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Bound states in the continuum (BIC) have been studied mainly in optics. Recently, electronic BIC
have been proposed. They appear as points in the momentum space and are protected topologically
by the Chern number. In this study, we propose a new type of BIC protected by the winding
number, which is one of the topological invariants. These BIC appear as lines in the momentum
space, and are realized in a multilayer model consisting of honeycomb-lattice layers. We show band
structure and spatial localization of the BIC in this model. The wavenumbers at which the BIC
appear can be explained in terms of topology in the momentum space.

I. INTRODUCTION

In a perfect crystal, eigenstates are Bloch states, which
extend over the entire crystal. When the translational
symmetry is locally broken, bound states may emerge.
This can be seen in surfaces and interfaces, and around
impurities and disorders. An example of bound states
is an impurity level in a semiconductor. Usually such
bound states are perfectly confined and exist outside the
continuum in the band structure. However, bound states
can exist inside the continuum in some cases. These
states are called bound states in the continuum (BIC)~.
They have been proposed in many different fields such as
photonics? 2 acousticst918 and electronics L,

BIC have been studied mainly in optics. Optical BIC
can be realized in a photonic crystal slab. Photonic band
structure in a photonic crystal?? is divided into two re-
gions by the light line. Below the light line, the light can
be perfectly confined within the slab because of the total
reflection. On the other hand, above the light line, the
light usually couples to the continuum and has a finite
lifetime in general, leading to disappearence of bound
states. Nevertheless, in some special photonic crystals,
bound states appear above the light line, and they are
called optical BIC?%, In the wavevector space these BIC
in Ref. [33] are located at vortex centers for the polariza-
tion directions of the far-field radiation. They are pro-
tected by the winding number in the wavevector space,
which means how many times the polarization vector
winds around the wavevector of the BIC34,

BIC can exist for electrons in solids. In a previous
study=2, topologically protected electronic BIC have been
proposed in a system of a two-dimentional (2D) quantum
Hall insulator (QHI)3% stacked onto a three-dimensional
(3D) normal insulator (NI). In this system, some of the
electronic states from the 2D QHI can be degenerate with
the bulk bands formed by electronic states from the 3D
NI. In general, states from the top QHI layer hybridize
with other states in the 3D bulk because these states
are not orthogonal. On the other hand, BIC, originating
from the 2D QHI, do not hybridize with other states from
the 3D NI because these states are orthogonal. These

BIC appear as points in the momentum space and the
number of the point-like BIC is equal to the difference of
the Chern number3? between the QHI and the NI, and
therefore these BIC are topologically protected.

In this study, we find a different type of BIC: line-
like BIC in the 2D momentum space. The line-like
BIC are topologically protected by the winding num-
ber. To demonstrate this, we use a model where a 2D
isotropic honeycomb-lattice model is stacked on top of a
3D anisotropic honeycomb-lattice model. The BIC de-
rived from the 2D honeycomb-lattice layer do not hy-
bridize with other states, and they localize near the top-
most layer. These BIC emerge as lines in the momentum
space, which is different from the previous work3?. This
paper is organized as follows. In Sec [ we first explain
the honeycomb-lattice model. In Sec [Tl we show condi-
tions for existence of BIC and analytical results on the
localization length of the BIC in this system. After that,
we show band structures with and without BIC, and re-
veal that the BIC are protected by the winding number.
Throughout the paper, we neglect electron-electron in-
teraction and we consider spinless fermions.

II. MODEL FOR THE LINE-LIKE BIC

When a 2D system is stacked on the top surface of a 3D
system, electronic states from the 2D system can be de-
generate with bulk states from the 3D system, and these
states generally hybridize with each other. Therefore,
the states derived from the 2D system are not localized
near the surface. However, under some conditions, the
states from the 2D system do not hybridize with bulk
3D states and localize near the surface. These states are
called BIC.

In this paper, we propose a new type of BIC, the line-
like BIC in the momentum space. To show this we in-
troduce a system of an isotropic 2D honeycomb-lattice
model on top of a 3D system of a stacked anisotropic
honeycomb-lattice model. The 2D system is an isotropic
nearest-neighbor tight-binding model on the honeycomb
lattice shown in Fig. [I[a), which is known to describe



FIG. 1. (a) Honeycomb lattice used in the model. The hon-
eycomb lattice has two sublattices labeled A and B. The red
arrows show primitive vectors, a; = (?, %), az = (— ‘{, %)
and the blue arrows represent vectors to three nearest neigh-
bor sites, 71 = (0,1), 2 = (f§,f%), T3 = (?,f%) (b)
First Brillouin zone of the honeycomb lattice. The reciprocal
primitive vectors are G1 = 274 (%, 3), G2 =212 (= 5/5, ).
I, M, K, and K’ points are hlgh—symmetry pomts in the
Brillouin zone. (c¢) Dirac points for each layer of the 3D sys-
tem in the momentum space at some values of t'. We show
the Dirac points only along the line k;, = %", as green sym-
bols. At t' = 1 the Dirac points are at K and K’, as known
in graphene. At t' = 2 the two Dirac points meet and are

annihilated.

graphené®®, Each layer of the 3D system is similar to
this 2D model, but with anisotropic hoppings to the near-
est neighbor sites??. We take the zy-plane to be along
the layers, and the z-axis to be perpendicular to them.
The stacking of the honeycomb-lattice in this 3D sys-
tem is along the z-axis as shown in Fig. [2| unlike that
in graphite. The Hamiltonian of the individual layer is
described as

H = Ztm CiCjs (1)
(ig)

where ¢; is the annihilation operator of an electron at
the site 4, t;; is a real hopping amplitude, and (ij) de-
notes a pair of nearest neighbor sites. We get the Bloch
Hamiltonian,

0 Z?=1 t; exp(—ik - TZ)>

H(k) = (Z?_l t; exp(ik - ;) 0
(2)

where k is the Bloch wavevector, and t;—1 2,3 are nearest
neighbor hopping amplitudes along the vectors T;—i 2.3

given by 7 = (0,1), m» = (—@,—%), and ™3 =

FIG. 2. Geometry of the system. It is a layered structure
along the z direction. The blue layer is the 2D system and
the green layers constitute the 3D system.

( 73, —%) Its energy eigenvalues are

)| - 3)

In our model (Fig. the three hopping parameters of
the topmost 2D system are set to be equal, t;—1 23 = {,
whereas in the underlying 3D system the hopping param-
eters are different, and we put t; =t and t;=0 3 =t. In
this paper, we put t = 1 for simplicity.

The Hamiltonian of the 2D isotropic system and that
of the individual anisotropic layer of the 3D system are
described as

3k, k
Hiso(kg, ky) = (cos ky + 2 cos \2 cos 2y> o

l
2
_HISO:L’(kCE7k )UI+H1SO y( k ) 5
:Hiso(kma ky) -0, (6)

+ (sin ky — 2 cos

and

ke
Haniso(km, ky) = (t/ CcOS ky + 2 cos \/i cos y) Oy

k
L sin 2y> oy

(7)
:Haniso,z(kma ky)am + Haniso,y(k:m ky)ay
(8)

:ﬁaniso(kz, ky) -7 (9)

+ (t’ sin k, — 2 cos

o

respectively, where & is the Pauli matrix acting onto the
sublattice space. We call Hiso = (Hiso’w,HiSO,wO) and



Hoio = (Haniso,zs Haniso,y, 0) pseudospins, and both of
them lie along the xy-plane. The band structure of the
2D system has linear dispersion called Dirac cones near
the K and the K’ points in the momentum space shown
in Fig. b). The two degenerate points are called Dirac
points. On the other hand, in the individual layers of the
3D system, the Dirac points are displaced from the K
and K’ points towards the M point when the anisotropy
is in the region 1 < ¢’ < 2, as shown in Fig. [[{c). Then
the two Dirac points are annihilated in pair at ¢’ = 2 at
the M point. When ¢’ > 2, the band structure of each
layer in the 3D system has no Dirac cones and has a gap.

Here, we note that the Dirac point is a vortex cen-
ter of the pseudospin. It is because the Dirac point
appears when the pseudospin vanishes, and around this
Dirac point the pseudospin naturally acquires a vortex
structure. One can associate each vortex with a vortic-
ity which takes an integer value. The vorticity repre-
sents how many times the pseudospin rotates when we
go around the vortex in a counterclockwise way. When
t’ = 1 the Dirac points at K and at K’ have vorticities +1
and —1, respectively. When ¢’ is increased from t' = 1,
the Dirac points in the individual layers of the 3D system
move from the K point to the M point, and the vortex
structure is modified.

We construct the 3D system by stacking the layers de-
scribed by Haniso along z direction. The way of stacking
is between A-A and B-B sites in Fig. 2] and we put the
interlayer hopping parameter Ty to be positive. There-
fore, the Bloch Hamiltonian of the 3D system is written
as Hsp-aniso (kzs ky, k2) = Haniso + 2To00 cosk, with the
Bloch wavenumber k. along the z direction and o( being
a 2 x 2 unit matrix. Here we set the interlayer spacing
to be unity.

III. APPEARANCE OF LINE-LIKE BIC
A. Conditions for appearance of BIC

As is similar to the previous study®?, we introduce the
retarted Green’s function for the purpose of describing
the BIC. The effective Hamiltonian for this system can be
considered as the Fano-Anderson model Hamiltonian*"
and is written as

H=Y" 9l (Hgo- &)k, ,

Ko ky

D Oy (Haniso - &+ 2T 08 k)b, k.
ka ky k=

+ Z (¢£m7kyT0¢kx1kyykz+h'c’)’ (10)
ke ky ks

where 1y, x, represents the state in the 2D system and
Ok, ky k. does the state in the 3D system. After integrat-
ing out the ¢, k, k., the thermal Green’s function for

the effective 2D system is written as

G_l :iwn - Hiso i

2/ dk, tw, — 21, cos k. + Haniso - 2

0 27 (an - 2T'O COs kz)g - ﬁaniso : ﬁaniso
(11)

where w, is the Matsubara frequency. The retarted

Green’s function Gr(2) = G(iw, = Q+1407) is described

)

as
7 T I—_janiso -0
GRl(Q) =Q—Hyy-G+iz (122207 ) (19
2 |Haniso|

Here we performed the integral over k, by introducing the
constant density of states Dy for the 1D energy dispersion
on k, direction. In Eq. , when Q = 2Ty cosk, +
|ﬁaniso| (Q = 2Ty cosk, — |Haniso|) for some k., we have
I' = 71Dy T¢ and take the positive sign (negative sign) for
the coefficient of I', and for other values of 2, we have
I" = 0. Bound states appear at the d-function singularity
of GR, i.e. when Det(GR') = 0. Because the condition
of Det(Gg') = 0 is rewritten as
: Hiso) =0,

1S0

T ﬁaniso
Det(Gg') = Q% — HZ, +iT <Q + =

| aniso|

(13)
the electronic BIC emerge only in the two cases:
@ Hiso - Haniso = | Hisol [ Hanisol, (14)
Q =2Tycosk, + |ﬁaniso| = ?\ﬁiso| (15)
or
(1) Higo - Haniso = —|Hisol | Hanisol, (16)
Q = 2Ty cos k. + |Haniso| = *+|Hisol- (17)

The emergence of BIC is guaranteed by Egs. and
or by Egs. and . In either cases, There are
two conditions to realize BIC. Equations and
means that the pseudospins ﬁiso and ﬁaniso are parallel
and anti-parallel, respectively. Although they indicate
possible positions for emergence of the BIC, they are not
sufficient to guarantee appearance of the BIC. Equation
(15) (Eq. ) is imposed when the pseudospins are par-
allel (anti-parallel). Equations (|15) and guarantee
that the states from the 2D system are embedded in the
continuum bands. Then the states considered are BIC.

In the following, by calculating the band structure we
see that the BIC indeed appear when either of these con-
ditions are satisfied.

B. Analytical results

To confirm the existence of the BIC expected from the
discussion in the previous subsection, we calculate the



band structure for the present model in this subsection.
The Hamiltonian of this system is written as

Hiso T
T Haniso T
T Haniso T

H (kg ky) = wio
aniso

(18)

where T is a 2 X 2 matrix with Tj in the diagonal com-
ponents representing the hopping amplitude along the z
direction connecting the A-A and the B-B sites in Fig.
2

Now we analytically construct the BIC by truncating
wave functions of the bulk Hamiltonian representing the
3D system. The Schrodinger equation of the bulk 3D sys-
tem for the Bloch wave function ¢;(k, k) corresponding
to the i-th eigen energy is written as

(Haniso + 2T‘O Cos kz) ¢z(kxa ku) = Ez¢z(kxa ky)7 (19)

where ¢;(ks, k) is the periodic part of the i-th Bloch
eigenfunction of the bulk 3D system, k., is the Bloch
wavenumber along the z axis, and FE; is the corresponding
energy. One can rewrite this equation into the following
form

Haniso T (Z)z (kL ’ ky )eOikz

T Haniso T (bz(k:mk ) ‘
T Haniso ¢z(ka:>k ) 2k

¢i (kxa ky)QOikz
= Ei | i(ka, ky)e’™
¢i (kwa ky)e%kz

(20)

Let us assume that the eigenvector of the above equa-

tion, truncated to a vector with the components with

qﬁi(kz%)emkz (n > 0), is an eigenvector of the Hamilto-
18)

nian (18)) with the same energy F;:
Hiso T ¢i (kla k‘y)eo‘ikz
T  Haniso T ¢l (kra ky)elkz
T Haniso

¢i (kwa ky)e%kz

(bi (ka:a ky)eOikz
i (ks oy )™=
i (K, by )e2ik= [ (21)

= 4

4

Equations and are compatible with each other
only when

(Hiso + TOeikz) ¢i = Ez(bza (22)
(Haniso + 2Tg cos k. ) ¢; = E;¢; (23)

are both satisfied. To describe the bound states, we in-
troduce an inverse of the localization length A(> 0), and
it is related with k, by k, = ¢A. We also consider the
case with A\ — \ + mi, which stems from the chiral sym-
metry in the present system; if ¢; satisfies Eqgs. and
. with the energy F; and k, = i)\, the state (m = Uzqﬁz
also satisfies these equations with the energy —F; and
k. = i(\ 4+ mi). Taking into account all of these, We can
calculate the eigenstates and their localization lengths.
Here we note that because of Eqs. and , Higo
and H,niso commute. Then because Hig, @nd Hanis_(? are
2 x 2 Hermitian matrices, the pseudospins His, and H.piso
should be parallel or anti-parallel. Through the calcula-
tions whose details are presented in Appendix [A] we fi-
nally get the energy and the inverse of localization length

_’isol - |ﬁaniso|
A=log| ————— 24
Y TO ? ( )

T2 .

Ebound ==+ % + |HiSO| (25)

|Hiso| - ‘Hanisol

when the pseudospins are parallel, and
ﬁiso -ﬁaniso

A = log w’ (26)

To

2
Ebound == <—»0—» + |Hiso|> (27)
|Hiso| + ‘Hanisol

when the pseudospins are anti-parallel.
Let us apply these formulas to wavevector along the

K-M-K' line (k, = %’T, —% <k, < 32—”\/5), because

the pseudospins are either parallel or anti-parallel on this

line. The inverse of localization length along the k, = 2?“
line is written as
t'—1
A =log (28)
0
for ' > 1 because of |ﬁiso\ = -1+ 2005(?1@) and

|ﬁaniso| = —t' + 2005(@1@). It implies that for given
values of ¢’ and Tp, the localization length of the BIC
is constant along the k, = 2% line if the BIC exist. In
particular the BIC can exist for

v —1> To. (29)

These results agree perfectly with those in Sec. [[ITC]
We show how the inverse of the localization length
Eq. behaves in various limits, and explain that these
behaviors match physically expectations. When ¢’ be-
comes smaller, the localization length diverges; it is rea-
sonable since the BIC are expected to disappear as the



difference in hopping anisotropy between the surface and
the bulk becomes smaller. On the other hand, in the limit
of interlayer hopping Ty — 0, the localization length A1
converges to zero, which is naturally expected. In the
simultaneous limit of ' — 1 and Ty — 0 with (¢’ —1)/Tp
kept constant, A in Eq. remains a constant. Thus,
the BIC seem to survive, which is unnatural because the
difference in hopping anisotropy between the surface and
the bulk becomes smaller. Nevertheless, it is not the case,
and the BIC disappear in this limit, because the momen-
tum space region with the BIC becomes narrower and
vanishes in this limit. Thus, the behaviors of the inverse
of the localization length in Eq. fit with physical
expectations.

C. Numerical results

Here we numerically calculate the band structure of
the Hamiltonian along the k, = %’T line as an ex-
ample. Figure [3| (a) shows the band structure along the
ky = 2% line, with the probability density at the top-
most 2D layer represented by the colors. Here we set
the anisotropy ¢’ = 3 and the hopping parameter along
the z direction Ty = 0.5. In this figure, the broad bands
shown in black are derived from the 3D system and the
narrow band shown in yellow is derived from the 2D sys-
tem. The probability density of the 2D states at the top
layer is almost 1 throughout the entire Brillouin zone.
Remarkably, this value remains almost unity, even in the
region —0.9 < k, < 0.9 where these states become de-
generate with those from the continuum band of the 3D
system. Therefore, the states in this region derived from
the 2D system are BICs and are localized mostly at the
top layer. On the other hand, when we focus on k, = 3?”
line insted of the k, = %’T line, BIC do not emerge, as
shown in Fig. b). When the surface band enters the
bulk bands from the 3D system at around k, ~ +0.9, the
probability density at the topmost layer becomes much
lower. Here the states from the topmost layer hybridize
with the bulk bands from the 3D system.

This difference between the presence and absence of
the BIC for &k, = and k , respectively, is under-

5
stood from Eqgs. and .

These equations indicate
that only when the pseudospins ﬁiso and H. aniso 4re par-
allel or anti-parallel, the BIC can emerge. Figure a)
shows possible positions of BIC for ' = 3 in the momen-
tum space obtained from Egs. and . The yellow
line means that ﬁiso and ﬁaniso are parallel, and the blue
line means that they are anti-parallel. They imply that
the states along ky, = j:%”,o and k, = :I:% lines can
become BIC.

Next we discuss how the size of the cut-of-plane hop-
ping Ty affects the distribution of BIC. First we discuss
the case with T = 0.5. Along the k;y = 2“ line among
the states on the blue line in Fig. [4f(a) ( 3\[ < kg <

#), only those within the region —0.9 < k, < 0.9 are

BIC. Meanwhile the states from the 2D system on the
yellow line (|kg| > 3\[) in Fig.a) are not BIC as they
O

do not enter the bulk bands. On the other hand, when
Tp is relatively high (Tp = 1.7) the states on the yellow
line become BIC in Fig. c) as can be understood from
Eq. l) It is also the case along k, = % line (see Fig.

I(d)) As the hopping amplitude Ty along the z-axis
is relatively high in Fig. l(c and (d), the localization
length of the states from the topmost layer is short.
The pseudospin texture changes when ' is changed.
Figure c) shows the wavevectors where the two pseu-
dospins are parallel or anti-parallel for ¢/ = 1.5. At
t’ = 1.5, the Dirac points for the individual layer of the
3D system lie on the K-M and K’-M lines. As we com-
pare the cases with ¢’ = 1.5 (Fig. [4c)) and ¢’ = 3 (Fig.
I(a)) we notice that the movement of the Dirac pomt due

to the change of ¢’ flips the pseudObpln direction of H, aniso-
As a result, along the &, 2” the pseudospins Hiso and

Honiso are parallel or anti- parallel both at ¢’ = 1.5 (Fig.
[4(d)) and ¢’ = 3 (Fig. [d[b)), whereas their relative direc-
tions are different between ¢’ = 1.5 and ¢’ = 3 due to the
change in the locations of Dirac points.

D. Topological origin of the line-like BIC

The appearence of the lines &k, = :I:%’T,O in Fig. a)
can be understood from the topological nature of the
pseudospin texture. As the 2D isotropic system has Dirac
points, the pseudospin texture forms vortices at these
points. On the other hand, the individual layer of the
3D system does not have Dirac points when ¢’ > 2, and
the pseudospin texture does not have vortices. Therefore
along a loop around one of the Dirac points in the 2D
system, Hlso rotates whereas Hanlso does not, and there-
fore, there should be a point where HISO and Hanlso are
parallel and another point where they are anti-parallel.
As we increase the size of the loop, these points form a
line. In the present case this line is k, = 2?” Along this

line, Hiso and ﬁamso are always parallel or anti-parallel
as seen in Fig. l(b Figure (b) shows the vortex struc-
tures along the &, 2?? for the 2D system on the upper
side of this figure and that for the individual layer of the
3D system on the lower side of this figure. The green
and the red points describe Dirac points, and the arrows
mean pseudospins. Therefore the BIC can exist along
ky = 2% from a topological origin and their existence is
protected by the winding number. By changing the value
of ¢/, the pseudospin structure of H, aniso changes. Mean-
while the topological nature of the Dirac points of ﬁiso
at K and K’ persists, and the yellow and the blue line
remains along the k, = %’r line.

Such line-like BIC have not been proposed previously,
to the authors’ knowledge. For example, the electronic
BIC proposed in Ref. [19] are extended in the momentum
space. Nevertheless, unlike our paper the BIC in Ref.

[19] extend over the whole Brillouin zone because of the
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FIG. 3. Band structure for the present model consisting of the 2D system and the 3D anisotropic system. The colors represent
the probability density at the top layer which is the isotropic 2D system. (a) Band structure along k, = %’T for t' = 3, and
To = 0.5. The yellow curves represent states from the topmost 2D system, and if they are embedded in the bands from the
3D system (shown in black), they are BIC. (b) Band structure along ky, = %= for ¢’ = 3, and Tp = 0.5. As the states from the
topmost layer hybridize with bulk bands, there are no BIC. (c) Band structure along k, = %’“ for ' = 3, and Tp = 1.7. The BIC
emerge in the wider region than that in (a). (d) Band structure along k. = = for t' =3, and Ty = 1.7. The BIC are shown
in yellow. In (a), (c), and (d), the relative directions of the pseudospins Hio and Hapnieo are either parallel or anti-parallel as
shown in the figure.

special symmetry in the lattice structure. Thus both the protected by the Chern number in the momentum space.
momentum space distribution and the physical origin of = The difference of the momentum space distribution of the
the BIC are quite different between our paper and Ref. BIC stems from the difference of the topological invari-
[19]. ants that protect the BIC.

IV. CONCLUSION

In conclusion, we demonstrate existence of line-like

BICs in the momentum space in the multilayer model In the present paper, we studied a model with the
which consists of the isotropic 2D honeycomb-lattice sys- isotropic 2D system stacked on top of the anisotropic 3D
tem stacked on top of the anisotropic 3D honeycomb- system. This is just an example to demonstrate the line-

lattice system. When the states from 2D system are like BIC. The key ingredient in this model is a difference
embedded in the continuum bands from the 3D system, in anisotropy between the top 2D layer and the bulk 3D
if the states satisfy specific conditions, they do not hy- system. This difference gives rise to difference in the vor-
bridize with states from the 3D system, and localize near tex distribution in the momentum space, leading to the
the topmost 2D layer. These conditions mean that the line-like BIC from the topological origin. Thus the line-
states from the 2D system are orthogonal to the states like BIC exist in other models, for example in a model
from the 3D system. These BIC are protected by the where the bulk 3D system is isotropic and the 2D system
winding number of the pseudospin vector, and emerge as on the top layer is anisotropic. Such an anisotropy dif-
lines in the momentum space. This is in contrast with ference between the surface and the bulk can be realized
the previous study®2, where the BIC emerge as points by buckling of the surface atomic layer.
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(a)(c) Possible positions of the BIC in the momentum space for (a) ¢ = 3 and (c) t' = 1.5. Yellow (blue) lines denote

the cases when the pseudospins are parallel (anti-parallel). The hexagon represents the first Brillouin zone. (b)(d) Schematic
diagram of the vortex structure along the k, = %” line for (b) t' = 3 and (d) ¢’ = 1.5. The green and the red points represent

Dirac points with opposite winding numbers, and the arrows mean the pseudospins on the k, =

27

5~ line. The upper panels in

(b) and (d) represent the 2D system, and the lower ones show the individual layers of the 3D system. The BIC can exist only

when the pseudospins Hiso and Haniso are parallel (yellow arrows) or anti-parallel (blue arrows) in k, =

holds true for k, = —%’r, 0 as well.
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Appendix A: details of calculations on the energy
and the localization length of BIC

To calculate the properties of the BIC analytically in

Sec. [IIB| we start with Eqgs. and (23). Because

these equations must have the same eigenvalue and eigen-
state, there are two distinct cases:

(I
BE; = Toe™ + |Higo| = 2Tp cos k. =+ |Haniso, (A1)

1 1
$i = | L HisortiHisoy | = | | Hanisor +iHanisoy (A2)
| Hisol | Hisol

meaning that ﬁiso and ﬁaniso are parallel, and

()
E,L' = Toeikz + ‘ﬁiso| = 2710 CoSs kz + |H€mi50|7 (AS)

1 1
$i = | L Hisor tiHisoy | = - Haniso.r +iHaniso,y (A4)
|Hiso| [Hisol

%’r . Similar description

meaning that ﬁiso and ﬁaniso are anti-parallel.

We discuss these two cases (I) and (II) separately.
First, we study the case (I). To describe the bound states,
we put k, =i\ (A > 0), and get the energy of the bound
state Epound

Ehound = Toe > + |Higo| = 270 cosh A + |Haniso|, (AB)
A ‘Hi%0|

so| — |ﬁanis0|
=t A6
¢ - (A6)

We also consider the case with replacement A\ — X\ + 7i:

—2Ty cosh A =+ | Hanisol
(A7)

Ebound = *T()ei)\ £ |ﬁiso| =

e)\ _ q:|}Iiso‘ - |Haniso| ) (AS)
Ty

By noting e* > 0, these are rewritten as follows. When

|Hiso| > |Haniso|a

Ebound ==+ (TOei)\ + |ﬁiso‘) == <2T0 cosh A + |ﬁaniso|) )
(A9)

A = log |ﬁiso| - |Haniso|

- (A10)



. .
or when |Hiso| < |Hanisols

Ehound = £ (TOG_)\ - |ﬁi50‘) == <2T0 cosh A — |ﬁaniso‘) s
(All)

_ _
_|Hiso| + |Haniso|

A =log T
0

(A12)

Next, we consider the case (II) in the same way. We
put k, = iXA (A > 0) to describe the bound states, and
get

Ebound = TOe_)\ =+ |ﬁiso| = 2,I‘O cosh A + |ﬁaniso|7 (A13)

e)\ _ i'-ﬁiso‘ + |ﬁaniso|

T (A14)

We also consider the case with replacement A — A + mi:

Ebound = *TOei)\ =+ ‘I—:i-iso| = 72T0 cosh A + |ﬁaniso|a
(A15)

A =¥ ‘ﬁiso| + |ﬁaniso| )

T (A16)

e

They are rewritten as

Ebound ==+ (Toef)‘ + |ﬁiso‘> ==+ (2TO cosh A — |ﬁaniso|) )
(A17)

—lo |Hiso| + |Haniso|
=log———.

A
Ty

(A18)

Thus we get the results in Egs. —.
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