
(s

2

)
sin

(
Φ24

2

)
σyl

(12)

Together Eq. 10 and Eq. 12 define the full Hamiltonian
whose energy levels are plotted in Fig. 4. In constructing
the figure, we set ElC = 5 EM , ElL = 0.25 EM , ElJ =
2.5 EM , and ElM = EM . With these parameters the
energy levels that we plot are fully converged when we
truncate the Hilbert space to the lowest ten Harmonic
oscillator levels in the flux basis (nφ24 = 1, ..., 10).

V. INITIALIZATION AND READOUT

In order to initialize and readout the fermion state,
we use the shift of the fluxonium frequency in response
to the change in occupation of fermion cr (see Fig 4).
Specifically, this shift allows us to distinguish between
(+) and (-) type states using conventional quantum elec-
trodynamic techniques50,51. This is accomplished by (1)
driving the system at a frequency where the cavity re-
sponse distinguishes the fluxonium state and projects the
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fluxonium into a specific state; and (2) using the fact that
the energy separation of the fluxonium levels depends on
the fermion state to selectively drive fluxonium transi-
tions.

We propose to drive the system using a resonator as de-
picted in Fig 3. We model the resonator and its coupling
to the fluxonium qubit using the dispersive Hamiltonian:

HR = h̄ω0a
†a+

1

2
h̄χa†a(σzφ24

− 1) +H (13)

where H = H l
NT +HM is the full Hamiltonian, a†, a are

the creation and annihilation operators for the resonator
and σzφ24

is the z-component Pauli matrix in the basis of
the first two fluxonium levels which form the fluxonium
qubit, ω0 is the bare resonator frequency, and χ is the dis-
persive shift of the resonator by the fluxonium. When the
fluxonium is in its ground state, the resonator has a reso-
nance peak at ω0. If, however, the fluxonium is in its first
excited state then the resonance peak is shifted to ω0+χ.
The state of the fluxonium (|nφ24 = 0〉 or |nφ24 = 1〉) can
be measured by driving the resonator at either ω0 or
ω0 +χ and observing whether the cavity transmits or re-
flects the drive photons. In order to collapse the system
into a particular fluxonium state, we perform multiple
measurements until the desired outcome is achieved. At
this point the fermion state remains unknown. In order
to observe whether the fermion state is (+) or (-) type,
we selectively flip the state of the fluxonium. Since fluxo-
nium shows different resonance frequencies (i.e. different
χ) for (+) and (-) type states, a selective π pulse will
flip the state of the fluxonium only if it is specific to the
particular fermion state51. Then we measure the state
of the fluxonium again. If it has changed state then we
know that it is in the desired fermion state (i.e. |a+〉,
|b+〉, |c+〉, or |d+〉). Otherwise, we reset and repeat the
entire process until we get the desired fermion state.

We pause to point out that our initialization procedure
does not have control over which of the (+) type states
we obtain. However, as we show below, the braiding
operation works as long as the initial state is in the (+)
sector.

The explicit steps of the initialization procedure to
project onto the ground state of the fluxonium and a
(+) type fermion state are outlined below:

1) Measure the fluxonium by driving the cavity at the
excited state frequency. Reset and repeat until the flux-
onium is in its excited state.

2) Send in a selective π pulse which will flip the state of
the fluxonium only if the system is in a (+) type fermion
state.

3) Measure the state of the fluxonium. If it is in the
ground state then the procedure is complete. Otherwise
restart at step one.

Figure 4(a) shows energy levels for the full braidonium
Hamiltonian as a function of Φ24. Indeed, we observe
that the energy difference between the ground and ex-
cited levels depends on the whether the fermion state
is a (+) or (-) type state (see Figure 4(b)) as long as

a) b)

c) d)

0𝜏

1𝜏

2𝜏
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4𝜏

5𝜏
6𝜏

Ti
m
e
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1𝜏

2𝜏

3𝜏

4𝜏

5𝜏
6𝜏

Ti
m
e

𝑎+𝑎−𝑏+𝑏−𝑐+𝑐−𝑑+𝑑−

State
𝑎+𝑎−𝑏+𝑏−𝑐+𝑐−𝑑+𝑑−

State

Figure 5. Probability of being in specific state during the
double braid process for different initial states. For panel (a),
we starts in the state 1/

√
2(|a+〉 + |d+〉) while in panels (b-

d) we start in eigenstates |b+〉, |c+〉, and |d+〉 respectively. A
similar plot where the initial state is |a+〉 is shown in Fig 1(d).

Φ24 6= ±π,±3π, . . . . In order to observe braiding, we set
Φ24 to a generic value, and initialize the braidonium into
the state described by the density matrix

ρ = |nφ24
= 0〉 〈nφ24

= 0| ⊗
∑
x

∑
y

sx,y |x+〉 〈y+| (14)

where x, y ∈ {a, b, c, d} label the fermion state and sx,y
are arbitrary constants. Next, we tune to the decoupling
point Φ24 = π, and preform the double braiding proce-
dure. This procedure takes any |x+〉 → |x−〉 as seen in
Fig. 5. Therefore, the density matrix becomes

ρ→ ρ = |nφ24
= 0〉 〈nφ24

= 0| ⊗
∑
x

∑
y

sx,y |x−〉 〈y−|

(15)

To determine whether the braiding process has been suc-
cessful (i.e. readout), we tune Φ24 to a generic point and
apply a π pulse corresponding to the |0, x−〉 → |1, x−〉
transition frequency (blue line in Fig. 4(b)). Successful
braiding is indicated by fluxonium being promoted to the
excited state.

VI. EFFECT OF FLUX ERRORS AND LOW
FREQUENCY NOISE ON BRAIDING

Naively, one would think that the device is insensi-
tive to all types of flux error/noise as it is topological.
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𝛾𝑔1

𝛾𝑔2

𝛾𝑔3

𝜋 → 0

−𝜋

0 → 𝜋

Figure 6. Depiction of the tri-junction during the first step of
the braiding procedure. The purple numbers show the desired
phase difference between nanowires before and after the step.
The goal is to move the Majorana at γg2 to γg3. Flux error
could instead cause the Majorana at γg1 to move to γg3

This is not entirely true. Like all tri-junction devices,
it is essential to ensure that Majorana zero modes are
braided around each other in the “right sense.” This
is accomplished by ensuring that there is no stray cou-
pling between Majorana zero modes that are not being
exchanged in the particular step of the braiding operation
(see Fig. 6).

To demonstrate the effects of flux errors and low fre-
quency flux noise on the device, we consider braiding
operations along a deformed trajectory in the φ12-φ23
plane. In type 1 deformations the vertices of the braid-
ing path (where two couplings are completely turned off)
are hit but the trajectory connecting these points are not
straight lines. Braiding error occurs if the wrong Majo-
rana is moved during a step in the braiding process due
to stray flux turning on the wrong coupling. As long as
the correct couplings dominate, this error is negligible
which is the case in type 1 deformations. Figure 7a de-
picts an example of type 1 deformation where the paths
are deformed from the straight line path (φa(t), φb(t)) in
a sinusoidal manner (φa(t) + δ sin(t/τ), φb(t) + δ sin(tτ))
where φa and φb are whichever two phase differences that
are changing in a particular step, τ is the duration of the
step, and the total phase is kept to zero. Panel b shows
the corresponding fidelity as a function of the magnitude
of deformation. We see that the fidelity plateaus to 1 at
relatively large deformations (|δ| ≈ 0.1).

In type 2 deformations, the verticies of the path are

b)a)

|
𝑎
0−
𝑎
6
𝜏
+

|2

c)
𝜋

−𝜋

−𝜋 𝜋

0

0

𝜙
1
2

𝜙23

𝛿1

0.010

1.00

0.95

𝜎/ 𝜋

d)

𝜋

−𝜋

−𝜋 𝜋

0

0

𝜙
1
2

𝜙23

𝛿𝛿

𝛿

|
𝑎
0−
𝑎
6
𝜏
+

|2

𝜋−𝜋 0

1.0

0.5

𝛿

𝛿0

𝛿2𝛿3

𝛿4

𝛿5
𝛿6

0.99

0.90
0.02

0.1−0.1
0.99

1.00

Figure 7. (a) a path through the space of phase differences
that does not go straight from one point to the next. The
parameter δ characterizes the point along the curve that is
furthest from the straight line. (b) The fidelity for the path
depicted in (a) as a function of the δ parameter. The fidelity
is flat from about −π/16 to π/16 as shown in the offset. (c)
a path through the space of phase differences that does not
hit the verticies at the end of each step. Here, δi measures
the distance between the point that is hit by the path at
the end of step i and the target point. These parameters δi
are generated from a random Gaussian distribution with a
standard deviation of σ. (d) the fidelity, averaged over 100
trials, for the path depicted in (c) as a function of the standard
deviation σ.

missed. Type 2 deformations are a greater source of
braiding error since, in the vicinity of the verticies, one of
the couplings that is being intentionally varied (say φ23)
is approaching zero. Therefore, turning on the third cou-
pling, even a small amount, can cause it to dominate over
φ23. Figure 7c depicts a path in which the target points
are missed. Panel d shows the corresponding average fi-
delity for random offsets δi =

√
δ2ix + δ2iy generated from

a two dimensional Gaussian distribution as a function of
the standard deviation σ of the distribution. The braid-
ing fidelity stays above 0.99 to about (σ ≈ 0.007π) which
is much smaller than the acceptable deformation in type
1. However, it is still well above the level of experimental
control achievable in the lab. In the main text, we esti-
mated the duration of the braiding process to be about
600 ns which means we could run the braiding process ten
million times and still not see significant flux error from
1/f noise which is about 10−12 π at 1 Hz52. Perhaps the
largest source of error is the ability of the magnets to set
the flux, which is achievable to about 1 part in 104 flux
quantum, at which point the average braiding fidelity is
approximately 99.999% of the maximum possible fidelity
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given perfect flux control.

VII. CONTROLLING THE PHASE
DIFFERENCES VIA EXTERNAL FLUX

Everything up to this point has assumed that the tri-
junction is in the classical limit where the phase differ-
ence between superconducting nanowires is completely
controlled by the external flux through each loop. Here
we show that the flux control can tolerate a moderate
amount of quantum fluctuations. To see this, we will
have to treat the non-Topological part of the Hamilto-
nian for the tri-junction in a more rigorous manner.

Ht
NT = −E

t
C

12

(
∂2φ12

+ ∂2φ23
+ (∂φ12

− ∂2φ23
)2
)

+ EtL
(
(φ12 − Φ12)2 + (φ23 − Φ23)2 + (φ12 + φ23 + Φ31)2

)
− EtJ (cos(φ12) + cos(φ23) + cos(φ12 + φ23))

(16)

where EtJ is the Josephson energy for the tri-junction
EtC = e2/2Ct is the charging energy, EtL = h̄2/4e2Lt is
the inductive energy, with Ct and Lt being the capaci-
tance and the inductance of the tri-junction respectively.
The form of the Hamiltonian was derived by applying the
flux corral condition φ12 + φ23 + φ31 = 0 to the classi-
cal Lagrangian and finding the canonical momenta before
quantizing the Hamiltonian. When the Josephson energy
is small and the capacitance is much larger than the in-
ductance then the ring is in the classical regime and the
Hamiltonian is well described by the ground state. How-
ever, in general we can solve this Hamiltonian similar
to how the non-topological part of the readout loop was
solved. We can change variables and project onto a two
dimensional harmonic oscillator basis. Fig. 8 was gener-
ated in this way keeping the first one hundred (10× 10)
energy levels.

We would like to use the external magnetic flux to con-
trol the phase difference between superconductors such
that φ12 = Φ12, φ23 = Φ23, and φ31 = Φ31. Since the
phase differences follow the condition φ12+φ23+φ31 = 0,
we must also set the external flux so that Φ12 + Φ23 +
Φ31 = 0. In Fig. 8 panels (a) and (c) we set Φ31 = −π
and vary Φ12 and Φ23 under the condition Φ23 = π−Φ12.
Panels (b) and (d) show the corresponding probability
distribution of the ground state over the phases differ-
ences φ12 and φ23 at (Φ12 = 0,Φ23 = π). For panels (a)
and (b) the Josephson energy is the largest of the three
energy scales. We have EtJ = 3.0 EM , EtL = 1.0 EM ,
and EtC = 0.1 EM . The large Josephson energy causes
the phase to delocalize at (Φ12 = 0,Φ23 = π) where we
see that the ground state is not localized to the point
(φ12 = Φ12, φ23 = Φ23). In panels (c) and (d), the in-
ductive energy is increased EtL = 5.0 EM while all other
parameters are kept the same. There are still some small
quantum fluctuations but the probability distribution is
now peaked at (φ12 = Φ12, φ23 = Φ23). Panel (e) shows

3𝜋

2
𝜋
𝜋

2

𝜋/2−𝜋/2 0

3𝜋

2
𝜋
𝜋

2
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c) d)

e)

𝐹
(0
,𝜋
)

𝚽𝟏𝟐 = π −𝚽𝟐𝟑

𝑡

−𝜋/4 𝜋/40

𝜙12

𝜙
2
3

𝜙
2
3

Figure 8. Controlling the phase difference with the external
flux. Panels (a) and (c) show the energy levels of the braid-
ing ring as a function of the external flux Φ12 = π − Φ23

while Φ31 = −π for (a) Et
J = 3.0 EM , Et

C = 0.1 EM , and
Et

L = 1.0 EM and (c) Et
J = 3.0 EM , Et

C = 0.1 EM , and
Et

L = 5.0 EM . Panels (b) and (d) show the probability distri-
bution of the ground state as a function of the phase differ-
ences φ12 and φ23 corresponding to the red arrow in (a) and
(c) respectively. Panel (e) shows the F-factor which is a mea-
sure of the probability of being in the correct state (φ12 = Φ12

and φ23 = Φ23) as a function of the inductive energy.

the F-factor,

F (Φ12,Φ23) =
|ψEtL(φ12 = Φ12, φ23 = Φ23)|2

|ψEtL→∞(φ12 = Φ12, φ23 = Φ23)|2
(17)

where ψEtL(φ12, φ23) is the wave function for the ground
state of the flux part of the braiding ring Hamilto-
nian with inductive energy EL. The F-factor is a mea-
sure of the probability of the system being at the point
(φ12 = Φ12, φ23 = Φ23). F (0, π) limits to unity as we
go to the classical regime (large EL). However, it stays
moderately high even for inductive energies on the order
of the Josephson energy.

VIII. CONCLUSION

We have shown that braiding Majorana Zero Modes
(MZMs) can be preformed using a flux controlled mul-
titerminal 4π Josephson junction. Using external mag-
netic flux, the phase difference between the three arms of
a topological junction, and hence the coupling between
Majorana Bound States (MBSs) on different arms, can
be controlled. By tuning these couplings we can preform
a double braid which flips the sign of odd parity occu-
pation states in the ring. The state of the topological
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qubit can be read out via a fluxonium loop embedded
with an additional pair of MZMs. By observing the sep-
aration between the ground state and the excited state
of the fluxonium, one can test the success of the braiding
procedure. The full device is a complete flux controlled

Majorana qubit.
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