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Current state of the art devices for detecting and manipulating Majorana fermions commonly
consist of networks of Majorana wires and tunnel junctions. We study a key ingredient of these
networks – a topological Josephson junction with charging energy – and pinpoint crucial features for
device implementation. The phase dependent tunneling term contains both the usual 2π-periodic
Josephson term and a 4π-periodic Majorana tunneling term representing the coupling between
Majoranas on both sides of the junction. In non-topological junctions when the charging energy is
small compared to the Josephson tunneling scale the low energy physics is described by 2π phase
slips. By contrast, in a topological junction, due to the 4π periodicity of the tunneling term it is
usually expected that only 4π phase slips are possible while 2π phase slips are suppressed. However,
we find that if the ratio between the strengths of the Majorana assisted tunneling and the Josephson
tunneling is small, as is likely to be the case for many setups, 2π phase slips occur and may even
dominate the low energy physics. In this limit one can view the 4π phase slips as a pair of 2π phase
slips with arbitrarily large separation. We provide an effective descriptions of the system in terms
of 2π and 4π phase slips valid for all values of the tunneling ratio. Comparing the spectrum of the
effective models with numerical simulations we determine the cross-over between the 4π phase slip
regime to 2π phase slip dominated regime. We also discuss the role of the charging energy as well
as the implications of our results on the dissipative phase transitions expected in such a system.

I. INTRODUCTION

In recent years, extensive scientific efforts have been
invested to understand, realize and manipulate topolog-
ical states in condensed matter.1,2 Particularly, topo-
logical superconducting wires3,4, which are constructed
using systems with strong spin-orbit coupling, induced
Cooper pairing and a Zeeman field, have gathered much
attention5. Interest in these Majorana wires is moti-
vated by the possibility of using the non-Abelian nature
of Majorana modes for quantum computation schemes6,7

and is sustained by encouraging experimental results8–16.
Hence, networks of Majorana wires have been proposed
as tools to manipulate Majorana modes for quantum in-
formation purposes17–22 or to create more exotic mat-
ter23,24. In this work, we study a phenomenon commonly
relevant to this type of networks, charge induced quan-
tum fluctuations in topological Josephson junctions.

In a superconductor, the charge is conjugate to the or-
der parameter phase and charging effects induce quantum
phase fluctuations.25,26 In a non-topological Josephson
junction, tunneling processes are known as phase slips
and are essentially 2π jumps in the phase difference be-
tween the superconductors. The delocalization of the
phase induced by these fluctuations can be prevented by
dissipation. As a result, Josephson junctions present a
dissipative phase transition27,28. In a topological junc-
tion which is made of two topological superconductors
there are Majorana modes at both edges of the junction.
The presence of these modes leads to coherent single par-
ticle tunneling between the superconductors, commonly
referred to as the 4π periodic Josephson effect.3,4,7,29–32

The change of periodicity in the overall tunneling cur-

rent suppresses 2π phase slips in topological Josephson
junctions.33 Both the 2π phase slip suppression33–35, and
its effects on the dissipative phase transition35 have been
proposed as a probe for topological superconductivity.
Most studies of 2π phase slip suppression focus on having
a sufficiently strong single particle tunneling.33–35 This is
despite the fact that the single particle tunneling may be
a small component of the overall tunneling current, as
is the case for 3D topological insulator based Josephson
junctions36,37. As a result, there are currently no stud-
ies which describe the 2π phase slip suppression through-
out the transition from a non-topological to a topological
junction. Our work extends the existing literature and
provides (a) a semiclassical description of 4π phase slips
as coupled 2π phase slips and (b) the relevant regimes
for bound and unbound pairs of phase slips.

In this work, we develop a theory for the effect of charg-
ing induced phase fluctuations in the low energy spec-
trum of a topological Josephson junction, valid for any
ratio of the single particle and the Cooper pair tunnel-
ing. Our results show that a description of the low energy
physics of the topological junction in terms of 4π phase
slips alone is insufficient when the strength of the 4π pe-
riodic tunneling is too small. In the presence of both 2π
and 4π periodic components of the tunneling current, the
potential energy of the junction as a function of the phase
difference between the superconductors, θ, may have one
or two minima in [0, 4π) (see Figs. 1(b) and 1(c)). If only
one minimum exists, the description in terms of 4π phase
slips is valid for small phase fluctuations. In the presence
of two minima, this description may break down even for
small phase fluctuations if they are relatively large com-
pared to the strength of the 4π periodic tunneling. In
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this case, a description of the junction in terms of un-
bound 2π phase slips is more appropriate. This is shown
in Fig. 1(a) where EJ and EM correspond to the energy
scale of the 2π and 4π periodic tunneling, respectively,
and EC to the strength of the phase fluctuations. The
junction potential has only one minimum for EM > 8EJ
and two otherwise.

We treat the appearance of phase slips in the topolog-
ical Josephson junction in two ways. First, we calculate
the phase slip probability using a semiclassical method
where we calculate a path integral between a state with
θ = 0 in the distant past and θ = 4π in the distant fu-
ture describing the phase slip process. We calculate the
phase slip probability up to Gaussian fluctuations around
this 4π instanton. While the phase slip probabilities for
the case of non-topological junctions are well-known, we
use the double-sine-Gordon formalism to derive them for
the case of a topological junction. In the small Majo-
rana tunneling regime we assume dominance of 2π phase
slips and calculate their probability using a method for
asymmetric barriers38. Secondly, we solve the problem
numerically in a truncated Hilbert space. The numer-
ics give us the ground state energy of the junction as a
function of a tunning parameter which we can compare
with the spectrum expected for the 2π and 4π phase slip
scenarios. This gives us a regime of validity for either
scenario and therefore a cross-over between the two be-
haviors, as depicted in Fig. 1(a).

This paper is organized as follows. In Sec. II, we give
a brief review of the effects of charging induced phase
fluctuations in Josephson junctions. The review is fol-
lowed by a qualitative discussion of the effects of phase
fluctuations for different regimes of a topological Joseph-
son junction in Sec. III. The main results are stated in
Sec. IV where we introduce low energy effective models
of topological Josephson junctions. In Sec. VI we discuss
the implications of our results on the dissipative phase
transition. Our conclusions are stated in Sec. VII.

II. REVIEW OF THE EFFECTS OF QUANTUM
PHASE SLIPS IN JOSEPHSON JUNCTIONS

We begin with a quick review of the effects of small
phase fluctuations in a non-topological junction. The
junction consists of a weak link between two supercon-
ductors with a junction capacitance C described by the
Hamiltonian

Ĥ = EC (n̂− ng)2 − EJ cos θ̂, (1)

where EJ is the Josephson energy associated with the
tunneling of Cooper pairs between the two superconduc-
tors, EC = e2/(2C), the charging energy of the weak
link and ng the offset charge. The operator n̂ measures

the charge and the operator θ̂, measures the phase dif-
ference between the superconductors. To simplify the
comparison with the following sections, we measure n̂
(and ng) in units of the electron charge e, rather than

(a)

(b)EM/(8EJ ) > 1 (c)EM/(8EJ ) < 1

FIG. 1: Depending on the relative strength between the
single-particle (set by EM ) and the pair tunneling (set by
EJ) the potential of the topological Josephson junction may
be minimized when: (b) the phase difference across the junc-
tion is an integer multiple of 4π only, or (c) the phase dif-
ference across the junction is any integer multiple of 2π. In
(c) the minima at odd 2π are local minima. (a) In (c), the
strength of phase fluctuations (set by the charging energy EC)
determines whether oscillations around the local minima con-
tribute to the ground-state (Unbound 2π QPS) or not (4π
QPS). The cross-over is found numerically by evaluating the
relative accuracy of the 4π and 2π phase slip scenarios.

in the more conventional units of 2e. The commutation
relation, [θ̂, n̂] = 2i, therefore follows. Several exam-
ples of superconducting circuits, such as the ones used
in the Cooper pair box39,40, quantronium41 and trans-
mon42 qubits, can be mapped to Eq. 1. In these circuits,
ng is tuned using gate voltages, while the ratio of EJ
and EC may be tuned using split junctions or by adding
additional capacitances (see e.g. Ref. [43]).

In the basis of phase eigenstates, the wave-function
Ψ(θ) = 〈θ|Ψ〉 describing the Josephson junction follows
the equation[

EC

(
−2i

d

dθ
− ng

)2

− EJ cos θ

]
Ψ(θ) = EΨ(θ) (2a)

respecting the boundary condition

Ψ(θ + 2π) = Ψ(θ). (2b)

The dependence of the system on the offset charge ng
can be transferred from the Schrödinger’s equation to
the boundary condition via Ψ(θ) → eingθ/2Ψ(θ) which
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results in,[
EC

(
−2i

d

dθ

)2

− EJ cos θ

]
Ψ(θ) = EΨ(θ), (3a)

Ψ(θ + 2π) = eiπngΨ(θ). (3b)

The above equations can be solved using Mathieu func-
tions. Nonetheless, expansions for different parameter
regimes have been developed to provide more intuition.
Since we are interested in studying phase fluctuations,
we focus on the EC � EJ limit. This corresponds to the
regime of interest of transmon qubits42.

When EC � EJ the potential energy −EJ cos θ domi-
nates the energy of the system. Around the potential en-
ergy minima, at θ = 2πj with integer j, equation 3a can
be mapped onto an harmonic oscillator having frequency
~ω =

√
8EJEC . The low energy levels of the Joseph-

son junction therefore correspond to harmonic oscillator
levels. Deep inside the potential well, these harmonic
oscillations do not depend on the boundary conditions
given by Eq. 3b. To find the junction dependence on ng,
we need to account for quantum tunneling between the
different potential minima.

Denoting the amplitude for quantum tunneling be-
tween the mth harmonic oscillator level of one of the
potential minima and its nearest neighbors by νm, it is
possible to write an effective tight-binding Hamiltonian
for the junction:

Ĥ =

∞∑
m=0

∑
j

[
εma

†
m,jam,j − νma

†
m,j+1am,j + h.c.

]
(4)

Here a†m,j is the creation operator for mth level of an

harmonic oscillator around 2πj, and εm = ~ω(m + 1/2)
the energy of the a level. The tight-binding Hamilto-
nian in Eq. 4 is diagonalized using the operators am,k =∑
j e
−ikjam,j :

Ĥ =
∑
m

∑
k

(εm − 2νm cos k) a†m,kam,k. (5)

Comparing with Eq. 3b leads to the identification k =
πng, which allows us to conclude that for EC � EJ the
dispersion of the mth level of the junction is given by

Em(ng) = εm − 2νm cos (πng) , (6)

which holds when νm � ~ω.
The tunneling amplitudes νm can be calculated using

semi-classical methods. Here we briefly outline the cal-
culation for the lowest energy level corresponding to the
the phase slip probability ν0. We use the dilute instanton
gas approximation in the path integral imaginary time
formalism (see e.g. Ref. [44]). In this formalism, the am-
plitude to propagate from 0 to 2π during an imaginary

time interval of length 2L is written as a weighted sum
over all the paths that start at 0 at time τ = −L and end
at 2π at τ = L:

(0,−L|2π, L) =

∫
[Dθ]e−

1
~
∫ L
−L L(θ(τ))dτ , (7)

where

L (θ) =
~2 (∂τθ)

2

16EC
+ EJ (1− cos θ) (8)

is commonly known as the sine-Gordon Lagrangian which
is related to the Hamiltonian in Eq. 1 through a Legendre
transform.

For L → ∞ the classical solution is a 2π-kink also
referred to as an instanton. It is given by θcl2π (τ) =
4 arctan

(
eω(τ−τ0)

)
where ω =

√
EJEC/~ coincides with

the frequency of harmonic oscillations around the 2πj
minima. Conversely, the model also has a classical solu-
tion with θ(−∞) = 2π and θ(∞) = 0 known as an anti-
kink. In the dilute instanton gas approximation, the path
integration of Eq. 7 is done over combinations of kinks
and anti-kinks and Gaussian fluctuations around them.
Furthermore, it is assumed that the kinks and anti-kinks
are separated enough (in imaginary time) that the in-
teractions between them are negligible. This yields the
result

ν0 =
√

2(~ω)3/(πEC)e−~ω/EC , (9)

where ~2ω/EC = ~
√

8EJ/EC is the action of a 2π kink.
To test the validity of Eq. 9 we ask whether the gas of

kinks and anti-kinks is in fact dilute. This can be done by
comparing the width of the kinks, 2/ω, with the expected
average separation among them, ~/ν0. The gas is dilute,
and Eq. 9 is self-consistent, as long as ν0 � ~ω/2, which
is satisfied for EJ � EC .

This formalism can be extended to calculate the ng-
dependence of higher levels through the use of periodic
instantons (see e.g. Ref. [45]). The decision to focus on
ν0 was made for the sake of simplicity.

III. PHASE FLUCTUATIONS IN A
TOPOLOGICAL JOSEPHSON JUNCTION

In a topological junction, the two superconductors cou-
pled by the junction each present a Majorana mode close
to the the junction. We denote these by γ1 and γ2,
and ignore the other two Majorana modes which are
far from the junction. The coupling of these Majorana
modes adds a 4π periodic term to the tunneling cur-
rent3,4,7,29–32. The topological junction can then be mod-
eled by the following Hamiltonian:

Ĥ = EC (n̂− ng)2 − EJ cos θ̂ − iγ1γ2
EM

2
cos

θ̂

2
(10)

where iγ1γ2 is the parity of the fermionic mode caused
by the hybridization the Majorana modes on both sides
of the junction.
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A physical realization of the above phenomenological
model is possible using a Majorana Cooper pair box, such
as the one studied in Ref. [46]. In order to achieve the
desired phase dominated limit the Majorana Cooper pair
box could be shunted by a larger capacitance, as is done
in transmon qubits42.

If the local parity is conserved, the operator iγ1γ2 in
Eq. 10 can be substituted by either one of its two eigen-
values ±1. Without loss of generality, from now on we
assume iγ1γ2 = 1. As long as the local parity is con-
served, our results do not rest on this assumption. As
in the previous section, after a charge translation the
wave-function in phase basis follows an ng independent
Schrödinger’s equation[
EC

(
−2i

d

dθ

)2

− EJ cos θ − EM
2

cos
θ

2

]
Ψ = EΨ (11a)

and a boundary condition

Ψ(θ + 4π) = ei2πngΨ(θ). (11b)

As in the non-topological case, when EC is small com-
pared to the tunneling EJ and EM the energy is domi-
nated by the tunneling terms which we refer to as “the
potential”. We therefore expect the ground state wave
function to be concentrated around the potential min-
ima. In the topological Josephson junction, the compe-
tition between the pair and single particle tunneling cre-
ates two different regimes depending whether the junc-
tion potential has a single minimum or a two minima for
0 ≤ θ < 4π.

When EM/(8EJ) > 1, the junction potential has a sin-
gle minimum in the [0, 4π) interval. Hence, the potential
is minimized when θ = 4πm with m an integer, and all
the minima are degenerate. The frequency of harmonic
oscillations around these minima, obtained by expanding
Eq. 11a around these values, is ~ω =

√
8EJEC + EMEC .

This is exemplified in Fig. 2(a) where the first few
harmonic oscillator levels and the ground-state wave-
function amplitude are shown for EM = 2 = 10EJ and
EC = 0.001. The junction potential and the tunneling
processes between the degenerate levels are also shown
in Fig. 2(a). As EC increases, the spacing between the
levels and tunneling amplitude increases and the har-
monic wave-functions widen, as shown in Fig. 2(b) for
EM = 2 = 10EJ and EC = 0.1. However, the tunnel-
ing processes that give rise to the ng dispersion remain
unchanged by the increase of EC . In this regime, the
topological junction behaves qualitatively similar to the
non-topological junction from the previous section with
half the ng periodicity and 4π phase slips taking the role
of 2π phase slips.

On the other hand, if EM/(8EJ) < 1, the junction
potential has two minima in the [0, 4π) interval. Hence,
the potential has two kinds of minima with two differ-
ent frequencies for harmonic oscillations around them:
θ = 4πm with frequency ~ω+ =

√
8EJEC + EMEC , and

(a)EC = 0.001 (b)EC = 0.1

(c)EC = 0.001 (d)EC = 0.1

FIG. 2: Phase fluctuations in the single-minimum and double-
minimum regimes of a topological Josephson junction. The
first harmonic levels (blue lines) and the junction potential
(green line) are shown for a junction with EM = 2 = 10EJ
and (a) EC = 0.001 and (b) EC = 0.1, and a junction with
EJ = 1 = 50EM and (c) EC = 0.001 and (d) EC = 0.1.
The ground-state wave-functions (amplitudes shown in grey)
correspond to linear superpositions of harmonic oscillations
around the potential minima. The tunneling processes that
give rise to the ng dispersion of each level are shown in red.
In the double-minimum regime ((c) and (d)), increasing EC
can change which are the dominant tunneling processes. The
ground-state wave-function in (d) shows an additional (small)
peak around 2π. Note that in panels (c-d) the 2π minimum
is not degenerate with the 4π ones.

θ = 4πm+2π with frequency ~ω− =
√

8EJEC − EMEC .
In addition to the effects discussed in the previous para-
graph, changing EC may also change the tunneling pro-
cesses that contribute to each energy level. This is shown
in Figs. 2(c) and 2(d). The ground-state wave-function in
Fig. 2(c) is peaked around 0 and 4π, whereas the ground-
state wave-function in Fig. 2(d) shows additional contri-
butions from oscillations around 2π.

IV. EFFECTIVE MODELS

In this section, we will discuss two different effective
models for the junction ground-state: one in which only
oscillations between 4πm minima contribute and one in
which oscillations around all 2πm minima contribute to
the ground-state. We calculate the effective hopping pa-
rameters of each model and discuss their regions of va-
lidity.
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FIG. 3: A 4π instanton is made of two 2π instantons of width
ω separated by an imaginary time of 2R/ω.

A. 4π QPS model

We can write an effective Hamiltonian for the ground-
state of the junction as a combination of harmonic oscil-
lations around 4πj plus hopping between such minima:

Ĥ =
∑
j

(
~ω
2
a†jaj − ν4πa

†
j+1aj + h.c.

)
, (12)

where ω the frequency of harmonic oscillations
around the minima at 4πj and is given by ~ω =√

8EJEC + EMEC . Accounting for the boundary condi-
tion, Eq. 11b, results in the following ground-state energy
dispersion

Egs(ng) =
~ω
2
− 2ν4π cos (2πng) . (13)

This model gives an effective description of the system in
the single-minimum regime and in the double-minimum
regime for small enough EC (see Fig. 2).

The tunneling amplitude ν4π can be calculated follow-
ing the procedure outlined in Sec. II. The imaginary time
Lagrangian of the topological junction,

L (θ) =
~2(∂τθ)

2

16EC
+EJ (1−cos θ) +

EM
2

(
1−cos

θ

2

)
, (14)

is known as the double sine-Gordon Lagrangian and its
semi-classical dynamics have been widely studied.47

Interestingly, as shown in Fig. 3, the 4π kink in the
DSG model can be written as a sum of two 2π SG kinks:

θcl4π = 4 arctan eω(τ−τ0)−R + 4 arctan eω(τ−τ0)+R. (15a)

The imaginary time separation of the two 2π kinks,
2R/ω, is set by the ratio of EM and 8EJ as R is given
by:

R = arccosh

(√
1 +

8EJ
EM

)
. (15b)

The 4π DSG kink is depicted in Fig. 3. The width of
the kinks is controlled by the Josephson tunneling and

the capacitance energy through ω =
√
EJEC/~ and the

separation between kinks is controlled by the ratio of EM
and EJ through 2R/ω. When EM → 0, the separation
between the two 2π kinks diverges (R → ∞) meaning
that the 4π kinks effectively decouple into two separate
2π kinks as the DSG Lagrangian reduces to the SG La-
grangian.

Using the dilute instanton gas approximation, as be-
fore, we find

ν4π =

√
8(~ω)5

πEME2
C

exp

(
− ~ω
EC
× f

(
EM
8EJ

))
(16a)

where

f (x) = 2 +
2x√
1 + x

coth−1
(√

1 + x
)

(16b)

is an increasing function with f(0) = 2 and f(∞) = 4.
With the appropriate modifications, this result is in
agreement with the result found by Ref. [48] in a of sta-
tistical mechanics context. A more detailed derivation of
how Eq. 16 is obtained is shown in Appendix A 1.

When EM → 0, ν4π presents a square root divergence,
i.e. ν4π ∼ 1/

√
EM . This divergence has two physical in-

terpretations. First, it is indicative of a resonance in tun-
neling49 when EM → 0. In our context, it is a sign that
the validity of the model breaks down in this limit. Sec-
ondly, this divergence is indicative of the restoration of a
symmetry. In this case, the symmetry that is restored is
the 2π translation symmetry; i.e. the decoupling of the
two 2π kinks.

The restoration of the 2π translation symmetry for
EM → 0 diminishes the range of the validity of the cal-
culated expression for ν4π. This can be seen by noting
that the dilute instanton gas approximation breaks down
when EM → 0: the width of the 4π kinks (2 + 2R)/ω
diverges as − logEM whereas the average separation be-
tween the kinks ~/ν4π goes to zero as

√
EM . The as-

sumption that the width of the 4π kinks is much smaller
than the average separation between the kinks fails for
EM → 0. We address this problem in the next subsec-
tion.

Emergent translational mode correction

In order to derive a semiclassical expression whose va-
lidity extends to smaller EM/EJ ratios we account for a
higher order of fluctuations in the direction of the emer-
gent translational mode.50,51 Since the emergent trans-
lational mode is related to the decoupling of the two
kinks, this is roughly equivalent to letting the distance
between the two kinks fluctuate around its equilibrium
value, 2R/ω.

The result of Ref. 51 can be written in terms of R as:

ν4π =
4F (R) (~ω)

2

πEC
I
(
R, ~ω

EC

)
(17a)
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where F (R) is a numerical factor bound by
√

2/5 ≤
F (R) ≤ 1 and given by

F (R) =

√
cosh 2R−R tanhR− 3R cothR+ 2

sinhR
√

2− 8R2csch22R
; (17b)

and

I (R,α) =

∫ ∞
0

dr

√
1− 4r2csch2(2r)e−αSR(r) (17c)

with

SR(r) =1 +
tanh2R

tanh2 r
+ 2r×(

1

sinh 2r
+

coth r

cosh2R
− tanh2R coth r

2 sinh2 r

)
.

(17d)

In the above expressions, 2r/ω corresponds to the fluc-
tuating distance between the two kinks and SR(r) is an
r-dependent effective action which is minimized at r = R.
For more details on how this expression is obtained, see
Appendix A 2 and Ref. 51.

To the best of our knowledge, a closed form expression
for I (R,α) does not exist. Nonetheless, we can find ap-
proximate expressions for I (R,α) for small and large R.
When R is large, the integral is dominated by the linear
large r behavior of SR(r). In Appendix B 2, we find that
for 16α2 � e2R

I (R,α) ≈ cosh2(R)e−α(tanh2(R)+1)

2α
. (18)

This leads to ν4π ≈ νlr4π with

νlr4π =
f2

(
EM
8EJ

)
(~ω)

3

πECEM
exp

[
− ~ω
EC
× f1

(
EM
8EJ

)]
(19)

when EM/(8EJ) � 0.25E2
C/(~ω)2. In the above equa-

tion, f1(x) and f2(x) are order 1 numerical factors which
decrease with x; their exact form can be found in Ap-
pendix B 2. Note that according to the above calculations
ν4π diverges for EM → 0 as 1/EM .

For small R, the greatest contribution to I (R,α)
comes from the r values around R. A saddle point ap-
proximation of the integral I (R,α) results in

I (R,α) ≈
√

π

2α

coshR

F (R)
e−αSR(R). (20)

This is a good approximation to I (R,α) if e2R � 16α
(see Appendix A 2). Substituting this in Eq. 17a gives
the expression for ν4π obtained without including correc-
tions due to the emergent translational mode, i.e. Eq. 16.
Hence, Eq. 16 is valid when EM/(8EJ)� EC/(4~ω).

We thus find that whether the distance between the
two 2π phase slips R is fixed depends on how EM/(8EJ)
compares with EC/(4~ω). Since

EC
4~ω

=
EC

4
√

8EJEC
− ECEM

64EJ
√

8EJEC
+O(E2

M ), (21)

EM/(8EJ) ∼ EC/(4~ω) when EM ∼ (8EJEC)/(EC/2 +√
8EJEC). Roughly, the distance between the two 2π

phase slips R will be fixed when EM is greater than this
value, and it will fluctuate when it is smaller.

B. Coupled 2π QPS model

If the junction parameters are such that there are addi-
tional (local) minima at 2πm with m odd and oscillations
around those minima contribute to the ground-state (see
e.g. Fig. 2(d)), we can describe it by the following effec-
tive Hamiltonian:

Ĥ =
∑
j

(
εja
†
jaj − ν2πa

†
j+1aj − ν2πa

†
jaj+1

)
, (22)

where ν2π corresponds to tunneling amplitude between
potential minima separated by 2π. The energies εn are
given by:

ε2n =εe =
~ω+

2

ε2n+1 =εo = EM +
~ω−

2

~ω± =
√

8EJEC ± EMEC .

(23)

The dispersion of Eq. 22 is

E±(ng) =
1

2
(εo + εe)

± 1

2

√
(εo − εe)2 + 8ν22π(1 + cos(2πng)).

(24)

The hopping ν2π can be calculated using the formula
proposed by Ref. 38 for the tunneling through an asym-
metric potential. Without loss of generality, we can focus
on calculating the amplitude for tunneling between 0 and
2π. The minimum at 0 and the minimum at 2π are sep-
arated by a barrier which is largest at θmax. Following
Ref. 38 we define two potentials symmetric around θmax,
VL(θ) and VR(θ), such that VL(θ) (VR(θ)) is equal to the
junction potential for 0 < θ < θmax (θmax < θ < 2π).
Then ν2π can be written as:

ν2π = A
√
νLνR, (25)

where νs, s = L,R, is the probability for tunneling from
0 to 2π through the potential Vs and

A =
1

2

[(
Vmax − εe
Vmax − εo

)1/4

+

(
Vmax − εo
Vmax − εe

)1/4
]1/2

, (26)

with Vmax = V (θmax). The above expression for ν2π
clearly breaks down when εo ≥ Vmax; at that point the
zero point motion of the shallow minimum becomes larger
than the potential barrier. The approximations leading
to the above expression for ν2π start failing before this
point.
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FIG. 4: Comparison of ν22π/|εo − εe| (solid line) and νlr4π
(dashed line) for EJ = 1. The ν22π/|εo − εe| lines stop when
the potential barrier is smaller than the zero point motion
energy for oscillations around the shallow minima εo.

For our model of a topological Josephson junction,
θmax and Vmax are given by:

θmax =4 arctan (ω+/ω−)

Vmax =2EJ (EM/(8EJ) + 1)
2
.

(27)

And the θmax-symmetric potentials VL and VR are well
approximated by

VL(θ) ≈ EJ
(

1 +
EM
8EJ

)2(
1− cos

(
πθ

θmax

))
VR(θ) ≈ EM+

EJ

(
1− EM

8EJ

)2(
1− cos

(
π(θ − 2π)

θmax − 2π

))
,

(28)

which leads to the following tunneling amplitudes:

νs =
4√
Psπ

(
8E3

sEC
)1/4

e
−Ps

√
8Es
EC (29)

with PL = θmax/π = 2− PR, EL = EJ(1 +EM/(8EJ))2

and ER = EJ(1 − EM/(8EJ))2. Ps and Es are, respec-
tively, the period and amplitude of the potential Vs for
s = L,R.

For EM → 0 the dispersion in Eq. 24 becomes

E±(ng)→
~ω
2
± |2ν0 cos (πng)| . (30)

This is the expected result for the EM → 0 limit, as
it corresponds to the breaking of the symmetry between
the minima at even and odd multiples of 2π “folding”
the ng-Brillouin zone.

We also note that for ν2π � |εo − εe| the lowest of the
two bands becomes

E−(ng) ≈ εe −
2ν22π
|εo − εe|

− 2ν22π
|εo − εe|

cos(2πng). (31)

This dispersion would be equivalent to the dispersion
found for the 4π phase slip model (13) if ν22π/|εo − εe| →
ν4π. As shown in Fig. 4, we find that ν22π/|εo− εe| ≈ νlr4π.
This allows us to interpret νlr4π as arising from coupled
but not confined 2π phase slips. From this, we conclude
the 2π phase slips become bound when ν2π � |εo − εe|.
To provide a rough approximation for when will the 2π
phase slips bound, we consider that

ν2π = ν0 +O(E2
M ) and

|εo − εe| = EM

(
1− 1

2

√
EC
8EJ

)
+O(E3

M )
(32)

so ν2π ∼ |εo − εe| when EM ∼ ν0/
(

1− 1
2

√
EC
8EJ

)
. The

2π phase slips bound for EM > ν0/
(

1− 1
2

√
EC
8EJ

)
.

C. Validity of the effective models

The image that emerges from the results in this section
and the previous energetic considerations is as follows.
The 4π tunneling–whose strength is set by EM–acts as
a binding potential between pairs of 2π phase slips. We
find three relevant regimes:

• Unbound 2π phase slips

For 0 < EM < ν0/
(

1− 1
2

√
EC
8EJ

)
, the 2π phase

slips couple to each other but the 4π tunneling is
not strong enough to bind them.

• Bound 2π phase slips with fluctuating R

For ν0/
(

1− 1
2

√
EC
8EJ

)
< EM < (8EJEC)/(EC/2+

√
8EJEC), pairs of 2π phase slips bound forming

4π phase slips. However, the distance between the
two 2π phase slips that form the 4π phase slip R
(see Fig. 3) fluctuates.

• Bound 2π phase slips with fixed R
For EM > (8EJEC)/(EC/2 +

√
8EJEC), the 4π

tunneling is strong enough to bind pairs of 2π phase
slips together and fix the distance between them R.

As will be further discussed in this section, the transition
between neighboring regimes is not sharp. Both regimes
will be valid in a region around these boundaries.

To further clarify the range of parameters in which
each picture is valid, we compare the different effective
models for the topological Josephson junction with nu-
merical result. The spectrum of Eq. 10 is obtained nu-
merically by truncating the Hilbert space in the number
basis, where the Hamiltonian becomes

H =

∞∑
n=−∞

[
EC (n− ng)2 |n〉 〈n| − EM

4 (|n〉 〈n+ 1|

+ |n〉 〈n− 1|)− EJ
2 (|n〉 〈n+ 2|+ |n〉 〈n− 2|)

]
.

(33)
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(a)EC = 0.01

(b)EC = 0.02

FIG. 5: The ground state energy of the model as a func-
tion of the control parameter ng depends on the phase slip
probability. We therefore use the quantity Egs(1/2)−Egs(0)
to benchmark the effective models against numerical results
(black solid line). If only 4π phase slips are present (Eq. 13),
Egs(1/2) − Egs(0) = 4ν4π. The different obtained expres-
sions for 4ν4π, Eqs. 16 (dotted gray) and Eqs. 17a-20 (solid
red line) are shown. When 2π phase slips dominate (Eq. 24),

Egs(1/2)−Egs(0) = (
√

(εo − εe)2 + (4ν2π)2−|εo−εe|)/2 with
ν2π given by Eq. 9 (blue dashed-dotted). The graphs are
shown as a function of EM/(8EJ) with the sum 8EJ + EM
fixed at 1. The red shaded region corresponds to good agree-
ment with the 4π phase slip scenario while the blue shaded
region denotes good agreement with the 2π phase slip sce-
nario. The regions overlap where both approximations are
close to the numerical data.

The numerical results shown in this paper are obtained
by taking the sum in the above equation from n = −N
to n = N with N = 104.

Comparisons between Egs(ng) for the topological
Josephson junction predicted by the effective models dis-
cussed previously and numerical results are shown in

Fig. 5. The comparisons are done by plotting the differ-
ence Egs(1/2)−Egs(0) as a function of EM/(8EJ) for dif-
ferent values of EC . In Fig. 5 we have fixed 8EJ+EM = 1
such that ~ω is kept constant throughout each plot; this is
done to show the entire range of EM/(8EJ) in the same
plot. As expected, when EM/(8EJ) → 0 the numeri-
cal results (solid black line) agree with the 2π QPS de-
scription (dotted-dashed blue line) provided by the tight-
binding Hamiltonian, Eq. 22. While for larger values of
EM/(8EJ) the 4π QPS description, i.e. that of Eq. 12,
is closer to the numerical results. In addition, increasing
EC reduces the range of EM/(8EJ) in which the 4π QPS
description is valid. This can be seen by comparing the
two panels of Fig. 5.

Moreover Fig. 5 shows the results of the 4π QPS de-
scription calculated in two ways. One scheme, commonly
used in the literature assumes that the distance between
phase slips is fixed (Eq. 16, represented by gray dotted
lines in Fig. 5). This leads to a dispersion that agrees
with the numerical data only for large ratios of EM/8EJ .
Since the 2π phase slip scenario is only appropriate at
much smaller EM/8EJ , an intermediate regime is unex-
plained by neither scenario. To remedy this we extend
the 4π phase slip model to allow fluctuations of R (Eq. 17,
red solid line in Fig. 5). This extends the regime of valid-
ity of the model such that it overlaps with the 2π-phase
slip scenario in the regime shaded in purple in both pan-
els of Fig. 5.

We can use the numerical results to figure out the range
of parameters in which each picture is more appropriate.
This is shown in Fig. 1(a). As discussed previously, close
to the boundary between the coupled 2π QPS and the
4π QPS regions, both descriptions give similar results.

V. CONNECTION WITH THE LARGE
CHARGING ENERGY LIMIT

The results above indicate that the presence of local
minima at odd multiples of 2π in the junction poten-
tial lead to a ground-state wave-function weight at odd
multiples of 2π if EC is large enough. A question that
arises is whether the presence of local minima in the po-
tential guarantees that there will be a large enough EC
such that the ground-state wave function is peaked at
odd multiples of 2π. This can be answered by looking at
the dominant charging energy limit.

For EM = EJ = 0, the eigenstates of the junction
have a well defined particle number n and their ener-
gies are given by EC(n − ng)

2. In the gauge where
Ψ(θ + 4π) = Ψ(θ), the phase space wave-functions of
such states are given by Ψ(θ) = e−ilθ/2 with integer l.
If EM , EJ � EC the eigenstates of the junction can be
found perturbatively from the well defined number states.
To first order in perturbation theory, the ground-state of
the junction for ng ∈ (−1/2, 1/2) is given by the unnor-
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malized wave function

Ψgs(θ) =1− EMe
−iθ/2

4EC(2ng − 1)
+

EMe
iθ/2

4EC(2ng + 1)

− EJe
−iθ

8EC(ng − 1)
+

EJe
iθ

8EC(ng + 1)
.

(34)

The above wave-function will be peaked at 2π if |Ψgs(θ)|
has a local maximum at this point.

For simplicity, we focus on ng = 0. In this case,

Ψgs(θ) = 1 +
EM
2EC

cos
θ

2
+

EJ
4EC

cos θ. (35)

Since EM � EC and EJ � EC then Ψgs(θ) = |Ψgs(θ)|.
Looking at the derivatives of Ψgs at θ = 2π, we find
that 2π is a minimum of Ψgs when EM/(2EJ) > 1 and a
maximum when EM/(2EJ) < 1. Therefore, the ng = 0
ground-state wave-function is peaked around odd multi-
ples of 2π if EM/(2EJ) < 1.

We see then that for 2EJ < EM < 8EJ and ng = 0, the
ground-state wave-function does not peak around odd
multiples of 2π despite the junction having local poten-
tial minima there. Moreover, the wave-function weight
around odd multiples of 2π is highest for integer values of
ng. This can be intuitively understood by noticing that
the wave-function weight around odd multiples of 2π for
half-integer ng is strongly suppressed as a result of the
degeneracy between the two nearby n states. Therefore,
for any given ng the ground-state wave-function does not
peak around odd multiples of 2π if 2EJ < EM . Then the
presence of local minima in the potential does not guar-
antee that there will be a large enough value of EC to
cause a ground-state wave-function peak at odd multiples
of 2π.

VI. DISCUSSION

In the above we found that for any ration of EM < 8EJ
one might find both 4π and 2π phase slips, depending
on the strength of the phase fluctuations given by EC .
Therefore, the scenario of 4π phase slips only is bound to
fail for some value of EC . We have estimated the value
of EC above which 2π phase slips dominate in the fol-
lowing way. First we have evaluated the 4π phase slip
probability ν4π using a double sine-Gordon model. Well
below the cross-over line in Fig. 1(a) a double instan-
ton classical solution with gaussian quantum fluctuations
yield Eq. 16. This equation fails at low EM even be-
fore 2π phase slips take over due to a possible transla-
tional mode that was not taken into account. We improve
the calculation in Eqs. 17 which does not have a closed
form solution but may be approximated in the subse-
quent equations.In the 2π phase slip dominated regime
we estimate ν2π using a method for asymmetric barrier
and arrive at Eqs. 25-29. Using both the 2π and 4π phase
slip scenario we generate plots for the energy difference

Egs(ng = 1/2) − Egs(ng = 0) which are compared with
numerical solution for the problem in a truncated Hilbert
space (using Eq. 33). The quality of the various approx-
imations point to the cross-over depicted in Fig. 1(a).
A rough estimate of the cross-over as a function of the
problem’s energy scales x = EM/8EJ and y = EC/8EJ
can be found by comparing ν4π and ν2π which yields
x ∝ exp

(
−α/√y

)
with some slowly varying α(x).

It is interesting to discuss the implications of our re-
sults on the dissipative transition that is expected in this
system.27,28,35 This transition was previously studied in
Ref. 35, where it was found that the presence of 4π peri-
odic tunneling would reduce the ohmic dissipation needed
to restore superconductivity by a factor of 4. However,
the results of Ref. 35 assumed that the topological junc-
tion could always be described by 4π QPS. In this work,
we find that this is not necessarily the case. Consider
a junction with fixed EJ and EC , when EM = 0 the
junction is described by 2π QPS, turning on EM leads
to an increasing coupling of this 2π QPS until they be-
come confined into pairs. Following the critical dissi-
pation throughout this same path would lead to a con-
tinuous decrease in it until it reaches 1/4 of the original
value at the point where the 2π QPS are fully suppressed.
We also find that the critical dissipation needed to stabi-
lize the superconductivity in our model of a topological
Josephson junction is dependent on EC .

An important caveat of using the dissipative phase
transition as a mechanism for detecting Majorana modes
is that the dissipation induced by quasi-particle tunnel-
ing also reduces the critical resistance of non-topological
Josephson junctions by a factor of 4. Furthermore, the
effects of dissipation induced by quasi-particle tunneling
in non-topological Josephson junctions are dependent on
the ratio between the Josephson coupling and the charg-
ing energy.28 This is because both the 4π periodic tunnel-
ing induced by Majoranas and the quasi-particle tunnel-
ing are single particle tunneling processes that break the
same symmetry (the 2π periodicity of a non-topological
Josephson junction), albeit the difference in coherence.
A more careful analysis of dissipation in the topological
Josephson junction is required to find whether there are
signatures in the dissipative transition that would allow
distinguishing between the 4π periodic tunneling induced
by Majoranas and the quasi-particle tunneling.

The difference in the effects of 4π periodic vs. quasi-
particle tunneling in the dissipative transition is unclear.
However, the effects on the charge offset dispersion are
clearly different. While both kinds of single particle tun-
neling turn the system from 2π periodic to 4π periodic,
the Majorana assisted tunneling opens up a gap (see
Eq. 24), while the quasi-particle tunneling does not28.
This could be a potential probe to distinguish between
the two kinds of single-particle tunneling.

Finally, another important issue to consider is the ef-
fect of quasi-particle poisoning in this system. Since in-
stanton techniques tend to be useful to describe systems
coupled to external environments52, the formalism used
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in this work could be useful to study the effects of quasi-
particle poising.

VII. CONCLUSIONS

We studied the effects of phase fluctuations induced
by charging effects in a simple model of a topological
Josephson junction. Our model considers both single
particle tunneling and pair tunneling, which are, respec-
tively, 4π and 2π periodic with respect to the supercon-
ducting phase difference across the junction. We found
that when the single particle tunneling is a small compo-
nent of the total tunneling current there are two possible
ways to describe the ground-state of the junction: 1) in
terms of 4π QPS or 2) in terms of coupled 2π QPS. We
found the tunneling amplitudes for both effective descrip-
tions and compared them to numerical results to deter-
mine the range of parameter in which each description
is appropriate. We note that in a real junction one may
not have control over the relative strength of EM and EJ
and therefore observing 2π phase slips does not necessar-
ily imply that the junction isn’t topological. However, if
the junction is indeed topological and phase fluctuations
can be reduced through capacitance (reducing EC), 2π
phase slips will be suppressed revealing the topological
nature of the junction.

In addition, we discussed the possible implications
that our results have for the dissipative phase transi-
tion expected in this system. As was previously found
by Ref. 35, when the ground-state of the junction is
described by 4π QPS we expect the critical resistance
needed to make the junction superconducting to be
4 times smaller than the critical resistance needed to
make a non-topological junction superconducting. In the
regime where tunneling processes between minima sepa-
rated by 2π are still present in the system, we expect the
critical transition to be somewhere between these two
critical values. Given that increasing the charging en-
ergy of the junction may change the tunneling processes
present in the system, our results also point towards a
charging energy dependence of the critical resistance for
the dissipative transition.

Several questions regarding the dissipative transition,
particularly in relation to quasi-particle tunneling, re-
main unanswered. In the future, we will use the for-
malism developed in this work to obtain a quantitative
description of this transition. It would also be interesting
to pinpoint the relation between the results presented in
this work and the dominant charging energy limit.
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Appendix A: Path Integral Calculations

1. 4π phase slip amplitude

The calculation of the tunneling amplitude between
the different potential minima can be performed using
standard semi-classical methods. We include the calcu-
lation here in detail for completeness, largely following
Ref. [44].

We begin by calculating the amplitude to propagate
from 0 to 4π in an imaginary time interval 2L. This is
given by the following path integral:

(0,−L|4π, L) =

∫
[Dθ]e−

1
~
∫ L
−L L(θ(τ))dτ , (A1)

where L(τ) is the Double sine-Gordon (DSG) Lagrangian
given by Eq. 14, which can be rewritten as,

L (θ) = M

(
(∂τθ)

2

2
+ V (θ)

)
(A2)

with

V (θ)=ω2

[
tanh2R (1−cosθ)+ 4sech2R

(
1−cos

θ

2

)]
(A3)

and

M = ~2/(8EC)

ω =
√
EC (8EJ + EM )/~

cosh (R) =
√

(8EJ + EM )/EM .

(A4)

We expect the leading contribution to the path integral
to be from paths of the form

θ (τ) = θcl (τ) + χ(τ) (A5)

where θcl (τ) is the classical path which minimizes the
action and interpolates between θ = 0 at τ = −L and
θ = 4π at τ = L. χ(±L) = 0 is the deviation from the
classical path and θcl (τ) fulfills the following equation:

dV

dθ

(
θcl (τ)

)
=
d2θcl

dτ2
. (A6)

In the limit L→∞, θcl (τ) is given by

θcl = 4 arctan[eω(τ−τ0)+R] + 4 arctan[eω(τ−τ0)−R]. (A7)

Up to second order in χ(τ) the Lagrangian for paths
of the form Eq. A5 is

L (θ) =L
(
θcl
)

+
M

2
(∂τχ)

2
+
M

2

d2V

dθ2
(
θcl
)
χ2

+M∂τ (χ∂τθ
cl).

(A8)
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This allows us to split the path integral in Eq. A1 into
two parts:

(0,−L|4π, L) ≈ F exp

(
−S

cl

~

)
(A9)

with Scl the action of the instanton,

Scl =

∫ L

−L
dτL

(
θcl
)

(A10)

and F contains the sum over Gaussian fluctuations
around such instanton. F can be written as

F =

∫
[Dχ] exp

(
−M

2~

∫ L

−L
dτχDχ

)
, (A11)

with D is the following differential operator:

D = − d2

dτ2
+
d2V

dθ2
(
θcl (τ)

)
. (A12)

The path integral in Eq. A11 can be solved expanding
χ in terms of the eigenfunctions of the operator D, i.e.
taking

χ (τ) =
∑
n

χnyn (τ) (A13)

with

Dyn (τ) = λnyn. (A14)

This leads to

F = N
∏
n

∫ ∞
−∞

dχn√
2π~/M

e−
Mλnχ

2
n

2~ (A15)

with N a normalization constant. However, the above
expression in not well defined since the operator D con-
tains a zero mode, λ0, which leads to a divergence in F .
The time τ0 at which the kink solution is centered is ar-
bitrary which leads to D∂τθ

cl = 0; i.e. the zero mode is
a consequence of the time-translational invariance of the
system. To deal with this divergence, we use the Fadeev-
Popov method to transform the χ0 integration to a τ0
integration.

The Fadeev-Popov method consists of inserting

1 =

∫
dτ0

∣∣∣∣∂χ0

∂τ0
(χ0 = 0)

∣∣∣∣ δ(χ0), (A16)

into the expression for F given by Eq. A15:

F =N
∞∏
n=1

∫ ∞
−∞

dχn√
2π~/M

e−
Mλnχ

2
n

2~ ×∫
dτ0

∣∣∣∣∂χ0

∂τ0
(χ0 = 0)

∣∣∣∣ ∫ dχ0√
2π~/M

δ(χ0)

=N
∞∏
n=1

∫ ∞
−∞

dχn√
2π~/M

e−
Mλnχ

2
n

2~ ×∫
dτ0√

2π~/M

∣∣∣∣∂χ0

∂τ0
(χ0 = 0)

∣∣∣∣ .

(A17)

The Jacobian
∣∣∣∂χ0

∂τ0
(χ0 = 0)

∣∣∣ can be found rewriting the

path θ so that fluctuations in the direction of the zero
mode are traded for an explicit τ0 dependence:

θ(τ) =θcl (τ − τ0) +

∞∑
n=1

χnyn (τ − τ0) . (A18)

Comparing the above expression for the path with that
of Eq. A5 leads to

χ0 =f(τ0) +

∞∑
m=1

ξmrn(τ0) (A19)

with

f(τ0)=

∫
dτ
(
θcl(τ−τ0)−θcl(τ)

)
y0 (τ)

rm(τ0)=

∫
dτym (τ−τ0) y0 (τ) .

(A20)

Furthermore, we note that the constraint χ0 = 0 corre-
sponds to τ0 = 0 so we obtain:∣∣∣∣∂χ0

∂τ0
(χ0 =0)

∣∣∣∣ =

∣∣∣∣∣f ′(0) +

∞∑
m=1

ξmr
′
m(0)

∣∣∣∣∣ (A21)

We know ∂τθ
cl ∝ y0 (τ) since D∂τθ

cl = 0. The pro-
portionality constant can be found using the following
expression: ∫ ∞

−∞
dτ(∂τθ

cl)2 =
Scl

M
, (A22)

which stems from the fact that θcl(τ) minimizes the ac-
tion (Eq. A6). We use this to find f ′(0):

f ′(0) =−
∫
dτ∂τθ

cl(τ) y0(τ) =−
√
Scl

M
. (A23)

The appropriate boundaries of integration for τ0 are
−L and L since τ takes values in the interval (−L,L).
We then obtain

F =N
∞∏
n=1

∫ ∞
−∞

dχn√
2π~/M

e−
Mλnχ

2
n

2~ ×

∫ L

−L

dτ0√
2π~/M

(√
Scl

M
−
∞∑
m=1

ξmr
′
m(0)

)

=N2L

√
Scl

2π~
1√∏′
n λn

(A24)

where
∏′
n indicates the product over the eigenvalues tak-

ing out the zero eigenvalue.
The normalization constant can be conveniently ex-

pressed in terms of the sum over harmonic fluctuations
around 0 or 4π. If we define

F0 =

∫
[Dχ] exp

(
−M

2~

∫ L

−L
dτχD0χ

)
(A25)
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with

D0 = − d2

dτ2
+ ω2. (A26)

The normalization constant N can be written as

N = F0

√∏
n

λ0n, (A27)

where λ0n are the eigenvalues of the differential operator
D0. F0, the fluctuation contribution to the imaginary
time harmonic oscillator propagator, is readily available
in the literature (see e.g. Ref. 44). For L→∞ its leading
contribution is

F0 =

√
Mω

π~
e−ωL. (A28)

Our expression for F currently includes a ratio between
the products of eigenvalues of the operators D0 and D:

F = 2LF0

√
Scl

2π~

√∏
n λ

0
n∏′

n λn
, (A29)

which can be evaluated using the Gelfand-Yaglom for-
mula. Following Ref. 44 we have∏

n λ
0
n∏′

n λn
=

2Mωη2

Scl
, (A30)

where η is defined by the asymptotic behavior of the clas-
sical solution:

∂τθ
cl → ηe−ω|τ | for τ → ±∞. (A31)

To the leading order the amplitude to propagate from
0 to 4π in an imaginary time interval 2L is then:

(0,−L|4π, L) ≈ 2LF0η

√
Mω

π~
e−

Scl

~ . (A32)

However, the leading order contribution is not enough
to obtain the level splitting. It is possible to obtain a
more precise expression for the amplitude using the dilute
instanton gas approximation.

Under the dilute instanton gas approximation, we sum
over paths consisting of combinations of kinks and anti-
kinks and quadratic fluctuations around them, i.e.

θ(τ) =

2N∑
n=0

νnθ
cl (τ − τn) + χ(τ) (A33)

where νn = ±1 (+ for kinks and − for anti-kinks) and∑
n νn = 1. The approximation consist of considering

that the centers of the kinks and anti-kinks, i.e. τn
are sufficiently spread out to make kink-kink interactions
negligible. The obtained result is

(0,−L|4π, L) =
∑
n

F0

(
2Lη

√
Mω
π~ e

−Scl~

)
2n+1

(2n+ 1)!

= F0 sinh

(
2Lη

√
Mω

π~
e−

Scl

~

)
.

(A34)

The spectral representation of the amplitude in Eq. A1
is

(0,−L|4π, L) =
∑
n

ψn(0)ψn(4π)e−2LEn/~. (A35)

Considering two groundstate levels of harmonic oscilla-
tors with frequency ω and mass M , one centered around
0 and other around 4π, which can tunnel to each other
with amplitude ν, we have

ψ1(θ) =
1√
2

(ψ0(θ) + ψ4π(θ)) E1 =
~ω
2
− ν

ψ2(θ) =
1√
2

(ψ0(θ)− ψ4π(θ)) E2 =
~ω
2

+ ν.

(A36)

In the above expression ψ0(θ) and ψ4π(θ) are the ground-
state wavefunctions of harmonic oscillators centered
around 0 and 4π, respectively, e.g.

ψ0(θ) =

(
Mω

π~

)1/4

e−
Mωθ2

2~ . (A37)

The amplitude, Eq. A1, for such system would then be

(0,−L|4π, L) =

√
Mω

π~
e−Lω sinh (2Lν/~) . (A38)

Comparing Eq. A34 and Eq. A38 allows us to conclude

ν = ~η
√
Mω

π~
exp

(
−S

cl

~

)
. (A39)

For the kink in Eq. A7 we have:

Scl =16Mω (1 + 2R csch 2R)

η =8ω coshR.
(A40)

Substituting the values of M , ω and R from Eq. A4 we
obtain

ν4π =

√
8(~ω)5

πEME2
C

exp

(
− ~ω
EC
× f

(
EM
8EJ

))
(A41)

with

f (x) = 2 +
2x√
1 + x

coth−1
(√

1 + x
)
. (A42)

2. Emergent translational mode correction for the
4π phase slip amplitude.

Here, we follow the procedure outlined in Ref. 51 to
introduce corrections to the previously found expression
for ν4π. This section then follows the work done in Ref. 51
closely. We include the calculation here for clarity as
the work in Ref. 51 was done in the context of classical
statistical mechanics. We also note that Ref. 51 claims,
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incorrectly, that this procedure leads to a non-divergent
expression. Here, we find otherwise.

When EM → 0, the expression for ν found in A 1 di-
verges. This occurs because one of the eigenmodes of
the operator D, which we will call λ1 approaches 0 when
EM → 0. Physically, the two 2π kinks decouple turning
the distance between the two 2π kinks 2R into another
translation mode. We must then have

y1(τ)→ ∂R(θcl) when EM → 0 (A43)

This means that we can deal with the effects of the emer-
gent translational mode by writing the path as

θ(τ) =θcl(τ) +

∞∑
n=0

χnyn (τ)

=σ (τ − τ0, r) +

∞∑
n=2

χnyn (τ − τ0)

(A44)

with

σ(τ, r) = 4 arctan[eωτ+r] + 4 arctan[eωτ−r]. (A45)

For R = r we recover the classical solution, i.e. σ(τ,R) =
θcl(τ) . We should note that Eq. A44, and thefore the
rest this appendix, relies on y1 ≈ ∂R(θcl). This is a valid
assumption when R > 1.25.50,51

Up to second order in χ =
∑∞
n=2 χnyn (τ − τ0) = 0 the

Lagrangian for the above path is given by:

L (σ, χ)

M
=

(∂τσ+∂τχ)
2

2
+V0(σ)+χV1(σ)+χ2V2(σ), (A46)

where V0(σ) = V (σ) is the potential of σ given by Eq. A3
and

V1(σ) =
ω2

cosh2(R)

(
sinh2(R) sinσ + 2 sin

σ

2

)
V2(σ) =

ω2

cosh2(R)

(
1

2
sinh2(R) cosσ +

1

2
cos

σ

2

)
.

(A47)

The action of this path can be written as

S(σ, χ) = S0(r) + S1(σ, χ) (A48)

with S0(r) and S1(σ, χ) given by:

S0(r) =M

∫
dτ

(
1

2
(∂τσ)2 + V0(σ)

)
=8Mω

(
1 +

tanh2R

tanh2 r
+

2r

sinh 2r
+

+
2r coth r

cosh2R
− r tanh2R coth r

sinh2 r

)
S1(σ, χ) =M

∫
dτ (−∂τσ + V1(σ))χ

+M

∫
dτ

(
1

2
(∂τχ)2 + V2(σ)χ2

)
.

(A49)

Using the Fadeev-Popov method to transform from the
coordinates χ0 and χ1 to τ0 and r leads to

(0,−L|4π, L) =N
∫ ∫

dτ0dr

2π~/M

∣∣∣∣∂χ0∂χ1

∂τ0∂r

∣∣∣∣∣∣∣∣
χ0,χ1=0

∞∏
n=2

∫
dχn√
2π~/M

e−S0(r)/~−S1(σ,χ)/~
(A50)

Following Ref. 51, we make the approximations:∣∣∣∣∂χ0∂χ1

∂τ0∂r

∣∣∣∣∣∣∣∣
χ0,χ1=0

≈

√∫
dτ(∂τσ)2 ×

∫
dτ(∂rσ)2∫ ∞∏

n=2

dχn√
2π~/M

e−S1(σ,χ)/~ ≈ 1√∏′′
n λn

(A51)

where the λns are the eigenmodes of the operator D from
the Eq. A12, and the product

∏′′
n skips the 0 eigenmode

and λ1.
Under these approximations, we can write

(0,−L|4π, L) =F ′K2L (A52)

with,

F ′ =
N√∏′′
n λn

= F0

√∏
n λ

0
n∏′′

n λn
= F0η

√
2Mω

Scl

√
λ1 (A53)

and

K =

∫ Lω

0

dr
M
√∫

dτ(∂τσ)2 ×
∫
dτ(∂rσ)2

2π~

e−S0(r)/~
∫ L− r

ω

−L+ r
ω

dτ0
2L

.

(A54)

Using the following result from Ref. 50:√∫
dτ(∂τσ)2×

∫
dτ(∂rσ)2 =

16
√

1−4r2csch22r.

(A55)

and performing the τ0 integration gives

K=

∫ Lω

0

dr
16M(ωL−r)

√
1−4r2csch22r

2π~ωL
e

−S0(r)
~ . (A56)

It is possible to calculate λ1 by noting that calculating
K using a quadratic approximation on ρ = r −R gives

K0 =

√
Scl

2π~
1√
λ1
e−

Scl

~ (A57)

Expanding S0(r) up to second order in ρ leads to

S0(ρ) =Scl + 2Mωρ2csch3Rsech3R×
(4 sinh 2R− 4R+ sinh 4R− 8R cosh 2R)

(A58)
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We then find

K0 =

∫ ∞
−∞

dρ
M16

√
1− 4R2csch22R

2π~
e−

S0(ρ)
~

=

√
M

~ωπ
g(R)e−

Scl

~

(A59)

with

g(R) =
sinh 2R

√
2− 8R2csch22R√

cosh 2R−R tanhR− 3R cothR+ 2
(A60)

Note that the factor (1 − r
L ) from Eq. A56 goes to 1 in

the Eq. A59 as we are taking the L → ∞ limit. The
vanishing eigenvalue λ1 is then

√
λ1 =

√
Scl

2π~
e−

Scl

~

K0
=

√
Sclω

2M

1

g(R)
, (A61)

which leads to

(0,−L|4π, L) = 2LF0
ηω

g(R)
K (A62)

Using the dilute instanton gas approximation (see pre-
vious section), this result leads to the tunneling ampli-
tude

ν4π = ~
ηω

g(R)
K =

8~ω2 coshR

g(R)
K. (A63)

Taking L to infinity results in

K =
8M

π~
I
(
R, ~ω

EC

)
=

~
πEC

I
(
R, ~ω

EC

)
, (A64)

with I(R,α) defined by Eq. 17c. Our final expression for
ν is

ν =
8(~ω)2 coshR

g(R)πEC
I
(
R, ~ω

EC

)
. (A65)

which corresponds to the expression in the main text
Eq. 17 since F (R) = 2 coshR/g(R).

Appendix B: Approximate expressions for I (R,α)

1. Validity of the harmonic approximation

Taking r = R + y/
√
αS′′R(R) we can write the saddle

point expansion of I (R,α) as

I (R,α) ≈
∫ ∞
−∞

dy
√

1− 4R2csch22Re−αSR(R)√
αS′′R(R)

× e−y
2/2

(
1 +

∞∑
n=1

pn(y,R)

(αS′′R(R))n/2

)

=e−αSR(R)

√
2π(1− 4R2csch22R)

αS′′R(R)

×

(
1 +

∞∑
n=1

Cn(R)

(αS′′R(R))n

)
.

(B1)

In the above equation the pn(y,R) are odd/even polyno-
mials in y when n is even/odd, and the Cn(R) are func-
tions of R which can be expressed in terms of derivatives

of SR(r) and
√

1− 4r2csch22r evaluated at r = R.
The expression for I (R,α) in Eq. 20 corresponds to the

first term in the above saddle point expansion; therefore,
it is a valid approximation if 1/(αS′′R(R)) � 1. The
function 1/S′′R(R) diverges for R → 0 and for R → ∞
making the approximation for both small and large R.
However, since Eq. 17 was obtained to address the large
R divergence, we only need to find the upper R limit for
the validity of Eq. 20. Since

1

αS′′R(R)
=
e2R

16α
+O(R), (B2)

Eq. 20 is valid when e2R � 16α. This condition makes
the tunneling expression of Eq. 16 valid for EM/(8EJ)�
EC/(4~ω)

2. Large R limit

To find an approximate expression for I (R,α) in the
large R limit, we note that SR(r) grows linearly with r
for large r. Furthermore, the slope of the large r lin-
ear behavior as R increases. This means that, when R
is large, the largest contribution to I (R,α) will come
from the large r linear behavior. We start by writing the
following large r expansions:

SR(r) = 1 + tanh2R+ 2r sech2R

+ 4e−2r
(
2rsech2R+ tanh2R

)
+O(e−4r)√

1− 4r2csch22r = 1 +O(e−4r)

(B3)

This means we can expand I (R,α) as

I (R,α) =

∫ ∞
0

dre−α(1+tanh2 R+2r sech2 R) (1−

α4e−2r
(
2rsech2R+ tanh2R

)
+O(e−4r)

)
= I0 (R,α) + I1 (R,α) + ...

(B4)

where

I0 (R,α) =
cosh2Re−α(tanh2 R+1)

2α
(B5)

corresponds to the approximation to I (R,α) cited in
Eq. 18 and I1 (R,α) is a leading order correction which
we calculate to determine the range of validity of Eq. 18.

Performing the r interaction gives

I1(R,α) =
−2α(α tanh2Rsech2R+1)e−α tanh2R−α(

αsech2R+1
)2 , (B6)

and we obtain:

I1(R,α)

I0(R,α)
∼ 16α2e−2R ∼ 4α2 EM

8EJ
. (B7)
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The approximation is valid when 16α2e−2R � 1. For
R given by Eq. 15b and α = ~ω/EC this is equivalent to
EM/(8EJ)� 0.25E2

C/(~ω)2.
For I (R,α) ≈ I0 (R,α) we obtain

ν4π =
f2

(
EM
8EJ

)
(~ω)

3

πECEM
exp

[
− ~ω
EC
× f1

(
EM
8EJ

)]
(B8)

with

f1(x) =
2 + x

1 + x

f2(x) =

 6(x+ 1)

x√
x+1

log
(√

x+1+1√
x

)
+ 1

+
2

x√
x+1

log
(√

x+1+1√
x

)
− 1

1/2

.

(B9)

Appendix C: Decoupling of 4π phase slips

As it has been previously noted, the expression for ν4π
in Eq. 19 diverges when EM → 0. In this appendix, we
will show that it is possible to recover the decoupling of
the 4π phase slips into two 2π phase slips from Eq. A63.
This is achieved by changing the order in which the limits
EM → 0 and L→ 0 are taken.

Expanding F ′ and K around x = EM/(8EJ) = 0 leads
to

F ′ = F0ω
2
(

4 + x
(

3− 2 log
(x

4

))
+O(x2)

)
K =

4LMωe−
16Mω

~

π~

−
16x

(
2LM2ω2(2Lω − 3)e−

16Mω
~

)
3 (π~2)

+O
(
x2
)

(C1)

Then, when EM → 0,

(0,−L|4π, L)→ F0
8(2L)2Mω3e−

16Mω
~

π~
(C2)

The tunneling amplitude between 0 and 2π in a non-
topological Josephson junction can be written as

ν2π = 4ω

√
~Mω

π
e−

8Mω
~ . (C3)

This leads to

(0,−L|4π, L)→ F0
(2L)2

2

(ν2π
~

)2
(C4)

which is the expected result for propagating between 0 to
4π through two uncoupled 2π phase slips. The 1

2 factor
arises from time ordering the phase slips, i.e.

∫ L

−L
dτ1

∫ L

τ1

dτ2 =
(2L)2

2
. (C5)
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