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Current state of the art devices for detecting and manipulating Majorana fermions commonly
consist of networks of Majorana wires and tunnel junctions. We study a key ingredient of these
networks — a topological Josephson junction with charging energy — and pinpoint crucial features for
device implementation. The phase dependent tunneling term contains both the usual 27-periodic
Josephson term and a 4m-periodic Majorana tunneling term representing the coupling between
Majoranas on both sides of the junction. In non-topological junctions when the charging energy is
small compared to the Josephson tunneling scale the low energy physics is described by 27 phase
slips. By contrast, in a topological junction, due to the 47 periodicity of the tunneling term it is
usually expected that only 47 phase slips are possible while 27 phase slips are suppressed. However,
we find that if the ratio between the strengths of the Majorana assisted tunneling and the Josephson
tunneling is small, as is likely to be the case for many setups, 27 phase slips occur and may even
dominate the low energy physics. In this limit one can view the 47 phase slips as a pair of 27 phase
slips with arbitrarily large separation. We provide an effective descriptions of the system in terms
of 27 and 47 phase slips valid for all values of the tunneling ratio. Comparing the spectrum of the
effective models with numerical simulations we determine the cross-over between the 47 phase slip
regime to 27 phase slip dominated regime. We also discuss the role of the charging energy as well
as the implications of our results on the dissipative phase transitions expected in such a system.

I. INTRODUCTION

In recent years, extensive scientific efforts have been
invested to understand, realize and manipulate topolog-
ical states in condensed matter."? Particularly, topo-
logical superconducting wires®*, which are constructed
using systems with strong spin-orbit coupling, induced
Cooper pairing and a Zeeman field, have gathered much
attention®. Interest in these Majorana wires is moti-
vated by the possibility of using the non-Abelian nature
of Majorana modes for quantum computation schemes®”
and is sustained by encouraging experimental results® 16,
Hence, networks of Majorana wires have been proposed
as tools to manipulate Majorana modes for quantum in-
formation purposes'” 22 or to create more exotic mat-
ter?24. In this work, we study a phenomenon commonly
relevant to this type of networks, charge induced quan-
tum fluctuations in topological Josephson junctions.

In a superconductor, the charge is conjugate to the or-
der parameter phase and charging effects induce quantum
phase fluctuations.?>26 In a non-topological Josephson
junction, tunneling processes are known as phase slips
and are essentially 27 jumps in the phase difference be-
tween the superconductors. The delocalization of the
phase induced by these fluctuations can be prevented by
dissipation. As a result, Josephson junctions present a
dissipative phase transition®?”2®. In a topological junc-
tion which is made of two topological superconductors
there are Majorana modes at both edges of the junction.
The presence of these modes leads to coherent single par-
ticle tunneling between the superconductors, commonly
referred to as the 47 periodic Josephson effect.?7:29-32
The change of periodicity in the overall tunneling cur-

rent suppresses 27 phase slips in topological Josephson
junctions.?> Both the 27 phase slip suppression33°, and
its effects on the dissipative phase transition® have been
proposed as a probe for topological superconductivity.
Most studies of 27 phase slip suppression focus on having
a sufficiently strong single particle tunneling.?3 3% This is
despite the fact that the single particle tunneling may be
a small component of the overall tunneling current, as
is the case for 3D topological insulator based Josephson
junctions®®37. As a result, there are currently no stud-
ies which describe the 27 phase slip suppression through-
out the transition from a non-topological to a topological
junction. Our work extends the existing literature and
provides (a) a semiclassical description of 47 phase slips
as coupled 27 phase slips and (b) the relevant regimes
for bound and unbound pairs of phase slips.

In this work, we develop a theory for the effect of charg-
ing induced phase fluctuations in the low energy spec-
trum of a topological Josephson junction, valid for any
ratio of the single particle and the Cooper pair tunnel-
ing. Our results show that a description of the low energy
physics of the topological junction in terms of 47 phase
slips alone is insufficient when the strength of the 47 pe-
riodic tunneling is too small. In the presence of both 27
and 4m periodic components of the tunneling current, the
potential energy of the junction as a function of the phase
difference between the superconductors, 6, may have one
or two minima in [0, 47) (see Figs. 1(b) and 1(c)). If only
one minimum exists, the description in terms of 47 phase
slips is valid for small phase fluctuations. In the presence
of two minima, this description may break down even for
small phase fluctuations if they are relatively large com-
pared to the strength of the 47 periodic tunneling. In



this case, a description of the junction in terms of un-
bound 27 phase slips is more appropriate. This is shown
in Fig. 1(a) where E; and Ej; correspond to the energy
scale of the 2w and 47 periodic tunneling, respectively,
and E¢ to the strength of the phase fluctuations. The
junction potential has only one minimum for E; > 8E;
and two otherwise.

We treat the appearance of phase slips in the topolog-
ical Josephson junction in two ways. First, we calculate
the phase slip probability using a semiclassical method
where we calculate a path integral between a state with
6 = 0 in the distant past and # = 47 in the distant fu-
ture describing the phase slip process. We calculate the
phase slip probability up to Gaussian fluctuations around
this 47 instanton. While the phase slip probabilities for
the case of non-topological junctions are well-known, we
use the double-sine-Gordon formalism to derive them for
the case of a topological junction. In the small Majo-
rana tunneling regime we assume dominance of 27 phase
slips and calculate their probability using a method for
asymmetric barriers®®. Secondly, we solve the problem
numerically in a truncated Hilbert space. The numer-
ics give us the ground state energy of the junction as a
function of a tunning parameter which we can compare
with the spectrum expected for the 27 and 47 phase slip
scenarios. This gives us a regime of validity for either
scenario and therefore a cross-over between the two be-
haviors, as depicted in Fig. 1(a).

This paper is organized as follows. In Sec. II, we give
a brief review of the effects of charging induced phase
fluctuations in Josephson junctions. The review is fol-
lowed by a qualitative discussion of the effects of phase
fluctuations for different regimes of a topological Joseph-
son junction in Sec. ITII. The main results are stated in
Sec. IV where we introduce low energy effective models
of topological Josephson junctions. In Sec. VI we discuss
the implications of our results on the dissipative phase
transition. Our conclusions are stated in Sec. VII.

II. REVIEW OF THE EFFECTS OF QUANTUM
PHASE SLIPS IN JOSEPHSON JUNCTIONS

We begin with a quick review of the effects of small
phase fluctuations in a non-topological junction. The
junction consists of a weak link between two supercon-
ductors with a junction capacitance C' described by the
Hamiltonian

H = Ec (ﬁ—ng)z—EJcosé, (1)

where E; is the Josephson energy associated with the
tunneling of Cooper pairs between the two superconduc-
tors, Ec = ¢?/(2C), the charging energy of the weak
link and n, the offset charge. The operator 7 measures
the charge and the operator 0, measures the phase dif-
ference between the superconductors. To simplify the
comparison with the following sections, we measure 7
(and ng) in units of the electron charge e, rather than
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FIG. 1: Depending on the relative strength between the
single-particle (set by Ea) and the pair tunneling (set by
E ;) the potential of the topological Josephson junction may
be minimized when: (b) the phase difference across the junc-
tion is an integer multiple of 47 only, or (c) the phase dif-
ference across the junction is any integer multiple of 27. In
(c) the minima at odd 27 are local minima. (a) In (c), the
strength of phase fluctuations (set by the charging energy E¢)
determines whether oscillations around the local minima con-
tribute to the ground-state (Unbound 27 QPS) or not (47
QPS). The cross-over is found numerically by evaluating the
relative accuracy of the 47 and 27 phase slip scenarios.

in the more conventional units of 2e. The commutation
relation, [0,7n] = 2i, therefore follows. Several exam-
ples of superconducting circuits, such as the ones used
in the Cooper pair box340, quantronium?*! and trans-
mon*? qubits, can be mapped to Eq. 1. In these circuits,
ng is tuned using gate voltages, while the ratio of Ej
and E¢ may be tuned using split junctions or by adding
additional capacitances (see e.g. Ref. [43]).

In the basis of phase eigenstates, the wave-function
U(0) = (0|¥) describing the Josephson junction follows
the equation

U(0) = EV(0) (2a)

d 2
Ec (Qide — ng> — Ejcosf

respecting the boundary condition
V(0 +2m) = U(0). (2b)

The dependence of the system on the offset charge n,
can be transferred from the Schrédinger’s equation to
the boundary condition via ¥(#) — e™%/2W(0) which



results in,

2
Ec (—22’50) — Ejcos 91 U(0) = EY(H), (3a)

(6 +27) = ™oy (h). (3b)

The above equations can be solved using Mathieu func-
tions. Nonetheless, expansions for different parameter
regimes have been developed to provide more intuition.
Since we are interested in studying phase fluctuations,
we focus on the EFc < Ej limit. This corresponds to the
regime of interest of transmon qubits*2.

When E- < Ej the potential energy —FEy cos § domi-
nates the energy of the system. Around the potential en-
ergy minima, at § = 27j with integer j, equation 3a can
be mapped onto an harmonic oscillator having frequency
hw = V8EjEc. The low energy levels of the Joseph-
son junction therefore correspond to harmonic oscillator
levels. Deep inside the potential well, these harmonic
oscillations do not depend on the boundary conditions
given by Eq. 3b. To find the junction dependence on ng,
we need to account for quantum tunneling between the
different potential minima.

Denoting the amplitude for quantum tunneling be-
tween the mth harmonic oscillator level of one of the
potential minima and its nearest neighbors by v,,, it is
possible to write an effective tight-binding Hamiltonian
for the junction:

oo
H= Z Z [Emajn,jam,j - Vmain,j+1a/m,j +he| (4)
Here a:rn j is the creation operator for mth level of an

harmonic oscillator around 274, and €, = hw(m + 1/2)
the energy of the a level. The tight-binding Hamilto-
nian in Eq. 4 is diagonalized using the operators a,, =

—ikj .
Zj e Q-

H= ZZ (ém — 2, cOS k) a’jn,kam;k' (5)
m  k

Comparing with Eq. 3b leads to the identification k =
mng, which allows us to conclude that for Ec < Ej the
dispersion of the mth level of the junction is given by

E,(ng) = €m — 2y, cos (mng), (6)
which holds when v,, < hw.

The tunneling amplitudes v, can be calculated using
semi-classical methods. Here we briefly outline the cal-
culation for the lowest energy level corresponding to the
the phase slip probability 5. We use the dilute instanton
gas approximation in the path integral imaginary time
formalism (see e.g. Ref. [44]). In this formalism, the am-
plitude to propagate from 0 to 27 during an imaginary

time interval of length 2L is written as a weighted sum
over all the paths that start at 0 at time 7 = —L and end
at 2m at 7 = L:

(0,—L|2x, L) = / (Dgle % 1 L0 ()

where

_ 12(9,6)°

L(0) = 165, + E;(1—cosb) (8)

is commonly known as the sine-Gordon Lagrangian which
is related to the Hamiltonian in Eq. 1 through a Legendre
transform.

For L — oo the classical solution is a 2w-kink also
referred to as an instanton. It is given by 65t (7) =
4 arctan (e“’(T_TO)) where w = v/EjEc/h coincides with
the frequency of harmonic oscillations around the 27j
minima. Conversely, the model also has a classical solu-
tion with §(—o0) = 27 and 6(co0) = 0 known as an anti-
kink. In the dilute instanton gas approximation, the path
integration of Eq. 7 is done over combinations of kinks
and anti-kinks and Gaussian fluctuations around them.
Furthermore, it is assumed that the kinks and anti-kinks
are separated enough (in imaginary time) that the in-
teractions between them are negligible. This yields the
result

2(hw)3/(rEc)e "/ Fe, (9)

where h?w/Ec = hy/8E;/E¢ is the action of a 27 kink.

To test the validity of Eq. 9 we ask whether the gas of
kinks and anti-kinks is in fact dilute. This can be done by
comparing the width of the kinks, 2/w, with the expected
average separation among them, 7i/vy. The gas is dilute,
and Eq. 9 is self-consistent, as long as vy < hw/2, which
is satisfied for E; > F¢.

This formalism can be extended to calculate the ng4-
dependence of higher levels through the use of periodic
instantons (see e.g. Ref. [45]). The decision to focus on
vp was made for the sake of simplicity.

Vg =

III. PHASE FLUCTUATIONS IN A
TOPOLOGICAL JOSEPHSON JUNCTION

In a topological junction, the two superconductors cou-
pled by the junction each present a Majorana mode close
to the the junction. We denote these by ~; and 7,
and ignore the other two Majorana modes which are
far from the junction. The coupling of these Majorana
modes adds a 4w periodic term to the tunneling cur-
rent®* 72932 The topological junction can then be mod-
eled by the following Hamiltonian:

. A E 0

H=FE¢(n— ng)2 — Ejcosf — iwngM cos 5 (10)
where ivy17y2 is the parity of the fermionic mode caused
by the hybridization the Majorana modes on both sides
of the junction.



A physical realization of the above phenomenological
model is possible using a Majorana Cooper pair box, such
as the one studied in Ref. [46]. In order to achieve the
desired phase dominated limit the Majorana Cooper pair
box could be shunted by a larger capacitance, as is done
in transmon qubits*2.

If the local parity is conserved, the operator iy, in
Eq. 10 can be substituted by either one of its two eigen-
values +1. Without loss of generality, from now on we
assume iy1y2 = 1. As long as the local parity is con-
served, our results do not rest on this assumption. As
in the previous section, after a charge translation the
wave-function in phase basis follows an n, independent
Schrédinger’s equation

d? Ey 8
Ec (22(149) 7EJC0$0*7COS§ U =FEV (11a)

and a boundary condition

V(0 + 4m) = ™oy (0). (11b)

As in the non-topological case, when E¢ is small com-
pared to the tunneling E; and Ej; the energy is domi-
nated by the tunneling terms which we refer to as “the
potential”. We therefore expect the ground state wave
function to be concentrated around the potential min-
ima. In the topological Josephson junction, the compe-
tition between the pair and single particle tunneling cre-
ates two different regimes depending whether the junc-
tion potential has a single minimum or a two minima for
0 <0< 4.

When E);/(8E ) > 1, the junction potential has a sin-
gle minimum in the [0, 47) interval. Hence, the potential
is minimized when 6 = 47m with m an integer, and all
the minima are degenerate. The frequency of harmonic
oscillations around these minima, obtained by expanding
Eq. 11a around these values, is iw = VSE;Ec + EpEc.
This is exemplified in Fig. 2(a) where the first few
harmonic oscillator levels and the ground-state wave-
function amplitude are shown for Fy; = 2 = 10E; and
Ec = 0.001. The junction potential and the tunneling
processes between the degenerate levels are also shown
in Fig. 2(a). As E¢ increases, the spacing between the
levels and tunneling amplitude increases and the har-
monic wave-functions widen, as shown in Fig. 2(b) for
Ey =2 =10E; and Fc = 0.1. However, the tunnel-
ing processes that give rise to the n, dispersion remain
unchanged by the increase of Fx. In this regime, the
topological junction behaves qualitatively similar to the
non-topological junction from the previous section with
half the ng periodicity and 47 phase slips taking the role
of 21 phase slips.

On the other hand, if Ey/(8E;) < 1, the junction
potential has two minima in the [0,47) interval. Hence,
the potential has two kinds of minima with two differ-
ent frequencies for harmonic oscillations around them:
0 = 4wm with frequency hw, = v/8E;Ec + Ey Ec, and
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FIG. 2: Phase fluctuations in the single-minimum and double-
minimum regimes of a topological Josephson junction. The
first harmonic levels (blue lines) and the junction potential
(green line) are shown for a junction with Ey = 2 = 10E;
and (a) Fc = 0.001 and (b) Ec = 0.1, and a junction with
E; =1 = 50En and (¢) Ec = 0.001 and (d) Ec = 0.1.
The ground-state wave-functions (amplitudes shown in grey)
correspond to linear superpositions of harmonic oscillations
around the potential minima. The tunneling processes that
give rise to the ng dispersion of each level are shown in red.
In the double-minimum regime ((c) and (d)), increasing Ec
can change which are the dominant tunneling processes. The
ground-state wave-function in (d) shows an additional (small)
peak around 2m. Note that in panels (c-d) the 27 minimum
is not degenerate with the 47 ones.

0 = 4mm+ 27 with frequency fw_ = /8E;Ec — EyEc.
In addition to the effects discussed in the previous para-
graph, changing E~ may also change the tunneling pro-
cesses that contribute to each energy level. This is shown
in Figs. 2(c) and 2(d). The ground-state wave-function in
Fig. 2(c) is peaked around 0 and 4, whereas the ground-
state wave-function in Fig. 2(d) shows additional contri-
butions from oscillations around 2.

IV. EFFECTIVE MODELS

In this section, we will discuss two different effective
models for the junction ground-state: one in which only
oscillations between 47wm minima contribute and one in
which oscillations around all 27m minima contribute to
the ground-state. We calculate the effective hopping pa-
rameters of each model and discuss their regions of va-
lidity.
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FIG. 3: A 47 instanton is made of two 27 instantons of width
w separated by an imaginary time of 2R/w.

A. 47 QPS model

We can write an effective Hamiltonian for the ground-
state of the junction as a combination of harmonic oscil-
lations around 4mj plus hopping between such minima:

- hw
H= Z <2a;f.aj - 1/4,ra;[.+1aj + h.c.) , o (12)
j

where w the frequency of harmonic oscillations
around the minima at 47j and is given by hAw =
V8E;Ec + EpEc. Accounting for the boundary condi-
tion, Eq. 11b, results in the following ground-state energy
dispersion

hw
Eqs (ng) =5

5 2u47 cos (2mny) . (13)

This model gives an effective description of the system in
the single-minimum regime and in the double-minimum
regime for small enough E¢ (see Fig. 2).

The tunneling amplitude v4, can be calculated follow-
ing the procedure outlined in Sec. II. The imaginary time
Lagrangian of the topological junction,

h2(870)2 Enm 0
L(0) = 16EC +E;( —cosf)+ <1 cos >, (14)

is known as the double sine-Gordon Lagrangian and its

semi-classical dynamics have been widely studied.*”
Interestingly, as shown in Fig. 3, the 47 kink in the

DSG model can be written as a sum of two 27 SG kinks:

05 = 4arctan e?"") " | garctan e (TR (15,)

The imaginary time separation of the two 27 kinks,
2R/w, is set by the ratio of Ej; and 8E; as R is given

by:
E
R = arccosh 1/1—1-8—‘] .
Eu

The 47 DSG kink is depicted in Fig. 3. The width of
the kinks is controlled by the Josephson tunneling and

(15b)

the capacitance energy through w = \/E;FE¢/h and the
separation between kinks is controlled by the ratio of Eys
and E; through 2R/w. When E)j; — 0, the separation
between the two 27 kinks diverges (R — oo0) meaning
that the 47 kinks effectively decouple into two separate
27 kinks as the DSG Lagrangian reduces to the SG La-
grangian.

Using the dilute instanton gas approximation, as be-
fore, we find

8(hw)® hw E
Vip = Mexp <_EC x f (8;7\‘4])) (16a)
where
fx)=2+ 20 coth™* (V1+az) (16b)

Vi+z

is an increasing function with f(0) = 2 and f(c0) = 4.
With the appropriate modifications, this result is in
agreement with the result found by Ref. [48] in a of sta-
tistical mechanics context. A more detailed derivation of
how Eq. 16 is obtained is shown in Appendix A 1.

When Ej; — 0, vy, presents a square root divergence,
i.e. vgr ~ 1/y/Ep. This divergence has two physical in-
terpretations. First, it is indicative of a resonance in tun-
neling®® when Ejy; — 0. In our context, it is a sign that
the validity of the model breaks down in this limit. Sec-
ondly, this divergence is indicative of the restoration of a
symmetry. In this case, the symmetry that is restored is
the 27 translation symmetry; i.e. the decoupling of the
two 27 kinks.

The restoration of the 27 translation symmetry for
Ej; — 0 diminishes the range of the validity of the cal-
culated expression for v4,;. This can be seen by noting
that the dilute instanton gas approximation breaks down
when Ej; — 0: the width of the 47 kinks (2 + 2R)/w
diverges as — log E'j; whereas the average separation be-
tween the kinks h/v4, goes to zero as v/Ep. The as-
sumption that the width of the 47 kinks is much smaller
than the average separation between the kinks fails for
Ey — 0. We address this problem in the next subsec-
tion.

Emergent translational mode correction

In order to derive a semiclassical expression whose va-
lidity extends to smaller Ey;/E; ratios we account for a
higher order of fluctuations in the direction of the emer-
gent translational mode.”>®! Since the emergent trans-
lational mode is related to the decoupling of the two
kinks, this is roughly equivalent to letting the distance
between the two kinks fluctuate around its equilibrium
value, 2R/w.

The result of Ref. 51 can be written in terms of R as:

AF(R) (hw)” (R 52)

1
~Fo (17a)

Vor =



where F(R) is a numerical factor bound by /2/5 <
F(R) <1 and given by

B Vcosh2R — Rtanh R — 3Rcoth R + 2

F(R) : (17b)
sinh R\V/2 — 8 R2csch?2R

and

T(R,0) = / dr\/1 — 4r2csch?(2r)e~ 9= () (17¢)
0

with
tanh? R
Sr(r) =1+ = 4 2rx
tanh” r (17d)
1 cothr tanh? R cothr
p + 2 - 12
sinh2r  cosh® R 2sinh” r

In the above expressions, 2r/w corresponds to the fluc-
tuating distance between the two kinks and Sg(r) is an
r-dependent effective action which is minimized at r = R.
For more details on how this expression is obtained, see
Appendix A 2 and Ref. 51.

To the best of our knowledge, a closed form expression
for Z (R, ) does not exist. Nonetheless, we can find ap-
proximate expressions for Z (R, «) for small and large R.
When R is large, the integral is dominated by the linear
large r behavior of Sg(r). In Appendix B2, we find that
for 16a? < 2

T2 7o¢(tanh2(R)+1)
I(R’ a) ~ cosh (R)@ o . (18)

This leads to vy, ~ V{7 with

L (%) (hw)” hew Ewn
Vip = 7rEC—EMeXp |:_EC X f1 (SEJ)] (19)

when Ey/(8E;) < 0.25E%/(hw)?. In the above equa-
tion, f1(x) and fa(z) are order 1 numerical factors which
decrease with x; their exact form can be found in Ap-
pendix B 2. Note that according to the above calculations
V4, diverges for Fyy — 0 as 1/E)y.

For small R, the greatest contribution to Z (R, «)
comes from the r values around R. A saddle point ap-
proximation of the integral Z (R, «) results in

7 cosh R
T(R,q)~ ) — e~ SRR 20
(R.o) 5o Trre (20)

This is a good approximation to Z (R, a) if e < 16«
(see Appendix A 2). Substituting this in Eq. 17a gives
the expression for v4, obtained without including correc-
tions due to the emergent translational mode, i.e. Eq. 16.
Hence, Eq. 16 is valid when Ey/(8E;) > Ec¢/(4hw).

We thus find that whether the distance between the
two 27 phase slips R is fixed depends on how E);/(8E)
compares with E¢/(4hw). Since

EC _ EC ECEM
4hw  4\8E;Ec- 64E;\/S8E,;FEc

+O(Ey), (21)

EM/(SEJ) ~ Ec/(4hw) when EM ~ (8EJEC’)/(EC/2 +
V8E;Ec). Roughly, the distance between the two 27
phase slips R will be fixed when E); is greater than this
value, and it will fluctuate when it is smaller.

B. Coupled 27 QPS model

If the junction parameters are such that there are addi-
tional (local) minima at 27rm with m odd and oscillations
around those minima contribute to the ground-state (see
e.g. Fig. 2(d)), we can describe it by the following effec-
tive Hamiltonian:

H= Z (eja;-aj — ugﬁa;Haj — V27Ta;aj+l) , (22)
J

where v, corresponds to tunneling amplitude between
potential minima separated by 27w. The energies €, are
given by:

hw
€op =€ = ——
2 € 9
€2n41 —€0 = E]W + 77 (23)
hwi =\/8E;Ec + EyEc.
The dispersion of Eq. 22 is
1
Ei(ng) :i(eo + €e)

(24)

1
+ 5\/(60 )2 + 802 (1 + cos(2mny)).

The hopping vo, can be calculated using the formula
proposed by Ref. 38 for the tunneling through an asym-
metric potential. Without loss of generality, we can focus
on calculating the amplitude for tunneling between 0 and
2. The minimum at 0 and the minimum at 27 are sep-
arated by a barrier which is largest at 0,,4,. Following
Ref. 38 we define two potentials symmetric around 6,,,4,,
V1(0) and Vgr(6), such that Vi (0) (Vgr(0)) is equal to the
junction potential for 0 < 6 < Oz (Omaz < 0 < 2m).
Then v, can be written as:

Vor = A\/VLVR, (25)

where vy, s = L, R, is the probability for tunneling from
0 to 27 through the potential V; and

1/2
(Vmaw — €e ) 1/4 + (Vmaw - 6o) 1/4 / (26)
Vmam — €o Vmam — €e ’
with Vipar = V(0maz). The above expression for vo,
clearly breaks down when €, > V,,.,; at that point the
zero point motion of the shallow minimum becomes larger
than the potential barrier. The approximations leading

to the above expression for vo, start failing before this
point.

1
4=3
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FIG. 4: Comparison of v3,./|e, — €.| (solid line) and w4
(dashed line) for E; = 1. The v3,/|eo — €| lines stop when
the potential barrier is smaller than the zero point motion
energy for oscillations around the shallow minima €,.

For our model of a topological Josephson junction,
Omaz and Vi, .. are given by:

Omar =4 arctan (wi /w_) )
Vmaz :2El (EM/(gE]) + 1)2 .

And the 0,,,.-symmetric potentials V;, and Vi are well
approximated by

EM 2 w0
VL(Q) ~ EJ (1 + 8E]> (1 — COS (0mam>)

Vr(0) = Ep+ (28)

Eyn\? (0 — 2m)
Ej <1 — SEJ) (1 — Cos (omm _— ,

which leads to the following tunneling amplitudes:

B (8E3EC)* e PV S (29)

P,

with P, = emai/ﬂ =2—Pp, B, =E;(1+ E]V[/(8E]))2
and Er = E;(1 — Ey/(8Ey))?. Ps and Ej are, respec-
tively, the period and amplitude of the potential V; for
s=L,R.

For Eyr — 0 the dispersion in Eq. 24 becomes

Ey(ng) — % + |21 cos (mng)| - (30)

This is the expected result for the Ejp; — 0 limit, as
it corresponds to the breaking of the symmetry between
the minima at even and odd multiples of 27 “folding”
the ng4-Brillouin zone.

We also note that for 1o, < |€, — €| the lowest of the
two bands becomes

2 2
2v5, 2v5,

E_(ng) ~ € — cos(2mng).  (31)

|60 - 66| - ‘60 _66|

This dispersion would be equivalent to the dispersion
found for the 47 phase slip model (13) if 13, /|e, — €c| —
Vir. As shown in Fig. 4, we find that v2_/|e, —e.| ~ Vi .
This allows us to interpret v} as arising from coupled
but not confined 27 phase slips. From this, we conclude
the 27 phase slips become bound when va, < |€, — €.
To provide a rough approximation for when will the 27

phase slips bound, we consider that

Vor = 1o + O(E%,) and

Er (1 - ;wéi) + O(E3)) (52)

|60—56‘

SO Vap ~ |€, — €| when Eyr ~ v/ (1 —% sEECJ) The
27 phase slips bound for Ey; > v/ (1 - % SEEC;)'

C. Validity of the effective models

The image that emerges from the results in this section
and the previous energetic considerations is as follows.
The 47 tunneling—whose strength is set by Ej;—acts as
a binding potential between pairs of 27 phase slips. We
find three relevant regimes:

e Unbound 27 phase slips
For 0 < Ey < g/ (1 — %,/53—01)7 the 27 phase

slips couple to each other but the 47 tunneling is
not strong enough to bind them.

e Bound 27 phase slips with fluctuating R

For vo/ (1= /&) < En < (8EsEc)/(Eo/2+
V8EE¢), pairs of 2r phase slips bound forming
47 phase slips. However, the distance between the
two 27 phase slips that form the 47 phase slip R
(see Fig. 3) fluctuates.

e Bound 27 phase slips with fixed R
For Ey\ > (8EJEC>/(EC/2 + \/SEJEc), the 4w
tunneling is strong enough to bind pairs of 27 phase
slips together and fix the distance between them R.

As will be further discussed in this section, the transition
between neighboring regimes is not sharp. Both regimes
will be valid in a region around these boundaries.

To further clarify the range of parameters in which
each picture is valid, we compare the different effective
models for the topological Josephson junction with nu-
merical result. The spectrum of Eq. 10 is obtained nu-
merically by truncating the Hilbert space in the number
basis, where the Hamiltonian becomes

oo

H= 3" [Ec(n=ny)*In) (n] = Z(ln) (n+ 1]

n=—oo

(33)
+n) (n— 1)) = B (In) (n+2| + [n) (n - 2])] .
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FIG. 5: The ground state energy of the model as a func-
tion of the control parameter ng, depends on the phase slip
probability. We therefore use the quantity Eq.(1/2) — Eq.(0)
to benchmark the effective models against numerical results
(black solid line). If only 47 phase slips are present (Eq. 13),
E45(1/2) — E4s(0) = 4var. The different obtained expres-
sions for 4v4r, Eqgs. 16 (dotted gray) and Egs. 17a-20 (solid
red line) are shown. When 27 phase slips dominate (Eq. 24),
Egs(1/2) = E4s(0) = (v/(€0 — €c)2 + (4127 )2 — |60 —€c|) /2 with
vor given by Eq. 9 (blue dashed-dotted). The graphs are
shown as a function of Ea/(8E;) with the sum 8E; + Eum
fixed at 1. The red shaded region corresponds to good agree-
ment with the 47 phase slip scenario while the blue shaded
region denotes good agreement with the 27 phase slip sce-
nario. The regions overlap where both approximations are
close to the numerical data.

The numerical results shown in this paper are obtained
by taking the sum in the above equation from n = —N
ton = N with N = 10%.

Comparisons between Egs(n,) for the topological
Josephson junction predicted by the effective models dis-
cussed previously and numerical results are shown in

Fig. 5. The comparisons are done by plotting the differ-
ence Ey4(1/2)—E,(0) as a function of Eys/(8E ) for dif-
ferent values of E¢. In Fig. 5 we have fixed 8E;+FEj = 1
such that Aw is kept constant throughout each plot; this is
done to show the entire range of Ey;/(8Ey) in the same
plot. As expected, when Ejp;/(8E;) — 0 the numeri-
cal results (solid black line) agree with the 27 QPS de-
scription (dotted-dashed blue line) provided by the tight-
binding Hamiltonian, Eq. 22. While for larger values of
E)/(8Ey) the 4w QPS description, i.e. that of Eq. 12,
is closer to the numerical results. In addition, increasing
E¢ reduces the range of Fys/(8F ) in which the 4 QPS
description is valid. This can be seen by comparing the
two panels of Fig. 5.

Moreover Fig. 5 shows the results of the 47 QPS de-
scription calculated in two ways. One scheme, commonly
used in the literature assumes that the distance between
phase slips is fixed (Eq. 16, represented by gray dotted
lines in Fig. 5). This leads to a dispersion that agrees
with the numerical data only for large ratios of Ep;/8E .
Since the 27 phase slip scenario is only appropriate at
much smaller Fy;/8F;, an intermediate regime is unex-
plained by neither scenario. To remedy this we extend
the 4 phase slip model to allow fluctuations of R (Eq. 17,
red solid line in Fig. 5). This extends the regime of valid-
ity of the model such that it overlaps with the 2w-phase
slip scenario in the regime shaded in purple in both pan-
els of Fig. 5.

We can use the numerical results to figure out the range
of parameters in which each picture is more appropriate.
This is shown in Fig. 1(a). As discussed previously, close
to the boundary between the coupled 27w QPS and the
47 QPS regions, both descriptions give similar results.

V. CONNECTION WITH THE LARGE
CHARGING ENERGY LIMIT

The results above indicate that the presence of local
minima at odd multiples of 27 in the junction poten-
tial lead to a ground-state wave-function weight at odd
multiples of 27 if E¢ is large enough. A question that
arises is whether the presence of local minima in the po-
tential guarantees that there will be a large enough F¢
such that the ground-state wave function is peaked at
odd multiples of 2. This can be answered by looking at
the dominant charging energy limit.

For E)y = Ej = 0, the eigenstates of the junction
have a well defined particle number n and their ener-
gies are given by Fc(n — ny)?. In the gauge where
U(0 + 4w) = ¥(H), the phase space wave-functions of
such states are given by ¥(f) = e~ %/ with integer I.
If Ey, Ey < E¢ the eigenstates of the junction can be
found perturbatively from the well defined number states.
To first order in perturbation theory, the ground-state of
the junction for ny € (—1/2,1/2) is given by the unnor-



malized wave function

E —i60/2 Eayetf/2
U, (0) =1 — Me Me
4Ec(2ng —1) ' 4Ec(2ng + 1) (34)
B EJein N EJeiO
8FEc(ng—1)  8FEc(ng+1)

The above wave-function will be peaked at 27 if [ 4,(0)]
has a local maximum at this point.
For simplicity, we focus on ngy = 0. In this case,

By 0 By
COS —
2Ec 2

U,e(0) =1+ cos 6. (35)

Since Ey < E¢ and E; < E¢ then U, 4(0) = |Uy4(0)].
Looking at the derivatives of W4 at 0 = 27, we find
that 27 is a minimum of ¥, when E)/(2E;) > 1 and a
maximum when Ej;/(2E;) < 1. Therefore, the n, = 0
ground-state wave-function is peaked around odd multi-
ples of 27 if Ey/(2E) < 1.

We see then that for 2E; < Epy < 8E; and ng = 0, the
ground-state wave-function does not peak around odd
multiples of 27 despite the junction having local poten-
tial minima there. Moreover, the wave-function weight
around odd multiples of 27 is highest for integer values of
ng. This can be intuitively understood by noticing that
the wave-function weight around odd multiples of 27 for
half-integer n, is strongly suppressed as a result of the
degeneracy between the two nearby n states. Therefore,
for any given n4 the ground-state wave-function does not
peak around odd multiples of 27 if 2F; < Ejs. Then the
presence of local minima in the potential does not guar-
antee that there will be a large enough value of E¢ to
cause a ground-state wave-function peak at odd multiples
of 2.

VI. DISCUSSION

In the above we found that for any ration of Fj; < 8E;
one might find both 47 and 27 phase slips, depending
on the strength of the phase fluctuations given by Ec.
Therefore, the scenario of 47 phase slips only is bound to
fail for some value of E-. We have estimated the value
of Fc above which 27 phase slips dominate in the fol-
lowing way. First we have evaluated the 47 phase slip
probability v4, using a double sine-Gordon model. Well
below the cross-over line in Fig. 1(a) a double instan-
ton classical solution with gaussian quantum fluctuations
yield Eq. 16. This equation fails at low Ej; even be-
fore 27 phase slips take over due to a possible transla-
tional mode that was not taken into account. We improve
the calculation in Eqgs. 17 which does not have a closed
form solution but may be approximated in the subse-
quent equations.In the 27 phase slip dominated regime
we estimate vo, using a method for asymmetric barrier
and arrive at Eqgs. 25-29. Using both the 27 and 47 phase
slip scenario we generate plots for the energy difference

Egs(ng = 1/2) — Egs(ng = 0) which are compared with
numerical solution for the problem in a truncated Hilbert
space (using Eq. 33). The quality of the various approx-
imations point to the cross-over depicted in Fig. 1(a).
A rough estimate of the cross-over as a function of the
problem’s energy scales © = E);/8FE; and y = E¢/8E;
can be found by comparing vy, and v, which yields
T X exp (—a/\/gj) with some slowly varying a(x).

It is interesting to discuss the implications of our re-
sults on the dissipative transition that is expected in this
system.?"28:35 This transition was previously studied in
Ref. 35, where it was found that the presence of 47 peri-
odic tunneling would reduce the ohmic dissipation needed
to restore superconductivity by a factor of 4. However,
the results of Ref. 35 assumed that the topological junc-
tion could always be described by 47 QPS. In this work,
we find that this is not necessarily the case. Consider
a junction with fixed E; and E¢, when Fj; = 0 the
junction is described by 27 QPS, turning on Ej; leads
to an increasing coupling of this 27 QPS until they be-
come confined into pairs. Following the critical dissi-
pation throughout this same path would lead to a con-
tinuous decrease in it until it reaches 1/4 of the original
value at the point where the 27w QPS are fully suppressed.
We also find that the critical dissipation needed to stabi-
lize the superconductivity in our model of a topological
Josephson junction is dependent on F¢.

An important caveat of using the dissipative phase
transition as a mechanism for detecting Majorana modes
is that the dissipation induced by quasi-particle tunnel-
ing also reduces the critical resistance of non-topological
Josephson junctions by a factor of 4. Furthermore, the
effects of dissipation induced by quasi-particle tunneling
in non-topological Josephson junctions are dependent on
the ratio between the Josephson coupling and the charg-
ing energy.?® This is because both the 47 periodic tunnel-
ing induced by Majoranas and the quasi-particle tunnel-
ing are single particle tunneling processes that break the
same symmetry (the 27 periodicity of a non-topological
Josephson junction), albeit the difference in coherence.
A more careful analysis of dissipation in the topological
Josephson junction is required to find whether there are
signatures in the dissipative transition that would allow
distinguishing between the 47 periodic tunneling induced
by Majoranas and the quasi-particle tunneling.

The difference in the effects of 47 periodic vs. quasi-
particle tunneling in the dissipative transition is unclear.
However, the effects on the charge offset dispersion are
clearly different. While both kinds of single particle tun-
neling turn the system from 27 periodic to 47 periodic,
the Majorana assisted tunneling opens up a gap (see
Eq. 24), while the quasi-particle tunneling does not?®.
This could be a potential probe to distinguish between
the two kinds of single-particle tunneling.

Finally, another important issue to consider is the ef-
fect of quasi-particle poisoning in this system. Since in-
stanton techniques tend to be useful to describe systems
coupled to external environments®?, the formalism used



in this work could be useful to study the effects of quasi-
particle poising.

VII. CONCLUSIONS

We studied the effects of phase fluctuations induced
by charging effects in a simple model of a topological
Josephson junction. Our model considers both single
particle tunneling and pair tunneling, which are, respec-
tively, 47 and 27 periodic with respect to the supercon-
ducting phase difference across the junction. We found
that when the single particle tunneling is a small compo-
nent of the total tunneling current there are two possible
ways to describe the ground-state of the junction: 1) in
terms of 47 QPS or 2) in terms of coupled 27 QPS. We
found the tunneling amplitudes for both effective descrip-
tions and compared them to numerical results to deter-
mine the range of parameter in which each description
is appropriate. We note that in a real junction one may
not have control over the relative strength of Fy; and E;
and therefore observing 27 phase slips does not necessar-
ily imply that the junction isn’t topological. However, if
the junction is indeed topological and phase fluctuations
can be reduced through capacitance (reducing E¢), 27
phase slips will be suppressed revealing the topological
nature of the junction.

In addition, we discussed the possible implications
that our results have for the dissipative phase transi-
tion expected in this system. As was previously found
by Ref. 35, when the ground-state of the junction is
described by 4m QPS we expect the critical resistance
needed to make the junction superconducting to be
4 times smaller than the critical resistance needed to
make a non-topological junction superconducting. In the
regime where tunneling processes between minima sepa-
rated by 27 are still present in the system, we expect the
critical transition to be somewhere between these two
critical values. Given that increasing the charging en-
ergy of the junction may change the tunneling processes
present in the system, our results also point towards a
charging energy dependence of the critical resistance for
the dissipative transition.

Several questions regarding the dissipative transition,
particularly in relation to quasi-particle tunneling, re-
main unanswered. In the future, we will use the for-
malism developed in this work to obtain a quantitative
description of this transition. It would also be interesting
to pinpoint the relation between the results presented in
this work and the dominant charging energy limit.
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Appendix A: Path Integral Calculations
1. 47 phase slip amplitude

The calculation of the tunneling amplitude between
the different potential minima can be performed using
standard semi-classical methods. We include the calcu-
lation here in detail for completeness, largely following
Ref. [44].

We begin by calculating the amplitude to propagate
from 0 to 47 in an imaginary time interval 2L. This is
given by the following path integral:

(0, —Lj4m, L) = / (Dgle k5 L0 Ay
where £(7) is the Double sine-Gordon (DSG) Lagrangian
given by Eq. 14, which can be rewritten as,

_ (0-6)°
o (%

+ V(G)) (A2)

with
V(0)=w? {tanth (1—cosf) + 4sech®R (1 cosz)} (A3)
and

M = 1?/(8Ec)

w=+/Ec(8E;+ En)/h

cosh (R) = \/(8E; + Enr)/Er.

(A4)

We expect the leading contribution to the path integral
to be from paths of the form

0 (r) =6 () + x(7) (A5)

where ¢ (1) is the classical path which minimizes the
action and interpolates between § = 0 at 7 = —L and
0 =4mat 7 = L. x(£L) = 0 is the deviation from the
classical path and 6 (1) fulfills the following equation:

av 226"
- = A
d9 ( (T)) dT2 ( 6)
In the limit L — oo, 8 (1) is given by

0 = darctan[e” (") ] 4 darctan[e” (TR (A7)

Up to second order in x(7) the Lagrangian for paths
of the form Eq. A5 is

M d*V

M
5 o ( cl) v

£(0) =L (0) + 5 (00" +

+ MO, (x0-0%).

(A8)



This allows us to split the path integral in Eq. Al into
two parts:

cl
(0, —L|4m, L) = Fexp (— Sﬁ > (A9)
with S¢ the action of the instanton,
L
S = / drL (6°) (A10)
L

and F' contains the sum over Gaussian fluctuations
around such instanton. F' can be written as

M [*
F = /[Dx] exp ——/ drxDx |, (A11)
2h J_p,
with D is the following differential operator:
d2 v, .

The path integral in Eq. A11 can be solved expanding
X in terms of the eigenfunctions of the operator D, i.e.

taking
= Z Xn¥Yn (T) (A13)
with
Dy, (1) = Anyn- (A14)
This leads to
MAnx
F=N / T Al5
H \/27rh/ (A15)

with A/ a normalization constant. However, the above
expression in not well defined since the operator D con-
tains a zero mode, \g, which leads to a divergence in F'.
The time 7y at which the kink solution is centered is ar-
bitrary which leads to D9,6 = 0; i.e. the zero mode is
a consequence of the time-translational invariance of the
system. To deal with this divergence, we use the Fadeev-
Popov method to transform the xo integration to a g
integration.
The Fadeev-Popov method consists of inserting

0
1= [an| 3000 =0 s (a1
To
into the expression for F' given by Eq. A15:
IVIAnx2
F =N / 2h X
H \/ 27rh/
/d aXo ‘ / dxo
70
\/2mh/M
(A17)

N / LAJQX"
71_[1 v/ 271'71/ 8
8Xo N ’ _

| o o0
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The Jacobian ’%’%’(Xo = 0)’ can be found rewriting the

path € so that fluctuations in the direction of the zero
mode are traded for an explicit 79 dependence:

0(t) =0 (1 — 70) + Z Xn¥n (T — T0) .

n=1

(A18)

Comparing the above expression for the path with that
of Eq. A5 leads to

Xo =f(70) + Z Emrn(T0)

m=1

(A19)
with
flmo)= / dr (6 (v — 70)—6%(1) )y (7)

(A20)
’/‘m(To)Z/dTym (r—70) yo (7).

Furthermore, we note that the constraint yo = 0 corre-
sponds to 79 = 0 so we obtain:

0)+ D &mrpy(0)
m=1

We know 9,0 o yo (1) since D9, 6 = 0. The pro-
portionality constant can be found using the following

expression:
oo Scl
acl
| aneet =5

— 00

oy \z Iz (A21)

87'0

(A22)

which stems from the fact that °(7) minimizes the ac-
tion (Eq. A6). We use this to find f/(0):

70 == [ 70,6 o) \/f

The appropriate boundaries of integration for 7y are
—L and L since 7 takes values in the interval (—L, L).
We then obtain

(A23)

M>\nxn
T 2h X

FNH/ \/W

/WQ/? iﬁmr ) (A24)
N2L\/;\/ﬁ

where [, indicates the product over the eigenvalues tak-
ing out the zero eigenvalue.

The normalization constant can be conveniently ex-
pressed in terms of the sum over harmonic fluctuations
around 0 or 4. If we define

M [t
Foz/[Dx] exp _7271/ drxDox
L

(A25)



with
d? 9
The normalization constant N can be written as
(A27)

N:FO /H)‘gw

where \) are the eigenvalues of the differential operator
Dqy. Fjy, the fluctuation contribution to the imaginary
time harmonic oscillator propagator, is readily available
in the literature (see e.g. Ref. 44). For L — oo its leading

contribution is
Mw
Fo =\ ——e vk
0 wh

Our expression for F' currently includes a ratio between
the products of eigenvalues of the operators Dy and D:

cl 20
F:2LF0\/S H7 n
2mh I,

which can be evaluated using the Gelfand-Yaglom for-
mula. Following Ref. 44 we have

[1,2)  2Mwn?
A, S

where 7 is defined by the asymptotic behavior of the clas-
sical solution:

87—061 N ,r]efwh'\

(A28)

(A29)

(A30)

for 7 — +o0. (A31)

To the leading order the amplitude to propagate from
0 to 47 in an imaginary time interval 2L is then:

M cl
(0, —L|4r, L) ~ 2LFyny | —m e
wh

However, the leading order contribution is not enough
to obtain the level splitting. It is possible to obtain a
more precise expression for the amplitude using the dilute
instanton gas approximation.

Under the dilute instanton gas approximation, we sum
over paths consisting of combinations of kinks and anti-
kinks and quadratic fluctuations around them, i.e.

(A32)

2N
9(T> = Z Vned (1 —7n) + x(7)
n=0
where v, = £1 (+ for kinks and — for anti-kinks) and
> Vn = 1. The approximation consist of considering
that the centers of the kinks and anti-kinks, ie. 7,
are sufficiently spread out to make kink-kink interactions
negligible. The obtained result is

(A33)

cl
Fy (2L77 J\f—;e*ST)Q”H
(0,—Ll4m, L) = > @n )

M cl
= Fpsinh <2Lm/ —;;e_ “n ) .
s

(A34)
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The spectral representation of the amplitude in Eq. A1
is

(0, —Ll4m, L) = Y o (0)tp (dm)e >EEn /My g5

Considering two groundstate levels of harmonic oscilla-
tors with frequency w and mass M, one centered around
0 and other around 47, which can tunnel to each other
with amplitude v, we have

61(6) = % (ol6) + Vur(0)) By ="
\ o (A36)
V2(0) = NG (o(0) — Yar(0)) Ez = 5 T

In the above expression 9y () and ¢4, (6) are the ground-
state wavefunctions of harmonic oscillators centered
around 0 and 47, respectively, e.g.

Mw 1/4 Mwo?
Yo(0) = <7rh> e M

The amplitude, Eq. A1, for such system would then be

(0, —L|47, L) = \/M—;;e_Lw sinh (2Lv/h).  (A38)
m

Comparing Eq. A34 and Eq. A38 allows us to conclude

(A37)

Mw Sel
thm/ﬁexp ( A > (A39)
For the kink in Eq. A7 we have:
h =16Mw (1 + 2R csch 2
S 6Mw (14 2Rcsch2R) (A40)

1n =8w cosh R.

Substituting the values of M, w and R from Eq. A4 we
obtain

8(hw)> fw Em
= 2 _w =M A4l
Yim =\ TEa B eXp( B <7 <8EJ>> (A1)

with

coth™ (V1+uz). (A42)

2. Emergent translational mode correction for the
47 phase slip amplitude.

Here, we follow the procedure outlined in Ref. 51 to
introduce corrections to the previously found expression
for v4,. This section then follows the work done in Ref. 51
closely. We include the calculation here for clarity as
the work in Ref. 51 was done in the context of classical
statistical mechanics. We also note that Ref. 51 claims,



incorrectly, that this procedure leads to a non-divergent
expression. Here, we find otherwise.

When Ej; — 0, the expression for v found in A1 di-
verges. This occurs because one of the eigenmodes of
the operator D, which we will call \; approaches 0 when
Ep — 0. Physically, the two 27 kinks decouple turning
the distance between the two 27 kinks 2R into another
translation mode. We must then have

y1(7) = Or(6°) when Ejp — 0 (A43)

This means that we can deal with the effects of the emer-
gent translational mode by writing the path as

0(r) =6 (1) + Z Xntn (
n=0 . (A44)
=0 (1= 70,7) + 3 Xn¥n (T = 70)
n=2
with
o(r,7) = darctan[e“” "] + darctan[e*™"].  (A45)

For R = r we recover the classical solution, i.e. o(7, R) =
6°!(1) . We should note that Eq. A44, and thefore the
rest this appendix, relies on y; ~ dg(0). This is a valid
assumption when R > 1.25.705!

Up to second order in x = > 5 Xpyn (T — 79) = 0 the
Lagrangian for the above path is given by:

L(o,X) (9;0+0,X)°

M 5 +Vo(0)+xVi(o)+xVa(o), (A46)

where Vp (o) = V(o) is the potential of o given by Eq. A3
and

2

Vi(o) :w72 (sinh2(R) sino + 2sin f)
cosh”(R) 2 (A47)
Va(o) W <1 sinh?(R) cos o + ! cos J)
o)=—>5—1| 2 o+ -cos— |.
? cosh*(R) \ 2 272
The action of this path can be written as
S(Ja X) = SO(T) + Sl (Ua X) (A48)
with Sy(r) and S; (o, x) given by:
1
So(r) =M / dr <2(aTa)2 + VO(U))
tanh? R 2r
=8Muw (1
sMw ( * tanh?r  sinh2r
2rcothr r tanh® R coth r) (A49)
cosh? R sinh? r

S1(o,x) :M/dT (—0r0 + Vi(0)) x

w1 [ ar (50m

)? + Va(o)x )
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Using the Fadeev-Popov method to transform from the
coordinates x¢ and x; to 7y and r leads to

B drodr
(0, —L|4m, L) _N//27Th/M

e~ So(r)/h=51(e,x)/h

Ox00x1
87’087“

X0,x1=0

(A50)
H / vV 27Th/

Following Ref. 51, we make the approximations:

\//dTaU /dT@U
X0,X1=0

/ H o510/ o,

where the \,s are the eigenmodes of the operator D from
" . .
the Eq. A12, and the product [[,, skips the 0 eigenmode
and )\1 .
Under these approximations, we can write

Ox00x1
OTo0r

A5l)

(0,—L|4m, L) =F' K2L (A52)
with,
[T, A%
n = Fyn - (A53)
[, s
and

K- /Lw drM\/de(aTU)2 X [dr(8,0)?

f”? (A54)
6—50(7‘)/ﬁ/ ¥ dno.
Y

Using the following result from Ref. 50:

fartonor furtaon -

(A55)
16V 1 —4r2csch?2r.
and performing the 7y integration gives
16 M (wL—r)/1—4r2csch? 27‘ —Sg(r)
K= d . (A56
0 2mhwL ( )

It is possible to calculate A\; by noting that calculating
K using a quadratic approximation on p = r — R gives

Set 1 set
Ko=1] o ——e 7 A
0 27rh\/xe (A57)

Expanding So(r) up to second order in p leads to

So(p) =S + 2Mwp?csch® Rsech® Rx

. : (A58)
(4sinh2R — 4R + sinh 4R — 8 Rcosh 2R)



We then find
KO:/“ dleG 1—245268ch22R6750T(m
" (A59)
M el
= mg(R)e_sT
with
inh 2 2 — 8R2csch?2
g(R) = sinh 2R 8R?csch”2R (A6O)

Vcosh2R — Rtanh R — 3Rcoth R + 2

Note that the factor (1 — 7) from Eq. A56 goes to 1 in
the Eq. A59 as we are taking the L — oo limit. The
vanishing eigenvalue A; is then

Scle T

oW _ [5e 1 (A61)
27h Ky 2M g(R)
which leads to
nw
0,—L|4n, L) = 2LF K A62
(0.~ Llam, L) = 2LFo 5, (462)

Using the dilute instanton gas approximation (see pre-
vious section), this result leads to the tunneling ampli-
tude

8hw? cosh R

nw
Vir =h K= K. A63
ST (403
Taking L to infinity results in
8M 5 h 5
K=—"1(R§2)= 57 (R2), (A6

with Z(R, «) defined by Eq. 17c. Our final expression for
v is
_ 8(hw)? coshR (R M)
g(R)mEc

» Eo
which corresponds to the expression in the main text
Eq. 17 since F(R) = 2cosh R/g(R).

(A65)

Appendix B: Approximate expressions for 7 (R, «)

1. Validity of the harmonic approximation

Taking r = R +y//aS}(R) we can write the saddle
point expansion of Z (R, «) as

> dy\/1 — 4R2csch’2Re~5r (1)
I(R,a)’r::/ Y R?csch”2Re

aS%(R)
Pn (Y,
X e —y?/2 <1+Z S" n/2>

_asn(r), [27(1 = 4R%csch’2R)
aSH(R)

(1+Z S,, >

14

In the above equation the p,(y, R) are odd/even polyno-
mials in y when n is even/odd, and the C,(R) are func-
tions of R which can be expressed in terms of derivatives

of Sp(r) and V1 — 4r2csch?2r evaluated at r = R.

The expresswn for 7 (R, ) in Eq. 20 corresponds to the
first term in the above saddle point expansion; therefore,
it is a valid approximation if 1/(aS%(R)) < 1. The
function 1/S%(R) diverges for R — 0 and for R — oo
making the approximation for both small and large R.
However, since Eq. 17 was obtained to address the large
R divergence, we only need to find the upper R limit for
the validity of Eq. 20. Since

1 et

aSH(R) ~ 16a

O(R), (B2)

Eq. 20 is valid when e*® < 16a. This condition makes
the tunneling expression of Eq. 16 valid for Fy;/(8Ey) >
Ec /(4hw)

2. Large R limit

To find an approximate expression for Z (R, «) in the
large R limit, we note that Sg(r) grows linearly with r
for large r. Furthermore, the slope of the large 7 lin-
ear behavior as R increases. This means that, when R
is large, the largest contribution to Z (R,«a) will come
from the large r linear behavior. We start by writing the
following large r expansions:

Sg(r) =14 tanh? R + 2rsech® R
+ 4e7 " (2rsech2R + tanh? R) + O(e™*") (B3)

V1 —4r2csch®2r = 14 O(e™")

This means we can expand Z (R, a) as

1 (Rv a) = /OO dre*@t(1+tanh2 R+2rsech? R) (17
0

ade™?" (2rsech®R + tanh’® R) + O(e™*")) (B4)
= I0 (R7 Oé) +Il (R7 Oé) +
where
2 a(tanh® R+1)
Ty (R,a) = cosh” Re™ @ (B5)

2

corresponds to the approximation to Z (R, «) cited in

Eq. 18 and Z; (R, «) is a leading order correction which

we calculate to determine the range of validity of Eq. 18.
Performing the r interaction gives

—2a(a tanh® Rsech? R+ e @ tanh? R—or
(asech2R+ 1)2

Ii(R,a) = , (B6)

and we obtain:

FE
, Q) ~ 1602e —2R~4a2ﬂ

To(R, a) 8E; (B7)



The approximation is valid when 16a2e 2% « 1. For
R given by Eq. 15b and a = hw/FE¢ this is equivalent to
En/(8Ey) < 0.25E2 /(hw)?.

For Z (R, a) = Iy (R, «) we obtain

:fz(fé?,)(ﬁw):xp[ he Xh(EM)] (B8)

Van 7TEOE1\/[ _Eic' 8EJ
with
24
fi(z) 11z
6(x+1)
R =1— Nzsin|
i log (VL) 11 (B9)
1/2
2
+ Vzri+l
mk’g( Vr )‘1

Appendix C: Decoupling of 47 phase slips

As it has been previously noted, the expression for v,
in Eq. 19 diverges when Ej; — 0. In this appendix, we
will show that it is possible to recover the decoupling of
the 47 phase slips into two 27 phase slips from Eq. A63.
This is achieved by changing the order in which the limits
Ey — 0 and L — 0 are taken.

Expanding F’ and K around = Ej;/(8E ) = 0 leads
to

o (10 (- 28 (2)) 4 00)

K— ALMwe™ "7 o
mh (C1)
162 <2LM2w2(2Lw — 3)e" “r”“’) )
- 3 (nh2) +0 (2?)
Then, when Ey; — 0,
8(2L)2Muw3e~ %

(0, —L|4m, L) — Fy

— (C2)

15

The tunneling amplitude between 0 and 27 in a non-
topological Josephson junction can be written as

Vor = 4w

This leads to

(0, —L|dw, L) — Fy (2L)° (”QJ)2 (C4)

2 h

which is the expected result for propagating between 0 to
47 through two uncoupled 27 phase slips. The % factor
arises from time ordering the phase slips, i.e.

L T. Senthil, Annual Review of Condensed Matter Physics

6, 299 (2015).

2 F. D. M. Haldane, Rev. Mod. Phys. 89, 040502 (2017),
URL https://link.aps.org/doi/10.1103/RevModPhys.
89.040502.

3 R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.
Lett. 105, 077001 (2010).

1Y, Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.

105, 177002 (2010).

R. Aguado, RIVISTA DEL NUOVO CIMENTO 40, 523

(2017).

6S. D. Sarma, M. Freedman, and C. Nayak, Npj Quan-

ot

tum Information 1, 15001 EP (2015), review Article, URL
http://dx.doi.org/10.1038/npjqi.2015.1.
A.Y. Kitaev, Physics-Uspekhi 44, 131 (2001).

S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuem-

meth, T. S. Jespersen, J. Nygard, P. Krogstrup, and

C. M. Marcus, Nature 531, 206 EP (2016), URL http:

//dx.doi.org/10.1038/naturel7162.

% H. Zhang, O. Giil, S. Conesa-Boj, K. Zuo, V. Mourik, F. K.
de Vries, J. van Veen, D. J. van Woerkom, M. P. Nowak,
M. Wimmer, et al., ArXiv e-prints (2016), 1603.04069.

10°M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon,
M. Leijnse, K. Flensberg, J. Nygard, P. Krogstrup, and

o



11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

C. M. Marcus, Science 354, 1557 (2016), ISSN 0036-8075,  2°

http://science.sciencemag.org/content/354/6319/1557.full.pdf,

URL http://science.sciencemag.org/content/354/
6319/1557. 30
A. D. K. Finck, D. J. Van Harlingen, P. K. 3!
Mohseni, K. Jung, and X. Li, Phys. Rev. Lett.

110, 126406 (2013), URL https://link.aps.org/doi/ 32
10.1103/PhysRevLett.110.126406.

A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Nature Physics 8, 887 EP (2012), article,
URL http://dx.doi.org/10.1038/nphys2479.

H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T.
Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Phys. Rev.
B 87, 241401 (2013), URL https://link.aps.org/doi/
10.1103/PhysRevB.87.241401.

M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson,
P. Caroff, and H. Q. Xu, Nano Letters 12, 6414 (2012),
pMID: 23181691, http://dx.doi.org/10.1021/n1303758w,
URL http://dx.doi.org/10.1021/n1303758w.

V. Mourik, K. Zuo, S. M. Frolov, S. R. Plis-
sard, E. P. A. M. Bakkers, and L. P. Kouwen-
hoven, Science 336, 1003 (2012), ISSN 0036-8075,
http://science.sciencemag.org/content /336,/6084/1003.full.pdf,
URL  http://science.sciencemag.org/content/336/ 38
6084/1003.

L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nature
Physics 8, 795 EP (2012), URL http://dx.doi.org/10.
1038/nphys2429.

T. Hyart, B. van Heck, I. C. Fulga, M. Burrello, A. R.
Akhmerov, and C. W. J. Beenakker, Phys. Rev. B 88,
035121 (2013).

K. Flensberg, Phys. Rev. Lett. 106, 090503 (2011).

P. Bonderson and R. M. Lutchyn, Phys. Rev. Lett. 106,
130505 (2011).

B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello, and
C. W. J. Beenakker, New Journal of Physics 14, 035019
(2012).

D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham,
J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M.
Marcus, K. Flensberg, et al., Phys. Rev. X 6, 031016
(2016).

T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B.
Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge,
Y. Oreg, et al., Phys. Rev. B 95, 235305 (2017).

F. Hassler and D. Schuricht, New Journal of Physics 14,
125018 (2012).

A. Chew, A. Essin, and J. Alicea, Phys. Rev. B
96, 121119 (2017), URL https://link.aps.org/doi/10.
1103/PhysRevB.96.121119.

K. K. Likharev and A. B. Zorin, Journal of Low Tem-
perature Physics 59, 347 (1985), ISSN 1573-7357, URL
https://doi.org/10.1007/BF00683782.

A. DV, A. ZORIN, and K. LIKHAREV, ZHURNAL
EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI
88, 692 (1985).

S. V. Panyukov and A. D. Zaikin, Journal of Low Tem-
perature Physics 73, 1 (1988), ISSN 1573-7357, URL
https://doi.org/10.1007/BFO0681741.

G. Schén and A. Zaikin, Physics Reports 198, 237 (1990),
ISSN 0370-1573, URL http://www.sciencedirect.com/
science/article/pii/037015739090156V.

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

16

H.-J. Kwon, K. Sengupta, and V. M. Yakovenko, The Eu-
ropean Physical Journal B - Condensed Matter and Com-
plex Systems 37, 349 (2004).

L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).
H.-J. Kwon, V. M. Yakovenko, and K. Sengupta, Low Tem-
perature Physics 30, 613 (2004).

D. M. Badiane, L. I. Glazman, M. Houzet, and J. S. Meyer,
Comptes Rendus Physique 14, 840 (2013).

D. Pekker, C.-Y. Hou, D. L. Bergman, S. Goldberg, i. d. 1.
m. c. Adagideli, and F. Hassler, Phys. Rev. B 87, 064506
(2013).

Z.-T. Zhang, Z.-Y. Xue, and Y. Yu, ArXiv e-prints (2017),
1706.00576.

P. Matthews, P. Ribeiro, and A. M. Garcia-Garcia, Phys.
Rev. Lett. 112, 247001 (2014).

C. Kurter, A. D. K. Finck, Y. S. Hor, and D. J. Van Harlin-
gen, Nature Communications 6, 7130 EP (2015), article,
URL http://dx.doi.org/10.1038/ncomms8130.

J. Wiedenmann, E. Bocquillon, R. S. Deacon, S. Hartinger,
O. Herrmann, T. M. Klapwijk, L. Maier, C. Ames,

C. Briine, C. Gould, et al., Nature Communications
7, 10303 (2016), URL http://dx.doi.org/10.1038/
ncomms10303.

G. Rastelli, Phys. Rev. A 86, 012106 (2012), URL https:
//link.aps.org/doi/10.1103/PhysRevA.86.012106.

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H.
Devoret, Physica Scripta 1998, 165 (1998).

Y. Makhlin, G. Schén, and A. Shnirman, Rev. Mod. Phys.
73, 357 (2001).

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier,
C. Urbina, D. Esteve, and M. H. Devoret, Science 296,
886 (2002), ISSN 0036-8075.

J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schus-
ter, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and
R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).

S. M. Girvin, Circuit QED: superconducting qubits coupled
to microwave photons (Oxford University Press, 2014),
chap. 3.

H. Kleinert, Tunneling (WORLD SCIENTIFIC, 2013),
chap. 17, pp. 1103-1202, 3rd ed.

H. J. W. Mller-Kirsten, Path Integrals and Periodic
Classical Configurations (WORLD SCIENTIFIC, 2013),
chap. 26, pp. 783-822, 2nd ed.

J. Ulrich, i. d. I. m. c. Adagideli, D. Schuricht, and
F. Hassler, Phys. Rev. B 90, 075408 (2014), URL https:
//1link.aps.org/doi/10.1103/PhysRevB.90.075408.

G. Mussardo, V. Riva, and G. Sotkov, Nuclear Physics B
687, 189 (2004), ISSN 0550-3213.

K. M. Leung, Phys. Rev. B 26, 226 (1982).

J. Singh, The Tunneling Problem (Wiley-VCH Verlag
GmbH, 2007), pp. 126-169, ISBN 9783527618194, URL
http://dx.doi.org/10.1002/9783527618194.ch4.

C. R. Willis, M. El-Batanouny, S. Burdick, R. Boesch, and
P. Sodano, Phys. Rev. B 35, 3496 (1987).

C. R. Willis, M. El-Batanouny, R. Boesch, and P. Sodano,
Phys. Rev. B 40, 686 (1989).

A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A.
Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys.
59, 1 (1987), URL https://link.aps.org/doi/10.1103/
RevModPhys.59.1.



