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PbTe is a leading mid-range thermoelectric material with a zT that has been enhanced by, amongst
other methods, band engineering. Here we present an experimental study of the Hall effect, quan-
tum oscillations, specific heat, and electron microprobe analysis that explores the evolution of the
electronic structure of PbTe heavily doped with the ‘ideal’ acceptor Na up to the solubility limit.
We identify two phenomenological changes that onset as the electronic structure deviates from a
Kane-type dispersion at around 180 meV; a qualitative change in the field dependence of the Hall
effect indicative of an increase in the high-field limit and a change in the Fermiology, and a sharp
increase in the density of states as a function of energy. Following consideration of three possible ori-
gins for the observed phenomenology we conclude that the most likely source is non-ellipsoidicity of
the L-pocket upon approach to a saddle point in the band structure, which is evidenced directly by
our quantum oscillation measurements. Comparison to density functional theory calculations imply
that this evolution of the electronic structure may be a key contributor to the large thermopower
in PbTe.

I. INTRODUCTION

PbTe is a narrow band gap semiconductor that has pro-
voked significant interest in both applications and fun-
damental science for several decades. It has recently re-
ceived renewed attention in the context of thermoelectric
power generation owing to a reported figure of merit, zT ,
greater than 2 achieved upon optimisation of the band
structure and phonon scattering1–4, and zT of up 1.5 via
the introduction of resonant impurity states5. From the
perspective of fundamental science, PbTe exhibits a num-
ber of properties that are of current interest including
strong phonon anharmonicity at low energies6, proximity
to a topological phase transition7,8, anomalously high-
temperature superconductivity9–11, and evidence for a
charge-Kondo effect12. Central to understanding of these
phenomena, and the ability to tune them for applications,
is a detailed understanding of the electronic structure.

Both experimental investigations and calculations of
the electronic structure in PbTe show some significant
disagreement on the relative energies at which the va-
lence band should deviate from a single-band Kane-type
dispersion, whose key features are a constant anisotropy
(ellipsoidicity) and a linear dependence of the electronic
effective mass as a function of energy close to the band
extrema. It also remains unclear whether the band struc-
ture generally deviates from Kane-type via the appear-
ance of a second valence-band maximum, significant non-
ellipsoidicity, or resonant impurity states at the Fermi
level in PbTe13–20. As each of these scenarios should in-
crease the density of states, the Mott relation dictates
that the distinction between these scenarios becomes im-
portant in engineering a high zT . The situation is further
complicated by the temperature dependence of both the
direct gap and the offset of the first and second valence

band maxima (which are thought to converge at elevated
temperatures)17,18,21,22, and the sensitivity of the band
edges to perturbations such as pressure, temperature,
chemical composition and spin-orbit coupling17,18. While
extensive experimental studies of the thermal and elec-
trical properties of PbTe at elevated temperatures have
indirectly inferred information about its band structure,
there has been comparatively few studies directly charac-
terising the electronic structure away from the band edge
and in the groundstate.

Recently, a detailed quantum oscillation study by
Giraldo-Gallo et al.14 extended previous works23 to
characterise the Fermi surface in Na-doped PbTe
(Pb1−xNaxTe) down to 160 meV below the valence band
edge. It was shown that the Fermi surface is fully de-
scribed by ellipsoid of fixed ellipsoidicity located at the L-
point with its major semi-axis along the Λ line, as shown
in Figure 1a and illustrated in green in Figure 1d. The
results were consistent with a Kane-type dispersion at
all hole concentrations studied (p <9×1019 cm−3)11,14. It
has been known for some time from elevated temperature
studies of hot electrons that the second band maximum is
anisotropic, forming an elongated pocket oriented along
the [100] direction and occuring along the Σ line (at a
point referred to here as Σ∗ and shown in blue in Fig-
ures 1b and 1d)18,24, and this has been confirmed more
recently by ARPES studies that probe states below the
Fermi level, EF

11,22,25. These two band maxima are con-
nected by a saddle point in the band structure along the
line connecting the points Σ∗ and Λ∗ as defined in Fig-
ure 1d that is expected to join the two band maxima
to form a single cage-like Fermi surface (Figure 1c) at
an energy not far below that of the second valence band
maximum13,14. As such, at some energy the L-pocket
must become non-ellipsoidal in a manner highlighted in
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FIG. 1. a)-c) Calculations of the Fermi surface of PbTe at
successively larger Fermi energies, presented previously by
Giraldo-Gallo et al.14 a) is representative of the single-band
ellipsoid found at the L-point at low to intermediate dopings,
b) shows the second band maximum (blue) as well as non-
ellipsoidicity in the L-pocket (red), and c) shows the antici-
pated Fermi surface upon crossing the saddle point connecting
the two upper valence band maxima. d) is an illustration of
constant energy surfaces in the L − K − Γ plane exagger-
ated for clarity. Green, red and blue respectively illustrate an
ellipsoidal L-pocket, the anticipated non-ellipsoidicity of the
L-pocket and the Σ pocket, as in a) and b). We define Σ∗ as
the position of the second valence band maximum, which is
expected to connect to the L-pocket along the Σ∗ − Λ∗ line
at large values of the Fermi energy.

red in Figures 1b and 1d, deviating from the Kane model
as it does so and enhancing the density of states. It is
unclear from existing experiments in what order these
deviations from the single-band Kane model occur and
how influential each may be in enhancing the density of
states and thus also the thermopower.

In this work we focus on heavily doped samples up to
the highest reported Hall numbers acheived by Na dop-
ing in PbTe. Data is presented from a range of compli-
mentary techniques (quantum oscillations, specific heat,
Hall effect and electron microprobe analysis (EMPA))
from which it is robustly established that the band struc-
ture is no longer well described by a single-band Kane-
type dispersion below 180 meV. The most striking fea-
ture of this deviation and the key result of this work is
that the density of states increases sharply as a func-
tion of the Fermi energy. This occurs concurrently with
an increase in the high-field threshold observed in the
Hall effect which shows that the carrier density is in
fact considerably lower than that estimated at generally

accessible magnetic fields. This demonstrates that the
use of the Hall effect in determining the carrier density
and composition of doped PbTe is flawed at high dop-
ings. Consistently with this increase in the high-field
threshold, the quantum oscillation measurements cannot
resolve the whole Fermi surface, but do seem to show
a deviation from the fixed-ellipsoidicity found closer to
the band edge. We discuss the relative merits of the
electronic structures proposed above, and conclude that
our data favours non-ellipsoidicity of the L-pocket on ap-
proach to the saddle point in the band structure as the
most likely source of the deviation from a Kane-type dis-
persion.

II. METHODS

Single crystals were grown via a self-flux technique
in order to match the highest reported Hall numbers
(a physical vapour transport technique was used in our
previous studies10,14). Crystals were grown in a Te-rich
melt to avoid counter-doping by Te vacancies using a
Te:(Pb+Na) molar ratio of 70:30. Alumina crucibles with
a strainer component were used (ACP-CCS, LSP ceram-
ics). The melt was held at 900◦C and then slow cooled to
550◦C over 3-4 days, with the flux then separated from
the crystals by quenching in a centrifuge. The approxi-
mate ratio of nominal to actual dopant concentration was
found to be around 10:1 below the solubility limit. The
resultant single crystals varied in size as doping increased
from several mm at low dopings down to around 500µm
to a side at the highest sodium concentrations26.

Quantum oscillations were measured in two crystals
using a mutual inductance technique27 up to 65 T at the
National High Magnetic Field Laboratory (NHMFL) in
Los Alamos. High-field Hall effect measurements up to
30 T were performed at the NHMFL in Tallahassee, with
the other Hall effect and quantum oscillation measure-
ments taken in a commercially available 14 T PPMS from
Quantum Design and a 16 T system from Cryogenic Ltd.
A standard transverse contact geometry was used with
the Hall component isolated by symmetrising between
positive and negative fields applied in the [100] direction.
Specific heat measurements were taken on a mosaic of
single crystals sourced from the same batch in a commer-
cially available dilution refrigerator option for the PPMS
from Quantum Design. The lower temperature range was
necessitated by the small values of the Sommerfeld coef-
ficient and higher-order phonon terms observed to low
temperature in PbTe which make extrapolations from
He4 temperatures unreliable. EMPA was performed on
the very same two crystals used in the quantum oscil-
lation measurements (as well as two well characterised,
physical vapour transport grown samples from our pre-
vious study14) and found the crystals to be homogenous
and single phase (see Appendix E), ruling out the pres-
ence of precipitates that have been found previously in
quenched solid solutions26. EMPA was performed with
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a JEOL JXA-8230 SuperProbe Electron Probe Microan-
alyzer at the Stanford Microchemical Analysis Facility.

III. RESULTS

A. Hall Effect
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FIG. 2. a) Raw, symmetrised, and antisymmetrised trans-
verse voltage data, Vy(B) (grey, blue, and red lines respec-
tively) up to 30 T at 1.55 K. b) The Hall number as a function
of field compared to the measured Luttinger volume for sam-
ples of varying carrier concentration, measured in each case at
a fixed temperature between 1.5 K and 4 K. The yellow, green,
blue and orange points show the Hall number for samples pre-
viously presented by Giraldo-Gallo et al.14, with dashed lines
of matching colour showing the corresponding measured Lut-
tinger volumes from the same work. The black points are
derived from the data in a), and the grey points taken on
the same two heavily doped samples for which quantum os-
cillation measurements were performed in pulsed fields up to
65 T and presented below. The grey dot-dashed line shows a
lower-bound for the L-pocket Luttinger volume in this sample
derived from the present quantum oscillation measurements
(as described in the main text). The grey bar to the right
shows the density of Na dopants measured directly by EMPA
on the same sample as both the top curve in b) (grey circles)
and the quantum oscillation measurements presented below
(see Appendix E), with the dopant density expected to ap-
proximately match p in this case.

In order to clarify the categorisation of heavily doped
samples we begin by discussing measurements of the Hall
effect. In the high-field limit (ωcτ � 1) the Hall num-
ber is a good measure of the net carrier density, but at
lower fields it is acutely sensitive to anisotropy and the
presence of multiple inequivalent Fermi-surface pockets.
Figure 2a shows raw, symmetrised and anti-symmetrised
Vy data in magnetic fields up to 30 T for a heavily doped
sample of Pb1−xNaxTe, with the component that is anti-
symmetric in B representing the Hall effect. In Figure 2b
this data is replotted as the Hall number (pH = 1/RHe)
and compared to samples of lower doping that were char-
acterised in the previous study by Giraldo-Gallo et al.14.
At lower dopings, the high field limit is clearly reached
at accessible fields as the Hall number becomes a con-
stant that matches the Luttinger volume as measured
by quantum oscillations (shown by the dashed lines) in
the same study. The Hall number in the present heavily
doped sample (black points) however does not reach a
constant value even at 30 T, implying that ωcτ < 1 and
therefore the Hall number is not a good measure of the
carrier density in this doping range. With this in mind it
is important that we make a clear distinction between the
real hole density in our samples, p, and the low-field Hall
number, pH(B → 0), that is used as a practical means to
differentiate our samples and compare to published val-
ues. Furthermore, the qualitative evolution of the Hall
number with field appears different in this regime which
may be indicative of a change in the electronic struc-
ture. The grey points were taken from the same sam-
ples studied here by quantum oscillations, one of which
(grey circles) appears to be at the solubility limit as the
data matches the highest reported low-temperature Hall
numbers for Pb1−xNaxTe26,28. The grey bar in Figure
2b shows the Na density in the same sample as measured
by EMPA, which is expected to match p as Na is an ideal
monovalent hole dopant in PbTe (see Appendix E).

B. Quantum Oscillations

Representative mutual inductance data are
shown in Figure 3a for the sample with pH(B →
0)=2.5×1020 cm−3 (grey circles, Figure 2b) at rotator
angles of 5◦ and 60◦. The sample was nominally mounted
with the crystallographic [110] direction parallel to the
rotator axis such that the field sweeps through the high-
symmetry points of the L-pocket (and of the potential
Σ-pocket) upon rotation. A non-oscillating background
was subtracted from the data via a manual spline-fit
technique (polynomial fitting yields poor results for
low frequencies), the results of which are shown for
all measured rotator angles in Figure 3b where a clear
periodicity in inverse field can be observed, indicative of
quantum oscillations. The frequency spectrum is then
obtained by Fast Fourier Transform (FFT) and allows
the quantum oscillation frequencies to be identified
as shown in Figure 3c with robustly identifiable peak
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FIG. 3. Quantum oscillation data for a sample with pH(B → 0) =2.5×1020 cm−3 a) Representative raw data at rotator angles
of 5◦ and 60◦ expressed as the mixed-down resonant frequency, F , of the oscillator circuit, the change in F is due to the
change in conductivity of the sample mounted on an inductive coil. b) Following the subtraction of a smooth non-oscillating
background, the data plotted versus inverse field shows clear periodic quantum oscillations that evolve with angle. c) Fast
Fourier Transforms (FFTs) of the data in b) show the anglular dependence of the quantum oscillation frequencies, f , which are
proportional to the area of the Fermi surface perpendicular to the applied field. Clearly identifiable frequencies are indicated
with crosses.

positions identified with crosses. The temperature and
field dependences of the amplitudes of fmin and f100
were also measured in order to determine the effective
cyclotron masses, m∗c , and the Dingle temperatures, ΘD

(these are presented and discussed in Appendices A and
B).

Firstly, note that no evidence for an additional Fermi
surface pocket was observed in either this sample or the
second sample with pH(B → 0)=1.45×1020 cm−3 (grey
triangles, Fig. 2b), but also that this does not rule out
its existence as the Σ pocket is anticipated to have a
lower mobility and thus a lower amplitude17. In Figure
4 we compare the extracted quantum oscillation frequen-
cies with those expected from the Kane-type behaviour
of the L-pocket observed at lower dopings, i.e. an el-

lipsoid with a fixed ellipsoidicity of K=15 (Appendix
C describes how the model was constrained and sam-
ple misalignment was accounted for). The higher fre-
quency orbits where the most pronounced changes in the
shape of the L-pocket may be expected upon approach
to the saddle point in the band structure were not re-
solved in the data, and so the interpretation of the de-
viations from the ellipsoidal model are somewhat subtle
and discussed further below. The ellipsoidal model gives
a reliable lower bound for the L-pocket Luttinger volume
which is shown by the grey dot-dashed line in Figure 2b
that falls considerably below pH(B → 0) in the same
sample, and also a lesser but possibly significant amount
below the Na density of the same sample from EMPA,
but outside of the high field limit we cannot compare
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FIG. 4. The quantum oscillation frequencies identified in Fig-
ure 3 are shown versus rotator angle, with coloured lines
showing the expectations of an ellipsoidal model (K=15).
The nominal axis of rotation is [110] and 0◦ corresponds to
B ‖[100]. The determination of the sample misalignment re-
quired to orient the model is described in Appendix C. The
four equivalent L-pockets in the model form different branches
in the data due to their respective major semi-axes (indicated
in the legend) being at different angles with respect to the
applied magnetic field. Arrows highlight the differences be-
tween the data and the model, and the dashed lines represent
higher harmonics. The uncertainty in the frequencies is ap-
proximately the size of the data points.

to a good value of p directly. An unexpected result is
that the two samples with pH(B → 0)=1.45×1020 cm−3

and pH(B → 0)=2.5×1020 cm−3 are found to have min-
imum quantum oscillation frequencies, fmin, that are al-
most identical within the experimental uncertainty, im-
plying that this region of the Fermi surface is essentially
unchanged even as pH(B → 0) increases by a factor of
around two.

The deviation of the quantum oscillation frequen-
cies from those expected from a Kane-type, energy in-
dependent ellipsoidicity (highlighted by the arrows in
Figure 4) is shown more clearly in the main panel
of Figure 5b by plotting the data and model as
(f(θ)/K0.5.fmin).(K. cos2(θ) + sin2(θ))0.5 where θ is the
angle of the applied field relative to the major semi-axis of
the ellipsoid to which each frequency has been attributed,
and fmin = f(θ = 0) is the minimum frequency cor-
responding to the ‘belly’ orbit of the L-pocket (located
at the zone boundary and well defined by the minimum
of the [111] branch). In this form the orbits from the
four L-pockets collapse onto a single curve and the ellip-
soidal model reduces to unity (orange dashed line). The
validity of this analysis is confirmed in Figure 5a for a
sample at lower doping (p = 4.1× 1019cm−3) using data
reanalysed from Giraldo-Gallo et al.14 where the Fermi
surface is known to be ellipsoidal. Figure 5b shows that

0 2 0 4 0 6 0

1 . 0

1 . 1 1
2

0 3 0 6 0 9 0
1 . 0

1 . 1

( f 
(θ)

 / K
 0.

5 . f m
in 

).(K
.co

s2 θ +
 sin

2 θ) 0.
5

θ (  o  )f m i n f 1 0 0

[ 1 1 0 ]k F 
(10

9  m
-1 )

[ 1 1 1 ]
[ 1 0 0 ]

L

b )  p H  ( B     0 ) = 2 . 5 x 1 0 2 0 c m - 3

a )  p  =  4 . 1 x 1 0 1 9 c m - 3   [ 1 4 ]

FIG. 5. Quantum oscillation frequencies plotted as
(f(θ)/K0.5.fmin).(K. cos2(θ) + sin2(θ))0.5 such that an ellip-
soidal Fermi surface (K = 15) yields a constant. a) shows
data for a sample with p = 4.1 × 1019cm−3 that fits the el-
lipsoidal model (data reanalysed from Ref [14]) and b) the
present data with pH(B → 0) = 2.5 × 1020cm−3 that shows
significant deviation from the model. The ellipsoidal model
is shown as a dashed orange line, with the black dashed line
in b) being a guide to the eye illustrating the deviation from
ellipsoidal behaviour. Inset of b): kF derived from the data
around the L-point of the Brillouin zone illustrating the range
of the Fermi surface resolved in these measurements as well
as the deviation from ellipsoidicity towards something more
like a tube. The ellipsoidal model is shown in orange.

the present data follows the model up to θ ≈30◦ but
f(θ) deviates upwards at higher angles. It is important
to note that simply increasing K does not reconcile the
model and the data for realistic values. The inset to Fig-
ure 5b shows the cross-section of the L-pocket in k-space
deduced from this data via the Onsager relation and as-
suming ellipsoidal orbits (fmin ∝ k2⊥, f(θ) ∝ k⊥k(θ)),
and while this assumption may not be valid for θ > 30◦

based on the present data, this nonetheless provides a
helpful illustration of the portion of the Fermi surface
that has been measured and the magnitude of the ap-
parent deviation from an ellipsoidal pocket (again shown
in orange) towards something more like a tube. The ex-
cellent agreement of the harmonics in Figure 4 shows
that this trend is not an artifact of the background sub-
traction, and errors in determining the misalignment of
the sample would generally both increase and decrease
frequencies relative to the model, whereas in Figure 5b
we only see a monotonic increase within the spread of
the data. This data is in qualitative agreement with the
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shape sketched in red in Figure 1d and calculated in Fig-
ure 1d for a non-ellipsoidal L-pocket approaching a sad-
dle point in the band structure, although data at larger
θ where non-ellipsoidicity is more pronounced would add
more weight to this conclusion.

C. Specific Heat

To learn more about the region of the Fermi surface
that could not be observed by quantum oscillations we
turn to specific heat measurements of the Sommerfeld co-
efficient, which yields the total electronic density of states
at the Fermi level. Some representative data is shown in
the inset to Figure 6 illustrating the fit used to determine
the Sommerfeld coefficient, which requires a second-order
polynomial in C/T as a function of T 2 in this mate-
rial owing to the anomalous low-energy phonon disper-
sion in this material6. The absence of a superconduct-
ing transition in this data is striking because the largest
Sommerfeld coefficients (and therefore density of states)
measured here match those observed in Tl-doped PbTe
samples with superconducting critical temperatures of
around 1.5 K, thus highlighting the unusual and unique
role of Tl in producing a superconducting state in hole-
doped PbTe10,11,29. Figure 6 shows the density of states
as a function of the Fermi energy as determined from
both the present and published data14,29, with the Fermi
energy determined using fmin at high dopings. The use
of fmin is important because the band structure at the
Brillouin zone boundary where this orbit occcurs is ex-
pected to be unaffected by the approach to the saddle
point in the band structure and so the dispersion in this
direction should give a good estimate of EF by extend-
ing the Kane model, even if the same model were to
break down near the tip of the L-pocket. The process
by which these values are combined to produce Figure
6 is described in detail in Appendix D. The density of
states is found to increase very rapidly as a function of
energy at around 180 meV, and much more sharply than
implied by published data relying on the Hall number29

(see also Figure 9) and calculations13. This is a key result
of this work and provides a new insight into the origin of
the high thermopower in this material. Futhermore this
provides the clearest indication that a single-band Kane
type dispersion does not describe the electronic structure
of Pb1−xNaxTe at the highest dopant concentrations.

IV. DISCUSSION

The data presented here establish two important phe-
nomenological differences imparted by the deviation from
a Kane-type dispersion that occurs around 180 meV.
Firstly, the carrier density is no longer well represented
by the Hall effect at accessible magnetic fields. Secondly,
the electronic density of states increases much faster as
a function of energy than could be inferred from existing
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FIG. 6. Inset: representative low temperature heat capacity
data used to extract the Sommerfeld coefficient, γ, fitted by
a second order polynomial in C(T )/T 2 versus T . Main: the
density of states at the Fermi level, g(EF ), as a function of EF
for the present data and data from Chernik et al29, with the
relationship to fmin (from which EF is derived) also shown
on a non-linear scale on the top axis. The determination of
g(EF ) is outlined in Appendix D. The data shows a sudden
increase in g(EF ) that onsets around 180 meV.

characterisations. The origin of this phenomenology is
less immediately clear, and so here we consider the rel-
ative merits of the two Fermiological scenarios detailed
in Figure 1 (non-ellipsoidicity of the L-pocket and the
presence of a pocket at Σ∗), as well as the possibility of
a resonant impurity state in explaining the data.

The consideration of a resonant impurity state is mo-
tivated by how sharply the density of states seems to in-
crease as a function of energy, which could be indicative
of Fermi level pinning as has been observed previously for
a number of impurities in PbTe30. Calculations that have
been successful in reproducing other observed resonant
impurity states in PbTe have predicted that the effect of
sodium on the density of states is negligible, but also that
Pb vacancies may produce a weakly interacting resonant
state in this energy range15. Experimentally however the
absence of a signature in tunneling experiments on simi-
larly Pb deficient crystals is notable31. Predictions of the
Hall factor also suggest that the field dependence of the
Hall number observed here is incompatible with a res-
onant impurity state as pH(B → 0) < p in that case32,
and the lack of a large increase in the Dingle temperature
and residual resistivity ratio would also imply that any
such state would need to be very highly localised.

It is generally accepted that there is a second valence
band maximum at the Σ∗ point in PbTe, which appears
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12 times in the Brillouin zone and has a much flatter
dispersion than the first valence band maximum at the
L-point. The lack of any signatures of the Σ∗ pocket in
the quantum oscillation data could be understood as the
mobility is expected to be lower than on the L-pocket,
and intuitively the density of states must increase faster
as a function of energy as the Fermi level is tuned below
the second valence band maximum. But the two-band
model of the Hall effect predicts that pH(B → 0) < p
when both bands are hole-like33, in opposition to the
present data17,34. Elevated temperature studies of the
Hall effect in PbTe confirm this intuition as pH(B → 0)
is observed to fall with increasing temperature as the
Σ∗ pocket becomes populated owing to the temperature
dependent band offset and thermally excited carriers17,19.
This suggests that even a two-band model that accounts
for the anisotropy of the Σ∗ pocket cannot reconcile the
field dependence of the Hall number in this scenario.

Non-ellipsoidicity of the L-pocket provides the most
natural mechanism by which to explain the field-
dependence of the Hall number because it can yield
pH(B → 0) > p by altering the anisotropy of the Fermi
surface and the scattering rate34,35. Indeed the ellip-
soidicity of the L-pocket at lower dopings already demon-
strates this with a qualitatively different field depen-
dence in samples of lower doping, as evidenced in Fig-
ure 2b. The most direct piece of evidence in favour of
this scenario comes from the measured deviation from
ellipsoidicity seen in the angle-dependence of the quan-
tum oscillations; although the whole L-pocket is not re-
solved the effect appears to be significant in the data.
The highly θ dependent loss of quantum oscillation am-
plitude relative to lower dopings in the absence of a signif-
icant increase in ΘD (see Appendix B) is also suggestive
of increased scattering in a localised region of k-space
around the tip of the L-pocket owing to increased den-
sity of states and greater phase smearing from the in-
creased band curvature, as oppose to a second pocket or
impurity states that would be expected to scatter carriers
more equally around the Fermi surface. The approach to
a saddle point in the band structure which would lead
to non-ellipsoidicity naturally implies an increase in the
rate of change of the density of states, but as with the
second band maximum scenario, the feature is somewhat
sharper than that expected from calculations13 and prior
data31. This apparent discrepancy may be reconciled if
the dispersion along the Λ∗ − Σ∗ line defined in Figure
1d is flatter than anticipated, possibly due to a failure of
the assumption of a rigid band shift upon Na doping or
uncertainties in calculations of the quantitative details of
the band structure of PbTe.

Regardless of its origin, the large increase in the den-
sity of states observed directly here is likely to be the
one invoked when explaining the high thermopower in
Pb1−xNaxTe1,13,32,36, thus lending support to the argu-
ment that the high thermopower in p-type PbTe is intrin-
sic and originates from a flat feature in the valence band.
The energy at which the density of states begins to in-

crease agrees well with calculations by Singh13 that also
invoke non-ellipsoidicity of the L-pocket as the source of
the increase with the second band maximum occuring
slightly lower in energy. As the same calculations have
also captured the magnitude of the thermopower accu-
rately, this seems to form a consistent picture that the
phenomenology of heavily doped Pb1−xNaxTe is strongly
influenced by non-ellipsoidicity of the L-pocket on ap-
proach to a saddle-point in the band structure.

V. CONCLUSION

In this work we have explored the electronic structure
of heavily holed-doped PbTe single crystals in the ground
state using the complementary probes of the Hall effect,
quantum oscillations, specific heat, and EMPA, from
which we identify and characterise a significant devia-
tion from the Kane model that onsets around 180 meV.
The data show that the density of states grows sharply
as a function of EF concurrently with a significant in-
crease in the threshold at which the system enters the
high-field limit as seen by the Hall effect. This leads to
two important new phenomenological conclusions; firstly
that the carrier density is significantly overestimated by
the Hall effect at accessible fields in this regime, and sec-
ondly, that the density of states increases more rapidly
with energy than previously inferred. We consider three
possible sources of this phenomenology, a resonant im-
purity state, a second valence band maximum at the
Fermi level, and non-ellipsoidicity of the L-pocket. By
comparing the angle-dependence of the quantum oscilla-
tion measurements to an ellipsoidal model and consider-
ing the field dependence of the Hall number we propose
that non-ellipsoidicity of the L-pocket is the most likely
origin of this phenomenology, and this scenario is also
most consistent with density functional theory. In order
to reconcile this scenario with the rapid increase in the
density of states, the band dispersion along the Σ∗ − Λ∗

line (defined in Figure 1d) must be flatter than antici-
pated from calculations. These results contribute to a
consistent picture of the origin of the high thermopower
of Pb1−xNaxTe, as well as calling for a reassessment of
the real carrier densities in heavily doped PbTe.
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VII. APPENDICES

A. Temperature dependence of quantum
oscillations and estimates of m∗c

The temperature dependence of the amplitude of the
fmin orbit (B ‖ [111]) is shown in Figure 7a for the sam-
ple with pH(B → 0)=2.5×1020 cm−3. By fitting the
amplitude of the oscillation as a function of tempera-
ture to the temperature dependent term of the Lifshitz-
Kosevitch formula, as shown in the inset to Figure 7a, we
obtain the cyclotron effective mass, m∗c=0.169(3)me for

the fmin orbit. Similar data was taken for f100 and also
in sample with pH(B → 0)=1.45×1020 cm−3, and these
results are compared to data from Giraldo-Gallo et al.14

in Figure 7b as function of the orbit frequency. This
yields a linear trend as expected from the Kane model
where m∗c,i ∝ EF ∝ k2F,i ∝ fi, with the fmin and f100
data collapsing onto the same curve because the cross
sectional area of the Fermi surface and the cyclotron
mass share the same angular dependence17. Given the
apparent deviation from ellipsoidicity highlighted in Fig-
ure 5b one may expect an increase in the effective mass
in the present samples for the (100) orbit, however m∗c
represents an average of m∗ around the completed or-
bit, and so m∗c is expected to see a smaller enhancement
than is present in the portion of the orbit with the most
band curvature. Furthermore, any increase would in part
be cancelled out by the concurrent increase in the fre-
quency when presented as in this plot, and so it is not
clear that m∗c constitutes a particularly sensitive probe
of non-ellipsoidicity in this context. The close adherence
of the fmin data to the Kane model justifies the use of
fmin in determining the Fermi energy as discussed below
in Appendix D.

B. Field dependence of quantum oscillations and
the Dingle temperature

The magnetic field dependence of a quantum oscil-
lation amplitude is related by the Dingle temperature,
ΘD, to the mean free path. It is curious that Giraldo-
Gallo et al.14 found that ΘD is independent of doping
in Pb1−xNaxTe, when the mean free path might be ex-
pected to fall as more dopants are introduced, which may
reflect the very strong screening effect in PbTe. Figure
8 shows a fit of the Lifshitz-Kosevitch formula which de-
termines ΘD to be 12.4(3) K for the fmin orbit, slightly
larger but comparable to that at lower dopings. This
comparison is complicated slightly as the samples used
here are grown by a melt-growth method that is likely
to be less structurally perfect than the vapor-transport
method used at lower dopings by Giraldo-Gallo et al.37.
It is notable however that a resonant impurity state
might be expected to have a larger effect on ΘD than
this, as observed in the strong suppression of the quan-
tum oscillation amplitude when doping with Tl beyond
0.3%11.

C. Constraining the Ellipsoidal Model

The model shown in in Figure 4 was constrained in
the following ways; the ellipsoidicity was held as K = 15
for comparison to lower carrier concentrations, noting
that the fit is largely insensitive to realistic changes of
this value for the observed frequencies; the minimum
quantum oscillation frequency, fmin, corresponding to the
cross-sectional area of the L-pocket at the zone bound-
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ΘD=12.3(3) K.

ary, was taken as accurate because this value changes
very little with misalignment; the misalignment and the
uncertainty in the misalignment were estimated by opti-
cal measurements of the experimental setup; the quality
of fit of the model was assessed within the constraints of
the uncertainty in the misalignment by a least-squares
type analysis, the conclusion of which was that there was
no realistic combination of parameters by which the ellip-
soidal model could fit all of the data simultaneously. The
displayed model is that determined by the optically esti-
mated misalignments, and, as discussed in the main text,
is consistent with how the L-pocket may be expected
to deviate from ellipsoidicity. Two empirical statements
support the validity of the final parameters of the model
and the resulting comparison to the analysed data, firstly
the harmonics seem to fit very well at low θ implying that
any deviation is as a function of θ, not a function of the
measured f(T ) as may be expected from a systematic
error. Also, in order to improve the fit to either of the
[111] and [111] branches, the fit to the other must be
compromised. Put differently, the non-misaligned [111]
and [111] branches would be approximately an average
of the two misaligned branches, and it can be seen that
the average of the two measured branches is significantly
higher than those of the model. The effect of a badly es-
timated misalignment would produce values both above
and below unity in Figure 5, and indeed this may con-
tribute to some of the additional scatter in Figure 5a, but
cannot explain the behaviour observed in Figure 5b.

D. Determination of g(EF )

Given that the Hall number cannot be taken as a
good estimate of the carrier density in the heavily doped
regime, we turn to the quantum oscillation frequencies to
determine EF . fmin is not expected to deviate markedly
from the Kane model until much larger values of EF , and
Figures 5b and 7b show that this is true for all orbits
up to θ = 30◦ even in our most heavily doped sample.

0

1

2

3

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 50 . 0

0 . 5

1 . 0

1 . 5

f 3/
2  (1

03 .T3/2
)

f   3 / 2m i n

f   3 / 2
1 0 0

a )

0
0 . 1

0 . 2

0 . 3

E f m
in

F
 (e

V)

 T h i s  w o r k .
 C h e r n i k  ( a d j . )
 K a n e  M o d e l

g(E
F) 

(st
ate

s.e
V-1 )

p H  ( B     0 )  ( 1 0  2 0  c m - 3 )

b )

FIG. 9. Data showing the process by which g(EF ) and EF
can be correlated in Pb1−xNaxTe via pH(B → 0). a) shows

the evolution of f
3/2
min (blue) and f

3/2
100 (red) as a function of

pH(B → 0). Pulsed field measurements up to 65 T and DC
field measurements up to 14 T from this work are shown as
closed and open circles respectively, squares are Pb1−xNaxTe
samples from Giraldo-Gallo et al.14 and triangles are Pb-
vacancy doped samples from Jensen et al23. The Kane model
is shown as dashed lines, and a clear deviation is seen at
pH(B → 0) ≈ 9× 1019 cm−3 where both frequencies saturate.
EF can be calculated from the Kane model using fmin with
the conversion given by the second y-axis showing Efmin

F (note
that this scale is non-linear). b) g(EF ) as determined by heat
capacity data in this work (orange circles) and by Chernik
et al.29 (green squares) plotted as a function of pH(B → 0).
Data from Chernik et al. has been adjusted to account for
inequivalency in the methodologies as described in the text.

Figure 9a (left-hand scale) demonstrates the expected
pH(B → 0) ∝ f3/2 (dashed lines) for the lower doping
regime where the Kane model holds and pH(B → 0) ≈ p,
as well as the strong deviation from this trend above
pH(B → 0) ≈ 9× 1019 cm−3. The Kane dispersion,

E

(
1 +

E

Eg

)
=
h̄2k2⊥
2m⊥

+
h̄2k2‖

2m‖
(1)

can relate EF to p by considering the Luttinger volume,
giving, (

3π2 p

N

)2/3

=
2md

h̄2

(
EF +

E2
F

Eg

)
(2)
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where md = (m2
⊥m‖)

1/3 is the density of states mass
at the band edge determined from published cyclotron
masses14,23,38, N is the number of L-pockets in the Bril-
louin zone (4), and Eg is the energy of the direct gap
at the L point, which is taken as 190 meV for the low
temperatures relevant in this study (Eg is temperature
dependent)37. EF as a function of p (right-hand scale,
non-linear) is shown in Figure 9a with the axes scaled
such that the dashed blue line that represents fmin(p)
also represents EF (p) as determined by the Kane model,
allowing a measured value of fmin to be converted to EF

even if p is unknown (this is equivalent to substituting
the Luttinger volume, as derived from fmin and K, for p
in Equation 2).

Figure 9b also includes f100 data including melt-grown
samples that were only measured to lower fields (14T) in
a single orientation. This serves to highlight the general
phenomenology with a higher data density as the fmin

data is quite broadly spaced (the samples naturally cleave
in the (100) plane so this is the alignment used for basic
characterisation, whereas a rotator is required to access
fmin).

The total electronic density of states, g(EF ), is de-
termined from the Sommerfeld coefficient of the specific
heat, and in Figure 9b we again compare to pH(B → 0)
which is available for all of our samples and also published
data by Chernik et al. The difficulty with measuring the
Sommerfeld coefficient in PbTe is both the small density
of states and the low-energy non-linearity of the acous-
tic phonon branch6 that make traditional extrpolations
of the Cp = γT + β1T

3 type unsuitable. The method-
ology used by Chernik et al. differs slightly from that
used here but the two are complementary. Here we used
lower temperatures to limit the extrapolation error and
allowed a β2T

5 contribution to Cp in the fit, as shown in
the inset of Figure 6. Chernik et al. instead used a nomi-
nally undoped PbTe as a background and subtracted this
data from that of their doped samples on the assumption
that only the γT term changes. However PbTe doesn’t
form without some carriers due to vacancies, stated by
Chernik et al. to be of order 1018 cm−3 in their refer-
ence sample, meaning that γ is underestimated in their
data. From the Kane model we can estimate the missing
γ due to their imperfect background subtraction to be
approximately 0.04 mJ.mol−1.K−2, which, as expected,
brings both datasets into perfect agreement. With both
EF and g(EF ) now on a common axis, pH(B → 0), they
can be correlated to produce Figure 6. Whilst there is
some interpolation involved in this process, the qualita-
tive behaviour is absolutely clear: as fmin, and hence EF ,
stops increasing, g(EF ) rises significantly.

E. Electron Microprobe Analysis

As a cross-check for our conclusion that pH(B → 0) 6=
p we performed a direct chemical analysis by EMPA. Na

is known to contribute a single hole to PbTe and as a
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FIG. 10. Main: pH(B → 0) versus mean Na content as de-
termined by EMPA. The dashed line shows the expectation if
there is one carrier per dopant. The two highest dopings were
measured on the exact same samples as the present quantum
oscillation and Hall measurements, with the lower two taken
from the same batches as samples measured by Giraldo-Gallo
et al. Inset: a typical composition map, here showing Te
counts in the pH(B → 0) =2.5×1020 cm−3 sample, demon-
strating that there are no impurity phases in these single
crystals. Note that the lines are cracks that appeared upon
polishing the sample for this measurement.

member of group 1 it is not disposed to alternative va-
lences, and so we can assume that this behaviour does not
change (unlike say, Tl which has been shown to change
valence in PbTe as a function of EF )11,39,40. Hence the
real carrier density should be close to the real dopant
density provided that nNa � nvacancies as expected here.
Figure 10 confirms that pH(B → 0) and nNa (plotted as
x) agree well at lower dopings but then deviate for the
highest dopings, with the solubility limit (highest dop-
ing) seen to be approximately 1%, corresponding to an
implied carrier density of around 1.5(2)×1020 cm−3. This
number and uncertainty are contextualised against the
Hall number and lower-bound of the L-pocket Luttinger
volume in Figure 2b, shown as the grey bar. The inset to
Figure 10 shows a typical composition map, chosen here
for Te to demonstrate the absence of NaTe2, illustrat-
ing that there are no resolvable impurity phases in these
single crystals. The Pb and Na maps look essentially
identical to the Te map shown. Note that the apparently
negative value of xNa for one data point in Figure 10
is an artifact of the background subtraction (the sample
was undoped, i.e. xNa = 0).
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