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Abstract

We examine the low frequency spin susceptibility of the paramagnetic phase of the quantum Ising

chain in transverse field at temperatures well below the energy gap. We find that the imaginary part is

dominated by rare quantum processes in which the number of quasiparticles changes by an odd number.

We obtain exact results for the NMR relaxation rate in the low temperature limit for the integrable

model with nearest-neighbor Ising interactions, and derive exact universal scaling results applicable to

generic Ising chains near the quantum critical point. These results resolve certain discrepancies between

the energy scales measured with different experimental probes in the quantum disordered paramagnetic

phase of the Ising chain system CoNb2O6.
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I. INTRODUCTION

The transverse field Ising chain is an ideal setting to study the dynamics of quantum criticality

[1] as many observable properties can be computed either exactly, or reliably in a semiclassical

approach [2–4]. In recent years, there have been several experimental realizations of the transverse

Ising chain that make theoretical predictions testable [5, 6]. For instance, it has been found that

CoNb2O6 is for many purposes an almost ideal realization of the one-dimensional ferromagnetic

Ising chain. Experiments have studied its properties across the different regimes of the phase

diagram as a function of transverse field and temperature [5, 7–11].

In this paper, we revisit the issue of the nuclear magnetic resonance (NMR) relaxation in an

Ising spin chain in its gapped state without ferromagnetic order (the ‘quantum disordered’ regime

of Fig. 1). A recent NMR experiment on CoNb2O6 [8] studied the NMR relaxation rate, 1/T1, in all

three regimes near the quantum critical point of the phase diagram in Fig. 1. Experimental results

agreed quantitatively with theoretical predictions in the ‘renormalized classical’ and ‘quantum

critical’ regimes. While there were no firm theoretical predictions in the quantum disordered

regime, it was conjectured [8] that the low temperature (T ) behavior was 1/T1 ∼ exp(−∆/T ),

where ∆ is the energy gap to single spin flips. However, other experiments probing the large field

transverse paramagnetic regime show discrepancies with the energy scales probed by NMR. The

NMR experiments [8] measured an activation energy that was approximately two times larger than

the gap inferred from heat capacity [10], neutron scattering [11], and THz/infrared experiments

[12].

Here we will show that near the critical point the behavior of the NMR relaxation rate is in

fact 1/T1 ∼ exp(−2∆/T ), and compute the precise prefactor for the integrable nearest-neighbor

Hamiltonian. We find that the result is compatible with the universal relativistic quantum field

theory, and obtain the universal behavior of 1/T1 at T � ∆ for a generic Ising Hamiltonian.

We begin by recalling some exact results on the nearest-neighbor Ising chain in Section II. In

particular, the lattice form factors computed in Ref. 4 will be crucial ingredients in our results. The

computation of the NMR relaxation rate of the nearest-neighbor Ising chain appears in Section III.

Section IV describes the universal behavior of the NMR relaxation rate across the quantum critical

point. The experimental situation is discussed in Section V.
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FIG. 1. Crossover phase diagram of the Ising chain in a transverse field, h. There is a quantum critical

point at T = 0 and h = hc (for the Hamiltonian in Eq. (2.1), hc = 1) between a ferromagnetic (h < hc)

which breaks the Ising symmetry, and a paramagnetic phase. This paper focuses on the “quantum

disordered” regime above the paramgetic phase for h > hc. The other regimes were described in Ref. 8.

II. EXACT SPECTRUM

We work with the integrable Ising chain Hamiltonian

H = −J
L∑
`=1

[
σz`σ

z
`+1 + hσx`

]
(2.1)

where σx,z` are Pauli matrices acting on the 2-state spins on site `. For h < 1, this model has a

ferromagnetic ground state with 〈σz` 〉 = N0 6= 0. We are interested in the low T behavior in the

paramagnetic state for h > 1, where 〈σz` 〉 = 0 at T = 0.

The spectrum of H can be computed exactly by a Jordan-Wigner transformation which maps

it onto a theory of spinless fermions with dispersion

εp = 2J
√

1 + h2 − 2h cos(p) (2.2)

as a function of crystal momentum −π < p < π. This dispersion implies an energy gap

∆ = 2J |h− 1| . (2.3)

The complete set of excited states are described by n fermion states |p1, p2, . . . , pn〉, where all

fermion momenta must be unequal.

Remarkably, all matrix elements of the ferromagnetic order parameter, σz` , between all many-

body states have been computed exactly by Iorgov et al. [4]. For our purposes, we need the matrix
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elements in the limit L→∞, which can be written as

〈q1, . . . , q2n|σz` |p1, . . . , pm〉 =
(4J2h)(m−2n)2/4

Ln+m/2
|1− h2|1/8ibn+m/2ce−i`[

∑2n
j=1−

∑m
l=1 pl]

×
2n∏
j=1

1
√
εqj

m∏
l=1

1
√
εpl

2n∏
j<j′=1

2 sin(qj − qj′)
εqj + εqj′

m∏
l<l′=1

2 sin(pl − pl′)
εpl + εpl′

2n∏
j=1

m∏
l=1

εqj + εpl
2 sin(qj − pl)

, (2.4)

where m is even (odd) for h < 1 (h > 1). We will be able to compute the NMR relaxation

rate in the T → 0 limit for h > 1 by a direct application of Eq. (2.4) in the Lehmann spectral

representation.

III. NMR RELAXATION RATE

The NMR relaxation rate is determined by the low frequency behavior of local spin susceptibility.

We define the imaginary time (τ) susceptibility by

χ(τ) =

∫ 1/T

0

dτ 〈σz0(τ)σz0(0)〉 . (3.1)

After a Fourier transform and analytic continuation to real frequencies (ω), we obtain the NMR

relaxation rate from [8]
1

T1

= lim
ω→0

2T

ω
|ahf |2Imχ(ω) , (3.2)

where ahf is the hyperfine coupling between the nuclei and the Ising spins.

A. Low-temperature expansion

We are interested in the retarded two-point order parameter autocorrelator

χ(ω) =

∫ 1/T

0

dτeiωτ
1

Z
Tr
[
e−H/Tσzj (τ)σzj

] ∣∣∣∣∣
ω→η−iω

, (3.3)

where Z is the partition function. The idea of Ref. 3 is to develop a linked cluster expansion for

this quantity. The starting point is the Lehmann representation

χ(ω) =
1

Z

∞∑
n,m=0

Cn,m(ω) , (3.4)

where

Cn,m(ω) =
1

n!

∑
{k1,...kn}

1

m!

∑
{p1,...,pm}

|〈k1 · · · kn|σz0|p1 · · · pm〉|2
e−E({pi})/T − e−E({kj})/T

ω + iη − E({pi}) + E({kj})
. (3.5)
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Here η is a positive infinitesimal. The expansion of the partition function reads

Z = 1 +
∑
p∈R

e−εp/T +
∑

p1<p2∈NS

e−[εp1+εp2 ]/T + . . . ≡
∞∑
n=0

Zn. (3.6)

By construction the contribution Zn scales with system size as Ln. Here the subscripts refer to

Ramond and Neveu-Schwartz boundary conditions, which will not matter in the infinite L limit we

take. The individual terms Cn,m(ω) in the expansion (3.4) diverge with the system size L because

the matrix elements (2.4) become singular when kr → ps. Ref. 3 re-casts the expansion in terms

of linked clusters, which are finite in the thermodynamic limit. The linked clusters relevant for a

low-temperature expansion of χ(ω) are

C2n+1,0(ω) = C2n+1,0(ω) , C0,2n+1(ω) = C0,2n+1(ω) ,

C1,2n(ω) = C1,2n(ω)−Z1C0,2n−1(ω) ,

C2,2n+1(ω) = C2,2n+1(ω)−Z1C1,2n(ω)− (Z2 −Z2
1 )C0,2n−1(ω) ,

C3,2n(ω) = C3,2n(ω)−Z1C2,2n−1(ω)− (Z2 −Z1)2C1,2n−2(ω) . (3.7)

In terms of the linked clusters we have

Im χ(ω) =
∞∑

n,m=0

Im Cn,m(ω) . (3.8)

The leading terms at low temperatures and ω ≈ 0 are

C1(ω) = C1,2(ω) + C2,1(ω) ,

C2(ω) = C2,3(ω) + C3,2(ω) ,

C3(ω) = C1,4(ω) + C4,1(ω) + C3,4(ω) + C4,3(ω) . (3.9)

As εk > ∆ = 2J |h− 1| the formal temperature dependence of these terms at T � ∆ is

Cn(ω) = O
(
e−(n+1)∆/T

)
. (3.10)

As we are interested in the NMR relaxation rate we focus on the quantities

cn(T ) = lim
ω→0

Im
(
Cn(ω)

)
ω

. (3.11)

1. Leading term

We begin with some qualitative considerations on the physical processes which lead to the

dominant contributions to Eq. (3.2) as T → 0 for h > 1. A thermal excitation with energy Ei will
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appear with a probability e−Ei/T as an initial state in the relaxation process. We should focus on

the states with the lowest possible Ei. Because of the ω → 0 limit, the final states will also have

an energy Ef = Ei and are reached by the action of the σz0 operator. We notice from Eq. (2.4) that

for h > 1 the matrix element is non-zero only between states with distinct parities in the number

of fermions. Therefore the initial and final states must differ by an odd number of fermions which

places strong constraints on the ranges of allowed values of Ei and Ef .

We first consider the process 1→ 2, from an initial state with one fermion to a final state with

2 fermions. This process (and its inverse) will dominate as T → 0. The single fermion excitations

are in the energy range (εmin, εmax) ≡ 2J(h − 1, h + 1). In the most optimal conditions, both

fermions in the 2 particle state will have energy close to εmin. So for a 1 → 2 particle process to

be allowed, we need εmax > 2εmin or h < 3. This process will have probability exp(−2εmin/T ).

For h > 3 we need to consider processes with larger numbers of fermions to obtain the leading

contribution. In general, the n → m process is allowed for h < (m + n)(m − n), where m > n

and m − n is odd. Such a process occurs with probability exp(−mεmin/T ). Thus for 3 < h < 5

the most probable process is 2 → 3 with probability exp(−3εmin/T ). There are also processes at

smaller h, such as 1→ 4 for h < 5/3 with probability exp(−4εmin/T ).

We now consider the 1 → 2 process which has a prefactor of exp(−2∆/T ). Importantly for

ω ≈ 0 and in the limit η → 0 we have

lim
η→0

[
ImC1(ω)

]
= lim

η→0
Im
[
C1,2(ω) + C2,1(ω)

]
(3.12)

i.e. the “disconnected” contributions Z1C01(ω) and Z1C10(ω) vanish in the limit η → 0. This is

related to the fact that the kinematic poles in the form factors do not contribute to the momentum

sums by virtue of the energy-conservation delta function. Using the explicit expression for the form

factors (2.4) and turning momentum sums into integrals in the L→∞ limit we have

Im
(
C1(ω)

)
=
Jπ

4
[h2(h2 − 1)]

1
4

∫ π

−π

dp1dp2dq

(2π)3
[δ(ω + εp1 + εp2 − εq)− δ(ω − εp1 − εp2 + εq)]

×
(εp1 + εq)

2(εp2 + εq)
2 sin2

(
p1 − p2

2

)
εp1εp2εq(εp1 + εp2)

2 sin2

(
p1 − q

2

)
sin2

(
p2 − q

2

) [e−(εp1+εp2 )/T − e−εq/T
]
.(3.13)

Carrying out one of the integrals using the energy conservation delta-function we obtain

c1(T ) =
J

2T
[h2(h2 − 1)]

1
4

∫ π

−π

dp1dp2

(2π)2
ΘH

(
2J(h+ 1)− εp1 − εp2

)e−(εp1+εp2 )/T

|ε′p0|

×
(2εp1 + εp2)

2(εp1 + 2εp2)
2 sin2

(
p1 − p2

2

)
εp1εp2(εp1 + εp2)

3 sin2

(
p1 − p0

2

)
sin2

(
p2 − p0

2

) , (3.14)
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where

p0 = arccos


1 + h2 −

(
εp1 + εp2

2J

)2

2h

 . (3.15)

In the low-temperature limit T � 2J(h − 1) and h < 3 we can carry out the remaining two

integrals as follows. The integration will be dominated by small p1,2 ∼
√
T . For these small p, we

can expand the dispersion as

εp = ∆ +
p2

2m
+ . . . (3.16)

where ∆ = 2J(h − 1) and m = (h − 1)/(2hJ). Expanding the rest of the integrand around

p1 = p2 = 0 we obtain

c1(T ) =
J

T
e−2∆/T 81[h2(h2 − 1)]

1
4

64|ε′q0|∆ sin4(q0/2)

∫ π

−π

dp1dp2

(2π)2
e−

p21+p22
2mT (p1 − p2)2 ,

=
81m2TJ [h2(h2 − 1)]

1
4

64π∆ sin4(q0/2)|ε′q0|
e−2∆/T , (3.17)

where we have defined

q0 = arccos

[
1 + h2 − 4(h− 1)2

2h

]
. (3.18)

Using Eq. (3.2), we obtain our main result

1

T1

= |ahf |2
[

81Jm2[h2(h2 − 1)]1/4

32π∆|v| sin4(q0/2)

]
T 2e−2∆/T , 1 < h < 3 , T � ∆ . (3.19)

Note that Eq. (3.19) does not require ∆ to be much smaller than J .

2. Subleading term

We now turn to the term of order e−3∆/T . For 1 < h < 3 this will be smaller than the e−2∆/T

term computed in Sec. III A 1, while for 3 < h < 5 this turns out to be the largest non-zero term.

We will evaluate

c2(T ) = lim
ω→0

Im
(
C2(ω)

)
ω

. (3.20)

This can be cast in the form

c2(T ) = lim
η→0

[
c2(T, η)−Z1c1(T, η)− (Z2 −Z2

1 )c0(T, η)
]
, (3.21)

where we have defined

cn(T, η) = lim
ω→0

Im

[
Cn,n+1(ω) + Cn+1,n(ω)

ω

]
, n = 0, 1, 2 , (3.22)
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and Zn are the contributions of n-particle states to the partition function

Z1 =
∑
p∈R

e−εp/T , Z2 =
∑

p1<p2∈NS

e−[εp1+εp2 ]/T . (3.23)

The explicit expressions for cn(T, η) are

c0(T, η) =
∑
q

|〈q|σz0|0〉|2
[
1− e−εq/T

] 4ηεq
[ε2
q + η2]2

,

c1(T, η) =
∑
p1<p2

∑
q

|〈p1, p2|σz0|q〉|2
[
e−εq/T − e−(εp1+εp2 )/T

] 4η(εp1 + εp2 − εq)
[(εp1 + εp2 − εq)2 + η2]2

,

c2(T, η) =
∑

p1<p2<p3

∑
q1<q2

|〈p1, p2, p3|σz0|q1, q2〉|2
[
e−(εq1+εq2 )/T − e−(εp1+εp2+εp3 )/T

]
× 4η(εp1 + εp2 + εp3 − εq1 − εq2)

[(εp1 + εp2 + εp3 − εq1 − εq2)2 + η2]2
, (3.24)

where the form factors are given in Eqn (2.4). Note that c0(T, η) → 0 as η → 0 because it is

not possible to satisfy the energy conservation delta function. Also in this limit, c1(T, η)→ c1(T )

computed in Eq. (3.14). On the other hand c1(T ) vanishes for 3 < h < 5 which implies that in this

range of magnetic fields no “disconnected” contributions arise in Eq. (3.21) and we simply have

c2(T ) = limη→0 c2(T, η). It is then straightforward to turn sums into integrals and we examine

some properties of the resulting expression for c2(T ) in Appendix A. By contrast, for 1 < h < 3

c2(T, η) diverges with system size and the disconnected contributions in (3.21) need to be taken

into account in order to obtain a finite expression. In principle it is possible to obtain a multiple

contour integral representation for c2(T ), but here we confine ourselves to a numerical evaluation

of the momentum sums. We proceed as follows:

1. We evaluate cn(T, η) for several values of η and system sizes up to L = 256. We require η

to be sufficiently large so that the finite-size corrections are negligible for our largest system

sizes. We find that η ≈ 0.1 is an appropriate order of magnitude.

2. We numerically extrapolate our results to η = 0 using a third order polynomial.

A useful check on this procedure is obtained by carrying it out for c1(T ) and comparing it to the

numerically evaluated expression (3.14), which is the result in the thermodynamic limit at η → 0.

Results for c2(T ) for h = 1.5 are shown in Fig. 3, where we compare extrapolations for system

sizes L = 144 and L = 192.
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FIG. 2. c1(T ) for h = 1.5 and several temperatures. The thermodynamic limit result (blue dots) is seen

to be in good agreement with the extrapolation of numerical results for L = 192 and 0.1 6 η 6 0.115

(yellow dots).

FIG. 3. c2(T ) for h = 1.5 and several temperatures. The results of extrapolating numerical results for

0.1 6 η 6 0.115 and L = 144 are in good agreement with those for L = 192.

IV. QUANTUM CRITICALITY

In this section we consider the approach to the quantum critical point at h = 1 in Fig. 1. It is

useful to first review the analysis on the ferromagnetic side, h < 1, which was presented in Ref. 8.
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Then as ∆� J , the 1/T1 rate obeys the universal scaling form

1

T1

= |ahf |2
Z

T 3/4
Φ1(∆/T ) , h < 1 , T,∆� J , (4.1)

where Z is a non-universal constant, while Φ1 is a universal function describing the crossovers

between the quantum critical and renormalized classical regions. For the nearest-neighbor Ising

model in Eq. (2.1) we take Z = J−1/4 for our normalization of Φ1. While other microscopic models

will have different values of Z, the function Φ1(∆/T ) is independent of the specific microscopic

Hamiltonian. The limiting forms for Φ1 in the two regimes are known exactly:

Φ1(∆/T ) =


2.1396 . . . , ∆� T � J

π(∆/T )1/4e∆/T , T � ∆� J

. (4.2)

Furthermore, these theoretical predictions were found to be in good agreement with experimental

observations [8].

Now let us examine the paramagnetic phase h > 1. As in Eq. (4.1), the scaling form is

1

T1

= |ahf |2
Z

T 3/4
Φ2(∆/T ) , h > 1 , T,∆� J , (4.3)

is expected to describe the crossovers in the NMR relaxation between the quantum disordered and

quantum critical regimes. Matching with Eq. (4.1) in the quantum critical regime we have

Φ2(∆/T ) = 2.1396 . . . , ∆� T � J . (4.4)

For the form of Φ2 in the quantum disordered regime, we examine only the leading term in

Eq. (3.19) in the limit T � ∆ � J . In this limit, the fermion dispersion in Eq. (2.2) takes a

relativistic form

εp =
√

∆2 + c2p2 (4.5)

with c = 2J . We evaluate the other parameters introduced above Eq. (3.19) for this dispersion

and find

m = ∆/c2 , p0 =
√

3∆/c , v =
√

3c/2 . (4.6)

Finally, inserting in Eq. (3.19) we obtain

1

T1

= |ahf |2
3
√

3T 2

2πJ1/4∆11/4
e−2∆/T , T � ∆� J, h > 1 (4.7)

This result is compatible with the scaling form in Eq. (4.3), and we have

Φ2(∆/T ) =
3
√

3

2π

(
T

∆

)11/4

e−2∆/T , T � ∆� J . (4.8)

Note that the result in Eq. (4.8) applies to a generic ferromagnetic quantum Ising chain near its

transverse field quantum critical point, and not just the nearest-neighbor model.
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FIG. 4. Phase diagram and energy scales of the Ising chain system CoNb2O6 as a function of transverse

field. Energy scales from different experimental probes as well as the transition temperature of the 3D

incommensurate Neel order are given. The transition is to a state with ferromagnetic chains that are

ordered antiferromagetically in the b. On the paramagnetic side of the transition, one can see an excellent

agreement between various spectroscopic probes (THz absorption [12] and inelastic neutron scattering

[11] and heat capacity [10]). In contrast one can see clearly that the gap extracted from the temperature

dependence of the NMR spin relaxation time is approximately twice as large [8].

V. EXPERIMENTS

As mentioned above CoNb2O6 has been discovered to be an almost ideal realization of a 1D

ferromagnetic Ising chain [5]. It is quasi-1D material characterized by zig-zag chains of Co+2 ions

with effective spin 1/2 moments. The spins lie in the ac plane at an angle of ±31◦ to the c−axis

[13, 14] with the chains extending along the c−direction. A dominant ferromagnetic exchange

between nearest-neighbor Co+2 ions along the c axis cause strong 1D ferromagnetic correlations

to develop below ∼25 K [15]. At zero transverse field, weak AF inter-chain exchange interactions

stabilize an incommensurate spin-density waves at 2.95 K along the b-direction with a temperature-

dependent ordering wave vector Q, and then a commensurate spin-density wave at 1.97 K. But

at temperatures above these scales at zero field (and at temperatures much lower near the 1D

quantum critical point (QCP)), the system can be described as a 1D Ising system. The effective
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1D phase transition to a quantum disordered phase has been inferred to be at the relatively modest

critical transverse field of 5.2 T in the b direction. Note that the 3D phase is believed to extend

out slightly past the effective 1D QCP, a feature necessary for the observation of “kink” bound

states in the spectrum near the critical point [5].

A number of measurements have been been made of the various energy scales on both sides of

the transition of the 1D QCP in CoNb2O6. We will concentrate on the paramagnetic regime. As

shown in Fig. 4 neutron scattering [11] and THz absorption [12] experiments have given evidence

for a q = 0 (or symmetry equivalent) mode which increases in energy roughly linearly with field

from the critical point. This may be identified straightforwardly with the zone center excitation

described by Eq. 2.2. Heat capacity experiments have also been performed [10] and data fit to

the nearest-neighbor Ising model. As seen in Fig. 4, the extracted gap scale from heat capacity is

in excellent agreement with the spectroscopic probes. In contrast to these experiments, the scale

of the lowest energy excitation extracted from the temperature dependence of the 1/T1 in NMR

is greater by approximately a factor of two than the other probes. As explained above, this data

was fit to a activated functional form which was effectively 1/T1 ∼ exp(−∆NMR/T ). However,

we have shown here that near the critical point the expectation is in fact 1/T1 ∼ exp(−2∆/T ).

This means that the activation energy scale from 1/T1 will be double that extracted from the

other probes. This is precisely as observed experimentally. Also note that the differences between

energy scales are far bigger than anything that could be explained by inter-chain couplings or 1D

vs. 3D regimes of behavior. The coupling in the transverse b direction has been found to be smaller

than 1/60 of J [7]. At low temperature on the paramagnetic side of the transition, this gives a

minimum of the dispersion at finite qb, but except very near the critical point this band width

in directions perpendicular to the chain is a very small fraction of ∆ [7]. The third direction has

frustrated antiferromagnetic couplings and has even smaller effect on the dispersions (although

it is presumably responsible for stabilizing different magnetically ordered states at low transverse

field [16]). The scenario put forward in the current work comes with a distinct prediction. At

fields three times the critical field 1/T1 should crossover to a form that goes as exp(−3∆/T ) e.g.

a much faster dependence. This is at fields greater than 15.6 T in CoNb2O6 and should be easily

testable.

VI. CONCLUSIONS

The quantum Ising chain has been an essential model to understand the low frequency, non-zero

temperature dynamics of a strongly interacting system [2, 3, 17]. The integrability of the model

allows for exact solutions, and yet many local observables exhibit generic dissipative dynamics at

long times. Here we have examined the NMR relaxation rates in the quantum disordered region.
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It is given by the imaginary part of the local spin susceptibility, at frequencies far below the quasi-

particle gap, ∆. Therefore it is not directly amenable to a quasi-classical computation involving

collisions of a dilute gas of quasiparticles [2]. Instead, we showed here that it is dominated by rare

processes in which one quasiparticle has sufficient energy to decay into two quasiparticles (and

vice versa) near the nucleus. Consequently we found that the NMR relaxation is suppressed by

a thermal Boltzmann factor of exp(−2∆/T ) for not too large a transverse field, 1 < h < 3 (the

suppression is stronger for larger h). We also computed the precise prefactor of this exponential for

the nearest-neighbor Ising chain, and its universal form near the quantum critical point. Finally

we compared our results to the experimental probes. The scenario put forth here is in excellent

agreement with the experimental results. Spectroscopic and thermodynamic probes show agree-

ment as to the size of the gap, whereas 1/T1 from NMR shows an activation energy, which is

approximately twice as large.
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Appendix A: Evaluation of e−3∆/T contribution

The expression for c2(T, η) in Eq. (3.24) can be written in the limit T → 0 as

c2(T, η) = − 2π

2!3!T

∫ π

−π

dk1dk2dq1dq2dq3

(2π)5
|NS〈k1k2|σz0|q1q2q3〉R|2e−(εq1+εq2+εq3 )/T

× δ(εk1 + εk2 − εq1 − εq2 − εq3) , (A1)
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where the factorials are combinatoric factors from converting the sums to integrals. From Eq. (2.4),

the form factor is

|NS〈k1k2|σz0|q1q2q3〉R|2 =
(4J2h)

1
2 |1− h2| 14

εk1εk2εq1εq2εq3

×

(
sin
(
k1−k2

2

)
sin
(
q1−q2

2

)
sin
(
q1−q3

2

)
sin
(
q2−q3

2

)
sin
(
k1−p1

2

)
sin
(
k1−q2

2

)
sin
(
k1−q3

2

)
sin
(
k2−q1

2

)
sin
(
k2−q2

2

)
sin
(
k2−q3

2

))2

×
(

(εk1 + εq1)(εk1 + εq2)(εk1 + εq3)(εk2 + εq1)(εk2 + εq2)(εk2 + εq3)

4(εk1 + εk2)(εq1 + εq2)(εq1 + εq3)(εq2 + εq3)

)2

. (A2)

We now attempt to take the T → 0 limit of Eq. (A1) in a manner similar to the analysis below

Eq. (3.14). The integral is dominated by small q1,2,3 ∼
√
T . This allows us to make the following

approximations

εqi ≈
q2
i

2m
+ ∆

sin

(
qi − qj

2

)
≈ qi − qj

2

εq1 + εq2 = 2∆ (A3)

We can now write Eqn. (A2) as a product of a term containing the q1, q2, and q3 dependence, with

one containing the k1 and k2 dependence. The q1,2,3 integral is sharply peaked about momenta

∼
√
T in the q1, q2, q3 plane, so we can extend the limit of integration over these momenta out to

infinity giving us the following

c2(T, η) ≈ −e
−3∆/T4πJ(h2|1− h2|) 1

4

3!2!∆9216T

∫ π

−π

dk1dk2

(2π)2

((εk1 + ∆)3(εk2 + ∆)3)
2

εk1εk2(εk1 + εk2)
2

×

(
sin
(
k1−k2

2

)
sin3

(
k1
2

)
sin3

(
k2
2

))2

δ(εk1 + εk2 − 3∆)

×
∫ ∞
−∞

dq1dq2dq3

(2π)3
((q1 − q2) (q1 − q3) (q2 − q3))2 e−(q21+q22+q23)/2mT . (A4)

The q1,2,3 integrals evaluate to∫ ∞
−∞

dq1dq2dq3

(2π)3
(q1 − q2)2 (q1 − q3)2 (q2 − q3)2 e−(q21+q22+q23)/2mT = 12(2π)−

3
2 (mT )

9
2 , (A5)

which yields

c2(T, η) ≈ −e
−3∆/T2J(h2|1− h2|) 1

4 (mT )
9
2

∆9(2π)
1
2 216T

×
∫ π

−π

dk1dk2

(2π)2

(
(εk1 + ∆)3 (εk2 + ∆)3)2

εk1εk2(εk1 + εk2)
2

sin2
(
k1−k2

2

)
sin6

(
k1
2

)
sin6

(
k2
2

)δ(εk1 + εk2 − 3∆) (A6)
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Now we have to perform the final integrals over k1,2. Because of the singularities in the form factors

at small momenta, the integrals have infrared divergencies which need to be treated differently

depending upon the value of h.

For 3 < h < 5, the energy conservation delta function in Eq. (A6) prevents a divergence. The

argument of the delta function does not vanish when either k1 = 0 or k2 = 0. Consequently, the

k1,2 integrals are finite, and we obtain

c2(T, η) ∼ T 7/2e−3∆/T , T � ∆ , 3 < h < 5 , (A7)

so that the contribution to 1/T1 is ∼ T 9/2e−3∆/T .

However, for 1 < h < 3, there are divergences in Eq. (A6). The divergences are present when

either k1 = 0 or k2 = 0. So let us consider the form of Eq. (A6) when both k1 are k2 small. After

suitable rescaling of momenta, we obtain an expression of the form

c2(T, η) ∼ T 7/2e−3∆/T

∫
dk1dk2

(k1 − k2)2

k6
1k

6
2

δ
(
(k2

1 + 1)1/2 + (k2
2 + 1)1/2 − 3

)
. (A8)

This integral has an effective divergence ∼
∫
dk/k6. As we discussed below Eq. (3.24), this

divergence will be cancelled by the other terms in Eq. (3.21). A conjectured estimate is obtained by

cutting off the divergence at k ∼
√
T , which leads to c2(T ) ∼ Te−3∆/T and therefore a contribution

to 1/T1 which is ∼ T 2e−3∆/T .

[1] S. Sachdev, Quantum Phase Transitions, 1st ed. (Cambridge University Press, Cambridge, UK,

1999).

[2] S. Sachdev and A. P. Young, “Low Temperature Relaxational Dynamics of the Ising Chain in a

Transverse Field,” Phys. Rev. Lett. 78, 2220 (1997), cond-mat/9609185.

[3] F. H. L. Essler and R. M. Konik, “Finite-temperature dynamical correlations in massive integrable

quantum field theories,” J. Stat. Mech. 9, 09018 (2009), arXiv:0907.0779 [cond-mat.str-el].

[4] N. Iorgov, V. Shadura, and Yu. Tykhyy, “Spin operator matrix elements in the quantum Ising chain:

fermion approach,” J. Stat. Mech. 1102, P02028 (2011), arXiv:1011.2603 [cond-mat.stat-mech].

[5] R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht,

P. Smeibidl, and K. Kiefer, “Quantum Criticality in an Ising Chain: Experimental Evidence for

Emergent E8 Symmetry,” Science 327, 177 (2010), arXiv:1103.3694 [cond-mat.str-el].

[6] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov,
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