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We present an extended version of the projector-based renormalization method that can be used to
address not only equilibrium but also non-equilibrium situations in coupled fermion-boson systems.
The theory is applied to interacting electrons, holes and photons in a semiconductor microcavity,
where the loss of cavity photons into vacuum is of particular importance. The method incorporates
correlation and fluctuation processes beyond mean-field theory in a wide parameter range of detun-
ing, Coulomb interaction, light-matter coupling and damping, even in the case when the number of
quasiparticle excitations is large. This enables the description of exciton and polariton formation,
and their possible condensation through spontaneous phase symmetry breaking by analyzing the
ground-state, steady-state and spectral properties of a rather generic electron-hole-photon Hamil-
tonian, which also includes the coupling to two fermionic baths and a free-space photon reservoir.
Thereby, the steady-state behavior of the system is obtained by evaluating expectation values in the
long-time limit by means of the Mori-Zwanzig projection technique. Tracking and tracing different
order parameters, the fully renormalized single-particle spectra and the steady-state luminescence,
we demonstrate the Bose-Einstein condensation of excitons and polaritons and its smooth transition
when the excitation density is increased.

I. INTRODUCTION

Semiconductor microcavity systems with quantum well
potentials have created fascinating possibilities with re-
gard to the formation of diverse condensed phases [1, 2].
These condensates constitute a macroscopic, long-range
quantum phase-coherent state that exhibits unconven-
tional transport and luminescence properties in particu-
lar. Coupled electron-hole-photon (e-h-p) systems have
led to very early speculations about a Bose-Einstein con-
densation of excitons, i.e., of electron-hole pairs formed
by the attractive Coulomb interaction, at low but suffi-
cient large particle densities [3].

While the short life time of optically generated exci-
tons seems to be a serious problem establishing a Bose-
Einstein condensate (BEC) in bulk semiconductors, such
as Cu2O, even in potential traps [4], quantum wells re-
alized in layered semiconductors significantly reduce the
rate at which electrons and holes recombine into photons
(albeit there is not yet compelling evidence for an ex-
citon BEC in these systems). Increasing the excitation
density, phase-space (Pauli-blocking) and Fermi-surface
effects become important and, as a result, the exciton
BEC may cross over into an e-h BCS phase [5, 6]. In
response to a specific electronic band structure, such as
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those near a semiconductor-semimetal transition, the ex-
citon condensate can also exist in equilibrium whereby it
typifies an excitonic insulator phase [7–9].

Of course the e-h-p system is also influenced by its in-
teraction with the surroundings. In the case of a semicon-
ductor microcavity the loss of cavity photons into the vac-
uum space is of particular importance. This means that
the microcavity system is essentially in a non-equilibrium
state. To maintain the system in a stationary quasi-
equilibrium state one has to supply continuously elec-
trons and holes to the e-h-p system which compensates
the decay of photons into the environment. Unfortu-
nately, however, only for low excitation densities, when
photon effects are still irrelevant, the properties of the
e-h-p system reduce to the equilibrium physics. At large
excitation density, the photonic effects play a predom-
inant role, and the condensate turns from excitonic to
polaritonic. Polaritons in semiconductor microcavities
have also been observed to exhibit BEC [1, 10]. At even
higher excitation densities, the excitonic component sat-
urates, whereas the photonic order parameter continues
to increase. Here, the relationship between a polariton
BEC and photon lasing has to be clarified [11, 12].

The main objective of this paper is to describe both
the equilibrium and the non-equilibrium properties of
the e-h-p system on an equal footing. To this end, we
employ a minimal model for the e-h-p gas that includes
attractive interactions between electrons and holes as
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well as between cavity photons and electron-hole exci-
tations [13–17]. Moreover the decay of cavity photons to
an external vacuum and the pumping from two fermionic
baths to the electrons and holes of the e-h-p system are
taken into account. The major difficulty results from
the lack of reliable techniques to tackle such a model
in the whole parameter regime. So far most theoretical
approaches [18–21] have addressed the equilibrium prop-
erties separately from those of the steady state [22–24].
Only recently a steady-state framework [25, 26] based on
a non-equilibrium Green’s function approach[13, 14] was
formulated which allows to treat equally the equilibrium
BEC and BCS phases at low excitation densities just as
the non-equilibrium state at high excitation densities.

In this work, we utilize an alternative theoretical tool,
the projector-based renormalization method (PRM) [27–
29]. The PRM was applied before exclusively to equi-
librium phenomena, and also to describe the equilibrium
properties of e-h-p systems [30] at small–to–moderate ex-
citation densities, where the leakage of photons to the
vacuum is not important. We show that the PRM can
be extended to non-equlibrium situations, and applied
to the model under consideration even in the case when
the number of excitations is large. Here, the steady-state
properties can be found from time-dependent expectation
values for long times which will be evaluated by means of
the Mori-Zwanzig projection technique. Thereby, in con-
trast to the work [25, 26], the PRM incorporates fluctua-
tion processes beyond mean field theory for all excitation
densities. This allows us to address the great variety of
e-h-p condensation phenomena mentioned above.

The paper is organized as follows. In Sec. II we in-
troduce our theoretical model for a pumped-decaying
exciton-polariton system and briefly discuss its adaption
to a steady-state situation. Since the present theoretical
study is based on the PRM, we outline this technique and
its improvements in Sec. III. More details of the PRM
approach can be found in the Appendices A–C. The
steady-state expectation values are evaluated in Sec. IV,
the single-particle spectral function in Sec. V and the
steady-state luminescence in Sec. VI. Finally, in Sec. VII
some characteristic numerical results will be presented
and discussed. Section VIII contains a brief summary
and our main conclusions.

II. MODELING OF PUMPED-DECAYING
EXCITON-POLARITON SYSTEMS

As a typical example of an e-h-p system we will con-
sider electrons and holes, confined in a semiconductor
quantum well structure, are exposed to photons, en-
trapped in a microcavity. In such a setup Bose-Einstein
condensates of bound electron-hole pairs (excitons) and
polaritons may appear, which possibly can cross over into
a BCS-like coherent state under quasi-equilibrium condi-
tions at high particle densities, in case the quasiparticle
lifetime is larger than the thermalization time [26]. In

general, however, these system are driven out of equilib-
rium by coupling to multiple baths, and such nonequi-
librium electron-hole condensates in the solid state are
subject to dissipation, dephasing and decay. Therefore
pump and loss channels have to be taken into account. In
the following we introduce appropriate microscopic mod-
els for the system and for the reservoirs to which it is
coupled in order to include these effects.

A. System Hamiltonian

Our starting point is the e-h-p Hamiltonian [11, 30]
of an isolated semiconductor quantum-well/microcavity
system,

ȞS = Ȟ0,S + Ȟel−ph + Ȟel−el (1)

with

Ȟ0,S =
∑
k

ε̌ekě
†
kěk +

∑
k

ε̌hkȟ
†
kȟk +

∑
q

ω̌qψ̌
†
qψ̌q , (2)

Ȟel−ph = − g√
N

∑
qk

[ě†k+qȟ
†
−kψ̌q + H.c.] , (3)

Ȟel−el = −U
N

∑
k

ρ̌ekρ̌
h
−k , (4)

describing free particles (electrons created by ě†k, holes by

ȟ†k, and photons by ψ̌†q), the coupling (∝ g) of electron-
hole pairs to the radiation field, and the local Coulomb
interaction (∝ U) between electrons (density operators

ρ̌ek =
∑

k1
ě†k+k1

ěk1
) and holes (ρ̌hk =

∑
k1
ȟ†k+k1

ȟk1
),

respectively. In Ȟ0,S, ε̌ek (ε̌hk) denotes the dispersion of
electrons (holes),

ε̌ek = −2t

D∑
i

cos ki +
Eg + 4tD

2
= ε̌hk , (5)

where D is the dimension of the hypercubic lattice, t is
the particle transfer amplitude between neighboring sites,
Eg gives the minimum distance (gap) between the bare
electron and hole bands, and ε̌ek = ε̌hk is set for simplicity.
The photon field is characterized by

ω̌q =
√

(cq)2 + ω2
c (6)

with the zero-point cavity frequency ωc.

B. Coupling to reservoirs

Next we model the coupling of the e-h-p system, being
an open quantum system in reality, to its environment. In
the first place, two pumping baths for electrons and holes
made possible the injection of free fermions into the sys-
tem. In addition, the cavity photons are connected to a
free-space photon reservoir, allowing for a leakage of pho-
tons into the surroundings. To maintain a steady state,
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the loss of cavity photons to the external reservoir must
be compensated by bringing in fermionic carriers. Then
for the total system the following Hamiltonian seems to
be adequate

Ȟ = ȞS + ȞR + ȞSR , (7)

where ȞS is given by Eq. (1), and ȞR and ȞSR are de-
fined as:

ȞR =
∑
p

ω̌ep b̌
†
e,pb̌e,p +

∑
p

ω̌hp b̌
†
h,pb̌h,p

+
∑
p

ω̌ϕp ϕ̌
†
pϕ̌p , (8)

ȞSR =
1

N

∑
kp

(Γekpě
†
kb̌e,p + H.c.)

+
1

N

∑
kp

(Γhkpȟ
†
−kb̌h,−p + H.c.)

+
1

N

∑
qp

(Γψqpψ̌
†
qϕ̌p + H.c.) . (9)

ȞR is the Hamiltonian for the two fermionic baths and
the free-space photon reservoir which are interacting with

the e-h-p system via ȞSR. The quantities b̌
(†)
e,p and b̌

(†)
h,p

are the fermion creation/annihilation operators of the

two pumping baths, and ϕ̌
(†)
p are the boson creation and

annihilation operators of the free-space photons. Finally,

Γe,hkp and Γψqp in Eq. (9) are the coupling constants be-
tween the system and the respective reservoirs.

Let us also define the particle number of the total sys-
tem by

N =
1

2

∑
k

(ě†kěk + ȟ†kȟk) +
∑
q

ψ̌†qψ̌q

+
1

2

∑
p

(b̌†e,pb̌e,p + b̌†h,pb̌h,p) +
∑
p

ϕ̌†pϕ̌p , (10)

which is a constant of motion [Ȟ,N ] = 0.
We maintain that the total system in a non-equilibrium

situation evolves under Hamiltonian Ȟ = HS + ȞR +
ȞSR. Thereby ȞS is “simple” in the sense that it can be
diagonalized, even though many-body aspects due to the
presence of Ȟel−el and Ȟel−ph require a special treatment.

ȞSR is responsible for the non-equilibrium situation since
it governs the pumping and damping of electrons and
holes and the leakage of photons into the free space. Note
that HSR is not translationally invariant.

We now assume that ȞSR vanishes for times t < t0,
where t0 → −∞ might be used as a suitable starting
point. That is, before at t0 the interaction ȞSR is turned
on, the reservoirs and the e-h-p system are in separate
thermal equilibrium states. Then the state of the total
system is described by a product of the e-h-p system
density operator ρ̌S and the reservoir density operator
ρ̌R

ρ̌0 = ρ̌t0→−∞ = ρ̌S ρ̌R , (11)

where ρ̌S commutes with ȞS. To simplify the consider-
ations we suppose the electronic baths and the external
photon reservoir to be huge compared to ȞS. As a re-
sult, in the steady state the two electronic baths remain
in thermal equilibrium, even when they are coupled to
the e-h-p system. Similarly the free-space photons act
as a reservoir for cavity photons escaped from the e-h-p
system.

Below, the task is to evaluate time-dependent expec-
tation values of observables Ǎ for times t� t0,

〈Ǎ(t)〉 = Tr [ρ̌0 Ǎ(t)] , (12)

when the system has approached a steady state. There-
fore we use the Heisenberg picture, in which the time-
dependence of Ǎ is governed by the full Hamiltonian Ȟ,
and ρ̌0 is time independent. Note that ρ̌0 and Ȟ do not
commute. This property causes the genuine time depen-
dence of expectation values (12). Being τR some internal
relaxation time, for times t� τR the system is expected
to merge into a periodically driven steady state and re-
members no longer its initial state.

C. Steady-state description

Now let us consider a steady-state situation in which
both loss and pump processes are spatially homogenous
with a coherent photon field that is only formed for q = 0.
For large times, the steady state will evolve according to

〈ψ̌†q(t)〉 = δq0 〈ψ†0〉 eiµt , (13)

〈(ě†kȟ
†
−k)(t)〉 = d∗k e

iµt , (14)

〈(ě†kěk)(t)〉 = nek , (15)

〈(ȟ†−kȟ−k)(t)〉 = nh−k , (16)

where the quantities 〈ψ†0〉, d∗k, nek and nh−k are time-
independent and—together with µ—are subject to the
evaluation below. Ansatz (13)–(16) implies that the dy-
namics of certain variables is captured on a rotating

frame with a frequency µ, where in the steady state 〈ψ†0〉,
d∗k, nek and nh−k become time-independent [16].

In the first evaluation step the explicit time depen-

dence in 〈ψ̌†k(t)〉 and 〈(ě†kȟ
†
−k)(t)〉 will be eliminated.

This is achieved by performing a time-dependent gauge
transformation:(

e†k, h
†
−k, ψ

†
q

)
= e−iµN t

(
ě†k, ȟ

†
−k, ψ̌

†
q

)
eiµN t (17)

=
(
e−i(µ/2)tě†k, e

−i(µ/2)tȟ†−k, e
−iµtψ̌†q

)
,

(
b†e,p, b

†
h,p, ϕ

†
p

)
= e−iµN t

(
b̌†e,p, b̌

†
h,p, ϕ̌

†
p

)
eiµN t (18)

=
(
e−i(µ/2)tb̌†e,p, e

−i(µ/2)tb̌†h,p, e
−iµtϕ̌†p

)
.

Let us look at an example: The equation of motion for

the operator ψ̌†k(t) reads (d/dt)ψ̌†k(t) = (i/~)[Ȟ, ψ̌†k](t).

Going over from ψ̌†k to the new variable ψ†k = ψ̌†k e
−iµt,
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the equation for ψ†k(t) becomes (d/dt)ψ†k(t) = (i/~)[Ȟ −
µN , ψ†k](t). Thus, using the following replacements

εαk = ε̌αk −
1

2
µ , ωq = ω̌q − µ , (19)

ωαp = ω̌αp −
1

2
µ , ωϕp = ω̌ϕp − µ , (20)

(α = e, h), the explicit time dependences in Eqs. (13) and
(14) disappears. Following the equations of motion of the
new variables we therefore introduce a new Hamiltonian,

H = Ȟ − µN , (21)

where both parts on the right hand side keep their opera-

tor form, when written in the new variables e†k, h
†
k, ψ

†
q . . .

Note that replacements (19) and (20) only apply to the
time dependence of Ǎ(t) in Eq. (12) (Heisenberg picture)
but not to the density operator ρ̌0, which keeps its oper-
ator form in the new variables and will be called ρ0. The
total particle number N , written in the new variables,
has the same operator form as in Eq. (10) and obeys
[H,N ] = 0. Thus the total particle flux d〈N〉/dt = 0
disappears, which means that a change of the particle
numbers of the e-h-p subsystem and the electronic reser-
voirs must be balanced by a change of the free space
photons.

We wish to stress that only in thermal equilibrium
the quantity µ will turn out to act as a chemical po-
tential. For time-dependent problems, such as the con-
sidered open e-h-p system, the dynamics is captured on a
rotating frame with the frequency µ. Thereby µ is a given
parameter which has to be fixed in a steady state [16].

D. Total Hamiltonian

With the above transformations and replacements the
total Hamiltonian H takes the form:

H = HS +HR +HSR , (22)

where HS describes the interacting e-h-p subsystem

HS = H0 +Hc +Hg +HU , (23)

with

H0 =
∑
k

εeke
†
kek +

∑
k

εhkh
†
−kh−k +

∑
q

ωqψ
†
qψq , (24)

Hc =
∑
k

(∆ e†kh
†
−k + H.c.) +

√
N(Γψ†0 + H.c.) , (25)

Hg = − g√
N

∑
kq

(e†q+kh
†
−kψq + H.c.) , (26)

HU = −U
N

∑
k1k2k

e†k1+kek1
h†k2−khk2

. (27)

Here, the first termH0 ofHS is diagonal, whereas the sec-
ond part Hc is non-diagonal and contains infinitesimally

small external fields ∆ = 0+ and Γ = 0+, which are
introduced to account for possible ground-state phases
with broken gauge symmetry. As shown below, in the
course of the renormalization procedure, the fields ∆ and
Γ take over the role of order parameters for the exciton
and photon condensates. Finally, the terms Hg and HU
in Eqs. (26) and (27) stand for the interactions between
excitons and photons and for the Coulomb attraction be-
tween electrons and holes.

The remaining terms in Eq. (22) are the reservoir
Hamiltonian HR and the interaction Hamiltonian HSR

between the reservoirs and the e-h-p system. Written in
the new variables, they have the same operator structure
as Eqs. (8) and (9):

HR =
∑
p

ωep b
†
e,pbe,p +

∑
p

ωhp b
†
h,pbh,p +

∑
p

ωϕp ϕ
†
pϕp ,

(28)

HSR =
∑
kp

(Γekp e
†
kbe,p + H.c.) +

∑
kp

(Γhkp h
†
−kbh,−p + H.c.)

+
∑
qp

(Γψqp ψ
†
qϕp + H.c.) . (29)

In order to separate the mean-field contributions from
Hg and HU , we introduce time ordered operators:

: e†k+qh
†
−kψq := : e†k+qh

†
−k : : ψq := e†k+qh

†
−kψq (30)

− δq,0
(
d∗k : ψ0 : +〈ψ0〉 : e†kh

†
−k :

)
,

: e†k1+kek1
h†k2−khk2

: = e†k1+kek1
h†k2−khk2

(31)

− δk,0
(
nek1

h†k2
hk2

+ nhk2
e†k1

ek1
− nek1

nhk2

)
− δk1,−k2

(
d∗k+k1

: h−k1
ek1

: +dk1
: e†k+k1

h†−k−k1
:
)
.

Here, : A : = A − 〈A〉, and nek1
and nhk2

are occupation
numbers evaluated with the density operator ρ0:

nek1
= 〈e†k1

ek1
〉 , nhk2

= 〈h†k2
hk2
〉 . (32)

Obviously, a finite d∗k indicates a particle-hole (exciton)
condensate:

d∗k = 〈e†kh
†
−k〉 . (33)

With Eqs. (30)–(31) Hamiltonian HS is rewritten as

HS = Ĥ0 + Ĥc + Ĥg + ĤU , (34)

where Ĥ0 and Ĥc have acquired one-particle contribu-
tions from separations (30) and (31):

Ĥ0 =
∑
k

ε̂eke
†
kek +

∑
k

ε̂hkh
†
−kh−k +

∑
q

ωqψ
†
qψq , (35)

Ĥc =
∑
k

(∆̂ e†kh
†
−k + H.c.) +

√
N(Γ̂ψ†0 + H.c.) . (36)
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Thereby, the field parameters ∆ and Γ have changed into

∆̂ = ∆− g√
N
〈ψ0〉 −

U

N

∑
k

dk , (37)

Γ̂ = Γ− g

N

∑
k

dk , (38)

and the electronic one-particle energies contain the
Hartree shifts:

ε̂ek = εek −
U

N

∑
q

nh−q , (39)

ε̂hk = εhk −
U

N

∑
q

neq . (40)

Finally, the former interactions (26) and (27) have

changed into Ĥg and ĤU , which now consist of fluctu-
ation operators only:

Ĥg = − g√
N

∑
kq

(: e†q+kh
†
−k ψq : +H.c.) , (41)

ĤU = −U
N

∑
k1k2k

: e†k1+kek1
h†k2−khk2

: . (42)

III. PRM FOR AN OPEN
ELECTRON-HOLE-PHOTON SYSTEM

Applying the projector-based renormalization ap-
proach [27, 30] to the open exciton-polariton system, one
starts, as usual, from an appropriate separation of the
total Hamiltonian H into an “unperturbed” part H0 and
a “perturbation” H1. In a many-particle system, H1 is
usually the interaction, which prevents a straightforward
solution of H since it leads to transitions between the
eigenstates of H0. However, integrating out the interac-
tion by a sequence of small unitary transformations, the
Hamiltonian can be transformed into a diagonal opera-
tor. Thereby, transitions from H1 between eigenstates of
H0 will be stepwise eliminated. For the actual evaluation
one starts from the largest transition energy of H0, called
Λ, and proceeds in small steps ∆λ to lower transition en-
ergies λ. Suppose all transitions between Λ and λ have al-
ready been eliminated, the resulting Hamiltonian, which
contains only transitions with energies smaller than λ,
will be called Hλ. An additional elimination step from
Hλ to a new Hamiltonian Hλ−∆λ with a somewhat re-
duced maximum transition energy λ −∆λ is performed
by means of a small unitary transformation,

Hλ−∆λ = eXλ,∆λ Hλ e−Xλ,∆λ , (43)

by which all excitations in Hλ between λ and λ−∆λ will

be eliminated. Here, Xλ,∆λ = −X†λ,∆λ is the generator of
the unitary transformation. Its lowest-order expression
is given by[27]

Xλ,∆λ =
1

L0,λ
Qλ−∆λH1,λ , (44)

Here, the quantities Qλ−∆λ and L0,λ are so-called su-
peroperators which act on usual operators of the unitary
space. Thereby Qλ−∆λ = 1 − Pλ−∆λ is a generalized
projector that projects on all transition operators (with
respect to the unperturbed Hamiltonian H0) with ener-
gies larger than λ−∆λ, whereas Pλ−∆λ is the orthogonal
projector, which project on all transition operators with
energies smaller than λ−∆λ. Examples for the action of
Pλ and Qλ are found in the subsections III A and III B
below. Moreover, L0,λ is the Liouville operator, which
is defined by the commutator with H0,λ applied to any
operator variable A, i.e., L0,λA = [H0,λ,A]. The explicit
form of the generator Xλ,∆λ is given in Eqs. (65) to (69).

We note that after each elimination step the unper-
turbed Hamiltonian as well as the perturbation become
renormalized and therefore depend on λ. Continuing the
renormalization scheme stepwise up to zero transition en-
ergy λ = 0 all transitions with energies larger than zero
will be integrated out: In this way one arrives at a fully
renormalized Hamiltonian Hλ=0, which is diagonal (or
quasi-diagonal) and therefore solvable. We finally like to
point out that for sufficiently small ∆λ, the evaluation
of the transformation step (43) can be restricted to low
orders in H1 which, in general, limits the validity of the
approach to parameter values of H1 of the same magni-
tude as those of H0.

A. Ansatz for the system Hamiltonian

As mentioned above, the reservoirs are considered to be
very large. Thus HR and HSR will not be renormalized
by the PRM procedure. We therefore may restrict the
renormalization to the e-h-p system only, and employ
the following λ-dependent ansatz for HS,λ,

HS → HS,λ = H0,λ + Ĥc,λ + Ĥg,λ + ĤU,λ , (45)

where the operator structure of (45) is found from
Eq. (43) by an expansion around λ = Λ for small inter-

actions Ĥg+ĤU . As above-mentioned the parameters in

H0,λ and Ĥc,λ depend on λ:

H0,λ =
∑
k

εek,λe
†
kek +

∑
k

εhk,λh
†
−kh−k +

∑
q

ωq,λψ
†
qψq ,

(46)

Ĥc,λ =
∑
k

(∆̂k,λ e
†
kh
†
−k + H.c.) +

√
N(Γ̂λψ

†
0 + H.c.) .

(47)

Moreover, the quantity ∆̂k,λ has acquired an additional
k dependence. The interactions take the form

Ĥg,λ = − g√
N

∑
kq

Pλ
(

: e†k+qh
†
−k ψq : +H.c.

)
, (48)

ĤU,λ = −U
N

∑
k1k2k3

Pλ
(

: e†k1
ek2 h

†
k3
hk1+k3−k2 :

)
. (49)
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As aforementioned, Pλ = 1−Qλ is a generalized projec-
tion operator, complementary to Qλ, which projects on
all transition operators with energies smaller than λ. The
coupling parameters g and U will remain λ-independent
in the renormalization procedure if one restricts oneself
to renormalization contributions up to order g2 and U2.

Obviously the Hamiltonian HS,λ=Λ reduces to HS by
construction, provided the parameter values at the initial
cutoff λ = Λ fulfill

εek,Λ = ε̂ek , εhk,Λ = ε̂hk , ωq,Λ = ωq , (50)

∆̂k,Λ = ∆̂ , Γ̂Λ = Γ̂ . (51)

In order to study the action of Pλ in Eqs. (48) and (49)

we start from the decomposition of Ĥg,λ into dynamical
eigenmodes of H0,λ,

Ĥg,λ = − g√
N

∑
kq

Θkq,λ

(
e†k+qh

†
−kψq + H.c.

)
+

g√
N

∑
k

Θk,λ(〈ψ0〉 e†kh
†
−k + H.c)

+
g√
N

Θλ

∑
k

(d∗kψ0 + H.c.) , (52)

where Eq. (41) was used. In Eq. (52), we have introduced
the Θ-functions

Θkq,λ = Θ(λ− |εek+q,λ + εh−k,λ − ωq,λ|) , (53)

Θk,λ = Θ(λ− |εek,λ + εh−k,λ|) , (54)

Θλ = Θ(λ− |ωq=0,λ|) , (55)

which restrict transitions to those with excitation ener-
gies smaller than λ. Similarly one finds for ĤU,λ:

ĤU,λ =− U

N

∑
k1k2k3

Θk1k2k3,λ : e†k1
ek2 : : h†k3

hk1+k3−k2 :

+
U

N

∑
k

Θk,λ

∑
k′

(dk′ e
†
kh
†
−k + H.c.) (56)

with

Θk1k2k3,λ = Θ(λ− |εek1,λ − ε
e
k2,λ + εhk3,λ − ε

h
k1+k3−k2,λ|).

(57)

In principle, the operator partH0,λ+Ĥc,λ of the ansatz
(45) for HS should take over the role of the unperturbed

Hamiltonian and Ĥg,λ + ĤU,λ the role of the perturba-
tion. This however would require a diagonalization of
H0,λ + Ĥc,λ and an expansion of Ĥg,λ and ĤU,λ into
eigenmodes of this “unperturbed” Hamiltonian. Since
this procedure is rather complex, we prefer to use instead
H0,λ in the Θ-functions of Eqs. (52) and (56). Then the
generator Xλ,∆λ of the unitary transformation (43) has
to be changed appropriately (see below).

One sees that the last two terms in Eq. (52) and the last
term in (56) represent one-particle contributions. They

should best be included in the one-particle term Ĥc,λ
of HS,λ. That is only the first term in Eq. (52) and
in Eq. (56) should be considered as “true” interactions.
However, it has turned out that interactions formed by
fluctuation operators should be preferred in the unitary
transformation Eq. (43). Therefore, instead of Eqs. (52)
and (56), we henceforth use modified interactions Hg,λ
and HU,λ based on fluctuation operators,

Hg,λ = − g√
N

∑
kq

Θkq,λ

(
: e†k+qh

†
−kψq : +H.c.

)
, (58)

HU,λ = −U
N

∑
k1k2k3

Θk1k2k3,λ : e†k1
ek2

h†k3
hk1+k3−k2

: ,

(59)

where the Θ-functions in front apply to all parts of the
respective fluctuation operators. Of course, we have
to repair this “mistake” by including the corresponding
“counter-terms” in the one-particle part Hc,λ of HS,λ.
Thus, we finally arrive at the following representation of
HS,λ:

HS,λ = H0,λ +Hc,λ +H1,λ , (60)

H1,λ = Hg,λ +HU,λ . (61)

Here, Hg,λ and HU,λ are given by Eqs. (58) and (59),
whereas Hc,λ reads

Hc,λ =
∑
k

(∆k,λ e
†
kh
†
−k+H.c.)+

√
N(Γλψ

†
0+H.c.) , (62)

with

∆k,λ = ∆̂k,λ +
g√
N

(Θk,λ −Θk,q=0,λ)〈ψ0〉

+
U

N

∑
k′

(Θk,λ −Θk,k′,k;λ) dk′ , (63)

Γλ = Γ̂λ +
g

N

∑
k

(Θλ −Θk,q=0,λ) dk . (64)

As before, at the initial cutoff λ = Λ Hamiltonian HS,λ

must agree with HS (from Eq. (23)), which is fulfilled by
ensuring Eqs. (50) and (51).

Let us add one remark: Carrying out the renormaliza-
tion procedure the additional contributions in ∆k,λ and
Γλ in Eqs. (63) and (64) are expected to have very lit-
tle influence on the results since they vanish both at the
beginning (cutoff Λ) and at the end (λ = 0) of the PRM
procedure.

B. Construction of the PRM generator

Next, we establish the generator Xλ,∆λ of the unitary
transformation (43). Following the lowest order expres-
sion (44), we look for an Xλ,∆λ having the same operator
structure as H1,λ. For this we make the ansatz

Xλ,∆λ = Xg
λ,∆λ +XU

λ,∆λ = −X†λ,∆λ (65)
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with

Xg
λ,∆λ = − g√

N

∑
kq

Akq(λ,∆λ)
[

: e†k+qh
†
−kψq : −H.c.

]
,

(66)

XU
λ,∆λ = −U

N

∑
k1k2k3

Bk1k2;k3,k1+k3−k2
(λ,∆λ)

× : e†k1
ek2

h†k3
hk1+k3−k2

: , (67)

and

Akq(λ,∆λ) =
Θkq,λ

(
1−Θkq,λ−∆λ

)
εek+q,λ + εh−k,λ − ωq,λ

, (68)

Bk1,k2;k3,k1+k3−k2
(λ,∆λ)

=
Θk1k2k3,λ

(
1−Θk1k2k3,λ−∆λ

)
εek1,λ

− εek2,λ
+ εhk3,λ

− εhk1+k3−k2,λ

= −Bk2,k1;k1+k3−k2,k3,(λ,∆λ) . (69)

Here, the notation with four indices in
Bk1,k2,k3,k1+k3−k2(λ,∆λ) emphasizes the momen-
tum conservation. It can be recognized that the
products of Θ-functions in Eqs. (68) and (69) assure
that excitations between λ and λ − ∆λ are eliminated
in each transformation step ∆λ. For small ∆λ, the
transformation (43) can be restricted to an expansion
up to second order in g and U , and to linear order in the
order parameters ∆k,λ and Γλ. Then HS,λ−∆λ at the
reduced cutoff λ−∆λ reads

HS,λ−∆λ =H0,λ +Hc,λ +H1,λ

+[Xλ,∆λ,H0,λ +Hc,λ +H1,λ] + · · · (70)

Relation (70) connects the parameter values of HS,λ

at cutoff λ with those at the reduced cutoff λ − ∆λ.
That is, in order to find renormalization equations for
the λ-dependent parameters one has to evaluate the
commutators. For instance, from the first commuta-
tor [Xλ,∆λ,H0,λ], one finds the following renormalization
contributions to ∆k,λ and Γλ:

δ∆
(0)
k,λ = − g√

N
Ak0(λ,∆λ)ω0,λ〈ψ0〉 (71)

− U

N

∑
k1

Bk1k,−k1,−k(λ,∆λ)(εek1,λ + εh−k1,λ) dk1 ,

δΓ
(0)
λ =

g

N

∑
k

Ak0(λ,∆λ)(εek,λ + εh−k,λ) dk . (72)

Combining these relations with the remaining renormal-
ization contributions from the last two commutators in
(70), one arrives at the following renormalization equa-
tions:

∆k,λ−∆λ = ∆k,λ + δ∆
(0)
k,λ + δ∆

(c)
k,λ + δ∆

(U)
k,λ , (73)

Γλ−∆λ = Γλ + δΓ
(0)
λ + δΓ

(c)
λ + δΓ

(g)
λ . (74)

Here, δ∆
(c)
k,λ and δ∆

(U)
k,λ are defined in Eqs. (A10) and

(A22), whereas δΓ
(c)
λ and δΓ

(g)
λ are given in (A9) and

(A16), respectively. The renormalization equations for
the remaining parameters εek,λ, εhk,λ, and ωq,λ of Hλ are

derived in Appendix A [Eqs. (A13)-(A15)] as well.
To solve the renormalization equations, one starts from

the initial parameter values at cutoff Λ [Eqs. (50)-(51)]
and proceeds in small steps ∆λ until λ = 0 is reached. In
doing so, all transitions from H1,λ between Λ and λ = 0
will be eliminated. We arrive at the fully renormalized
Hamiltonian H̃S = HS,λ=0 = H0,λ=0 +Hc,λ=0:

H̃S =
∑
k

ε̃eke
†
kek +

∑
k

ε̃hkh
†
khk +

∑
q

ω̃qψ
†
qψq (75)

+
∑
k

(∆̃k e
†
kh
†
−k + H.c.) +

√
N(Γ̃ψ†0 + H.c.) .

Accordingly, ε̃ek, ε̃hk, ω̃q, ∆̃k, and Γ̃ are the fully renor-
malized energy parameters at λ = 0. They have to be
determined self-consistently from the whole set of renor-
malization equations.

Since all transition operators fromH1,λ have been used

up in the renormalization procedure, Hamiltonian H̃S is
a one-particle operator which can be diagonalized. First,
one defines “displaced” photon operators

Ψ̃†q = ψ†q +

√
N Γ̃∗

ω̃q=0
δq,0 , (76)

which–up to a constant–leads to

H̃S =
∑
k

ε̃eke
†
kek +

∑
k

ε̃hkh
†
khk +

∑
q

ω̃qΨ̃†qΨ̃q

+
∑
k

(∆̃k e
†
kh
†
−k + H.c.) . (77)

The electronic part of H̃S is diagonalized by a subsequent
Bogolyubov transformation

C†1k = ξke
†
k + η∗kh−k , (78)

C†2k = −ηke
†
k + ξ∗kh−k (79)

with coefficients

|ξk|2 =
1

2

[
1 + sgn(ε̃ek + ε̃hk)

ε̃ek + ε̃hk
Wk

]
, (80)

|ηk|2 =
1

2

[
1− sgn(ε̃ek + ε̃hk)

ε̃ek + ε̃hk
Wk

]
, (81)

ηkξk = sgn(ε̃ek + ε̃hk)
∆̃k

Wk
, (82)

where

Wk =

√
(ε̃ek + ε̃hk)2 + 4|∆̃k|2 . (83)
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In terms of the new quasiparticle operators C
(†)
1k and C

(†)
2k

Hamiltonian H̃ becomes diagonal:

H̃S =
∑
k

Ẽ1kC
†
1kC1k +

∑
k

Ẽ2kC
†
2kC2k +

∑
q

ω̃qΨ̃†qΨ̃q

(84)

with the quasiparticle energies

Ẽ(1,2)k =
ε̃ek − ε̃hk

2
± sgn(ε̃ek + ε̃hk)

Wk

2
. (85)

As usual, the order parameter ∆̃k also acts as gap pa-
rameter for the quasiparticle bands.

IV. STEADY STATE

The fully transformed (renormalized) Hamiltonian H̃
of the total system is

H̃ = H̃S +HR +HSR , (86)

where H̃S, HR, and HSR are given by Eqs. (84), (28), and
(29), respectively. As aforementioned, HR and HSR will
not be affected by the unitary transformations (43). We
are now going to calculate the steady-state expectation

values 〈ψ†q=0〉, 〈e
†
kh
†
−k〉 = d∗k, nek, and nh−k.

A. Density operator for the initial state

First, the initial density operator ρ0 must be specified.
According to Eq. (12), ρ0 is a product of the density
operator ρS for the e-h-p subsystem and the density ρR

for the reservoirs:

ρ0 = ρSρR . (87)

Moreover, ρR factorizes into the density matrices ρR,e

and ρR,h of the two electronic baths and into the density
ρR,ψ of the free-space photons,

ρR = ρR,e ρR,h ρR,ψ , (88)

where

ρR,e =
e−β

∑
p(ωep−(µe−µ/2)) b†e,pbe,p

ZR,e
, (89)

ρR,h =
e−β

∑
p(ωhp−(µh−µ/2)) b†h,pbh,p

ZR,h
. (90)

Here, ZR,e and ZR,h are the partition functions for the
electronic baths with

ZR,e/h = Tre/h
(
e
−β

∑
p(ωe/hp −(µe/h−µ/2)) b†

e/h,p
be/h,p

)
(91)

such that Tre/hρR,e/h = 1.
Note that both electronic bath energies ωαp(α = e, h)

in Eq. (20) include energy shifts −(µ/2) which however

cancel in Eqs. (89) and (90). Therefore ρR,e and ρR,h

describe thermal equilibrium situations for the electronic
baths with temperature 1/β and chemical potentials µe
and µh. As aforementioned both electronic baths were
assumed to be huge, i.e., they always stay in thermal
equilibrium, even in the steady state. In contrast, the
quantity µ, introduced by Eqs. (13)–(16), will generally
not act as a chemical potential since photons may “es-
cape” from the e-h-p subsystem due to the leakage into
the free-photon space. For vanishing coupling Γψqp of
cavity photons to free-space photons the e-h-p subsys-
tem together with the electronic baths will reach a new
thermal equilibrium with µ acting as the usual chemical
potential again.

B. Electronic expectation values in the long-time
limit

Let us consider the long-time behavior of a general
expectation value,

〈A(t)〉 = Tr(A(t) ρ0) , (92)

where–within the Heisenberg picture–the time depen-
dence is governed by Hamiltonian H from Eq. (22). Since
the total H does not commute with the initial density
matrix ρ0, [ρ0,H] 6= 0, the expectation value 〈A(t)〉 is in-
trinsically time-dependent. The steady-state properties
are found from the time-independent solutions of 〈A(t)〉
for t→∞, which must obey

lim
t→∞

d

dt
〈A(t)〉 = 0 . (93)

Remember, an explicit time-dependent factor eiµt was al-
ready extracted from Eqs. (13), (14) and (15). To evalu-
ate 〈A(t)〉, we use the invariance property of operator ex-
pressions against unitary transformations under a trace:

〈A(t)〉 = Tr(Aλ(t) ρ0,λ) = Tr(Ã(t) ρ̃0) . (94)

Here, Aλ and ρ0,λ are transformed operators at cutoff λ

Aλ = eXλAe−Xλ and ρ0,λ = eXλρ0e
−Xλ . (95)

The exponential function eXλ stands for a compact no-
tation of the unitary transformation operator between
cutoffs Λ and λ. In the last equation of (94) the opera-

tors Ã and ρ̃0 denote the fully renormalized operators at
cutoff λ = 0, and the time dependence is now governed
by H̃. By contrast, the time dependence of Aλ(t) is given
by the transformed Hamiltonian Hλ = HS,λ+HR +HSR:

Aλ(t) = eiHλtAλe−iHλt . (96)

We now derive the steady-state results for the elec-
tronic quantities

d∗k = d∗k(t→∞) , (97)

nek = nek(t→∞) , (98)

nh−k = nh−k(t→∞) . (99)
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Starting point are the time dependent expectation values,

d∗k(t) = 〈(e†kh
†
−k)(t)〉 = 〈(ẽ†kh̃

†
−k)(t)〉ρ̃0 , (100)

nek(t) = 〈(e†kek)(t)〉 = 〈(ẽ†kẽk)(t)〉ρ̃0
, (101)

nh−k(t) = 〈(h†−kh−k)(t)〉 = 〈(h̃†−kh̃−k)(t)〉ρ̃0 , (102)

where relation (94) was used on the right hand sides. The

expectation values 〈· · · 〉ρ̃0 are formed with ρ̃0, ẽ†k and h̃†−k
are the fully transformed one-particle operators, and the
time dependence of the last expressions is formed with
H̃. According to Appendix C an appropriate ansatz for

ẽ†k and h̃†−k is

ẽ†k = x̃ke
†
k +

1√
N

∑
q

t̃k−q,qhq−k : ψ†q : (103)

+
1

N

∑
k1k2

α̃k1kk2e
†
k1

: h†k2
hk1+k2−k : ,

h̃†−k = ỹkh
†
−k +

1√
N

∑
q

ũk,qeq+k : ψ†q : (104)

+
1

N

∑
k1k2

β̃k1k2,k2−k1−k : e†k1
ek2

: h†k2−k1−k .

Here, the operator structure is caused by the electron-
photon and the electron-electron interaction. Again, the
parameters with tilde symbols are the fully renormalized
quantities which result from the solution of the corre-
sponding renormalization equations given in Appendix
C. Inserting Eqs. (103) and (104) into Eqs. (100)-(102)
one finds

d∗k(t) = x̃kỹk d̂
∗
k(t)

+
1

N

∑
k1

[
x̃kβ̃k1,k,−k1

n̂ek(t)

+ỹkα̃k1,k,−k1
× (1− n̂h−k(t))

]
d̂∗k1

(t)

− 1

N2

∑
k1k2

α̃k1k,−k2
β̃k2k1,k1−k2−k n̂

e
k1

(t)

× (1− n̂hk1−k2−k(t)) d̂∗k2
(t) , (105)

nek(t) = |x̃k|2n̂ek(t) (106)

+
1

N

∑
q

|t̃k−q,q|2 (1− n̂hk−q(t)) n̂ψq (t)

+
1

N2

∑
k1k2

|α̃k1kk2
|2n̂ek1

(t)n̂hk2
(t)(1− n̂hk1+k2−k(t)) ,

and

nh−k(t) = |ỹk|2n̂h−k(t) (107)

+
1

N

∑
q

|ũk,q|2 n̂ψq (t)(1− n̂ek+q(t))

+
1

N2

∑
k1k2

|β̃k1k2,k2−k1−k|2n̂ek1
(t)(1− n̂ek2

(t))

×n̂hk2−k1−k(t) ,

where an additional factorization approximation was
used. Here n̂ek(t), n̂h−k(t), and n̂ψq (t) are time-dependent
occupation numbers for electrons, holes, and photons,
which are formed with ρ̃0:

n̂ek(t) = 〈(e†kek)(t)〉ρ̃0
, (108)

n̂h−k(t) = 〈(h†−kh−k)(t)〉ρ̃0
, (109)

n̂ψq (t) = 〈(: ψ†q : : ψq :)(t)〉ρ̃0
. (110)

The quantity n̂ψq will be evaluated in Appendix C. More-

over, d̂∗k(t) accounts for the order parameter of exciton
formation

d̂∗k(t) = 〈(e†kh
†
−k)(t)〉ρ̃0

. (111)

The time dependence in Eqs. (108)–(111) is determined

by H̃. Let us clarify the factorization approximations
used in Eqs. (105)–(107) in more detail. As an example,
we consider expression (106) for nek(t). Starting point is

Eq. (101). Inserting expression (103) for ẽ†k we find

nek(t) = |x̃k|2〈(e†kek)(t)〉ρ̃0

+
1

N

∑
qq′

t̃k−q,qt̃
∗
k−q′,q′〈

(
hq−k : ψ†q : : ψq′ : h†q′−k

)
(t)〉ρ̃0

+
1

N2

∑
k1k2k′1k′2

α̃∗k1kk2
α̃k′1kk′2

×〈
(
e†k1

: h†k2
hk1+k2−k : :: h†k′1+k′2−khk′2

ek′1
)
(t)〉ρ̃0

.

(112)

Obviously, result (106) is obtained by factorizing corre-
sponding operators in the expectation values of (112).
For instance, in the second term the operator hq−k is

factorized with h†q′−k and : ψq′ : with : ψq′ :. This leads

to the second term in expression (106). Note however
that in Eq. (106) the following small contribution to sec-
ond order in the order parameter dk was neglected

(−1)
1

N2

∑
k1k2

α̃∗k1kk2
α̃k−(k1+k2),kk2

×n̂hk2
(t)d̂k1

(t)d̂k−(k1+k2)(t) . (113)

It results from an additional factorization of the last term
in Eq. (112), where e†k1

was factorized with h†k′1+k′2−k and

hk1+k2−k with ek′1 .
In principle the factorization (105)-(107) implies two

approximations: (i) According to Sec. II B the initial den-
sity ρ0 is a product of the density ρS for the e-h-p subsys-
tem and of ρR for the reservoirs. Thereby the capacity of
the reservoirs was assumed to be infinitely large so that
only the density ρS of the e-h-p system is changed under
the influence of the unitary transformations. Therefore,
the renormalized density ρ̃S should differ from the initial
ρS. However, these errors are of higher order in the in-
teraction parameters g and U and should in principle be
negligible. Moreover, which is more important, it turns
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out that the final results (138)–(140) in the steady state

for d̂∗k, n̂ek, and n̂hk are independent of the initial den-
sity ρ0, as expected. Therefore the renormalization of
ρ̃S seems not be important. (ii) The time dependence of
d∗k(t), nek(t), and nh−k(t) is governed not only by the e-h-

p Hamiltonian H̃S but also by the coupling HSR to the
electronic and photonic reservoirs. Therefore the correct
time dependence might be influenced by the factorization
in Eqs. (105)–(107).

In the next step, following the steady-state condition

(93), equations of motion for d̂∗k(t), n̂ek(t), and n̂h−k(t)
have to be derived. This is best done by expressing the
operators in Eqs. (108)–(111) by the Bogolyubov quasi-

particles C
(†)
1,k and C

(†)
2,k from Eqs. (78) and (79). Accord-

ing to Appendix C one first finds

d̂∗k(t) = ξ∗kη
∗
k(A11

k (t)−A22
k (t))

+ξ∗k
2A12

k (t)− η∗k
2A21

k (t) , (114)

n̂ek(t) = |ξk|2A11
k (t) + |ηk|2A22

k (t)

−(ξ∗kηkA
12
k (t) + ξkη

∗
kA

21
k (t)) , (115)

n̂h−k(t) = |ηk|2(1−A11
k (t)) + |ξk|2(1−A22

k (t))

− (ξ∗kηkA
12
k (t) + ξkη

∗
kA

21
k (t)) (116)

with (n,m = 1, 2)

Anmk (t) = 〈(C†nkCmk)(t)〉ρ̃0
. (117)

The equations of motion for Anmk (t) are found by ap-
plying the Mori-Zwanzig projection operator formal-
ism [31, 32]. According to Appendix C they read

d

dt
A12

k (t) = −
[
2γ − i(Ẽ1k − Ẽ2k)

]
A12

k (t)

−γ ξkη∗k
(
fe(Ẽ1k) + fe(Ẽ2k)

)
−γ ξkη∗k

(
fh(−Ẽ1k) + fh(−Ẽ2k)− 2

)
=
( d

dt
A21

k (t)
)†
, (118)

d

dt
A11

k (t) = −2γ A11
k (t) + 2γ |ξk|2fe(Ẽ1k)

+2γ |ηk|2
(
1− fh(−Ẽ1k)

)
, (119)

d

dt
A22

k (t) = −2γ A22
k (t) + 2γ |ηk|2fe(Ẽ2k)

+2γ |ξk|2
(
1− fh(−Ẽ2k)

)
. (120)

The damping rate γ, appearing in Eqs. (118)–(120), re-
sults from the coupling to the electronic reservoirs and
is assumed to be the same for electrons and holes [see
App. C.1, (C15)]. The functions fe(ω) and fh(ω) give
the occupation numbers of bath electrons and bath holes

in thermal equilibrium:

fe(ω
e
p) = 〈b†epbep〉ρR

=
1

1 + eβ[ωep−(µe−µ/2)]
, (121)

fh(ωh−p) = 〈b†h,−pbh,−p〉ρR
=

1

1 + eβ[ωh−p−(µh−µ/2)]
,

(122)

[compare Eqs. (89) and (90)]. The first contribution in
each of the Eqs. (118)–(120) is a relaxation term for e-h-p
quasiparticle pairs, while the last two terms stand for the
relaxation of quasiparticle pairs into the electronic baths.
The damping rate γ for all contributions is caused by
that part of the interaction HSR which couples electrons
and holes of the e-h-p system with the respective elec-
tronic baths. As above mentioned, we have adapted the
usual assumption that the rates for electrons and holes
are equal [compare Eq. (C12)]. Furthermore, the second

term in Eq. (118), being proportional to i(Ẽ1k− Ẽ2k), is

a frequency term and enters from the dynamics of H̃S.
We are now in the position to study the steady-state

expressions for Anmk (t). Defining the steady-state values
in analogy to Eqs. (97)–(99),

Anmk = Anmk (t→∞) , (123)

we arrive, for t→∞, with condition (93) at[
i(Ẽ1k − Ẽ2k)− 2γ

]
A12

k = γ ξkη
∗
k (124)

×
[
fe(Ẽ1k) + fe(Ẽ2k) + fh(−Ẽ1k) + fh(−Ẽ2k)− 2

]
,

A21
k = (A12

k )∗, and (for γ 6= 0)

A11
k = |ξk|2fe(Ẽ1k) + |ηk|2

[
1− fh(−Ẽ1k)

]
, (125)

A22
k = |ηk|2 fe(Ẽ2k) + |ξk|2

[
1− fh(−Ẽ2k)

]
, (126)

where the common prefactor γ on both sides of Eqs. (125)
and (126) has dropped. Therefore, both equations are
only valid for finite γ. If γ = 0, no term would drive the
system into a steady state.

To sum up, the steady-state quantities d∗k, n
e
k, and nh−k

can be first expressed by means of Eqs. (105)–(107):

d∗k = x̃kỹk d̂
∗
k +

1

N

∑
k1

[
x̃kβ̃k1,k,−k1

n̂ek

+ỹkα̃k1,k,−k1 × (1− n̂h−k)
]
d̂∗k1

− 1

N2

∑
k1k2

α̃k1k,−k2 β̃k2k1,k1−k2−k n̂
e
k1

× (1− n̂hk1−k2−k(t)) d̂∗k2
, (127)

nek = |x̃k|2n̂ek

+
1

N

∑
q

|t̃k−q,q|2 (1− n̂hk−q) n̂ψq

+
1

N2

∑
k1k2

|α̃k1kk2 |2n̂ek1
n̂hk2

(1− n̂hk1+k2−k) ,

(128)
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nh−k = |ỹk|2n̂h−k

+
1

N

∑
q

|ũk,q|2 n̂ψq (1− n̂ek+q)

+
1

N2

∑
k1k2

|β̃k1k2,k2−k1−k|2n̂ek1
(1− n̂ek2

)

×n̂hk2−k1−k . (129)

Thereby, the quantities with hat symbols d̂∗k, n̂
e
k, and

n̂h−k, are written in terms of Anmk :

d̂∗k = ξ∗kη
∗
k(A11

k −A22
k ) + ξ∗k

2A12
k − η∗k

2A21
k , (130)

n̂ek = |ξk|2A11
k + |ηk|2A22

k − (ξ∗kηkA
12
k + ξkη

∗
kA

21
k ) ,

(131)

n̂h−k = |ηk|2(1−A11
k ) + |ξk|2(1−A22

k )

−(ξ∗kηkA
12
k + ξkη

∗
kA

21
k ) , (132)

where the steady-state results for Anmk are given by
Eqs. (124)–(126).

C. Reformulation of the system dynamics

It makes sense to express the equations of motion
(118)–(120) in terms of the variables with hat symbols

d̂∗k(t), n̂ek(t), and n̂h−k(t). Let us start from d̂∗k(t). Using
Eqs. (114)–(116) we find

d

dt
d̂∗k = i(Ẽ1k − Ẽ2k)(ξ∗2k A12

k + η∗2k A21
k )

−2γ
[
ξ∗kη
∗
k(A11

k −A22
k ) + ξ∗2k A12

k − η∗2k A21
k

]
+2γ d̂0∗

k , (133)

where on the right hand side we have defined

d̂0∗
k =

1

2
ξ∗kη
∗
k

{
fe(Ẽ1k)− fh(−Ẽ1k)

−[fe(Ẽ2k)− fh(−Ẽ2k)]
}
. (134)

Moreover, using the Bogolyubov transformation (78)–
(82), as well as Eqs. (108), (109), and (111), we obtain

d

dt
d̂∗k(t) = i(ε̃ek + ε̃hk) d̂∗k(t) + i∆̃∗k(1− n̂ek(t)− n̂hk(t))

−2γ
(
d̂∗k(t)− d̂0∗

k

)
. (135)

Similarly we derive the equations of motions for n̂ek(t)
and n̂h−k(t):

d

dt
n̂ek(t) = 2=[∆̃kd̂

∗
k(t)] (136)

−2γ
[
n̂ek(t)− |ξk|2fe(Ẽ1k)− |ηk|2fe(Ẽ2k)

]
,

d

dt
n̂h−k(t) = 2=[∆̃kd̂

∗
k(t)] (137)

−2γ
[
n̂h−k(t)− |ηk|2fh(−Ẽ1k)− |ξk|2fh(−Ẽ2k)

]
,

where 2=[∆̃kd̂
∗
k] = −i(∆̃kd̂

∗
k − ∆̃∗kd̂k) was used. The

steady-state expectation values of d̂∗k, n̂ek, and n̂h−k are
obtained from Eqs. (135)–(137) by setting the left hand
sides equal to zero

d̂∗k = − 1

(ε̃ek + ε̃hk) + 2iγ

[
∆̃∗k(1− n̂ek − n̂kk)− 2iγ d̂0∗

k

]
,

(138)

and

n̂ek = |ξk|2fe(Ẽ1k) + |ηk|2fe(Ẽ2k) +
1

γ
=[∆̃kd̂

∗
k] , (139)

n̂hk = |ηk|2fh(−Ẽ1k) + |ξk|2fh(−Ẽ2k) +
1

γ
=[∆̃kd̂

∗
k] .

(140)

Of course, this result is equivalent to the former equations
(130)–(132). The steady-state expressions (138)–(140)
can further be simplified by using definition (134) and
Eqs. (80)–(83). According to Appendix C.2 one finds:

d̂∗k =
∆̃∗k

(ε̃ek + ε̃hk) + 2i γ

[
(n̂ek + n̂hk − 1)

+ iγ sgn(ε̃ek + ε̃hk)
F+

1k

Wk

]
(141)

and

n̂ek + n̂hk − 1 =
|ε̃ek + ε̃hk|

2Wk
F+

1k +

+
1

2

F+
2k − 2

1 +
4|∆̃k|2

(ε̃ek + ε̃hk)2 + (2γ)2

, (142)

n̂ek − n̂hk =
1

2
F−1k +

|ε̃ek + ε̃hk|
2Wk

F−2k . (143)

The quantities F±1k and F±2k are defined by

F±1k = fe(Ẽ1k)− fh(−Ẽ1k)∓ [fe(Ẽ2k)− fh(−Ẽ2k)] ,

(144)

F±2k = fe(Ẽ1k) + fh(−Ẽ1k)± [fe(Ẽ2k) + fh(−Ẽ2k)] .
(145)

Let us look again at the symmetric case ε̃ek = ε̃hk with
charge neutrality µe = µh (compare Sec. IV B). Here,

the quasiparticle energies Ẽ1,2k reduce to

Ẽ1k = −Ẽ2k = sgn(ε̃ek)
Wk

2
, (146)

and F±1k and F±2k to

F+
(1,2)k = 2

[
f(Ẽ1k)∓ f(Ẽ2k)

]
(147)

F−(1,2)k = 0 . (148)
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with

f(E) =
1

1 + eβ[E−(µB−µ)/2]
= fe(E) = fh(E) (149)

and µB = µe + µh = 2µe = 2µh. From the relations
(148) and (143) immediately follows n̂ek = n̂hk, which is
a natural property of the symmetric case with charge
neutrality.

D. Photon condensation

Next, let us study the steady-state expression 〈ψ†q〉 =

〈ψ†q(t→∞)〉 for the photonic expectation value 〈ψ†q(t)〉.
Starting from Eq. (94), we first rewrite

〈ψ†q(t)〉 = 〈ψ̃†q(t)〉ρ̃0
, (150)

where ψ̃†q is the renormalized photon operator [cf.
Eq. (C44)]. The dynamics on the right hand side is gov-

erned by H̃ and the expectation value is formed with ρ̃0.
According to Appendix C.3 an appropriate representa-
tion for ψ̃†q is

ψ̃†q = z̃qψ
†
q +

1√
N

∑
k

ṽkq : e†k+qh
†
−k : , (151)

leading, with Eq. (150), to

〈ψ†q(t)〉 = z̃q〈ψ†q(t)〉ρ̃0

+
1√
N

∑
k

ṽkq 〈: e†k+qh
†
−k : (t)〉ρ̃0

, (152)

where z̃q and ṽkq are the renormalized coefficients. An
equation of motion for the expectation value 〈ψ†q(t)〉ρ̃0

can be derived from the generalized Langevin equa-
tions (C5)

d

dt
ψ†q(t) = iω̃qψ

†
q(t)+ i

√
N Γ̃∗δq,0−κψ†q(t)+Fψq , (153)

from which one finds for q = 0:

d

dt
〈ψ†0(t)〉ρ̃0

= iω0

(
〈ψ†0(t)〉ρ̃0

+

√
N Γ̃∗

ω0

)
− κ〈ψ†0(t)〉ρ̃0

.

(154)

Thereby κ ∼ π
∑

p |Γψqp|2δ(ωϕp) is the damping rate for
cavity photons into the free space due to a nonvanishing
leakage. Moreover, Γ̃∗ is the renormalized field parameter
which accounts for a possible photon condensation [cf.
Eq. (25)]. Using condition (93), Eq. (154) leads to the

steady-state result, 〈ψ†0〉ρ̃0
= 〈ψ†0(t→∞)〉ρ̃0

,

〈ψ†q〉ρ̃0
= −

√
N Γ̃∗

ω̃0 + iκ
δq0 . (155)

Finally, neglecting the fluctuation term being propor-

tional to 〈: e†q+kh
†
−k :〉ρ̃0

on the right hand side of

Eq. (152), the steady-state result for 〈ψ†q〉 becomes

〈ψ†q〉 = −z̃0

√
N Γ̃∗

ω̃0 + iκ
δq0 . (156)

A corresponding expression for nψq = 〈: ψ†q :: ψq :〉 is
found in Appendix C.3.

E. Comparison with previous results

It may be worthwhile to compare our results (135)–
(137) with those obtained by the Yamamoto group [25,
26]. Using a generating functional approach, the follow-
ing equations were derived by these authors:

d

dt
d∗k(t) = i(εHF,e

k + εHF,h
k )d∗k(t)− 2γ(d∗k(t)− d0∗

k )

−i∆HF∗
k (1− nek(t)− nhk(t)) , (157)

d

dt
nek(t) = 2=[∆HF

k d∗k(t)]− 2γ
(
nek(t)− n0

h,k

)
, (158)

d

dt
nhk(t) = 2=[∆HF

k d∗k(t)]− 2γ
(
nhk(t)− n0

h,k

)
. (159)

In Eqs. (157)–(159), the time-independent quantities d0∗
k

and n0
e,k, n

0
h,k on the right hand side are given in an inte-

gral formulation. In principle, the time-dependent quan-
tities d∗k(t), nek(t) and nhk(t) in Eqs. (157)–(159) should
agree with our previous quantities (100)–(102), however,
there are differences. Calculating the PRM quantities
d∗k(t), nek(t) and nhk(t) via Eqs. (105)–(107), fluctuation
processes from Hg and HU will be included to infi-
nite order, while in Eqs. (157)–(159) the interactions Hg
and HU enter only in mean-field approximation. Hence
the latter result can not directly be compared with the
true PRM dynamics of d∗k(t), nek(t) and nhk(t). However,
one might compare equations (157)–(159) with equations

(135)–(137) for the PRM quantities d̂∗k(t), n̂ek(t) and n̂hk(t)
(with hat symbols):

d

dt
d̂∗k(t) = i(ε̃ek + ε̃hk) d̂∗k(t) + i∆̃∗k(1− n̂ek(t)− n̂hk(t))

−2γ
(
d̂∗k(t)− d̂0∗

k

)
, (160)

d

dt
n̂ek(t) = 2=[∆̃kd̂

∗
k(t)]− 2γ

[
n̂ek(t)− n̂0

e,k

]
, (161)

d

dt
n̂h−k(t) = 2=[∆̃kd̂

∗
k(t)]− 2γ

[
n̂h−k(t)− n̂0

h,k

]
, (162)

where

d̂0∗
k =

1

2
ξ∗kη
∗
kF

+
1k , (163)

n̂0
e,k = |ξk|2fe(Ẽ1k) + |ηk|2fe(Ẽ2k) , (164)

n̂0
h,k = |ηk|2fh(−Ẽ1k) + |ξk|2fh(−Ẽ2k) = n̂0

e,k . (165)

Here, the additional fluctuation terms following from
Eqs. (127)–(129) are absent. However there are differ-
ences between Eqs. (157)–(159) and (160)–(162) which
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still remain: The energies ε̃ek, ε̃hk, and ∆̃∗k in (160)–(165)

are renormalized quantities, whereas the energies εHF,e
k ,

εHF,h
k and ∆HF

k from Eqs. (157)–(159) are not. It remains
for us to compare the time-independent quantities d0∗

k ,
n0
e,k, and n0

h,k in Eqs. (157)–(159) with the correspond-

ing quantities d̂0∗
k , n̂0

e,k, and n̂0
h,k in Eqs. (163)–(165).

For this reason let us consider two limiting cases from
Refs. [15, 25, 26]. Thereby, we use slightly modified con-
ditions and restrict ourselves again to the symmetric case
and charge neutrality.

1. min|2Ẽ(1,2)k| ≥ µB − µ

Here min|2Ẽ(1,2)k| is the minimal excitation energy of
electron-hole pairs and the difference µB −µ can be con-
sidered as being responsible for the particle supply from
the pumping baths to the e-h-p system. According to
Eq. (149) the Fermi function f(E) can then be approxi-
mated by

f(E) ' 1

1 + e−βE
. (166)

Using Ẽ2k = −Ẽ1k, f(Ẽ2k) = f(−Ẽ1k) = 1 − f(Ẽ1k)
and Eq. (147) one has:

F+
1k ' 2

[
2f(Ẽ1k)− 1

]
= −2 tanh

βẼ1k

2
, (167)

F+
2k ' 2 . (168)

Hence, with Ẽ(1,2)k = ±sgn(ε̃ek + ε̃hk)Wk/2 and relation
(82), one obtains for Eq. (163)

d̂0∗
k = − ∆̃∗k

2(Wk/2)
tanh

β(Wk/2)

2
, (169)

and similarly

n̂0
e,k = n̂0

h,k =
1

2
− ε̃ek + ε̃hk

2Wk
tanh

β(Wk/2)

2
. (170)

These results agree with the corresponding expressions
from the Japanese group [15, 25, 26].

The same results are also obtained with Eqs. (141)–

(143) for the steady-state expressions of d̂∗k and n̂e,hk :

d̂∗k = − ∆̃∗k
2(Wk/2)

tanh
β(Wk/2)

2
, (171)

n̂ek = n̂hk =
1

2
− ε̃ek + ε̃hk

2Wk
tanh

β(̃Wk/2)

2
, (172)

and moreover (see App. C.3)

〈ψ†qψq〉 = |z̃q|2
N |Γ̃|2

ω̃2
0 + κ2

δq,0 +
1

N

∑
k

|ṽkq|2n̂ek+qn̂
h
−k.

(173)
Note that the damping rate γ does not enter the equa-

tions for d̂∗k and n̂e,hk . Using a mean-field approximation,

in Refs. [15, 25, 26] also a gap equation for the order pa-
rameter ∆k was derived, which was formally equivalent
to a BCS gap equation. Therefore, β = 1/kBT and µ can
be regarded as the inverse temperature and the chemi-
cal potential of the e-h-p system, even though β and µ
were originally introduced as the inverse temperature of
the pumping baths and the oscillation frequency of the
photon and polarization fields. In other words, in case of
vanishing damping κ [see Eq. (173)] the system can be
considered as being in a quasi-equilibrium, because ther-
modynamic variables are defined. Thus, for κ = 0 the
region with min|2Ẽ(1,2)k| ≥ µB − µ is equivalent to the
thermodynamic equilibrium theory of Ref. [30] for the
isolated e-h-p system, apart from the explicit factor eiµt

in Eqs. (13) and (14). For non-vanishing damping κ the
number of cavity photons is only slightly reduced as long
as κ is small compared to the cavity photon frequency
ω̃q=0.

2. µB − µ ≥ min|2Ẽ(1,2)k|

In this case the second term in the exponential of
Eq. (149) dominates, i.e.:

f(E) ' 1

1 + e−(β/2)(µB−µ)
=: f0 , (174)

and

F+
1k ' 0 , F+

2k ' 4f0 . (175)

With Eqs. (163)–(165) one finds for the time-independent
quantities in Eqs. (160)–(162),

d̂0∗
k = 0 , n̂0

e,k = n̂0
h,k = f0 ' 1 ,

(176)

where additionally in the last relation (β/2)(µB−µ)� 1
was used (low-temperature approximation).

The steady-state results for d̂∗k and n̂ek = n̂hk are found
from Eqs. (174)–(175) and (141)–(143):

d̂∗k =
∆̃∗k

(ε̃ek + ε̃hk) + 2iγ
(n̂ek + n̂hk − 1) , (177)

n̂ek+n̂hk − 1 = 2f0 − 1 +
2

γ
=[∆̃kd̂

∗
k] , (178)

from which also follows

n̂ek + n̂hk − 1 =
2f0 − 1

1 +
4|∆̃k|2

(ε̃ek + ε̃hk)2 + 4γ2

. (179)

In the considered regime µB−µ ≥ min|2Ẽ(1,2)k| the e-h-p
system can no longer be perceived as being in a quasi-
equilibrium, solely formed by the isolated e-h-p system.
This can be concluded from relation (179), assuming a
small influence of the numerator (|∆̃|2). Then for low tem-
peratures the right hand side of (179) indicates that electrons
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and holes are strongly excited and are in the high-density
regime. Thus, increasing further the concentration of the to-
tal particle number of the e-h-p system,

nexc =
1

N

[1

2

∑
k

(nek + nhk) +
∑
q

〈ψ†qψq〉
]
, (180)

only the number of cavity photons will mainly increase since
possible electron-hole excitations tend already to be used up.

Cavity photons are also affected by a non-vanishing leak-
age (κ 6= 0) to the external photonic free-space. Then, the
e-h-p system is no longer in an equilibrium situation with the
electronic pumping baths. Therefore, one of the main differ-
ences between the two regimes µB − µ ≤ min|2Ẽ(1,2)k| and

µB −µ ≥ min|2Ẽ(1,2)k| is the relative importance of electron-
hole and photonic excitations. Whereas in the first regime
particle-hole excitations are dominant this is not the case for
the second regime.

As said before, photon excitations are less pronounced in
regime µB−µ ≤ min|2Ẽ(1,2)k|. This means that the system is
less affected by the photon leakage. In contrast, for µB −µ ≥
min|2Ẽ(1,2)k| the system is in a high-density regime and is
strongly affected by the photon leakage, which suggests that
a large degree of non-equilibrium is achieved.

F. Self-consistency of the steady-state solution

Above we have derived the renormalization equations for
the order parameters ∆k,λ and Γλ and found a compact re-
presentation for the exciton-condensation parameter d∗k. The
equations can be numerically solved, provided 〈ψ0〉 and µ
are known. However, these quantities are not yet determined
since Γ̃ in Eq. (156) depends implicitly on 〈ψ0〉 and µ as well as
on the sets of quantities dk and ∆k,λ. In particular, µ is not a
chemical potential, since the total number of particles of the e-
h-p system together with the particle number of the electronic
baths is not fixed due to the leakage of cavity photons into
the free space. To determine µ and 〈ψ0〉 a “way out” has
been discussed in the literature [13]. The starting point is
Eq. (156),

(ω̃0 − iκ) 〈ψ0〉 = −z̃0

√
N Γ̃ , (181)

which is a complex equation due to presence of the damping
rate κ. The final solution for Γ̃ results from the renormaliza-
tion equation (A27):

Γλ−∆λ = Γλ + δΓ
(0)
λ + δΓ

(c)
λ + δΓ

(g)
λ , (182)

where the δΓ
(0)
λ , δΓ

(c)
λ , and δΓ

(g)
λ defined in Eqs. (A3), (A9)

and (A16) become:

δΓ
(0)
λ =

g

N

∑
k

Ak0(λ,∆λ)(εek,λ + εh−k,λ) dk , (183)

δΓ
(c)
λ =

g

N

∑
k

Ak0(λ,∆λ)(1− nek − nh−k)∆k,λ , (184)

δΓ
(g)
λ =

2g2

N
√
N

∑
k

Ak0(λ,∆λ)(1− nek − nh−k)〈ψ0〉 . (185)

The initial value of Γλ is

ΓΛ = Γ̂ = Γ− (g/N)
∑
k

dk (186)

(Γ = 0+). Note that the contribution δΓ
(g)
λ is proportional

to 〈ψ0〉 as expected, whereas δΓ
(0)
λ and δΓ

(c)
λ depend on the

order parameters dk and ∆k,λ. Similarly, from Eqs. (127) and

(130) one concludes that dk is fixed if the order parameters ∆̃k

are known. What remains to be shown is that ∆k,λ is fixed
for given 〈ψ0〉 and dk, which follows from renormalization

equation (73). Thus, putting everything together, Γ̃ can be

considered as an implicit function of 〈ψ0〉 and µ, i.e., Γ̃ =

Γ̃[〈ψ0〉, µ]:

〈ψ0〉√
N

= −z̃0
Γ̃[〈ψ0〉, µ]

ω̃0 − iκ
. (187)

However, the number of coupled equations by (187) is one less

than the number of unknown variables, since 〈ψ0〉 and Γ̃ are
in general complex quantities. This can be seen from equation
(124) for A12

k and A21
k . Since the denominator in Eq. (124) is

complex also A12
k and A21

k will be complex. Assuming 〈ψ0〉 is
complex, Eq. (187) would contain three unknown quantities,
the real and the imaginary parts of 〈ψ0〉 as well as the energy
parameter µ, whereas the complex equation only fixes two of
them. However the number of unknown variables can be re-
duced by fixing the phase of 〈ψ0〉. Taking a phase for which
the imaginary part of 〈ψ0〉 vanishes, the number of coupled
equations becomes equal to the number of unknown variables
and the complex equation (187) only represents two indepen-
dent equations for 〈ψ0〉 and µ:

〈ψ0〉√
N

= − z̃0

ω̃2
0 + κ2

(
ω̃0 <Γ̃− κ=Γ̃

)
, (188)

0 =
z̃0

ω̃2
0 + κ2

(
κ<Γ̃ + ω̃0 =Γ̃

)
, (189)

where Γ̃ = <Γ̃ + i=Γ̃ is complex. From equation (189) one
obtains

=Γ̃ = −(κ/ω̃0)<Γ̃, (190)

which leads for the first equation to

〈ψ0〉√
N

= − z̃0

ω̃0
<Γ̃ . (191)

Note that the last relation agrees with what is known for a
closed system in thermal equilibrium, though it is now valid
also for the general case of an open system. Eqs. (190) and
(191) have to be solved self-consistently for µ and 〈ψ0〉.

G. Limit of vanishing damping rate κ

In this subsection, we study the limit of a vanishing damp-
ing rate κ between the cavity photons and the free space pho-
tons. As stressed before, a finite leakage to external photons
implies that the quantity µ does not act as a common chemical
potential of the total system. The reason is, that photons can
escape from the e-h-p system into the free-photon space. On
the other hand, for vanishing κ thermal equilibrium should
develop. Then µ should become the usual chemical potential
for the remaining system, which is composed of the e-h-p sub-
system and the two electronic baths. In this context, we are
mostly interested in the case of strong damping rate γ for the
coupling rate to the electronic baths.

Analyzing the limit κ → 0, we start from Eq. (190) which

states that the imaginary part of Γ̃ must vanish:

=Γ̃ = 0 . (192)
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Thereby Γ̃ results from the solution of the renormalization
equation (182) for Γλ,

Γλ−∆λ − Γλ = δΓ
(0)
λ + δΓ

(c)
λ + δΓ

(g)
λ , (193)

with renormalization contributions δΓ
(0)
λ , δΓ

(g)
λ , and δΓ

(g)
λ ,

given by Eqs. (183)–(185). One finds for the imaginary parts:

=Γλ−∆λ−=Γλ =
g

N

∑
k

Ak0(λ,∆λ) (194)

×
[
(εek,λ + εhk,λ)=dk − (nek + nhk − 1)=∆k,λ

]
with initial value Γλ=Λ = Γ̂ = Γ− g

N

∑
k dk, (Γ = 0+). Here

we have already exploited that δΓ
(g)
λ is real. In the following

we again neglect all renormalization contributions to dk and
ne,hk from Eqs. (127)–(129), thereby replacing dk and ne,hk by

d̂k and n̂e,hk . Then, according to Eqs. (141) and (142) we
obtain

d̂k =
∆̃ksgn(ε̃ek + ε̃hk)

2Wk
F+

1k

+
1

2

∆̃k

(ε̃ek + ε̃hk)− 2iγ

F+
2k − 2

1 +
4|∆̃k|2

(ε̃ek + ε̃hk)2 + (2γ)2

(195)

and

n̂ek+n̂hk−1 =
|ε̃ek + ε̃hk|

2Wk
F+

1k+
1

2

F+
2k − 2

1 +
4|∆̃k|2

(ε̃ek + ε̃hk)2 + (2γ)2

. (196)

Inserting Eqs. (195) and (196) into Eq. (194) we find

=Γλ−∆λ −=Γλ =
g

N

∑
k

Ak0(λ,∆λ)

×
[
(εek,λ + εh−k,λ)=∆̃k − (ε̃ek + ε̃h−k)=∆k,λ

] sgn(ε̃ek + ε̃h−k)

2Wk
F+

1k

+
g

2N

∑
k

Ak0(λ,∆λ)
[
(εek,λ + εh−k,λ)=

( ∆̃k

(ε̃ek + ε̃h−k)− 2iγ

)
−=∆k,λ

] F+
2k − 2

1 +
4|∆̃k|2

(εek,λ + εh−k,λ)2 + (2γ)2

. (197)

This result can further be simplified. First of all, we neglect
the first term in Eq. (197), which is small. It consists of the
difference of two contributions which are of quite similar char-
acter. In particular, for small λ (almost full renormalization)
the cancellation of the two terms is exact, and for λ = Λ (ini-
tial point) contributions from the renormalization are small.
Thus

=Γλ−∆λ −=Γλ ≈
g

2N

∑
k

Ak0(λ,∆λ)

×
[
(εek,λ + εh−k,λ)=

( ∆̃k

(ε̃ek + ε̃h−k)− 2iγ

)
−=∆k,λ

]
×

F+
2k − 2

1 +
4|∆̃k|2

(εek,λ + εh−k,λ)2 + (2γ)2

. (198)

Next, let us consider the limit of large damping γ, thereby
assuming that the following conditions are fulfilled:

2γ � [εek,λ + εh−k,λ| and 2γ � 2|∆̃k| (199)

for most values of k. The first condition is met easier for a
semimetal than for a semiconductor. As a consequence of the
conditions (199), an expansion of Eq. (198) for large γ gives
to leading order γ−1:

=Γλ−∆λ −=Γλ ≈ −
g

2N

∑
k

Ak0(λ,∆λ)

×
(
=∆k,λ −

εek,λ + εh−k,λ

2γ
<∆̃k

)
(F+

2k − 2) . (200)

Here the term ∼ (1/γ)<∆̃k followed from the first contri-
bution in the squared brackets of Eq. (198) and the de-
nominator of the common factor behind the brackets was
replaced by one. Expanding Eq. (195) to the same order
as Eq. (200), the imaginary part of the initial condition,
ΓΛ = Γ− g

N

∑
k dk (Γ = 0+), becomes for large γ

=ΓΛ = =Γ− g

N

∑
k

(=∆̃k)sgn(ε̃ek + ε̃hk)

2Wk
F+

1k +
<∆̃k

2γ

F+
2k − 2

2
.

(201)
Our aim is to study under which conditions the renormalized
quantity Γ̃ is real so that =Γ̃ = 0 is valid. For this, accord-
ing to Eq. (200), one also has to study the renormalization
of =∆k,λ. As is easily seen, =∆k,λ renormalizes to zero in

dominant order, whereas <∆̃k stays finite. Therefore, in or-
der to arrive at the desired result =Γ̃ = 0, including the less
dominant contribution on the right hand side of Eq. (200),
the common factor (F+

2k−2) must vanish. This condition can
only be met by fixing the value of µ to the chemical potential
µB of the electronic baths, µ = µB , so that F+

2k − 2 = 0.
The remaining equations for <Γλ and <∆k,λ are easily

found from Eqs. (183) and (73), and completely agree with

those of the equilibrium case. Also the quantities d̂k and
n̂ek + n̂hk − 1 for large γ agree with the corresponding equilib-
rium expressions:

d̂k =
∆̃ksgn(ε̃ek + ε̃hk)

2Wk
F+

1k , (202)

n̂ek + n̂hk − 1 =
|ε̃ek + ε̃hk|

2Wk
F+

1k . (203)

To sum up, we have shown that the present extension of
the PRM leads back to the usual thermodynamic equilibrium
approach of Ref. [30]. The equilibrium is mainly of electronic
nature with µ = µB for the case that the following two con-
ditions are fulfilled: (i) the damping κ of cavity photons to
free space photons is zero and (ii) the coupling γ of the e-
h-p subsystem to the electronic baths is sufficiently large in
accordance with Eq. (199). In particular, the second condi-

tion is only fulfilled, when ∆̃k is sufficiently small. However,
as shown in Fig. 4, its photonic part ∆ph may tremendously
increase at larger values of nexc in the case of large detun-
ing d = 3.5, whereas at small detuning d = −0.5 the quantity
∆ph already starts to increase at comparatively small values of
nexc. As discussed in more detail below, this behavior of ∆ph

can be understood as a phase space filling and Pauli block-
ing effect. At small nexc additional excitations are either of
excitonic or polaritonic nature until the electronic bands are
completely filled. Then, for even larger nexc photonic exci-
tations dominate. Note, however, that even for large nexc,
when ∆ph and ∆̃k become large, the total e-h-p subsystem,
together with the electronic reservoirs, has to realize a ther-
modynamic equilibrium state for the case that κ is zero or
sufficiently small.
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V. SINGLE-PARTICLE SPECTRAL FUNCTION

The one-particle spectral function A(k, ω) for the steady
state is defined by the Laplace transform of the time-
dependent electron anti-commutator correlation function in
the limit t→∞:

Ae(k, ω) =
1

π
lim
t→∞

<
∫ ∞

0

dτeiωτ 〈[e†k(t), ek(t+ τ)]+〉

(204)

=
1

π
lim
t→∞

<
∫ ∞

0

dτeiωτ 〈[ẽ†k(t), ẽk(t+ τ)]+〉ρ̃0 .

In the first equation the time dependence is governed by the
original Hamiltonian H, whereas in the second line the dy-
namics is again given by H̃, and also the expectation value is
formed with the transformed density operator ρ̃0. Note that
in Eq. (204) the lower integration limit τ = 0 is a time much
larger than τ0. For that time a steady state has already been
reached, with properties that do not depend on the details of
the initial state. Likewise the two-time correlation function
〈ẽ†q(t)ẽq(t + τ)〉ρ̃0 depends only on the relative time differ-
ence τ and not on t. Thus, the stationary spectrum can be
calculated at any fixed time t. At the end, t is shifted to infin-
ity. Furthermore, ẽ†k is the transformed one-particle operator
(103):

ẽ†k = x̃ke
†
k +

1√
N

∑
q

t̃k−q,qhq−k : ψ†q : (205)

+
1

N

∑
k1k2

α̃k1kk2e
†
k1

: h†k2
hk1+k2−k : .

Let us consider the coherent part of the spectrum, which
results from the first term on the right hand side of Eq. (205):

Ae,coh(k, ω) =
|x̃k|2

π
(206)

× lim
t→∞

<
∫ ∞

0

dτeiωτ 〈[e†k(t), ek(t+ τ)]+〉ρ0 .

Decomposing e†k and ek into eigenmodes C
(†)
1k and C

(†)
2k of H̃S ,

according to Eqs. (78) and (79), Acoh(k, ω) transforms to

Ae,coh(k, ω) =
|x̃k|2

π
lim
t→∞

<
∫ ∞

0

dτeiωτ

×
{
|ξk|2〈[C†1k(t), C1k(t+ τ)]+〉ρ0

+ |ηk|2〈[C†2k(t), C2k(t+ τ)]+〉ρ0

− ξ∗kηk〈[C†1k(t), C2k(t+ τ)]+〉ρ0

− ξkη∗k〈[C†2k(t), C1k(t+ τ)]+〉ρ0

}
. (207)

The τ -dependence will be treated by employing the Mori-
Zwanzig projection formalism described in Appendix C. Us-
ing the fermionic anti-commutator relations we find

〈[C†1k(t), C1k(t+ τ)]+〉ρ0 = e(−iẼ1k−γ)τ , (208)

〈[C†1k(t), C2k(t+ τ)]+〉ρ0 = 0 . (209)

This leads for Acoh(k, ω) to

Ae,coh(k, ω) =
|x̃k|2

π
lim
t→∞

<
∫ ∞

0

dτeiωτ (210)

×
{
|ξk|2e(−iẼ1k−γ)τ + |ηk|2e(−iẼ2k−γ)τ

}
.

Finally, by integrating over τ and taking into account only
the dissipative part of the integral, one finds

Ae,coh(k, ω) =
|x̃k|2

π
(211)

×
{
|ξk|2

γ

(Ẽ1k − ω)2 + γ2
+ |ηk|2

γ

(Ẽ2k − ω)2 + γ2

}
, .

Thus, the spectrum Ae,coh(k, ω) consists of resonances at

the quasiparticle energies Ẽ1k and Ẽ2k with damping γ and
weights which are determined by |ξk|2 and |ηk|2, respectively.
The spectral function Ah,coh(k, ω) for holes can be written in
the form (211) as well, however, with the weights |ξk|2 and
|ηk|2 interchanged. The incoherent part of Ae(k, ω) can be
obtained by help of the second and third term in Eq. (205),
and is expected to lead to a background spectrum for the
coherent part.

VI. STEADY-STATE LUMINESCENCE

The steady-state emission spectrum is obtained from the
Laplace transform of the photon correlation function [33]:

S(q, ω) =
1

π
lim
t→∞

<
∫ ∞

0

dτ eiωτ 〈ψ†q(t)ψq(t+ τ)〉 (212)

or—with the help of relation (94)—by

S(q, ω) =
1

π
lim
t→∞

<
∫ ∞

0

dτ eiωτ 〈ψ̃†q(t)ψ̃q(t+ τ)〉ρ̃0 .

(213)

Again, in Eq. (212), the time dependence is governed by the
original Hamiltonian H, whereas in Eq. (213) the dynamics

is given by the transformed Hamiltonian H̃. Moreover, ψ̃†q
is the transformed photon operator (151), and the expecta-
tion value in Eq. (155) is formed with the transformed initial
density operator ρ̃0. We note that a quite similar photon cor-
relation function B(q, ω) was studied in [30] for thermal equi-
librium. However, in contrast to S(q, ω) the function B(q, ω)
was a response function, that is a photon commutator cor-
relation function. We would like to point out here that the
renormalization equations (B41) and (B36) in Ref. [30] are
not completely correct. The correct equations are given by
the present Eqs. (C41) and (C42).

A. Coherent part

Also the luminescence spectrum consists of two parts. The
coherent part results from the first term on the right hand
side of Eq. (151):

Scoh(q, ω) =
|z̃q|2

π
lim
t→∞

<
∫ ∞

0

dτ eiωτ 〈ψ†q(t)ψq(t+ τ)〉ρ̃0 .

(214)
The time dependence of ψ†q(t) on the right hand side of
Eq. (214) is found from the solution of the equation of motion
(153):

ψ†q(t) = − i
√
N Γ̃∗

iω̃0 − κ
δq,0 +

(
ψ†q +

i
√
N Γ̃∗

iω̃0 − κ
δq,0

)
e(iω̃q−κ)t . (215)
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Substituting (215) into Eq. (214) leads to

Scoh(q, ω) =
N |z̃0|2|Γ̃|2

ω̂2
0 + κ2

δq,0 δ(ω) , (216)

which shows that in the condensed phase a delta-function
peak appears at ω = 0.

B. Incoherent part

The incoherent part of S(q, ω) is given by

Sinc(q, ω) =
1

π
lim
t→∞

<
∫ ∞

0

dτ eiωτ 〈: b†q(t) : : bq(t+ τ) :〉ρ̃0 ,

(217)
where b†q creates an exciton with wave vector q which is mod-
ified by the coefficients ṽkq:

b†q(t) =
1√
N

∑
k

ṽkq (e†k+qh
†
−k)(t) . (218)

Thus

Sinc(q, ω) =
1

Nπ
lim
t→∞

∑
kk′

ṽkqṽ
∗
k′q<

∫ ∞
0

dτ eiωτ

× 〈: (e†k+qh
†
−k)(t) : : (h−k′ek′+q)(t+ τ) :〉ρ̃0 . (219)

In a factorization approximation this simplifies to

Sinc(q, ω) =
1

Nπ
lim
t→∞

∑
k

|ṽkq|2<
∫ ∞

0

dτ eiωτ

× 〈e†k+q(t)ek+q(t+ τ)〉ρ̃0〈h
†
−k(t)h−k(t+ τ)〉ρ̃0 . (220)

Note that expectation values 〈: (e†k+qh
†
−k)(t) :〉ρ̃0 and 〈:

(h†−k′ek′+q)(t + τ) :〉ρ̃0 drop out in Eq. (219) so that only

the pairwise factorization of Eq. (220) survives.
What remains to be done is the τ integration in Eq. (220).

Again, this can best be achieved by using Bogolyubov quasi-
particles in accordance with Eqs. (78) and (79). With

h†−k = η∗kC1k + ξ∗kC2k , (221)

e†k = ξ∗kC
†
1k − η

∗
kC
†
2k , (222)

one finds

〈e†k(t)ek(t+ τ)〉ρ̃0 = |ξk|2〈C†1k(t)C1k(t+ τ)〉ρ̃0

+ |ηk|2〈C†2k(t)C2k(t+ τ)〉ρ̃0

− ηkξ∗k〈C†1k(t)C2k(t+ τ)〉ρ̃0

− η∗kξk〈C†2k(t)C1k(t+ τ)〉ρ̃0 (223)

and

〈h†−k(t)h−k(t+ τ)〉ρ̃0 = |ηk|2〈C1k(t)C†1k(t+ τ)〉ρ̃0

+ |ξk|2〈C2k(t)C†2k(t+ τ)〉ρ̃0

+ η∗kξk〈C1k(t)C†2k(t+ τ)〉ρ̃0

+ ηkξ
∗
k〈C2k(t)C†1k(t+ τ)〉ρ̃0 . (224)

As before, the τ -dependence in Eqs. (223) and (224) is treated
by employing the Mori-Zwanzig projection formalism. From
the corresponding equations of motion one finds

〈e†k(t)ek(t+ τ)〉ρ̃0 = |ξk|2e(−iẼ1k−γ)τ 〈C†1k(t)C1k(t)〉ρ̃0

+ |ηk|2e(−iẼ2k−γ)τ 〈C†2k(t)C2k(t)〉ρ̃0

− ηkξ∗ke(−iẼ2k−γ)τ 〈C†1k(t)C2k(t)〉ρ̃0

− η∗kξke(−iẼ1k−γ)τ 〈C†2k(t)C1k(t)〉ρ̃0 (225)

and

〈h†−k(t)h−k(t+ τ)〉ρ̃0 = |ηk|2e(iẼ1k−γ)τ 〈C1k(t)C†1k(t)〉ρ̃0

+ |ξk|2e(iẼ2k−γ)τ 〈C2k(t)C†2k(t)〉ρ̃0

+ η∗kξke
(iẼ2k−γ)τ 〈C1k(t)C†2k(t)〉ρ̃0

+ ηkξ
∗
ke

(iẼ1k−γ)τ 〈C2k(t)C†1k(t)〉ρ̃0 (226)

with γ being the damping rate of the electrons and holes of
the e-h-p system due to the coupling to the fermionic baths.
Combining all parts of the correlation functions with the same
τ -dependence one obtains:

〈e†k(t)ek(t+ τ)〉ρ̃0 = ae1k(t) e(−iẼ1k−γ)τ + ae2k(t) e(−iẼ2k−γ)τ

(227)
and

〈h†−k(t)h−k(t+ τ)〉ρ̃0 = ah1k(t)e(iẼ1k−γ)τ + ah2k(t)e(iẼ2k−γ)τ .
(228)

Here, we have introduced coefficients

ae1k(t) = |ξk|2A11
k (t)− η∗kξkA21

k (t) , (229)

ae2k(t) = |ηk|2A22
k (t)− ηkξ∗kA12

k (t) , (230)

ah1k(t) = |ηk|2(1−A11
k (t))− ηkξ∗kA12

k (t) , (231)

ah2k(t) = |ξk|2(1−A22
k (t))− η∗kξkA21

k (t) , (232)

and Anmk (t) = 〈(C†nkCmk)(t)〉ρ̃0 [compare Eq. (116)]. Finally,
inserting the relations (227) and (228) into Eq. (220) and
performing the integration over τ one finds

Sinc(q, ω) =
1

Nπ
<
∑
k

|v̂kq|2 (233)

×
[ 2γ

(Ẽ1k+q − Ẽ1k − ω)2 + (2γ)2
ae1k+q(t) ah1k(t)

+
2γ

(Ẽ2k+q − Ẽ2k − ω)2 + (2γ)2
ae2k+q(t) ah2k(t)

+
2γ

(Ẽ1k+q − Ẽ2k − ω)2 + (2γ)2
ae1k+q(t) ah2k(t)

+
2γ

(Ẽ2k+q − Ẽ1k − ω)2 + (2γ)2
ae2k+q(t) ah1k(t)

]
,

where again only the dissipative part of the integral was con-
sidered. In Eq. (233) the coefficients ae,h1k (t) and ae,h2k (t) still
depend on time t. The result for the steady state is obtained
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in the limit t→∞. Thus,

Sinc(q, ω) =
1

Nπ

∑
k

|ṽkq|2 (234)

×
[ 2γ

(Ẽ1k+q − Ẽ1k − ω)2 + (2γ)2
ae1k+q a

h
1k

+
2γ

(Ẽ2k+q − Ẽ2k − ω)2 + (2γ)2
ae2k+q a

h
2k

+
2γ

(Ẽ1k+q − Ẽ2k − ω)2 + (2γ)2
ae1k+q a

h
2k

+
2γ

(Ẽ2k+q − Ẽ1k − ω)2 + (2γ)2
ae2k+q a

h
1k

]
.

Choosing the coefficients ae(1,2)k and ah(1,2)k to be real is com-
patible with Eqs. (227) and (228). We obtain:

ae1k+q = |ξk+q|2A11
k+q −<

(
η∗k+qξk+qA

21
k+q

)
, (235)

ae2k+q = |ηk+q|2A22
k+q −<

(
ηk+qξ

∗
k+qA

12
k+q

)
, (236)

ah1k = |ηk|2(1−A11
k )−<

(
ηkξ
∗
kA

12
k

)
, (237)

ah2k = |ξk|2(1−A22
k )−<

(
η∗kξkA

21
k

)
(238)

with Anmk = Anmk (t→∞)

A11
k = |ξk|2fe(Ẽ1k) + |ηk|2

(
1− fh(−Ẽ1k)

)
, (239)

A22
k = |ηk|2 fe(Ẽ2k) + |ξk|2

(
1− fh(−Ẽ2k)

)
, (240)

and

<
(
ηkξ
∗
kA

12
k

)
=

−2γ2 |ξk|2|ηk|2

(Ẽ1k − Ẽ2k)2 + (2γ)2
(241)

×
(
fe(Ẽ1k) + fe(Ẽ2k) + fh(−Ẽ1k) + fh(−Ẽ2k)− 2

)
with A21

k = (A12
k )∗. Obviously, the denominators of Eq. (234)

describe the frequency dependence of Sinc(q, ω). It is caused
by transitions between energy levels of the quasiparticle
Hamiltonian Ĥ. Whereas the first two excitations in (234)
are due to transitions within the same quasiparticle bands,
Ẽ1k+q → Ẽ1k and Ẽ2k+q → Ẽ2k, the last two excitations
result from transitions between the two bands. The factors
ae(1,2)k+q and ah(1,2)k in (234) determine the weight of the tran-
sitions. Note that all transitions are broadened by 2γ, i.e.,
twice the damping rate γ of single electrons or holes into their
respective baths. In particular, for the case q = 0 one finds
two quasi-elastic excitations around ω = 0 with a broadening
of 2γ as well.

VII. NUMERICAL RESULTS

Evaluating the theory developed so far, we assume, for
simplicity, εek = εhk and charge neutrality µe = µh. We
then self-consistently solve the set of renormalization equa-
tions (A23)–(A27), (B3)–(B8), and (C41)–(C42), together
with Eqs. (127)–(129), and (156) for the expectation values,
in momentum space (on a grid with N = 160 lattice sites),
for a one-dimensional system. Convergence is assumed to be
achieved when the relative error of all quantities is less than
10−10.

In the numerical work, we fix the interaction parameters
g = 0.2, U = 2.0, the zero-point cavity photon frequency
ωc = 0.5, and consider a finite but very low temperature

T = 0.001. All energies will be measured in units of the
particle transfer amplitude t and the wave vectors in units of
the lattice constant a, where we take as typical values t ' 2eV
and a ' 5Å, yielding c ' 0.4 c0 for the speed of light of the
microcavity (c0 is the speed of light in vacuum). We found
that the physical properties only slightly depend on the actual
value of c [30].

Since the coupling between electrons, holes and photons is
most effective in case the excitation energy of an electron-hole
pair (exciton) matches a photonic excitation, we introduce,
for the following discussion, the so-called detuning

d = ωc − Eg , (242)

where Eg denotes the minimum distance (gap) between the
bare electron and hole bands [30]. A positive (negative) Eg
indicates a semiconducting (semimetallic) setting.

A. Expectation values

We will start by examining the relation between µ and µB .
Remember that µe = µh is the common chemical potential of
both electronic baths, a parameter that is fixed from outside.
The quantity µ, on the other side, gets a physical meaning
in (quasi-) equilibrium only, where it becomes the chemical
potential of the system. Therefore a difference between µ and
µB can be taken as a measure for an increased importance
of cavity photons (compare Sec. IV E). Figure 1 gives µ as
a function of µB at fixed damping rate κ (left panels) and γ
(right panels), describing the coupling of the system to the
photonic and electronic baths, respectively. The upper and
lower panels of Fig. 1 reflect large and small detuning, where
d = 3.5, Eg = −3 and d = −0.5, Eg = 1, respectively. In
the former case, we observe a linear dependence of µ on µB
over almost the whole energy range of the electron band (bare
bandwidth 4t); the saturation when µ approaches the upper
band edge originates from electron phase space filling. In the
latter case, µB has to overcome the band gap Eg first, there-
after µ grows monotonously. If the self-consistently calculated
µ reaches ωc, any further excitation is photonic in nature in
both cases. This is the range where µ notably deviates from
µB and non-equilibrium effects become important. These are
more prominent for small detuning and less photon leakage.

Figure 2 directly relates µ to the total number nexc of ex-
citations in the electron-hole-photon system, which is given
by Eq. (180). At small-to-moderate excitation densities and
large (small) detuning, the excitations are excitons (polari-
tons) for the most part [30]. Here, the system is close to
(quasi-) equlibrium and µ takes over the role of a true chemi-
cal potential. When nexc increases, the photons play a major
role, and the system moves away from the former equilibrium
configuration, which was described by µ = µB . This is why
the curves µ(nexc) flatten for large nexc. Of course, above
nexc = 1 any further excitation has to be photonic. Again,
for large detuning, the overall behavior of µ(nexc) only weakly
depends on the damping/coupling parameters κ and γ.

We now aim at a characterization of the possible condensed
phases of our e-h-p system. In Fig. 3 we show the excitonic
order parameter,

∆X = −(U/N)
∑
k

dk , (243)
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FIG. 1. (Color online) Parameter µ characterizing the steady
state description (13)–(14), where µ becomes the chemical
potential in equlibrium. Pictured here is µ as a function of
µB for different values of γ at fixed κ = 10−5 (left panels)
and, likewise, for different values of κ at fixed γ = 0.1 (right
panels). The two upper panels refer to detuning d = 3.5, the
lower panels refer to d = −0.5; note the different scales of the
ordinates.
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FIG. 2. (Color online) Steady-state parameter µ as a function
of the total density of excitations in the e-h-p microcavity
system, nexc from (180). Shown are results for d = 3.5 (top)
and d = −0.5 (bottom) at a fixed value of κ (left) and γ
(right).

in dependence on the density of excitations. Figure 4 gives
the corresponding photonic order parameter

∆ph = −(g/
√
N)〈ψ0〉 (244)

[compare Eq. (37)]. At large detuning (d = 3.5; upper pan-
els), valence and conduction bands will penetrate each other
and—for the considered values of the Coulomb interaction
between electrons and holes (U = 2) and exciton-photon cou-
pling (g = 0.2)—a gapful renormalized band structure de-
velops, just as for a BCS-type excitonic insulator state [28].
Here, the condensate formed at low and intermediate excita-
tion densities is mainly triggered by the Coulomb attraction
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FIG. 3. (Color online) Excitonic order parameter ∆X

[see Eq. (243)], reflecting the exciton contribution to the con-
densate in the steady state. Depicted are the real parts (solid
lines) and imaginary parts (dashed lines) of ∆X as a function
of nexc for large (top) and small (bottom) detuning at fixed
κ (left) and γ (right).
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FIG. 4. (Color online) Photonic order parameter ∆ph

[see Eq. (243)], reflecting the photon contribution to the con-
densate in the steady state. Here, ∆ph is given as a function
of nexc for d = 3.5 (top) and d = −0.5 (bottom) at fixed
κ = 10−5 (left) and γ = 0.1 (right).

between electrons and holes and therefore is predominantly
an excitonic one; cf. the vanishing value of ∆ph in Fig. 4. If
we would have strengthened the Coulomb interaction at fixed
nexc, we would be able to observe a BCS-BEC crossover in
the excitonic condendate [9, 34]. Increasing the density of
excitation nexc the location of the correlation-induced gap is
shifted to larger k values, and phase-space and Fermi-surface
effects become increasingly important. This is indicated by
the downturn of <∆X . At still larger values of nexc, photonic
excitations come into play more and more. As a consequence,
the condensate turns from excitonic to polaritonic, and finally
to a purely photonic one (lasing regime [26]). For small de-
tuning (d = −0.5; lower panels), where the system is in the
semiconducting regime from the very beginning, both exci-
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FIG. 5. (Color online) Electron-hole pairing amplitude dk
[see Eq.(33)], indicating exciton condensation. Shown is an
intensity plot of its real part in the momentum-density plane
for semimetallic (d = 3.5; left panels) and semiconducting
(d = −0.5; right panels) situations.

tonic and photonic order parameters are finite, even at small
excitation densities, which can be taken as a clear signature
of a strong coupling between the light and matter degrees of
freedom. As a result, a BEC of polaritons forms. Again the
photons are dominant at large nexc (especially in the lasing
regime). Obviously the influence of the bath degrees of free-
dom on the results is more pronounced for smaller (larger)
values of γ (κ). This is in accord with the analytical results
of Sec. IV G, indicating that an equilibrium description is
appropriate in the limit of large (vanishing) γ (κ). When γ
gets smaller, we found self-consistent solutions of the renor-
malization equations in a smaller range of nexc only. Note
that the excitonic order parameter receives a finite imaginary
part only for sufficiently large values of κ, almost irrespective
of γ.

Figures 5, 6, and 7 show the wave-vector resolved,
excitation-density dependent intensity of the real and imagi-
nary parts of the electron-hole pairing amplitude dk and the
photon density expectation value 〈ψ†qψq〉. Not surprisingly,
the results for small photon leakage κ and relatively large cou-
pling to the electronic baths (upper panels) are more or less
the same as in equilibrium [30]. In both the semimetallic (left
panels) and semiconducting (right panels) regimes the ampli-
tude for electron-hole pairing is largest at k = 0 if nexc → 0.
Increasing the excitation density at large detuning, the max-
imum is shifted to larger k-values in the course of exciton
formation, respecting the band structure, phase space filling
and Pauli blocking, until, when µ approaches ωc = 0.5 near
nexc ' 2/3, the photon field severely interferes. From this

FIG. 6. (Color online) Exciton pairing amplitude dk. Shown
is the intensity plot of its imaginary part in the momentum-
density plane for d = 3.5 (left) and d = −0.5 (right).

FIG. 7. (Color online) Intensity of the photon field 〈ψ†qψq〉 in
the momentum-density plane for detunings d = 3.5 (left) and
d = −0.5 (right).
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FIG. 8. (Color online) Electron single-particle spectrum in
the steady state of the considered e-h-p microcavity system.
The quasiparticle band dispersion clearly appears in the inten-
sity plot of the coherent part of the fully renormalized spectral
function, Ae,coh(k, ω) given by Eq. (211). Results are given
for typical semimetallic (d = 3.5, left) and semiconducting
(d = −0.5, right) situations. Here, the excitation density
nexc = 0.8. Note that the frequency is measured from µ.

moment, the real (imaginary) part of the pairing amplitude
is substantially reduced (enhanced) and the photon density
becomes finite. Clearly, in view of the above, this effect gets
stronger the smaller γ (see middle panels) or the larger κ will
be (see lower panels). For nexc & 2/3 the pairing amplitude dk
is enhanced for almost all k- values, with the exception of the
momenta (energies) where the photons interfere. Here, the
system is more or less characterized by its large photon loss
in the environment, whereby the leakage strengthens at larger
κ (see lower left panels). At even greater nexc one expects to
enter the lasing regime [26]. For small detuning, exciton for-
mation is intimately related to electron-hole excitation across
the bare band gap, i.e., the coupling to the photons affects
the properties of the system from the very beginning and, as
a consequence, a broad maximum in dk develops when nexc
increases. The strong signatures emerging in the imaginary
part of dk can be attributed to polariton formation. As a
matter of course the maximum intensity of the photon field is
always at q = 0, but the abrupt increase of the photon density
changes to larger excitation densities for larger detuning.

FIG. 9. (Color online) Steady-state luminescence of the e-h-p
microcavity system under consideration. Shown is an inten-
sity plot of its incoherent part, Sinc(q, ω) given by Eq. (234),
at nexc = 0.8, for d = 3.5 (left) and d = −0.5 (right).

B. Spectral properties

We now consider selected spectral quantities characteriz-
ing the physical properties of the e-h-p system if it is cou-
pled to electronic and photonic baths. Thereby, we first ex-
amine how the correlations and fluctuations resulting from
the Coulomb and light-matter interactions will renormalize
the band structure. Of course, this band structure has to
be calculated in a self-consistent way for a given excitation
density since the electron and hole contributions to the spec-
tral function are interrelated in the PRM scheme. Hereafter
we consider nexc = 0.8. The quasiparticle band dispersion
shows up in the coherent part of the single-particle spec-
trum, Ae,coh(k, ω) in Fig. 8, which probes both the occupied
and unoccupied states as it is defined via the anticommu-
tator (Green) function in Eq. (207). As briefly mentioned
already above, at large detuning the bare bands interpen-
etrate and the electron-hole Coulomb attraction favors the
formation of a macroscopic quantum-coherent excitonic insu-
lator state, in formal analogy to the occurrence of the BCS-
type superconducting phase. This becomes evident by look-
ing at the quasiparticle bands shown in Fig. 8 left panels):
Here the (correlation induced) band gaps open at finite mo-
menta (around kF ), where an almost complete backfolding of
the bands is observed. At the considered large nexc the gap
appears at the momenta where the real (imaginary) parts
of the electron-hole pairing amplitude is substantially sup-
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pressed (enhanced), cf. Figs. 5 and 6, which indicates the
importance of photons in both the polartion BEC and las-
ing phases. A so-called ”lasing gap”, where (light-induced)
electron-hole pairs will be formed around the laser frequency
(momentum of the kinetic hole burning), recently has been
predicted theoretically [26], but has not been observed exper-
imentally so far. For small detuning the renormalized band
structure is different in nature (right panels). In principle,
the quasiparticle bands retain their (bare) semiconductor-like
arrangement, but the particle-photon coupling causes a no-
ticeable flattening (plateau structure) of the conduction band
bottom and valence band top, thereby enlarging the single-
particle spectral gap. The plateau structure can be attributed
to a polariton (photonic) BEC. For both detunings, a smaller
value of γ will reduce the spreading of the coherent signal
while it enhances its intensity (see middle panels). A larger
value of κ, keeping γ at fixed, will reduce the magnitude of
the gap in the renormalized band structure. In this case the
leakage to the external photon vacuum is enlarged, leading to
a weakening of the excitonic order parameter ∆̃k and thus to
a weakening of the quasiparticle band gap.

Finally, we will look at the steady-sate luminescence of
the e-h-p system, considering the same parameters as for the
single-particle spectra. Clearly the coherent part of the lumi-
nescence spectrum is the dominant one, however, Scoh(q, ω)
has neither a nontrivial q- nor a nontrivial ω-dependence [see
Eq. (216)]. Therefore, in Fig. 9, we only display the behav-
ior of the incoherent part of the luminescence, Sinc(q, ω),
which is characterized by particle-hole excitations accord-
ing to Eq. (218). The results shown in Fig. 9 include all
possible annihilation and creation processes of electron-hole
pairs inside and in-between the fully renormalized quasiparti-
cle bands Ẽ(1,2)k without any additional photons involved.
From Eq. (235) it is evident that the interband contribu-

tions between the two bands Ẽ1k and Ẽ2k are the dominant
ones, caused by terms being proportional to |ξk|2|ξk+q|2 and
|ξk+q|2|ξk|2 in the prefactors of the last two contributions.
Special attention deserves the significant flattening of the ex-
citonic response at small momentum transfer for small detun-
ing and κ = 10−5, which is due to a strong light-matter in-
teraction and indicates the formation of an exciton-polariton
condensate.

VIII. SUMMARY AND CONCLUSIONS

The projector-based renormalization method (PRM) is a
reliable and powerful analytical technique that has already
been successfully applied to a wide range of equilibrium solid-
state physics problems in the past; examples are magnetism,
superconductivity, charge density wave formation, phonon-
softening, or valence and metal-insulator transitions. The
main purpose of this work was to provide a consistent exten-
sion of the PRM for dealing with more general non-equilibrium
situations in open systems, as they appear when quantum
systems are coupled to external reservoirs. A prime example
for this is the light-matter coupling in semiconductor micro-
cavities, where electrons and holes—for example, after being
excited with light—can form excitonic bound states due to
their Coulomb interaction, or can recombine into photons,
when cavity photons can escape into the vacuum (e.g., be-
cause of mirrors with imperfect reflectivity). Furthermore, in
such systems coherent quantum condensates may arise, re-

alized as BCS or BEC equilibrium states, but also manifest
nonequilibrium (lasing-like) phases. The PRM framework, we
developed can treat, if combined with the Mori-Zwanzig pro-
jection technique, these equilibrium and nonequilibrium situ-
ations in a rather unified way. The steady-state properties of
the system are thereby obtained from the long-term behavior
of appropriate expectation values and, equally important, the
many-body correlations and fluctuations processes are taken
into account beyond mean-field in the whole range of excita-
tion densities. Besides expectation values also spectral prop-
erties can be evaluated in the steady state. From a theoretical
point of view, this ensures diverse future application possibil-
ities of the proposed approach.

Other examples, where the newly developed PRM approach
might be applied, coming from the very topical and promis-
ing field of ultracold atomic physics [35]. In these systems
particles (atoms, molecules) or even BECs are loaded into
optical lattices created by dynamic cavity fields and are stud-
ied in connection with different ordering phenomena, quan-
tum phase transitions, superradiance phase transitions, driv-
ing and dissipation [36–41]. Here the particles in a quantum
many-body correlated phase of matter strongly influence the
properties of light and vice versa, whereby the tunable in-
terplay between rather short-ranged direct particle-particle
interaction and long-range interaction mediated by the cou-
pling to the optical cavity mode is of particular importance.
Then in particular the quantum properties of light scattered
from the emergent structured cold-atom phases will require
a non-equilibrium or at least steady-state description [42].
The Hamiltonians being normally discussed in this context
are extended Bose-Hubbard-type models supplemented by an
atom-field interaction part or Dicke-type models, and take
into account dissipation due to photon leakage (coupling to
reservoirs). The proposed PRM, adjusted correspondingly, is
definitely suitable for treating such models.

In this paper we considered a rather generic open model
system consisting of interacting electrons, holes and cavity
photons and their corresponding reservoirs. The focus was on
exciton and polariton formation, and their possible condensa-
tion in the course of spontaneous breaking demonstrated by
nonvanishing excitonic and photonic order parameters. In the
steady state, the nature of the condensate changes from an ex-
citon to a polariton and finally to a photon dominated ground-
state when the density of excitations increases. Thereby a
finite expectation value of the photonic field operator is in-
trinsically connected with a finite imaginary part of the exci-
tonic order parameter function and, from a physical perspec-
tive, with photon loss. Having assumed an electron/hole band
symmetric case and charge neutrality, the difference between
the self-consistently determined quantity µ (which takes over
the role of a true chemical potential of the system in ther-
mal equilibrium only) and the sum of the chemical poten-
tials of the electron and hole baths µB can be used in order
to quantify nonequilibrium effects. For small-to-intermediate
excitation densities and large detuning (semimetallic situa-
tion) Fermi-surface and Pauli- blocking effects are important
and the condensate is reminiscent of the BCS-type excitonic
insulator phase, whereas for small detuning (semiconducting
situation) the condensate typifies a Bose-Einstein condensate
of preformed electron-hole pairs (Excitons). Note that if we
would have increased the Coulomb interaction at fixed exci-
tation density we could realize a BCS-BEC crossover in the
excitonic condensate due to the growing Hartree shift between
valence and conduction bands. In any case the fully renormal-
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ized band dispersions were obtained from the coherent part
of the single-particle spectral function and show the opening
of the band gaps and significant differences between large and
small detuning situations, such as a strong band backfolding
and a pronounced band flattening of the valence (conduc-
tion) band top (bottom) in the former and latter case, re-
spectively. As soon as we enter the regime where the photons
and therefore nonequilibrium effects play an important role,
our results will noticeably depend on the parameters γ and κ
parametrizing respectively the couplings to the electron/hole
and photon reservoirs. In this context we have shown that the
present steady-state approach cannot be reduced to the case
of a closed electron-hole-photon system simply by setting γ
and κ to zero; instead one gets a description of thermal equi-
librium in the limit of large γ. On the other hand, the photon
leakage/loss strengthens at larger values of κ.

It might make sense to emphasize once more the key find-
ings of the nonequilibrium effects of the steady state and to
compare our results with previous results for the thermal equi-
librium situation from Ref. [30]: (i) At small-to-moderate ex-
citation densities nexc the e-h-p subsystem is close to thermal
equilibrium. In particular, for the largest used value γ = 1 of
the coupling of cavity electrons and holes to their respective
baths, the results of Fig. 1 - Fig. 4 agree very well with those
from Ref. [30]. But also for smaller γ (and the largest de-
tuning value d = 3.5) the e-h-p subsystem and the electronic
baths stay in a common (quasi-) equilibrium. Note that the
linear slope with µ = µB in Fig. 1 stands alone for an in-
crease of electrons and holes, whereas the following flattening
of µ(µB) is a Pauli-blocking effect after all quasiparticle states
are already occupied by electrons and holes. Any further in-
crease of nexc or µB is solely governed by an increase of cav-
ity photons. (ii) Increasing nexc further the number of cavity
photons increases. Thereby, for a sufficient large number of
cavity photons they become affected by their coupling κ to
the external free photons, which leads to a loss of cavity pho-
tons. This loss is intrinsically connected to the appearance
of finite imaginary parts of the excitonic order parameters in
Fig. 3 or Fig. 6, in particular for larger values of κ. For the
case of small detuning d = −0.5 in Fig. 3 or Fig. 6 this effect
is more pronounced already at small nexc since in the semi-
conducting case photons are also present already at smaller
excitation densities nexc. The coupling of cavity photons to
free space photons affects the properties of the system from
the very beginning. To summarize, nonlinear effects become
important whenever a sufficiently large number of cavity pho-
tons is present. Thereby, the coupling κ to external photons
plays an important role but also the detuning of the system
and less important the value of the coupling γ.

The limitations of the present theoretical approach are: (i)
The initial density matrix ρ0 was assumed to be factorizable
into a part ρS for the subsystem HS and into a reservoir den-
sity ρR, ρ0 = ρSρR. Thereby ρS was assumed to describe ther-
mal equilibrium for HS, and ρR should be infinitely large so
that it is not changed by renormalization effects. (ii) The in-
teractions H1 of the subsystem HS was assumed to be ‘small’
and was treated in the renormalization equations in perturba-
tion theory. The renormalization was only done in small steps
∆λ, so that extreme high renormalization processes are taken
into account in the fully renormalized quantities. Therefore,
the renormalization method is usually valid for parameters of
H1 which are of the same order as those of H0, i.e. far beyond
usual perturbation theory. (iii) Finally, the influence of the
reservoirs were taken into account in perturbation theory up

to second order in the interactionHSR between the subsystem
HS and the reservoirs HR.

Although we exclusively focused on the exciton-polariton
problem in this contribution, the extended PRM, bridging
equilibrium and steady state descriptions, can be used to
tackle other strongly open/driven quantum model systems
with strong correlations, which opens opens a new avenue
for exploring many-body effects in non-equilibrium situations,
i.e., for ultracold atoms in coupled to radiation fields. Work
along this line is in progress.
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Appendix A: Renormalization of Hλ

The renormalization equations for the λ-dependent param-
eters of Hλ will be derived from Eq. (43) which transforms
Hλ to Hλ−∆λ. For sufficiently small renormalization steps
∆λ, when the expansion in g and U can be limited to O(g2)
and O(U2), we have

HS,λ−∆λ = H0,λ +Hc,λ +H1,λ

+ [Xλ,∆λ,H0,λ +Hc,λ +H1,λ]

+ · · · , (A1)

where the representation (60) for HS,λ has been used. Renor-
malization contributions arise from the three commutators on
the right hand side which must be evaluated explicitly. Con-
tributions of order O(X2

λ,∆λ) and higher will be neglected.
From the first commutator [Xλ,∆λ,H0,λ] one finds renormal-
ization contributions to ∆k,λ and Γλ. They read according to
Sec. III B:

δ∆
(0)
k,λ = − g√

N
Ak0(λ,∆λ)ω0,λ〈ψ0〉 (A2)

−U
N

∑
k1

Bk1k,−k1,−k(λ,∆λ)(εek1,λ + εh−k1,λ) dk1 ,

δΓ
(0)
λ =

g

N

∑
k

Ak0(λ,∆λ)(εek,λ + εh−k,λ) dk , (A3)

where we have used expressions (65)-(67) for the generator
Xλ,∆λ

Xλ,∆λ = Xg
λ,∆λ +XU

λ,∆λ = −X†λ,∆λ (A4)

with

Xg
λ,∆λ = − g√

N

∑
kq

Akq(λ,∆λ)
[

: e†k+qh
†
−kψq : −H.c.

]
,

(A5)

XU
λ,∆λ = −U

N

∑
k1k2k3

Bk1k2;k3,k1+k3−k2(λ,∆λ)

× : e†k1
ek2 h

†
k3
hk1+k3−k2 : . (A6)

Note that both parts Xg
λ,∆λ and XU

λ,∆λ contribute to δ∆
(0)
k,λ,

whereas only Xg
λ,∆λ contributes to δΓ

(0)
λ . For the second com-

mutator [Xλ,∆λ,Hc,λ] one finds:

[Xg
λ,∆λ,Hc,λ] =

g√
N

∑
k

(
Ak0(λ,∆λ)∆k,λ

× (1− nek − nh−k)ψ†0 + H.c.
)

+
g√
N

∑
k

(
Ak0(λ,∆λ)∆k,λ〈ψ†0〉

× (1− e†kek − h
†
−kh−k) + H.c.

)
− gΓλ

∑
k

(
Ak0(λ,∆λ) e†kh

†
−k + H.c.

)
, (A7)

[XU
λ,∆λ,Hc,λ] = −U

N

∑
kk1

[
Bk1,k,−k1,−k(λ,∆λ) ∆k,λ

×
(
d∗k1

(1− e†kek − h
†
−kh−k)

+ (1− nek − nh−k) e†k1
h†−k1

)
+ H.c.

]
(A8)

(omitting irrelevant constants), where again only renormal-
ization contributions of the operator structure of HS,λ are
retained. We point out that the contributions in Eqs. (A7)
and (A8) which renormalize εek and εh−k are of second order
in the order parameters; they should be small and will be
neglected. The remaining contributions renormalize Γλ and
∆k,λ:

δΓ
(c)
λ =

g

N

∑
k

Ak0(λ,∆λ)∆k,λ(1− nek − nh−k), (A9)

δ∆
(c)
k,λ = −gΓλAk0(λ,∆λ)

−U
N

∑
k1

Bk,k1,−k,−k1(λ,∆λ) ∆k1,λ

×(1− nek1
− nh−k1

) . (A10)

Next we look at the last commutator [Xλ,∆λ,H1,λ] in
Eq. (A1). Neglecting off-diagonal commutators we first ob-
tain,

[Xg
λ,∆λ,Hg,λ] =

2g2

N

∑
kq

Ak−q,q(λ,∆λ)(nψq + nhq−k) e†kek

+
2g2

N

∑
kq

Akq(λ,∆λ)(nψq + neq+k)h†−kh−k

− 2g2

N

∑
kq

Akq(λ,∆λ)(1− nek+q − nh−k)

×
(
ψ†qψq − δq,0(〈ψ†0〉ψ0 − 〈ψ0〉ψ†0)

)
, (A11)

where we have introduced the following expectation value for
the photon fluctuations:

nψq = 〈ψ†qψq〉 − δq,0〈ψ†0〉〈ψ0〉 . (A12)

Eq. (A11) leads to renormalization contributions of εek,λ,

εh−k,λ, ωq,λ, and Γλ:

δε
e(g)
k,λ =

2g2

N

∑
q

Ak−q,q(λ,∆λ)(nψq + nhq−k) , (A13)

δε
h(g)
kλ

=
2g2

N

∑
q

Akq(λ,∆λ)(nψq + neq+k) , (A14)

δω
(g)
q,λ = −2g2

N

∑
k

Akq(λ,∆λ)(1− nek+q − nh−k) , (A15)

δΓ
(g)
λ =

2g2

N
√
N

∑
k

Ak0(λ,∆λ)(1− nek − nh−k)〈ψ0〉 . (A16)

The evaluation of the second commutator [XU
λ,∆λ,HU,λ] to

[Xλ,∆λ,H1,λ] is more evolved. Our starting point is

[XU
λ,∆λ,HU,λ] =

U2

N2

∑
k1k2q

k′1k′2q′

Γk1,k1−q;k2,k2+q

k′1,k
′
1−q′;k′2,k

′
2+q′(λ,∆λ)

×
[

: e†k1
ek1−qh

†
k2
hk2+q :, h†

k′2+q′hk′2
e†
k′1−q′ek′1 :

]
, (A17)

where we have introduced

Γk1,k1−q,k2,k2+q

k′1,k
′
1−q′,k′2,k2+q′(λ,∆λ) (A18)

=
1

2

[
Bk′1,k

′
1−q′,k′2,k

′
2+q′(λ,∆λ) Θk1,k1−q,k2,k2+q,λ

+Bk1,k1−q,k2,k2+q(λ,∆λ) Θk′1,k
′
1−q′,k′2,k

′
2+q′,λ

]
. (A19)
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We first extract the part of the commutator (A17) that renor-
malizes the electronic one-particle energies. It reads

U2

N2

∑
k1k2q

∑
k′1k
′
2q
′

Γk1,k1−q;k2,k2+q

k′1,k
′
1−q′;k′2,k

′
2+q′(λ,∆λ)

×
[
δk2+q,k′2+q : e†k1

ek1−q : h†k2
hk′2

: e†
k′1−q′ek′1 :

−δk2,k
′
2

: e†k1
ek1−q : h†

k′2+q′hk2+q : e†
k′1−q′ek′1 :

+δk1−q,k′1−q′ : h†
k′2+q′hk′2

: e†k1
ek′1 : h†k2

hk2+q :

−δk1,k
′
1

: h†
k′2+q′hk′2

: e†
k′1−q′ek1−q : h†k2

hk2+q :
]
.

From this, by truncation, we extract those contributions
which are proportional to e†kek or h†−kh−k and arrive at the

renormalization contributions to εek and εhk:

δε
e(U)
k,λ =

U2

N2

∑
k2q

(
Bk,k−q;k2,k2+q(λ,∆λ)

×
[
(nhk2

− nhk2+q)(1− nek−q) + nhk+q(1− nhk2
)

−Bk+q,k;k2,k2+q(λ,∆λ)

×
[
(nhk2

− nhk2+q)nek+q + nhk+q(1− nhk2
)
])
, (A20)

δε
h(U)
k,λ =

U2

N2

∑
k1q

(
Bk1,k1−q;k−q,k(λ,∆λ)

×
[
(nek1

− nek1−q)(1− nhk−q)− nek1
(1− nek1−q)

−Bk1,k1−q;k,k+q(λ,∆λ)

×
[
(nek1

− nek1−q)nhk+q − nek1
(1− nek1−q)

])
. (A21)

In the same way, the renormalization contributions to ∆k,λ

can be extracted from (A17). Again, by truncation, we col-

lect the parts being proportional to e†kh
†
−k or h−kek. Since

XU (λ,∆λ) and HU,λ are time-ordered expressions, a trunca-
tion within XU (λ,∆λ) and within HU,λ is thereby forbidden.
One finds

δ∆
(U)
k,λ = −U

2

N2

∑
k1q

(
Γk1+q,k1;−k,−k+q
k1+q,k;−k1,−k+q(λ,∆λ)

× (nek1+q − nh−k+q)dk1

+ Γ
k,k−q;−(k1+q),−k1

k1,k−q;−(k1+q),−k(λ,∆λ)(nek−q − nh−(k+q))dk1

)
. (A22)

Summing up, the following renormalization equations be-
tween the energy parameters of Hλ and Hλ−∆λ were found:

εek,λ−∆λ = εek,λ + δε
e(g)
k,λ + δε

e(U)
k,λ , (A23)

εhk,λ−∆λ = εhk,λ + δε
h(g)
k,λ + δε

h(U)
k,λ , (A24)

ωq,λ−∆λ = ωq,λ + δω
(g)
q,λ , (A25)

∆k,λ−∆λ = ∆k,λ + δ∆
(0)
k,λ + δ∆

(c)
k,λ + δ∆

(U)
k,λ , (A26)

Γλ−∆λ = Γλ + δΓ
(0)
λ + δΓ

(c)
λ + δΓ

(g)
λ . (A27)

Appendix B: Renormalization of electronic operators

Starting from an appropriate ansatz for the single-fermion
operators e†k,λ and h†−k,λ, according to Eqs. (103) and (104),

we have

e†k,λ = xk,λe
†
k +

1√
N

∑
q

tk−q,q,λhq−k : ψ†q :

+
1

N

∑
k1k2

αk1kk2,λ e
†
k1

: h†k2
hk1+k2−k : , (B1)

h†−k,λ = yk,λh
†
−k +

1√
N

∑
q

uk,q,λ eq+k : ψ†q :

+
1

N

∑
k1k2

βk1k2,k2−k1−k,λ : e†k1
ek2 : h†k2−k1−k .

(B2)

In analogy to the renormalization equations for the param-
eters of Hλ, one derives the following set of renormalization
equations for the coefficients tk−q,q,λ, αk1k2k3,λ, uq,−k,λ, and
βk1k2k3,λ:

tk−q,q,λ−∆λ = tk−q,q,λ + gxk,λAk−q,q(λ,∆λ) , (B3)

αk1kk2,λ−∆λ = αk1kk2,λ − Uxk,λBk1kk2
(λ,∆λ) , (B4)

ukq,λ−∆λ = ukq,λ − g yk,λAk,q(λ,∆λ) , (B5)

βk1k2,k−k1+k2,λ−∆λ = βk1k2,k−k1+k2,λ

− Uyk,λBk1k2,k−k1+k2(λ,∆λ) . (B6)

To obtain renormalization equations for xk,λ and yk,λ we
use the anti-commutator relations for fermionic operators,
[e†k(λ), ek(λ)]+ = 1 and [h†−k(λ), h−k(λ)]+ = 1, which are
valid for any λ. We arrive at

|xk,λ|2 = 1− 1

N

∑
q

|tk−q,q,λ|2(nψk−q + nh−q)

− 1

N2

∑
k1k2

|αk1kk2,λ|
2
[
nhk1+k2−k(1− nhk2

)

−nek1
(nhk1+k2−k − nhk2

)
]
, (B7)

|yk,λ|2 = 1− 1

N

∑
q

|uk,q,λ|2(nψq + neq+k)

− 1

N2

∑
k1k2

|βk1k2,k2−k1−k2,λ|
2
[
nek1

(1− nek2
)

+(1− nhk2−k1−k)(nek2
− nek1

)
]
. (B8)

Here, a factorization approximation was used. The expecta-
tion values nek, nh−k, and nψq on the right hand side are best
chosen as steady-state expectation values and have been de-
fined before in Eqs. (98) and (99). Moreover nψq = 〈: ψ†q : :
ψq :〉. Equations (B3)–(B6) together with Eqs. (B7), (B8),
taken at λ → λ −∆λ, represent a complete set of renormal-
ization equations for the λ-dependent coefficients in Eqs. (B1)
and (B2). They connect the parameter values at λ with those
at λ−∆λ. The initial parameter values at cutoff λ = Λ are:

{xk,Λ, yk,Λ} = 1 , (B9)

{tkq,Λ, ukq,Λ, αk1kk2,λ, βk1kk2,Λ} = 0 . (B10)

By integrating the full set of renormalization equations be-
tween Λ and λ = 0 one is led to the fully renormalized one-
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particle operators:

ẽ†k = x̃ke
†
k +

1√
N

∑
q

t̃k−q,qhq−k : ψ†q :

+
1

N

∑
k1k2

α̃k1kk2e
†
k1

: h†k2
hk1+k2−k : , (B11)

h̃†−k = ỹkh
†
−k +

1√
N

∑
q

ũk,qeq+k : ψ†q :

+
1

N

∑
k1k2

β̃k1k2,k2−k1−k : e†k1
ek2 : h†k2−k1−k . (B12)

With (B11) and (B12) one obtains in the limit t→∞:

nek = 〈(ẽ†kẽk)(t→∞)〉ρ̃0 = |x̃k|2n̂ek

+
1

N

∑
q

|t̃k−q,q|2 (1− n̂hk−q) n̂ψq

+
1

N2

∑
k1k2

|α̃k1kk2 |
2n̂ek1

n̂hk2
(1− n̂hk1+k2−k) , (B13)

nh−k = 〈(h̃†−kh̃−k)(t→∞)〉ρ̃0 = |ỹk|2n̂h−k

+
1

N

∑
q

|ũk,q|2 n̂ψq (1− n̂ek+q)

+
1

N2

∑
k1k2

|β̃k1k2,k2−k1−k|2n̂ek1
(1− n̂ek2

)n̂hk2−k1−k ,

(B14)

and similarly

d∗k = x̃kỹk d̂
∗
k −

1

N

∑
k1

(
x̃kβ̃k1,k,−k1 n̂

e
k

+ ỹkα̃k1,k,−k1(n̂h−k − 1)
)
d̂∗k1

, (B15)

where a small term proportional to αk1,k,−k1βk1,k,−k1 of
O(U2) was neglected. Another small contribution being pro-

portional to 〈(: ψ†0 :)t→∞〉ρ̃0 was neglected as well. The quan-
tities n̂ek, n̂h−k, and n̂ψq on the right hand side of Eqs. (B13)–
(B15) are steady-state expectation values however formed
with the renormalized density ρ̃0 [also compare Eqs. (108)-
(110)]:

n̂ek = 〈(e†kek)(t→∞)〉ρ̃0 , (B16)

n̂h−k = 〈(h†−kh−k)(t→∞)〉ρ̃0 , (B17)

n̂ψq = 〈(: ψ†q : : ψq :)(t→∞)〉ρ̃0 . (B18)

The corresponding order parameter for the formation of exci-
tons is

d̂∗k = 〈(e†kh
†
−k)(t→∞)〉ρ̃0 . (B19)

Appendix C: Steady state expectation values

Evaluating the expectation values 〈A(t)〉 for t → ∞, we
use relation (94) and the steady-state condition (93):

〈A(t)〉 = 〈Ã(t)〉ρ̃0 , (C1)

d

dt
〈A(t→∞)〉 =

d

dt
〈Ã(t→∞)〉ρ̃0 = 0 . (C2)

On the right hand sides, the time dependence is governed by
H̃. ρ̃0 denotes the fully transformed initial density, and Ã is
the transformed operator of A.

1. Electronic quantities

To analyze time-dependent expectation values for large
times, the steady-state condition (93),

d

dt
〈(C†nkCmk)(t)〉ρ̃0 = 0 for t→∞ , (C3)

must be fulfilled. Here, the time dependence is governed by
the renormalized Hamiltonian

H̃ = H̃S +HR +HSR , (C4)

and the expectation values are formed with the transformed
initial density ρ̃0. According to this “recipe”, we first de-
rive equations of motions using generalized Langevin equa-
tions. These dynamical equations are best found within
the Mori-Zwanzig projection formalism [31, 32, 43] for a set

of dynamical variables {Aν = C†nkCmk, b
†
e,pbe,p, b

†
h,−pbh,−p}

(n,m = 1, 2):

d

dt
Aν(t) = i

∑
µ

Aµ(t)ωµν (C5)

−
∫ t

0

dt′
∑
µ

Aµ(t− t′)Σµν(t′) + Fν(t) ,

where we have introduced a generalized scalar product
(A|B) = 〈A†B〉ρ̃0 for operator variables A, B. The ωµν and
Σµν(t) are generalized frequencies and self-energies, respec-
tively, and Fν(t) is the random force:

ωµν =
∑
η

χ−1
µη

(
Aη|L̃Aν

)
, (C6)

Σµν(t) =
∑
η

χ−1
µη

(
Aη|L̃Q eiQL̃Q tQL̃Aν

)
, (C7)

Fν(t) = i eiQL̃Q tQL̃Aν . (C8)

The quantity L̃ is the Liouville operator, defined by the com-
mutator of H̃ with any operator observable A, i.e., L̃A =
[H̃,A], and Q is a generalized projector in the operator space
which projects perpendicular to the subspace spanned by the
set {Aν}. Moreover χ−1

µη is the inverse of the generalized sus-
ceptibility matrix χη′µ = (Aη′ |Aµ):

∑
µ

χη′µχ
−1
µη = δη′η . (C9)

Since H̃ does not commute with ρ̃0 the expectation values
〈Aν(t)〉ρ̃0 are intrinsically time dependent.

Let us first consider the equations for the electronic vari-
ables Anmk := C†nkCmk. Because they are dynamical eigen-

modes of H̃S the frequencies ωµν and self-energies Σµν can be
easily evaluated in lowest non-vanishing order perturbation
theory in the interaction HSR. One finds in Markov approxi-
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mation

d

dt
A12

k (t) = i(Ẽ1k − Ẽ2k)A12
k

−A12
k

[
|ξk|2 γek(Ẽ2k) + |ηk|2 γek(Ẽ1k)

+ |ξk|2 γhk(−Ẽ1k) + |ηk|2 γhk(−Ẽ2k)
]

−ξkη∗k
[
A11

k

(
− γek(Ẽ1k) + γhk(−Ẽ1k)

)
+A22

k

(
− γek(Ẽ2k) + γhk(−Ẽ2k)

)]
−πξkη∗k

∑
p

|Γekp|2
(
δ(ωep − Ẽ1k) + δ(ωep − Ẽ2k)

)
b†epbep

+πξkη
∗
k

∑
p

|Γhkp|2
(
δ(ωh−p + Ẽ1k) + δ(ωh−p + Ẽ2k)

)
× bh,−pb

†
h,−p + F12

k

=
( d

dt
A21

k (t)
)†
, (C10)

d

dt
A11

k (t) = −2A11
k

(
|ξk|2 γek(Ẽ1k) + |ηk|2 γhk(−Ẽ1k)

)
+(ξ∗kηkA12

k + ξkη
∗
kA21

k )
(
γek(Ẽ1k)− γhk(−Ẽ1k)

)
+2π|ξk|2

∑
p

|Γekp|2δ(ωep − Ẽ1k) b†epbep

+2π|ηk|2
∑
p

|Γhkp|2δ(ωh−p + Ẽ1k) bh,−pb
†
h,−p

+F11
k , (C11)

d

dt
A22

k (t) = −2A22
k

(
|ηk|2 γek(Ẽ2k) + |ξk|2 γhk(−Ẽ2k)

)
+(ξ∗kηkA12

k + ξkη
∗
kA21

k )
(
γek(Ẽ2k)− γhk(−Ẽ2k)

)
+2π|ηk|2

∑
p

|Γekp|2δ(ωep − Ẽ2k) b†epbep

−2π|ξk|2
∑
p

|Γhkp|2δ(ωh−p + Ẽ2k) bh,−pb
†
h,−p

+F22
k . (C12)

Note that the last two terms in equations (C10)–(C12) are
proportional to the electron occupation number operators
b†epbep and bh,−pb

†
h,−p of the electronic reservoirs. However,

the equations of motion for b†e,pbe,p and b†h,−pbh,−p are not
needed. The electronic baths are assumed to be large and
stay in thermal equilibrium even when they are coupled to
the e-h-p system.

Moreover, the imaginary parts of the self-energies =γe,h(ω)
will be neglected, which would lead to frequency shifts. The
remaining real parts <γe,hk (ω) lead to a damping of electrons
and holes as a result of the coupling to the electronic reser-
voirs:

<γek(ω) = π
∑
p

|Γekp|2δ(ωep − ω) , (C13)

<γhk(ω) = π
∑
p

|Γhkp|2δ(ωh−p − ω) . (C14)

To simplify the further evaluation we assume that electrons
and holes possess the same damping rate, which is also sup-
posed not to depend on k and ω, i.e.,

<γe,hk (ω) = <γk(ω) ≈ γ . (C15)

Then Eqs. (C10)–(C12) reduce to

d

dt
A12

k (t) = i(Ẽ1k − Ẽ2k)A12
k − 2γA12

k

−πξkη∗k
∑
p

|Γekp|2
(
δ(ωep − Ẽ1k) + δ(ωep − Ẽ2k)

)
b†epbep

+πξkη
∗
k

∑
p

|Γhkp|2
(
δ(ωh−p + Ẽ1k) + δ(ωh−p + Ẽ2k)

)
× bh,−pb

†
h,−p + F12

k

=
( d

dt
A21

k (t)
)†
, (C16)

d

dt
A11

k (t) = −2γA11
k

+2π|ξk|2
∑
p

|Γekp|2δ(ωep − Ẽ1k) b†epbep

+2π|ηk|2
∑
p

|Γhkp|2δ(ωh−p + Ẽ1k) bh,−pb
†
h,−p

+F11
k , (C17)

d

dt
A22

k (t) = −2γA22
k

+2π|ηk|2
∑
p

|Γekp|2δ(ωep − Ẽ2k) b†epbep

−2π|ξk|2
∑
p

|Γhkp|2δ(ωh−p + Ẽ2k) bh,−pb
†
h,−p

+F22
k . (C18)

The equations of motions for the expectation values, formed
with ρ̃0,

Anmk (t) = 〈Anmk (t)〉ρ̃0 = 〈(C†nkCmk)(t)〉ρ̃0 , (C19)

can immediately be found from Eqs. (C10)–(C12) :

d

dt
A12

k (t) =
[
i(Ẽ1k − Ẽ2k)− 2γ

]
A12

k (t) (C20)

−πξkη∗k
∑
p

|Γekp|2
(
δ(ωep − Ẽ1k) + δ(ωep − Ẽ2k)

)
〈b†epbep〉ρ̃0

+πξkη
∗
k

∑
p

|Γhkp|2
(
δ(ωh−p + Ẽ1k) + δ(ωh−p + Ẽ2k)

)
× 〈bh,−pb

†
h,−p〉ρ̃0

=
( d

dt
A21

k (t)
)†
,

d

dt
A11

k (t) = −2γ A11
k (t) (C21)

+2π|ξk|2
∑
p

|Γekp|2δ(ωep − Ẽ1k) 〈b†epbep〉ρ̃0

+2π|ηk|2
∑
p

|Γhkp|2δ(ωh−p + Ẽ1k) 〈bh,−pb
†
h,−p〉ρ̃0 ,

d

dt
A22

k (t) = −2γ A22
k (t) (C22)

+2π|ηk|2
∑
p

|Γekp|2δ(ωep − Ẽ2k) 〈b†epbep〉ρ̃0

+2π|ξk|2
∑
p

|Γhkp|2δ(ωh−p + Ẽ2k) 〈bh,−pb
†
h,−p〉ρ̃0 ,
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where the random forces Fnmk do to contribute since the
〈Fnmk 〉ρ̃0 vanish at least up to second order in HSR. More-
over, because the expectation values of the bath variables
〈b†epbep〉ρ̃0 and 〈b†h,−pbh,−p〉ρ̃0 do not depend on time, we may
use Fermi functions for

〈b†epbep〉ρ̃0 =
1

1 + eβ[ωep−(µe−µ/2)]
= fe(ω

e
p) , (C23)

〈b†h,−pbh,−p〉ρ̃0 =
1

1 + eβ[ωh−p−(µh−µ/2)]
= fh(ωh−p). (C24)

Exploiting the presence of the δ-functions, Eqs. (C20)–(C22)
can be simplified to

d

dt
A12

k (t) =
[
i(Ẽ1k − Ẽ2k)− 2γ

]
A12

k (t)

− γ ξkη∗k
(
fe(Ẽ1k) + fe(Ẽ2k)

)
− γ ξkη∗k

(
fh(−Ẽ1k) + fh(−Ẽ2k)− 2

)
=
( d

dt
A21

k (t)
)†
, (C25)

d

dt
A11

k (t) = −2γ A11
k (t) + 2γ |ξk|2fe(Ẽ1k)

+ 2γ |ηk|2
(
1− fh(−Ẽ1k)

)
, (C26)

d

dt
A22

k (t) = −2γ A22
k (t) + 2γ |ηk|2fe(Ẽ2k)

+ 2γ |ξk|2
(
1− fh(−Ẽ2k)

)
, (C27)

where Eqs. (C13) and (C15) have been used.
We are now in the position to evaluate the limit t→∞ for

the expectation values

Anmk = lim
t→∞
〈Anmk (t)〉ρ̃0 = lim

t→∞
〈(C†nkCmk)(t)〉ρ̃0 . (C28)

Using the steady-state condition (C3) one finds

A12
k = γ ξkη

∗
k

1(
i(Ẽ1k − Ẽ2k)− 2γ

)× (C29)

×
[(
fe(Ẽ1k) + fe(Ẽ2k)

)
+
(
fh(−Ẽ1k) + fh(−Ẽ2k)− 2

)]
,

(C30)

and (for γ 6= 0)

A11
k = |ξk|2fe(Ẽ1k) + |ηk|2

(
1− fh(−Ẽ1k)

)
, (C31)

A22
k = |ηk|2 fe(Ẽ2k) + |ξk|2

(
1− fh(−Ẽ2k)

)
. (C32)

2. Derivation of equations (141)–(143)

Let us consider the steady-state result for d̂∗k, n̂ek, and n̂hk,
Eqs. (138), (139), and (140), respectively. Here, d̂0∗

k , defined
by Eq. (134) with Eq. (144), takes the form

d̂0∗
k =

1

2
ξ∗kη
∗
kF

+
1k . (C33)

Transforming first the last terms (imaginary parts) in
Eqs. (139) and (140), one gets

1

γ
=[∆̃kd̂

∗
k] = −=

γ

{ 1

ε̃ek + ε̃hk + 2iγ

[
|∆̃k|2(1− n̂ek − n̂hk)

−2iγ∆̃kd̂
0∗
k

]}
(C34)

or

1

γ
=[∆̃kd̂

∗
k] = −=

γ

{ 1

ε̃ek + ε̃hk + 2iγ

[
|∆̃k|2(1− n̂ek − n̂hk)

− i γ

Wk
sgn(ε̃ek + ε̃hk)F+

1k

]}
. (C35)

Thus

1

γ
=[∆̃kd̂

∗
k] =

|∆̃k|2

(ε̃ek + ε̃hk)2 + (2γ)2

{
2(1− n̂ek − n̂hk)

+
|ε̃ek + ε̃hk|
Wk

F+
1k

}
. (C36)

Here, we have used Eq. (138) for d̂∗k with d̂0∗
k given by

Eq. (C33) and (82):

d̂∗k =
∆̃∗k

(ε̃ek + ε̃hk) + 2i γ

[
(n̂ek + n̂hk − 1)

+ iγ sgn(ε̃ek + ε̃hk)
F+

1k

Wk

]
(C37)

Then, from (C36) together with Eqs. (139) and (140), one
finds:

n̂ek + n̂hk − 1 =
|ε̃ek + ε̃hk|

2Wk
F+

1k +

+
1

2

F+
2k − 2

1 +
4|∆̃k|2

(ε̃ek + ε̃hk)2 + (2γ)2

, (C38)

and

n̂ek − n̂hk =
1

2
F−1k +

|ε̃ek + ε̃hk|
2Wk

F−2k . (C39)

3. Photonic expectation values

To calculate the photon condensation parameter 〈ψ†q=0〉,
we use the ansatz for the λ-dependent photon operator,

ψ†q,λ = zq,λψ
†
q +

1√
N

∑
k

vkq,λ : e†k+qh
†
−k : , (C40)

where again the operator structure was taken over from
a small Xλ,∆λ expansion. Furthermore, : e†k+qh

†
−k :=

e†k+qh
†
−k − 〈e

†
k+qh

†
−k〉. In analogy to the preceding sec-

tion, one easily obtains renormalization equations for the λ-
dependent coefficients zq,λ and vkq,λ:

vkq,λ−∆λ = vkq,λ − gzq,λAkq(λ,∆λ) , (C41)

|zq,λ|2 = 1− 1

N

∑
k

|vkq,λ|2(1− nek+q − nh−k) . (C42)

Deriving the last equation, the commutator relation
[ψq,λ, ψ

†
q,λ] = 1 was used. Eq. (C41) and Eq. (C42), both

taken at λ → λ − ∆λ, represent a complete set of renor-
malization equations for the λ-dependent coefficient in (C40).
Here, the initial parameter values are

zq,Λ = 1 , vkq,Λ = 0 . (C43)
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The integration between λ = Λ and λ = 0 leads to the fully
renormalized photon operator

ψ̃†q = z̃qψ
†
q +

1√
N

∑
k

ṽkq : e†k+qh
†
−k : . (C44)

Using Eq. (94), one finds in the large-t limit:

〈ψ†q(t→∞)〉 = z̃q〈ψ†q(t→∞)〉ρ̃0

+
1√
N

∑
k

ṽkq 〈(: e†k+qh
†
−k :)(t→∞)〉ρ̃0

' z̃q〈ψ†q(t→∞)〉ρ̃0 , (C45)

where the second contribution, being proportional to fluctu-
ation operators, was neglected. Similarly,

〈(ψ†qψq)(t→∞)〉 = |z̃q|2〈(ψ†qψq)(t→∞)〉ρ̃0

+
1

N

∑
k

|ṽkq|2 n̂ek+q n̂
h
−k . (C46)

We then evaluate the remaining quantities 〈ψ†q(t →
∞)〉ρ̃0 := 〈ψ†q〉ρ̃0 and 〈(ψ†qψq)(t → ∞)〉ρ̃0 := 〈ψ†qψq〉ρ̃0 .
Our starting point is an equation of motion for the time-
dependent photon creation operator ψ†q(t). Using again the
Mori-Zwanzig approach of Sec. C.1, one obtains with Eqs. (77)
and (C5),

d

dt
ψ†q(t) = iω̃qψ

†
q(t) + i

√
N Γ̃∗δq,0 − κψ†q(t) + Fψq , (C47)

and

d

dt
〈ψ†q(t)〉ρ̃0 = iω̃q〈ψ†q(t)〉ρ̃0 + i

√
N Γ̃∗δq,0 − κ〈ψ†q(t)〉ρ̃0 ,

(C48)
where κ is the damping rate of cavity photons into the free
space. For the steady state at t→∞ one finds from Eq. (C48)

〈ψ†q(t→∞)〉ρ̃0 = −
√
N Γ̂∗

ω̃0 + iκ
δq,0 ,= 〈ψ†q〉ρ̃0 (C49)

and, with Eq. (C45),

〈ψ†q(t→∞)〉 = −ẑq=0

√
N Γ̃∗

ω̃0 + iκ
δq,0 = 〈ψ†q〉 . (C50)

To evaluate the expectation value 〈(ψ†qψq)(t→∞)〉ρ̃0 , one
best starts from the solution (215) of the equation of motion
(C47), thereby neglecting the fluctuation force Fψq :

ψ†q(t) = − i
√
N Γ̃∗

iω̃0 − κ
δq,0 +

(
ψ†q +

i
√
N Γ̃∗

iω̃0 − κ
δq,0

)
e(iω̃q−κ)t . (C51)

For t→∞ one is led to

〈(ψ†qψq)(t→∞)〉ρ̃0 =
N |Γ̃|2

ω̃2
0 + κ2

δq,0 = 〈ψ†qψq〉ρ̃0 . (C52)

For the fluctuation number n̂ψq of cavity photons one obtains
with Eq. (C49):

n̂ψq = 〈(: ψ†q : : ψq :)(t→∞)〉ρ̃0 = 0 . (C53)

Thus, the fluctuation number, formed with ρ̃0 vanishes. In
contrast, for the full quantity nψq = 〈: ψ†q : : ψq :〉, which is
formed by the initial density ρ0, one finds from Eq. (C46) and
(C50):

nψq =
1

N

∑
k

|ṽkq|2 n̂ek+q n̂
h
−k . (C54)

That is, the full fluctuation number nψq of cavity photons is
determined by the coupling of cavity photons to electronic
particle-hole excitations of the e-h-p system.
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