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We substantiate a complete picture of the “bulk-edge correspondence” conjecture for topological
phases. By studying the eigenstates in the entanglement spectrum for both the ideal and realistic
Coulomb ground state of the fractional quantum Hall system, it is verified that the eigenstates in the
universal part of the entanglement spectrum purely lie in the Hilbert space of the edge excitations
projected onto the physical Hilbert space of the subsystem itself. Hence, not only the eigenlevels in
the entanglement spectrum are in one-to-one correspondence with the eigenenergies of an effective
dynamical edge Hamiltonian, but all the eigenstates are confirmed to be the actual (projected) edge
excitations of the subsystem. This result also reveals the possibility of extracting the full information
of the edge excitations from the state of the subsystem reduced from a geometric cut of the pure
ground state of the total system in topological phases.

I. INTRODUCTION

Since the discovery of the fractional quantum Hall
effect1,2, a new paradigm of phases of matter which is
of a topological nature3–5 and yet does not fit into the
conventional symmetry-breaking picture comes into play.
These novel phases of matter exhibit spectacular behav-
iors, such as fractional charges6, (non-)Abelian anyons7,
or topologically protected gapless edge excitations. In
absence of local order parameters, these phases are usu-
ally characterized by certain global properties such as the
ground state degeneracy4. Despite intense effort, a com-
plete understanding of such topological ordered phases
still remains elusive.

Among various approaches to characterize these in-
triguing zero-temperature phases of matters, entangle-
ment plays an increasingly crucial role8. It is believed
that ground states of topological ordered systems are able
to build up long range entanglement9. One way to study
the entanglement in a many-body system is to look at the
correlation between a subsystem and its complement in
the total system. The entanglement entropy, i.e., the sub-
system von Neumann entropy, captures the entanglement
between the subsystem and the rest of the total system.
In typical ground states of many-body systems, the en-
tanglement entropy follows an area scaling law10. For a
state in a topological phase, besides the usual term that is
proportional to boundary area, there emerges a constant
sub-leading term that is characteristic of the topological
nature of the system. Coined as topological entanglement
entropy11–13, this quantity is one of the most recognized
signatures for states with topological phases.

In subsequent work14, Li and Haldane proposed and
numerically substantiated that more information about
the underlying topological state can be obtained by
studying instead the full spectrum of the reduced den-
sity matrix, ρA, of a subsystem A. Writing ρA = e−HA ,
the entanglement spectrum is defined as the spectrum of
the effective Hamiltonian HA. The eigenvalues ξi and
eigenstates |Ψ〉Ai of HA can be alternatively extracted

from the Schmit decomposition of the total state,

|Ψ〉 =
∑
i

e−ξi/2|Ψ〉Ai ⊗ |Ψ〉Bi . (1)

Though HA, in general, is not a real dynamical Hamilto-
nian, it is ultimately related to the physical edge of the
subsystem: In the quantum Hall system, the number of
the low-lying universal eigenenergies, which are separated
by a finite gap14,15 from other generic levels, are in one-
to-one correspondence with the edge modes describable
by a macroscopic edge theory.

Both the entanglement entropy and the counting struc-
ture of the entanglement spectrum can be naturally in-
terpreted if a relation between the bulk and the phys-
ical edge of the subsystem is established. This rela-
tion, termed the bulk-edge correspondence16–18, states
that the entanglement Hamiltonian corresponds to an
effective dynamical local Hamiltonian acting on a 1-D
edge system. The bulk-edge correspondence, originally
sketched in the early work of entanglement entropy13,
has been extensively studied in various fields19–24. This
correspondence emerged in part from general arguments
based purely on the topological properties of the system
and on the standard renormalization-group method16,
in part from observations of geometric aspects and the
Lorentz invariance of the emergent effective theory17, and
in part through study of model wavefunctions specific
to the quantum Hall system constructed from conformal
blocks18. These arguments are only valid provided cer-
tain assumptions hold in the thermodynamic limit.

In this work, we argue that a complete picture of the
bulk-edge correspondence should consist of two pieces.
One is that the eigenvalues ξi are in one to one correspon-
dence with the eigenvalues of an effective edge Hamilto-
nian. The other is that the universal eigenstates |ΨA

i 〉
that appear in the bulk density matrix (See Fig. 1 for
an illustration of the universal levels) are all real edge
states of the subsystem. To be precise, the universal lev-
els stands for the ones appear in the entanglement spec-
trum of the ideal model wavefunctions, as well as the
part of the spectrum having similar structures for the
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case of generic interactions. By comparing the entangle-
ment spectrum eigenstates with the actual edge excita-
tions, we are able to identify the universal branch of the
spectrum (See Fig. 1 for an example). For the first part
of the bulk-edge correspondence in the quantum Hall sys-
tem, the only direct numerical evidence was provided in
Ref.18, where the spectrum of a perturbative local Hamil-
tonian of an edge system described by a conformal field
theory was computed and shown to match quite well the
entanglement spectrum obtained for a real space parti-
tion of the total system. To the best of our knowledge,
a direct verification of the latter part of the correspon-
dence is still missing. Since an effective edge theory usu-
ally describes the degrees of freedom that are distinct
from those in the original bulk system, direct compari-
son of their eigenstates is much harder than comparing
their eigenenergies. Thus, typical studies of the entan-
glement spectrum usually focuses on the counting struc-
ture of the eigenlevels. In the present work, by analyzing
the detailed information of the entanglement spectrum
eigenstates, we complete the verification of the missing
piece of the bulk-edge correspondence for both the model
wavefunction and the realistic ground state of Coulomb
interactions.

II. ENTANGLEMENT SPECTRUM AND EDGE
PHYSICS

The system studied here consists of a few spinless
fermions in the lowest Landau level on a two-dimensional
disk. In this work, system partitions are restricted to
the subsets of the single particle magnetic orbitals in the
symmetric gauge (with unnormalized analytic wavefunc-

tion z|m|e−|z|
2/4, where z = x− iy is the two dimensional

complex coordinate and m = 0,−1,−2, ... is the angular
momentum quantum number). In principle, orbital cut
is a parition in momentum space and is fundamentally
nonlocal. However, in the lowest Landau level, these
single particle orbitals have localized ring shapes with
narrow width in the order of the magnetic length. Thus
in many cases the orbital partition mimics approximately
the real space partition and provide valuable information
of the system. It is also worthwhile to mention that an-
other commonly used scheme, based on a cut of particle
number25–27, has usually been adopted for the study of
quasi-hole excitations. In some particular model states,
the level counting in the orbital entanglement spectrum
and the one in the particle entanglement spectrum, which
correspond to quasi-hole excitations in the bulk, were
shown28 to be ultimately connected. This relation, also
termed as “bulk-edge correspondence”, is not to be con-
fused with the one we are considering in the present work.

In the subsystem, the particle number and total angu-
lar momentum are still good quantum numbers; Thus,
the reduced density matrix of a subsystem contains dis-
tinct sectors which do not couple with each other. As an
illustration, Fig. 1 compares the standard entanglement
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FIG. 1. Entanglement spectrum of the 17-orbital subsystem
at the 6-particle sector. The total system of 12 particles in
totally 34 orbitals is prepared in (Upper) the ideal Laughlin
state and (Lower) the realistic Coulomb interaction ground
state. The color of the pseudo-energy levels indicate the over-
laps between the corresponding entanglement spectrum eigen-
states and the edge states of the subsystem. Inset: Entangle-
ment entropy v.s. the square root of the number of orbitals
(nA) in subsystem A, which is proportional to the length of
the boundary. The blue dashed line is our fit to the first 17
points, which are in the linear region away from the edge of
the total system.

spectrum for the ideal Laughlin state with that of the re-
alistic Coulomb ground state of 12 particles in the lowest
Landau level. For entanglement spectra of the quantum
Hall states in other geometry and partition schemes, see
also Refs.26,27,29–32. The subsystem studied in this work
involves the inner most N/2-orbitals (with N the even
number of total orbitals), which is the largest system
that is sufficiently far away from the edge of the total
system, in the sense that it is still in the linear region
of the entanglement entropy (See the inset in Fig. 1).
In this region, edge effects are supposed to be removed
as much as possible. By analyzing the fraction of each
eigenstate that resides in the Hilbert space of edge modes
(by the procedure explained in the following), we are able
to identify all the universal levels apart from the generic
levels in the case of Coulomb interactions. It is observed
that the universal and generic parts barely mix with each
other, albeit at larger angular momentums they start to
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mix, in contrast to the low angular momenta, where there
is a finite gap between them.

To prove the bulk-edge correspondence, on the
“edge” part, we use the well-known series of model
wavefunctions33 for the (neutral) edges excitations of the
Laughlin ground state. These analytic model wavefunc-
tions are generated by the power sum symmetric polyno-
mials sn =

∑
i z
n
i , n = 1, 2, 3.... To build an edge mode

with angular momentum ∆M (this is the additional an-
gular momentum carried by the edge mode beyond the
ground state angular momentum), one generates an in-
teger partition |∆M | =

∑
i ni, where ni are positive in-

tegers. The corresponding (unnormalized) edge state is
constructed as the product of the Laughlin wavefunction
and a symmetric polynomial:

Ψedge =
∏
i

sni

∏
i<j

(zi − zj)1/ν
∏
i

e−
|zi|

2

4 , (2)

where ν is the filling factor. In general 1/ν takes arbitrary
odd integer values, while in the following numerical study
we focus on ν = 1/3 only. For a given ∆M , the number of
different modes is thus the number of integer partitions
of |∆M |. These states are the only zero energy states
for the case of the Haldane V1 pseudo-potential34 in the
lowest Landau level, and they describe the gapless edge
excitations of the Laughlin ground state. In the thermo-
dynamic limit, the Hilbert space of the edge modes gen-
erated by the order-n power sum polynomials is identical
to that generated by the U(1) Kac-Moody algebra33,35,36

in a macroscopic theory of the edges physics. However,
for finite size systems, when the orders of the symmetric
polynomials become larger than the number of particles,
these states are no longer linearly independent. In fact,
the number of linearly independent symmetric polyno-
mials of order n is the number of partitions of n into at
most N parts, where N is the number of particles and
the number of variables in the polynomial. Denote this
restricted partition as P (n,N). For each such integer

partition n =
∑N
i ni, one alternative way to construct

the edge state is to use the corresponding order-n mono-
mial symmetric polynomial sn =

∑
p(
∏
i z
ni
i ), where the

summation is taken over all permutations of z′is such that
the polynomial is symmetrized. The leads to a correc-
tion of the number of edges modes for finite size systems
compared with the macroscopic theory for systems in the
thermodynamical limit.

Another finite size effect arises when comparing the
edge modes with the eigenstates in the entanglement
spectrum. That is, the ideal edge modes might involve
single particle orbitals that are outside the region of the
subsystem under consideration. These additional degrees
of freedom need to be traced out in formatting the appro-
priate Hilbert space of the subsystem18. Precisely speak-
ing, the Fock space spanned by the free edge states are
projected onto a subspace involving only orbitals that
are resident in the subsystem. This inevitable projection
procedure was also discussed in Ref.18 for the case the

real space partitions. In this manner, the projections of
the original linearly independent edge modes might be-
come linearly dependent, such that the projected Fock
space could have a smaller dimension than the original
Fock space of the free edge states. For illustration, Ta-
ble I lists the number of free edge modes, the number of
independent projected edge modes, and the number of
observed energy levels in the entanglement spectrum for
the 5- and 4-particle sectors. The observed level counting
in the primary 5-particle sector of the entanglement spec-
trum matches precisely the reduced dimension of edge
modes Hilbert space at every angular momentum sector.
In the large particle number limit, the restricted integer
partition reduces to the regular integer partition. This is
in agreement with the original conjecture for the counting
structure of the entanglement spectrum in Ref.37.

|∆M | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
P (|∆M |, 5) 1 1 2 3 5 7 10 13 18 23 30 37 47 57 70 84 ...

Dp 1 1 2 3 5 7 9 11 14 16 18 19 20 20 19 18 ...
Dm 1 1 2 3 5 7 9 11 14 16 18 19 20 20 19 18 ...

|∆M | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
P (|∆M |, 4) 1 1 2 3 5 6 9 11 15 18 23 27 34 39 47 54 ...

Dp 1 1 2 3 5 6 9 11 14 16 19 20 23 23 24 23 ...
Dm 1 1 2 3 4 5 7 7 8 8 8 7 7 5 4 3 ...

TABLE I. The number of edge modes at various angular mo-
mentum ∆M in the 14-orbital subsystem. The total system
has 10 particles occupying 28 orbitals. Upper and lower ta-
bles correspond to five and four particles, respectively. P is
the number of free edge modes, i.e., the number of restricted
integer partitions. Dp represents the dimension of the Hilbert
space of projected edges modes; Dm labels the observed mul-
tiplicity of levels in the entanglement spectrum.

To prove that the universal part of the entanglement
spectrum is indeed spanned by the edge modes, we com-
pute the probability for each eigenstate in the entan-
glement spectrum to reside in this space. For a given
eigenstate ψ of the entanglement spectrum, the projec-
tion probability is defined as

Pr(ψ) = |P̂ψ|2, (3)

where P̂ is the projection operator to the Hilbert space
of projected edge modes.

III. NUMERICAL RESULTS

We are able to compute the entanglement spectrum for
both ideal Laughlin state and Coulomb ground state, and
the correponding projection probability defined in previ-
ous section, for up to 12-particles using exat diognaliza-
tion. The data is presented in Fig. 1, which confirms that
the eigenstates in the universal entanglement spectrum
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FIG. 2. The projection probabilities for the whole entangle-
ment spectrum of the 5-particle sector (left) and the 4-particle
sector (right) for the case of Coulomb ground state. Both the
cases of ideal edge states (upper) and realistic edges states of
Coulomb interaction are examined.

FIG. 3. Typical patterns for the projection probabilities. Red
squares represent the probabilities for 5 particles at ∆M = 6
(|M | = 36). Blue dots correspond to the 4-particle sector at
∆M = 8 (|M | = 26). Projection probabilities are computed
using (a) the model edge states for the Laughlin case and (b)
the real edge states for Coulomb interactions.

clearly stand out with a near unity overlap with sub-
system edge modes. In the following we illustrate more
details with the 10-particle system.

For the ideal Laughlin wavefunction, it is confirmed
that all the eigenstates in the entanglement spectrum
have identity projection probabilities in the Hilbert space
of the projected edge states.

For the case of Coulomb ground state, both the ideal
edge states and the real edge modes of the subsystem are

used to analyze the projection probability Eq.(3). The
real edge modes are computed from the Coulomb inter-
action at the corresponding angular momenta with open
boundary condition (without performing single particle
orbital cut). In the thermodynamic limit, they are sup-
posed to be low-lying modes describing the gapless edge
excitations. However, in few-body calculations, there are
usually no clear gaps in the spectrum separating the edge
modes and the bulk excitations. In this case, we iden-
tify each edge state with the aid of high (∼0.97) pro-
jection probabilities onto the Hilbert space of the ideal
edge wavefunctions (2). These probabilities scale with
the system size in the same way as the overlap between
the Laughlin model state and the Coulomb ground state.
It is known that the latter overlap does not survive in the
thermodynamic limit. However, this is not a problem in
this case since the edge states would stand out as gapless
modes in the spectrum. For the purpose of the few-body
calculations in the present work, high overlaps allow us
to singles out the right number of edge states, while all
other eigenstates of the Coulomb Hamiltonian have suf-
ficiently small projection probabilities (∼ 0.01) onto the
Hilbert space of the model edge states.

Fig. 2 and Fig. 3 show the projection probability
patterns. Both the primary 5-particle sector and the sec-
tor with particle number offset (4-particle sector in this
case) show clear high probability plateaus for the univer-
sal levels in the entanglement spectrum. In the 4-particle
sector, since the number of universal levels is smaller
than the dimension of the projected edges modes (as
was shown in Table.I), the generic levels also have fluc-
tuating non-zero probabilities, in contrast to 5-particle
sector, where all the generic levels have nearly zero pro-
jection probabilities. They are nevertheless clearly sepa-
rated from the universal part.

In the primary sector, since all universal eigenstates in
the entanglement spectrum have nearly identity proba-
bilities in the corresponding Hilbert space of projected
edge modes, it is concluded that the information of all
edge excitations is hidden in the pure ground state of
the total system, which can be extracted from the bulk
state of the subsystem. This can be viewed as a com-
plementary effect to a similar result in Ref.27, where it
is observed that the primary sector of the entanglement
spectrum under particle partition spans the entire space
of quasi-hole excitations of the subsystem.

To further firm up the evidence of the bulk-edge corre-
spondence, we present in Fig. 4 the actual energy spec-
trum of 5 particles under Haldane V1 interaction with
and without boundary conditions. The degenerate zero-
energy states for the latter are model edge states. If we
did not use the mechanism of projecting the edge states of
the subsystem with open boundaries, the nondegenerate
low-lying states of the subsystem alone would have been
inadequate to explain all the observed universal levels in
the entanglement spectrum (Fig. 1).
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FIG. 4. The spectrum of 5 particles under the Haldane V1

pseudo-potential with an open boundary condition (red lev-
els) and with the same boundary condition as the 14-orbital
subsystem (blue levels). The blue levels are shifted slightly
to the right from their corresponding angular momenta. For
the case of an open boundary condition, the degeneracies of
the ground states are 1, 1, 2, 3, 5, 7, which are identical to the
number of the ideal edge states.

IV. CONCLUSION

In conclusion, this work shows that the universal part
of the subsystem reduced density matrix, by orbital par-
tition, of the fractional quantum Hall state lie in the
Hilbert space of edge modes of the subsystem itself, hence
completes the picture of the bulk-edge correspondence
conjecture. This result also reveals the possibility of ex-
tracting edge excitations from the state of the subsystem
reduced by geometric cut of the pure ground state of the
total system in topological phases. In the future, it will
be informative to apply this method to other systems in
topological phases.
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