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We study how time- and angle-resolved photoemission (tr-ARPES) reveals the dynamics of BCS-
type, s-wave superconducting systems with time-varying order parameters. Approximate methods
are discussed, based on previous approaches to either optical conductivity or quantum dot trans-
port, in order to enable computationally efficient prediction of photoemission spectra. One use of
such predictions is to enable extraction of the underlying order parameter dynamics from experi-
mental data, which is topical given the rapidly growing use of tr-ARPES in studying unconventional
superconductivity. The methods considered model the two-time lesser Green’s functions with an
approximated lesser self-energy that describes relaxation by coupling of the system to two types of
baths. The approach primarily used here also takes into consideration the relaxation of the excited
states into equilibrium by explicitly including the level-broadening of the retarded and advanced
Green’s functions. We present equilibrium and non-equilibrium calculations of tr-ARPES spectrum
from our model and discuss the signatures of different types of superconducting dynamics.

I. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES)
is by now well established as a powerful technique
to probe the electronic properties of a wide variety
of solids1. More recently, time-resolved ARPES (tr-
ARPES) has been developed as a way to create and mea-
sure transient non-equilibrium states of a material that
may not appear in its conventional phase diagram2–4. In
these experiments, an intense pulse ‘pumps’ the system
of interest into a non-equilibrium state, followed by a
weak ‘probe’. The ejected photo-electrons are then de-
tected with energy and angle resolutions that depend on
the time window of the probe pulse. Tr-ARPES mea-
surements can achieve sufficient combined resolution of
energy, momentum, and time evolution to study high-
Tc superconductors5–12, in addition to a variety of other
materials13–17.

However, due to the non-equilibrium nature of these
experiments, invariance under time translations is bro-
ken, with the consequence that one cannot simply an-
alyze and interpret the experimental data through the
usual, equilibrium formalism. While general meth-
ods that handle non-equilibrium systems, such as the
Baym-Kadanoff-Keldysh non-equilibrium quantum field
theory18–20, exist in principle, applying these to predict
tr-ARPES spectra that incorporate the transient dynam-
ics of the system as well as the finite duration of the probe
pulse is a nontrivial exercise21–23.

There have been a number of theoretical studies on
dynamics of nonequilibrium superconductors21–47. An
example of the state of the art in numerical simulations
of tr-ARPES experiments is Ref. 42, which shows how
a sufficiently strong pump coupling to the electrons of
a phonon-driven d-wave superconductor leads to ampli-
tude (Higgs) mode oscillations at twice the mean gap
frequency. That work treats the superconducting gap
self-consistently, i.e., changes in electron distribution in-

duced by the pump modify the superconductivity, and
as a result is computationally demanding even for a sin-
gle pump strength/profile. Here we will not treat the
superconducting gap time evolution self-consistently; the
goal is that by finding efficient means to compute how
different gap evolutions and probe properties would lead
to different tr-ARPES signals, our approach can be used
to interpret tr-ARPES experimental data and learn how
the underlying superconducting gap evolved.

In this respect, our work is more similar to recent
theoretical models of a different problem, namely the
time-dependent optical conductivity in pump-probe ex-
periments on superconductors. Complementary to work
on tr-ARPES, sophisticated non-equilibrium methods
have recently been applied to study the transient opti-
cal conductivity of non-equilibrium superconducting sys-
tems48,49. These works were motivated in part by the
experimental observation that, in several kinds of super-
conductors50, a strong pulse significantly modifies the
reflectivity or transmissivity signal that at equilibrium
is a standard probe of superconductivity. As the inter-
pretation of these signals in a non-equilibrium context
can be subtle51, a practical non-equilibrium theoretical
approach must be developed in order to extract informa-
tion from experimental data about the underlying non-
equilibrium processes and states, which is a kind of “in-
verse problem”. For example, given data, what is the
most likely time dependence of superconductivity to ex-
plain the observed results? How does the effective damp-
ing depend on system parameters?

That task has been underway for some time in opti-
cal conductivity and is here undertaken for tr-ARPES.
The main aspect in which our formalism differs from the
previous work on optical conductivity in superconduc-
tors, aside from being about a different measurement, is
in the detailed treatment of dissipation or level broaden-
ing in the system. The importance of dissipation or level
broadening can be seen from, for example, considering



2

an idealized probe that suddenly changes (“quenches”)
the electronic Hamiltonian from a metallic to a super-
conducting form. In the absence of dissipation, the fact
that the metallic ground state is not the ground state
of the new Hamiltonian means that some excited states
will be occupied. These states would appear as positive-
energy states in an tr-ARPES measurement that never
dissipate, which does not seem to be what typically hap-
pens in reality, where the tr-ARPES intensity above the
Fermi level tends to decay as time goes6–11.

Just as in the theories of pump-probe optical conduc-
tivity cited above, adding some form of dissipation is
needed if the system is to return to equilibrium even-
tually. Coupling the system to a “bath” of additional
electronic states as in studies of optical conductivity will
lead to relaxational time-dependence, but if the bath is
finite (as needed for computational purposes) then even-
tually there will be oscillatory behavior rather than a re-
turn of the system to equilibrium. Studying longer times
requires larger baths in order to avoid such oscillations.
In order to prevent non-dissipating positive-energy states
and/or oscillations, which could exist in tr-ARPES ex-
periments in principle but do not seem to be observed,
we adapt a method previously used to incorporate re-
laxation in the theory of non-equilibrium phenomena in
quantum dots52. This approach could be viewed as an
approximation to a thermodynamically large bath whose
treatment is computationally not feasible. We comment
in closing on some other possible uses and advantages of
this approach.

The specific case treated here is the calculation of the
tr-ARPES signal of a BCS s-wave superconducting sys-
tem with a specified non-equilibrium superconducting or-
der parameter ∆(t). We use the mean-field (Bogoliubov-
de Gennes) approximation to the superconducting sys-
tem, together with the Keldysh formalism, to tackle the
problem. As the approach is also feasible for general mo-
mentum and time dependence of the order parameter, it
could be easily generalized to superconducting systems
other than s-wave. The formalism is computationally ef-
ficient enough to be used for the inverse problem, i.e.,
given an experimental tr-ARPES profile for one or more
probe windows, one could compare it to different possible
profiles or momentum dependences of the superconduct-
ing order parameter.

The rest of the paper is organized as follows. In sec-
tion II, we review the theory of the tr-ARPES signal, as
well as the Keldysh formalism that applies to such calcu-
lations. In section II C, we present two approximations
to the two-time lesser Green’s function, which is the key
building block of the tr-ARPES signal, and discuss the
assumptions of each approximation. In section III, we
show several tr-ARPES calculations with different tem-
poral profiles of BCS order parameters. Finally we sum-
marize and discuss future directions in section IV.

II. TR-ARPES SIGNAL FROM KELDYSH
FORMALISM

In this section, we review the Keldysh formalism ap-
plied to the Bogoliubov-de Gennes (BdG) description of
a superconductor and the theory of tr-ARPES signals.
Then we explain how the lesser Green’s function, which
is crucial in simulating tr-ARPES signals, is calculated.

A. Keldysh Formalism in Bogoliubov-de Gennes
(BdG) Equation

We first introduce Nambu-spinor notation:53–55

Ψk = (ck,↑, ck,↓, c
†
−k,↓,−c

†
−k,↑)

T , (1)

where c†k,σ creates an electron of momentum k and spin σ.
The superscript T denotes transposition. One can then
write Green’s functions in Eq. (1) basis as follows19,56,57:

GRαβ(t, t′) = −iθ(t− t′) 〈{Ψα(t),Ψ†β(t′)}〉

GAαβ(t, t′) = iθ(t′ − t) 〈{Ψα(t),Ψ†β(t′)}〉

GKαβ(t, t′) = −i 〈[Ψα(t),Ψ†β(t′)]〉

G<αβ(t, t′) = i 〈Ψ†α(t′)Ψβ(t)〉 , (2)

where R, A, K and < stand for retarded, advanced,
Keldysh and lesser, and 〈· · ·〉 is taken with respect to
the ground state of the system at zero temperature.
The Green’s functions are matrices acting on the Nambu
spinor basis that are labeled by the indices α, β.

It is straightforward to obtain GR/A when the system
is described by a Hamiltonian, H, made of fermion bilin-
ears, as is the case we focus on in this paper. When the
Hamiltonian H is given by

H(t) = Ψ†H(t)Ψ, (3)

where H(t) is the Hamiltonian matrix, GR/A are com-
puted by solving the differential equation48,56,

GR(t, t) = −i
i∂tG

R(t, t′) = H(t)GR(t, t′) t > t′

GA(t, t′) = [GR(t′, t)]†. (4)

Obtaining GK/< requires solving the Keldysh equation18

as we explain in the following.

B. TR-ARPES Signal From Lesser Green’s
Function

Once the lesser Green’s function G< is obtained, the
tr-ARPES signal can be calculated from21

I(k, ω, t) ∝ Im

∫ t

t0

dt1

∫ t

t0

dt2G
<
k (t1, t2)

× s(t1)s(t2)eiω(t1−t2) (5)
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where s(t) is the temporal profile of the probe pulse, the
integration limits, t0 and t, are controlled by s(t) as the
probe pulse has finite width. And we have

G<k,σσ′(t1, t2) = i 〈c†k,σ(t2)ck,σ′(t1)〉 , (6)

which is the normal component of the G< defined in
Eq. (2) with spin indices σ, σ′.

In our calculations for tr-ARPES signals that we show
later, we consider systems with spin SU(2) symmetry.
In this case, the BdG Hamiltonian53 is decoupled to two

identical 2 by 2 Hamiltonians spanned by (ck,↑, c
†
−k↓) and

(ck,↓,−c†−k↑), respectively. By focusing on the first one,

we can suppress the spin indices in Eq. (6).

C. Lesser Green’s Function

Now we explain how the lesser Green’s function is
computed in our framework. We calculate G< by using
Keldysh equation in time domain58

G<(t, t′) =

∫
dt1

∫
dt2G

R(t, t1)Σ<(t1, t2)GA(t2, t
′),

(7)
where all indices but time are suppressed. Here Σ< is
the lesser self-energy that effectively determines occupa-
tion of electrons in energy eigenstates. Since GR/A are
calculated from Eq. (4), one needs to specify the form of
the lesser self energy Σ<.

In our framework, we consider the system is coupled
to the heat bath with large bandwidth. In this case, we
can explicitly write Σ< as52

Σ<(t1, t2) = iγ

∫
dω

2π
f(ω)e−iω(t1−t2)

=
−γ/2π

t1 − t2 + i0+
, (8)

by integrating our the heat bath, where γ is the level
broadening of GR/A. This form of self energy introduces
a dissipation effect to the system (with the time scale
of ∼ 1/γ) as well as the level broadening of the energy
eigenstates (∼ γ).

Thus we calculate lesser Green’s functions via

G<k (t, t′)

=
−γ
2π

∫
dt1

∫
dt2

GRk (t, t1)GAk (t2, t
′)

t1 − t2 + i0+

× e−γ(t−t1+t
′−t2)/2, (9)

where e−γ(··· )/2 is the explicit form of level broadenings
of GR/A. In the equilibrium systems, Eq. (8) combined
with Eq. (7) reproduces the correct form of G<(ω) (see
Appendix A for detailed derivations) after Fourier trans-
formation.

We note that Ref. 48 used another approximation to
calculate G<:

G<k (t1, t2) = iGRk (t1, t0)n0,kG
A
k (t0, t2), (10)

where n0,k = 〈Ψ†kΨk〉 at the initial time t0. In the case
of metals, this method gives the correct forms of lesser
Green’s function, and hence, tr-ARPES spectrum in the
equilibrium. It also gives the correct answer for equi-
librium superconductors, if we use n0,k that is diagonal
in the energy eigenstates of BdG Hamiltonian. How-
ever, one major difference between these two formalisms
is that a dissipation effect is directly incorporated in
Eq. (8), while Eq. (10) gives pure unitary dynamics of
time-dependent system (dissipation results from the per-
spective of one part of the system, which is indeed the
microscopic origin of real dissipation).

For example, if we consider a quench problem where a
system evolves with

H(t) = θ(−t)Hmetal + θ(t)HBCS , (11)

there emerges a quenched peak at positive energy, which
is shown in Fig.1 (see Appendix B for details). With
Eq. (10), the weight in the positive tr-ARPES peak does
not decay due to the absence of dissipation. This coin-
cides with the case of γ → 0 in our formalism (see Ap-
pendix B for detailed derivations). To incorporate dissi-
pation effects with Eq. (10), one needs to explicitly couple
the system to an external bath that dissipates the extra
energy48. This is physically valid and has the advantage
of allowing different microscopic dissipation mechanisms.
However, it is computationally advantageous to incorpo-
rate dissipation in Σ<, so that one does not need to solve
time evolution of both the system and the heat bath.

The approach using Eqs.(7) and (8) is used in other
areas of non-equilibrium physics and facilitates numerical
calculations, especially if the number of bath degrees of
freedom is large. As previously mentioned, simulating a
heat bath explicitly may lead to unphysical oscillation of
expectation values that depends on the system size of the
heat bath.

Finally, Eq. (10) is not applicable to interacting sys-
tems that involve, for example, four-fermion terms. This
can be understood from the absence of dissipation since
quasiparticles in interacting systems generally have a fi-
nite lifetime. In the formalism using Eqs.(7) and (8),
however, extension to interacting systems is straightfor-
ward if one uses GR/A and Σ< for the interacting sys-
tems in Eq. (7) , and incorporate the effect of heat bath
by introducing a level broadening to GR/A and the cor-
responding self energy of G<.

III. TR-ARPES SIGNAL: CALCULATION

In this section, we show calculations of tr-ARPES sig-
nals of systems with different temporal profiles of super-
conducting order parameter. We start the section by
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FIG. 1. Non-equilibrium tr-ARPES calculation of constant
superconducting gap with a quench, described by Eq. (11)
with a BCS superconducting gap ∆ = 0.01. The lesser
Green’s function is calculated using Eq. (10) with εk = k,
tp = 500, t0 = 0, t = 1000, σ = 400. The black curve shows
ω(k) = ±

√
k2 + ∆2.

introducing the system that we are considering, both the
hamiltonian of the system as well as the profile of our
probe pulse. Then, we provide calculations of: metal,
equilibrium BCS, and non-equilibrium BCS systems.

A. Model of 1D superconductor

We consider a BCS-type, s-wave superconducting sys-
tem with time-varing order parameter:

H =
∑
k,σ

εkc
†
k,σck,σ + ∆(t)

∑
k

c†k,↑c−k,↓ + h.c., (12)

where ∆(t) is the post-pump time-dependent supercon-
ducting gap, which is an input to the theory, that is set
to be real-valued for now.

We do not consider how ∆(t) varies due to the time-
dependence of the pump fields. For εk, we consider a
linear dispersion near fermi surface, i.e.: εk = k.

Note that if the pump field is still on during the probe
measurement, one needs to write the lesser Green’s func-
tion into its gauge-invariant form23:

G<k (t1, t2)→ G<
k̃

(t1, t2), (13)

by shifting the momentum k via

k̃ → k +
1

t1 − t2

∫ (t1−t2)/2

−(t1−t2)/2
dt′Apump

(
t1 + t2

2
+ t′

)
.

(14)

We rewrite the hamiltonian (12) into Nambu-spinor
basis:

H =
∑
k

Ψ†kHk(t)Ψk, (15)

where Hk(t) takes the form of

Hk(t) =

(
εk ∆(t)

∆(t) −εk

)
. (16)

Here we consider 2×2 BdG Hamiltonian spanned by the

two-component spinor Ψk = (ck,↑, c
†
−k,↓)

T , by assuming

spin SU(2) symmetry.

We thus can solve G
R/A
k from

GRk (t, t) = −i
i∂tG

R
k (t, t′) = Hk(t)GRk (t, t′) t > t′

GAk (t, t′) = [GRk (t′, t)]†. (17)

We note two things regarding Eq. (17). First, the above
equations are applicable to the systems that are decou-
pled in k-space, where the retarded and advanced Green’s
function can be solved in each momentum separately.
Second, the gap function can be regarded as an anoma-
lous self-energy. In the BCS Hamiltonian that we employ,
one assumes an energy independent order parameter (i.e.,
a δ - function in the time domain), which gives Eq. (17).
In strong coupling regime, on the other hand, the retar-
dation of electron-phonon interaction can be modeled by
two-time self-energy, where one needs to solve GR with
the full time-dependence of its self-energy.

At the same time, we consider a simple, gaussian probe
pulse:

s(t) =
1√

2πσ2
e−((t−tp)/σ)

2

, (18)

where tp is where the probe pulse centers, and σ tunes
the width of the probe pulse.

B. Equilibrium Superconducting System

In this subsection, we demonstrate numerically that
tr-ARPES signals in the equilibrium systems are repro-
duced by our formalism.

We first present calculations of tr-ARPES signal of
metals, i.e. ∆ = 0 in Eq. (12), from Eq. (5), with both
GR/A and G< calculated numerically via Eqs. (17) and
(9)

Fig. (2) shows two calculations of tr-ARPES signal of
a metal, with numerical solutions to both GR/A from
Eq. (17) and G< from Eq. (9). The only difference in
between of the two panels are the width of the probe
pulse, σ, which determines the energy resolution of the
signals, the same as what was mentioned in Ref. 35. The
trend that as σ increases, the width of the tr-ARPES
signal decreases, also indicates that as σ →∞, one may
expect21

I(k, ω, t) ∝ A(k, ω)f(ω), (19)

where f(ω) is the Fermi-Dirac distribution at the mod-
elling temperature, in our case, 0K.
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FIG. 2. Equilibrium tr-ARPES calculations of metal, with
εk = k, γ = 0.0001, tp = 500, t = 1000, σ = 200 (left panel)
σ = 400 (right panel). The black curve shows ω(k) = εk.
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FIG. 3. Equilibrium tr-ARPES calculations of a BCS su-
perconducting system at equilibrium, with ∆ = 0.01 (left
panel) and ∆ = 0.01 (right panel), εk = k, γ = 0.0001,
tp = 500, t = 1000, σ = 400. The black curve shows

ω(k) = −
√
ε2k + ∆2.

Next, we show tr-ARPES signal of a superconductor.
Fig. 3 shows two calculations of tr-ARPES signal of

equilibrium BCS superconducting systems with different
order parameters. Similar to the metal calculations, the
tr-ARPES signal shown here follows A(k, ω)f(ω) as ex-
pected, up to a broadening of the energy resolution due
to finite width of the probe pulse.

C. Non-Equilibrium Superconducting Systems

Last but not least, we present non-equilibrium predic-
tions of tr-ARPES signals with different ∆(t) profiles as
input parameter. We fix the energy resolution by fixing
width of the probe pulse, σ = 0.02 × 2/γ; we vary tp to
probe the system at different times.

We consider the following non-equilibrium gap profiles:

• constant order parameter with a quench

∆(t) = ∆θ(t) (20)

• quenched order parameter with decay

∆(t) = ∆θ(t)e−t/T (21)

• Gaussian order parameter

∆(t) =

(
∆e
−
(

t−td
T

)2

−∆0

)
[θ(t)− θ(t− 2td)] (22)

0.0 0.25 0.5 0.75 1.0
t (unit: 2/ )

0

0.01

(t)

quench
quench+decay
Gaussian

FIG. 4. Schematic plot of various gap profiles considered in
this draft.

where ∆0 is chosen such that ∆(t) = 0 when t = 0
and t = 2td.

A schematic plot of various ∆(t)’s are shown in
Fig. (4). Note that we always turn on non-equilibrium
∆(t) at t = 0, and always consider a system initially at
metallic state, i.e.: ∆(t < 0) ≡ 0.

1. Constant Order Parameter with a Quench

First, we consider the system with a quenched order
parameter, as described by Eq. (20). This situation can
be viewed as a sudden opening of a superconducting gap
at time t = 0, before which the system is metallic. In
this situation, we can rewrite Hk as:

Hk(t) = [1− θ(t)]Hk,metal + θ(t)Hk,BCS , (23)

where Hk,metal takes the form of Eq. (16) with ∆(t) = 0,
while Hk,BCS with ∆(t) = ∆. The resulting tr-ARPES
signal as a function of time is shown in Fig. (5). We
note that the upper panel of Fig. (5), which shows the tr-
ARPES signal at a time right after the quench, resembles
Fig. (1). This indicates that the relaxation caused by
γ has not yet affected the system at such time scale.
However, as time goes, the tr-ARPES signal at positive
energies gets relaxed, and eventually, at time of ∼ 2/γ,
the signal goes to that described by Hk,BCS , as shown in
the lower panel of Fig. (5).

We then examine the occupation, nk, at different k
values shortly after the quench:

nk(t) = 〈c†k(t)ck(t)〉 = ImG<k (t, t). (24)

nk(t) is essentially what tr-ARPES measures with a
δ−function probe57.

When t is small, i.e., right after quench, we should
expect our system being more metallic, namely, all what
the quench does is projecting the pre-quench states onto
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FIG. 5. Non-equilibrium tr-ARPES calculations with BCS
order parameter featuring constant with a quench, as men-
tioned in Eq. (20), with ∆ = 0.01. The calculation is with
εk = k and γ = 0.0001. The width of the probe pulse is
σ = 0.02 × 2/γ. The two different tp’s, short and long time
after quench, are indicated in the figures.

post-quench basis. What we should expect for k > 0 is
that nk = 0 right after the quench, then nk peaks after
some time scale that is defined by 1/Ek. One should
also expect limk→0+ nk → 1 at its peak value, since nk(t)
shows Rabi oscillation around its equilibrium value, 1/2
when k = 0, in the post-quench system. Fig. 6 shows
nk(t) with various k and ∆ = 0.01. We find that the
t and k dependence of nk(t) are as expected, and nk(t)
peaks at time tm = π/(2Ek), with Ek defined in Eq. (A7).

2. Quenched Order Parameter with Decay

Next we consider the the system with a quenched or-
der parameter that decays right after the quench, as de-
scribed by Eq. (21). We consider two time scales of how
fast the order parameter decays: T � 2/γ and T = 2/γ.
The resulting tr-ARPES signal as a function of time is
shown in Fig. 7.

0 40 80 120 160
t

0

0.5

1.0

n k

k = 5 × 10 4, tm = 156.92
k = 1 × 10 3, tm = 156.29
k = 5 × 10 3, tm = 140.47
k = 1 × 10 2, tm = 111.05

FIG. 6. Occupation number, nk(t), of the quench system
Eq. (20) with ∆ = 0.01. The times when nk peaks, tm’s, are
shown in the caption along with their corresponding k values.

The left column shows tr-ARPES of the order parame-
ter that decays with time scale T � 2/γ, while the right
column has a decay rate T = 2/γ. Comparing left and
right columns, one sees similar short-time behavior of
tr-ARPES signals but different intermediate- and long-
time behaviors. At short-time (the first panels of both
columns), both small and large T give signals similar to
that of a quench, despite that the signals from small T
gives smaller gap than that from large T . For intermedi-
ate times (the second and third panels of both columns),
the tr-ARPES signals of small and large T show different
behaviors: while the large T signals still being gapped
and quench-like, the small T signals becomes gapless,
and with a non-zero signal at positive (k, ω). Then, at
long time, the tr-ARPES signal of small T seems metal-
lic while that of large T being BCS-like – corresponding
qualitatively to their instantaneous BCS gaps.

3. Gaussian Order Parameter

Finally, we consider the the system with a Gaussian
order parameter, as described by Eq. (22). The resulting
tr-ARPES signal is shown in Fig. (8).

The left column of Fig. (8) shows tr-ARPES signals
of a Gaussian order parameter with T = 0.05 × 2/γ
and td = 0.035 × 2/γ, while the right column shows
that with T = 3 × 2/γ and td = 0.5 × 2/γ. At first
glance, the short- and intermediate- time behaviors of
tr-ARPES signals (first to third panels of both columns)
seem quite different, while the long-time (last panels of
both columns) share similarities. However, if we com-
pare the tr-ARPES signals to the instantaneous order
parameters at tp, both columns show tr-ARPES signals
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FIG. 7. Non-equilibrium tr-ARPES calculations with BCS
order parameters featuring quenched order parameters that
decay, as mentioned in Eq. (21), with ∆ = 0.01, T = 0.05 ×
2/γ (left column) and 1×2/γ (right column). The calculations
are with εk = k and γ = 0.0001. The width of the probe pulse
is σ = 0.02×2/γ, and various tp’s are indicated in the figures.
The insets of the panels show gap profiles, ∆(t), as functions
of time in unit of 2/γ in blue curves, and the instantaneous
gap at tp’s in red dots.

that almost follow the instantaneous order parameters,
except for a slight quench-like peak near kF for the first
panel of the left column and the second and third pan-
els of the right column, where the instantaneous order
parameters approach the maximum values. In addition,
the quench-like peak is more apparent in the left column
than the right column, which may come from that in
the left column, the increment of the order parameter is
faster than the right column, causing a more significant
quench-like peak at low k. Another feature to notice is
that, this quench-like peak only happens near kF , which
is different from an actual quench peak that also extends
to k > kF . This may be related to a slower increment
of the Gaussian order parameter than that of a sudden
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FIG. 8. Non-equilibrium tr-ARPES calculations with BCS or-
der parameters featuring Gaussian order parameters, as men-
tioned in Eq. (22), with ∆(t)max = 0.01, T = 0.05× 2/γ (left
column) and 3 × 2/γ (right column), td = 0.035 × 2/γ (left
column) and 0.5 × 2/γ (right column). The calculations are
with εk = k and γ = 0.0001. The width of the probe pulse is
σ = 0.02 × 2/γ, and various tp’s are indicated in the figures.
The insets of the panels show gap profiles, ∆(t), as functions
of time in unit of 2/γ in blue curves, and the instantaneous
gap at tp’s in red dots.

quench.

IV. DISCUSSION

The importance of equilibrium ARPES measurements
of the electron spectral function to our understanding
of unconventional superconductors is clear. To bring tr-
ARPES to a similar level of scientific impact, it is nec-
essary to be able to draw conclusions from data about
the underlying physics even though what tr-ARPES mea-
sures is considerably more challenging to interpret. It is
already known from pump-probe studies of optical con-
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ductivity and other properties that superconductors sup-
port rich non-equilibrium behavior including significant
differences between conventional and unconventional su-
perconductors.

The approach developed here is intended to improve
the practical ability of tr-ARPES to probe the non-
equilibrium fermionic properties of a complex material.
It is worth noting that an implicit assumption we made
here is that the pump pulse only affects the system
by changing the BCS superconducting gap. However,
in actual experiments, the pump field may modify the
electron distribution in other ways, where one needs
to consider the modified post-pump initial state that
changes the boundary condition of the lesser Green’s
function. This can be described by explicitly solving the
time dependent Schrödinger equation with light-matter
interaction35,39,41–44, although that will be more time-
consuming. An alternative and more efficient way to
approximate this is effectively raising the electron tem-
perature, Te

59, which is incorporated by increasing the
temperature of Σ<(t, t′) (see Appendix C for details).

Some obvious extensions to the theory presented here
are to non-s-wave superconductors and to incorporate
some level of disorder (such as Refs. 46, 47, and 60),
as well as using self-consistently determined BCS order
parameters (such as Refs. 49, 61, and 62) as input to
our theory. More challenging extensions would be to
approach unconventional superconductivity more micro-
scopically (e.g., via various proposed effective interac-
tions or coupling to order parameters such as nematic
or magnetic order) and to compute the superconducting
properties of such systems self-consistently, as well as
taking other microscopic effect of the pump into consid-
eration, such as stripe melting63,64 and possible phonon
squeezing in K3C60

50.
But already our non-equilibrium calculations begin to

show how various tr-ARPES signals indicate the qual-
itative differences among order parameter profiles. For
example, our calculations show that, a signal at posi-
tive (k, ω) indicates that there may be a non-adiabatic
change of BCS order parameter (e.g., quenched order
parameter); while on the other hand, a time-varying tr-
ARPES signal without such peaks may indicate an adi-
abatic change of BCS order parameter. Other possible
ways of using these simulated results include computing
and analyzing

∫
dk
∫
ω>0

dω I(k, ω, t), and modifying s(t)

in Eq. (5) to see how underlying order parameter dynam-
ics may be revealed by different probe pulses. We hope
that the model developed here will be useful in the ex-
traction of physics from experimental data thus indicate
constraints for more microscopic theories of superconduc-
tivity.
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APPENDIX

Appendix A: Derivation of equilibrium G<’s from Σ<

In this section we present derivation of equilibrium G<

from Σ< that we proposed in Section II C.
To calculate G< from Eq. (9), one first notice that, due

to the causality of GR and GA, the explicit integration
limits are:

G<k (t, t′)

=
−γ
2π

∫ t

−∞
dt1

∫ t′

−∞
dt2

GRk (t, t1)GAk (t2, t
′)

t1 − t2 + i0+

× e−γ(t−t1+t
′−t2)/2. (A1)

Then, we do the following change of variable:

T =
t1 + t2

2
τ = t1 − t2, (A2)

and thus Eq. (A1) becomes

G<k (t, t′)

=
−γ
2π

e−γ(t+t
′)/2

×
∫ t+t′

2

−∞
dT

∫ ∞
−∞

dτ
GRk (t, t1)GAk (t2, t

′)

τ + i0+
eγT , (A3)

where t1 and t2 are functions of T and τ as in Eq. (A2).
Now, let us first plug in GR/A of metal, namely

GR(t, t1) = −iθ(t− t1)e−iεk(t−t1)

GA(t2, t
′) = iθ(t′ − t2)eiεk(t

′−t2), (A4)

then we get G< of metal from Eq. (A3)

G<k (t, t′)

=
−γ
2π

e−γ(t+t
′)/2e−iεk(t−t

′)

∫ t+t′
2

−∞
eγT dT

∫ ∞
−∞

eiεkτ

τ + i0+
dτ

= iθ(−εk)e−iεk(t−t
′). (A5)

At zero temperature, we have θ(−εk) = f(εk), thus gives
us exactly the G< one gets via Eq. (2).

The G< calculation for BCS superconductor is slightly
more complicated, as when one works in Nambu-spinor
basis, GR/A becomes a 2×2 matrix
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GRk (t, t′) =

(
−i[u2ke−iEk(t−t′) + v2ke

iEk(t−t′)] iukvk[eiEk(t−t′) − e−iEk(t−t′)]

iukvk[eiEk(t−t′) − e−iEk(t−t′)] −i[u2keiEk(t−t′) + v2ke
−iEk(t−t′)]

)
GAk (t, t′) = [GR(t′, t)]†

=

(
i[u2ke

iEk(t
′−t) + v2ke

−iEk(t
′−t)] −iukvk[e−iEk(t

′−t) − eiEk(t
′−t)]

−iukvk[e−iEk(t
′−t) − eiEk(t

′−t)] i[u2ke
−iEk(t

′−t) + v2ke
iEk(t

′−t)]

)
, (A6)

with54

Ek =
√
ε2k + ∆2, u2k =

1

2
(1 +

εk
Ek

), v2k = 1− u2k, (A7)

Plugging these into Eq. (A3), and do time-rotation as
in Eq. (A2), we get

G<k (t, t′)

=
−γ
2π

e−γ(t+t
′)/2

×
∫ t+t′

2

−∞
dT

∫ ∞
−∞

dτ
u2ke
−iEk(t−t′−τ) + v2ke

iEk(t−t′−τ)

τ + i0+
eγT

= i[u2kθ(−Ek)e−iEk(t−t′) + v2kθ(Ek)eiEk(t−t′)]

= iv2ke
iEk(t−t′), (A8)

which is exactly the G< one gets from direct calculation
(Eq. (2)). Note that the last equality comes from the
fact that Ek is always positive due to its definition in
Eq. (A7).

Appendix B: The non-dissipative nature of Eq. (10),
and the γ → 0 limit of Eq. (9)

To simulate tr-ARPES signal of a quenched system,
i.e. Eq. (11), using Eq. (10), one uses GRk and GAk of the
BCS superconducting system that is described by HBCS ,
i.e. Eq. (A6), while taking n0,k to be that of a metal.
Therefore, one gets the quenched lesser Green’s function

G<k,quench(t, t′)

= iGRk,BCS(t, t0)

(
f(εk) 0

0 1− f(ε−k)

)
GAk,BCS(t0, t

′),

(B1)

Plugging G
R/A
k,BCS into the above equation and only taking

the normal component, one gets

G<k,quench(t, t′)

= if(εk)

[
u4ke
−iEk(t−t′) + v4ke

iEk(t−t′)

+ u2kv
2
ke
−iEk(t+t

′−2t0) + u2kv
2
ke
iEk(t+t

′−2t0)
]

+ i
[
1− f(ε−k)

]
u2kv

2
k

[
e−iEk(t−t′) + eiEk(t−t′)

− e−iEk(t+t
′−2t0) − eiEk(t+t

′−2t0)
]
. (B2)

When computing tr-ARPES signal with Eq. (B2), a pos-
itive energy peak shows up due to a non-zero value of
u2kv

2
k. The absence of dissipation prevents such excita-

tion from relaxing.
One can also obtain Eq. (B1) from Eq. (9) by taking

γ → 0 limit. When γ is small and t, t′ are positive but
small, one has:∫ t

−∞
dt1

∫ t′

−∞
dt2 '

∫ t

−T
dt1

∫ t′

−T
dt2

'
∫ 0

−T
dt1

∫ 0

−T
dt2

'
∫ 0

−∞
dt1

∫ 0

−∞
dt2, (B3)

where T ∼ 1/γ is the effective time scale caused by level
broadening of GR/A. Then one can approximate G<

with:

G<k (t, t′)

' −γ
2π

∫ 0

−∞
dt1

∫ 0

−∞
dt2

GRk (t, t1)GAk (t2, t
′)

t1 − t2 + i0+

× e−γ(t−t1+t
′−t2)/2. (B4)

Now, GRk (t, t′) and GAk (t, t′) for the quench problem can
be derived analytically by solving the partial differential
equation

i∂tG
R
k (t, t′) = Hk(t)GRk (t, t′), (B5)

with

Hk(t) = θ(−t)Hk,metal + θ(t)Hk,BCS , (B6)
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where

Hk,metal =

(
εk 0
0 −εk

)
Hk,BCS =

(
εk ∆
∆ −εk

)
, (B7)

with initial condition GR(t′, t′) = −i. Let us write
Hk,metal = Hk,m and Hk,BCS = Hk,Sc.

The solution to Eq. (B5) is

GRk (t, t′) =


U1(t, t′)(−i) t′ < t < 0

U2(t, 0)U1(0, t′)(−i) t′ < 0 < t

U2(t, t′)(−i) 0 < t′ < t,

(B8)

where

U1/2(t, t′) = T

[
exp(−i

∫ t

t′
Hk,m/Scds)

]
= exp

[
−iHk,m/Sc(t− t′)

]
. (B9)

Then, Eq. (B4) becomes:

G<k (t, t′) ' − γ

2π

∫ 0

−∞
dt1

∫ 0

−∞
dt2

U2(t, 0)U1(0, t1)(−i)iU†1 (0, t2)U†2 (t′, 0)

t1 − t2 + i0+
× e−γ(t−t1+t

′−t2)/2

=
−γ
2π

e−γ(t+t
′)/2U2(t, 0)×

∫ 0

−∞
dt1

∫ 0

−∞
dt2

eiHk,m(t1−t2)eγ(t1+t2)/2

t1 − t2 + i0+
U†2 (t′, 0)

= ie−γ(t+t
′)/2U2(t, 0)

(
f(εk) 0

0 f(−εk)

)
U†2 (t′, 0)

= iGRk,BCS(t, t0)

(
f(εk) 0

0 f(−εk)

)
GAk,BCS(t0, t

′), (B10)

with t0 = 0. The last equality holds when γ → 0 and t, t′

sufficiently small. Also notice that f(−εk) = 1− f(εk) =
1− f(ε−k) for system with time-translational invariance.

Hence we have recovered Eq. (B1), the non-dissipating
limit of the lesser Green’s function of a quench BCS sys-
tem.

Appendix C: Tr-ARPES signals with thermal
electron distribution

The lesser Green’s function, with raised temperature,
can be calculated using Eq. (7), with

Σ<(t1, t2, Te) = iγ

∫
dω

2π
f(ω, Te)e

−iω(t1−t2), (C1)

where f(ω, Te) is the Fermi-Dirac distribution at temper-
ature Te. Here we assume that Te changes much slower
than the time scale set by γ, so that this thermal distri-
bution of bath electrons can be considered to be static.
This assumption can, in principle, be relaxed by modify-
ing f(ω, Te).

With this new Σ<, one can describe G< of electrons
whose temperature is increased by the pump field. Such
non-zero Te smears out I(k, ω, t) in both k and ω direc-
tions. We demonstrate this effect by presenting I(k, ω, t)
at a different temperature of three systems: a metallic
system (∆ = 0), see Fig. (9); a BCS system (∆ = 0.01),

see Fig. (10); and one of the non-equilibrium systems
that we have considered in the main text (Eq. (20)), see
Fig. (11).

By integrating I(k, ω, t) over k or ω, we calculate two
quantities, Iω(k, t) and Ik(ω, t):

Iω(k, t) =

∫
dωI(k, ω, t), (C2)

and

Ik(ω, t) =

∫
dkI(k, ω, t), (C3)

these two quantities allow us to directly compare tr-
ARPES signals among different temperatures.

Figures (9) and (10) clearly show that, as temperature
increases, the lower energy states are less occupied, while
the higher states are more occupied. This happens both
in k and ω. On the other hand, Fig. (11) shows that
both a non-equilibrium (i.e. time-varying) order param-
eter and a non-zero Te may change occupation of the
energy states. However, the relaxation introduced by γ
eventually causes relaxation of the excitations from non-
equilibrium order parameter.
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FIG. 9. Equilibrium calculations of metal at non-zero tem-
perature: kBTe = 50γ. Upper panel: tr-ARPES signal with
εk = k, γ = 0.0001, tp = 500, t = 1000, σ = 400. The
black curve shows ω(k) = εk. Lower panels: Iω(k, t) (left)
and Ik(ω, t) (right) at kBTe = 0 (solid line with dotted data
points) and kBTe = 50γ (dashed line with dotted data points).
The vertical dash-dotted lines show where k (left) or ω (right)
is zero.
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FIG. 10. Equilibrium calculations of a BCS superconducting
system with ∆ = 0.01 at non-zero temperature: kBTe = 50γ.
Upper panel: tr-ARPES signal with εk = k, γ = 0.0001,
tp = 500, t = 1000, σ = 400. The black curve shows ω(k) =

−
√
ε2k + ∆2. Lower panels: Iω(k, t) (left) and Ik(ω, t) (right)

at kBTe = 0 (solid line) and kBTe = 50γ (dashed line). The
vertical dash-dotted lines show where k (left) or ω (right) is
zero.
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FIG. 11. Non-equilibrium calculations with BCS order pa-
rameter featuring constant with a quench, as mentioned in
Eq. (20), with ∆ = 0.01. Upper panel: tr-ARPES signals
with εk = k, γ = 0.0001, and σ = 400 = 0.02× 2/γ. The two
different tp’s, short and long time after quench, are indicated
in the figures. Lower panels: Iω(k, t) (left) and Ik(ω, t) (right)
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vertical dash-dotted lines show where k (left) or ω (right) is
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