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We study the temperature-filling phase diagram of the single-band Holstein model in two di-
mensions using the self-consistent Migdal approximation, where both the electron and phonon self-
energies are treated on an equal footing. By employing an efficient numerical algorithm utilizing fast
Fourier transforms to evaluate momentum and Matsubara frequency summations, we determine the
charge-density-wave (CDW) and superconducting transition temperatures in the thermodynamic
limit using lattice sizes that are sufficient to eliminate significant finite size effects present at lower
temperatures. We obtain the temperature-filling phase diagrams for a range of coupling strengths
and phonon frequencies for the model defined on a square lattice with and without next-nearest
neighbor hopping. We find the appearance of a superconducting dome with a critical temperature
that decreases before reaching the qmax = (𝜋, 𝜋) CDW phase boundary. For very low phonon
frequencies, we also find an incommensurate CDW phase with the ordering vector qmax ≈ (𝜋, 𝜋)
appearing between the commensurate CDW and superconducting phases. Our numerical implemen-
tation can be easily extended to treat momentum-dependent electron-phonon coupling, as well as
dispersive phonon branches, and has been made available to the public.

I. INTRODUCTION

The electron-phonon (𝑒-𝑝ℎ) interaction drives many
physical phenomena and plays a central role in a wide
range of solids. For example, it leads to the formation
of lattice polarons at large 𝑒-𝑝ℎ coupling;1 it is a sig-
nificant factor in determining the electronic and ther-
mal transport properties of many functional materials; it
can drive broken symmetry states such as charge-density-
wave (CDW) order2 or conventional superconductivity3–6

with low7 and high 𝑇𝑐;
8–13 and, as recently demonstrated,

it can even stabilize and control the location of Dirac
cones in certain materials.14

There has been remarkable progress in the accurate
modeling of 𝑒-𝑝ℎ interactions in realistic materials using
ab-initio methods15,16 based on density-functional the-
ory and density-functional perturbation theory. Notwith-
standing predictions for several superconducting tran-
sition temperatures 𝑇𝑐,

17–21 ab initio methods usually
lack the capability of describing ordered phases or re-
solving competing orders and are often hindered by large
computational costs. Due to these limitations, many re-
searchers turn to model Hamiltonian approaches, which
capture the essential physics of the problem while re-
maining tractable and often easier to interpret. For 𝑒-𝑝ℎ
coupled systems, the simplest model Hamiltonian is the
Holstein model,22 which treats the motion of the ions
using independent harmonic oscillators and the electron-
lattice interaction as a purely local coupling between the
electron density and lattice displacement.

Except for a couple of extreme cases, e.g., the use of
a two-site system23–25 or the atomic limit (with hopping
𝑡 = 0),26 there are no exact analytical solutions for Hol-
stein model. Nevertheless, it has been widely studied us-
ing approximate analytical methods including the mod-

ified variational Lang-Firsov transformation,27 diagram-
matic expansions4,28–32 based on many-body perturba-
tion theory (MBPT),33 and variational methods.24,34,35

The Holstein model has also been studied using sev-
eral exact or approximate numerical techniques includ-
ing quantum Monte Carlo (QMC),31,32,36–46 variational
Monte Carlo (VMC),47–49 and dynamical mean-field the-
ory (DMFT).50–57 (Many of these numerical studies were
conducted in the context of the Hubbard-Holstein model,
or some other extension, where results for the pure Hol-
stein model were obtained as a limiting case.) At half-
filling, these studies find that the Holstein model is dom-
inated by a q = (𝜋/𝑎, 𝜋/𝑎) CDW phase, while doping
away from half-filling leads to a competition between
CDW and superconducting instabilities. Moreover, the
transition temperatures for both phases vary as a func-
tion of the filling 𝑛, the phonon frequency Ω, the dimen-
sionless 𝑒-𝑝ℎ coupling strength 𝜆, and the Fermi surface
(FS) topology. Detailed phase diagrams for Holstein(-
Hubbard) model for these parameters have been obtained
by nonperturbative numerical methods in the spatial di-
mension 𝑑 = 1 by density matrix renormalization group
(DMRG),58 𝑑 = 2 by VMC,49 and a Bethe lattice with
infinite coordination number by DMFT.57

Owing to its simplicity and lower computational cost,
the Migdal approximation28,59 is routinely used to cap-
ture the effects of the 𝑒-𝑝ℎ interaction in many materi-
als. For instance, it is often used to estimate the super-
conducting transition temperatures in metals with the
𝑒-𝑝ℎ coupling matrix elements from ab initio calcula-
tions.16,17,21,60,61 It is also widely employed to estimate
electronic structure renormalization in several materi-
als.30,62–67 In the Migdal approximation, the vertex cor-
rections to the 𝑒-𝑝ℎ coupling vertex are neglected. This
approximation is typically justified by arguing that such
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corrections scale as 𝒪
(︁
𝜆 ~Ω

𝐸F

)︁
, where 𝐸𝐹 is the Fermi en-

ergy, and 𝜆 is a dimensionless factor quantifying the 𝑒-𝑝ℎ
coupling strength. While this condition is satisfied by
most metallic systems (because ~Ω/𝐸F ≪ 1, i.e., adia-
batic limit), there is a growing number of materials where
it is not, such as the fullerides,68,69 solid picene,70,71 𝑛-
type SrTiO3,

72,73 and monolayer FeSe on SrTiO3.
74,75 In-

terest in these systems, as well as the wide-ranging appli-
cations of the Migdal approximation, has invited intense
scrutiny on its range of validity, resulting in many studies
comparing its predictions with those of nonperturbative
numerical methods such as QMC and DMFT.31,45,53–56

It is found that the Migdal approximation can still break
down at large 𝜆,45,54–56,76,77 even within the adiabatic
limit, near half filling. The effort to map out the validity
of the Migdal approximation as a function of the 𝑒-𝑝ℎ
coupling strength, phonon frequency, and the electron
filling is ongoing.31,45,56

The studies comparing exact numerical methods and
MBPT are usually limited to relatively small lattice sizes
for QMC or dimension 𝑑 = ∞ for DMFT and are com-
monly focused at or close to half filling. It is, therefore,
essential that we assess the finite-size effects for both
the nonperturbative numerical methods and MBPT, and
then extrapolate to the thermodynamic limit. But de-
spite the large body of work surrounding the Holstein
model, there is (to the best of our knowledge) no com-
prehensive study of the general temperature-filling phase
diagrams by the full-fledged MBPT in the thermody-
namic limit. Motivated by this, we carried out a detailed
study of the single-band two-dimensional Holstein model
on a square lattice calculated with the self-consistent
Migdal approximation, where the electron and phonon
self-energies are both determined self-consistently.31

Our implementation is based on the fast Fourier trans-
form (FFT) between the momentum-frequency coordi-
nates and the position-time coordinates, which is often
used in fluctuation-exchange (FLEX)78,79 and DMFT
calculations.80 We show that the predicted CDW transi-
tion temperature 𝑇CDW

𝑐 exhibits significant finite-size ef-
fects. To mitigate this problem, we determined the tran-
sition temperatures using large lattice sizes well beyond
those used in previous studies to obtain a reliable extrap-
olation to the thermodynamic limit. We also found that
the superconducting transition temperature 𝑇 SC

𝑐 exhibits
non-monotonic behavior as a function of filling. Specifi-
cally, we found that it increases gradually as a function
of filling 𝑛 until it approaches a qmax = (𝜋, 𝜋)/𝑎 CDW
phase boundary, where it is suppressed by competition
with the CDW, leading to dome-like behavior.

The paper is organized as follows. Section II provides
details of the Holstein model and its extension for mo-
mentum dependent coupling, inclusive of the expressions
for the self-energies in the Migdal approximation. Sec-
tion III documents the computational details and the
implementation of our numerical algorithm. Section IV
presents the results for the temperature-filling phase di-
agrams for the Holstein model and other related cases.

Section V summarizes our conclusions. Finally, we have
made our code publicly available as a set of Matlab
functions and scripts81. The details provided in this ar-
ticle should be sufficient to implement the algorithm in
other programming languages.

II. MODELS AND METHODS

A. Holstein Model

The Holstein Hamiltonian describes the electronic de-
grees of freedom using a single band tight-binding model.
The lattice degrees of freedom are modeled using inde-
pendent harmonic oscillators at each site with a spring
constant 𝐾 = 𝑀Ω2, where 𝑀 is the ion mass, and Ω is
the bare frequency of the oscillator. The 𝑒-𝑝ℎ interac-
tion is introduced as a purely local coupling between the
electrons and the atomic displacement. In real space, the
Hamiltonian is

�̂� = −
∑︁
𝑖 ̸=𝑗,𝜎

𝑡𝑖𝑗𝑐
†
𝑖,𝜎𝑐𝑗,𝜎 − 𝜇

∑︁
𝑖,𝜎

�̂�𝑖,𝜎

+
∑︁
𝑖

[︃
𝑃 2
𝑖

2𝑀
+

𝐾�̂�2
𝑖

2

]︃
+ 𝛼

∑︁
𝑖,𝜎

�̂�𝑖

(︂
�̂�𝑖,𝜎 − 1

2

)︂
, (1)

where 𝑐†𝑖,𝜎 (𝑐𝑖,𝜎) creates (annihilates) an electron with
spin 𝜎 = ↑ or ↓ on site 𝑖, 𝑡𝑖𝑗 is the hopping integral be-
tween sites 𝑖 and 𝑗, 𝜇 is the chemical potential, �̂�𝑖,𝜎 =

𝑐†𝑖,𝜎𝑐𝑖,𝜎 is the electron number operator, �̂�𝑖 and 𝑃𝑖 are the
lattice displacement and momentum operators, respec-
tively, and 𝛼 is the 𝑒-𝑝ℎ coupling strength. Throughout
this work, we restrict the range of the hopping to nearest-
neighbor (NN) (𝑡) and next-nearest-neighbor (NNN) hop-
ping (𝑡′), only. For 𝑡′ = 0, the Hamiltonian is particle-
hole symmetric about half-filling, so we only consider
0 ≤ 𝑛 ≤ 1; for 𝑡′ ̸= 0, we consider 0 ≤ 𝑛 ≤ 2. Here,
𝑛 =

∑︀
𝜎⟨�̂�𝑖,𝜎⟩ is the electron filling.

Fourier transforming the operators and introducing
second quantized forms for the lattice operators �̂�𝑖 and
𝑃𝑖 yields

�̂� =
∑︁
k,𝜎

𝜉k𝑐
†
k,𝜎𝑐k,𝜎 + ~Ω

∑︁
q

(︂
�̂�†q�̂�q +

1

2

)︂
+

1√
𝑁

∑︁
k,q,𝜎

𝑔𝑐†k+q,𝜎𝑐k,𝜎

(︁
�̂�†−q + �̂�q

)︁
, (2)

where 𝑁 is the number of lattice sites, 𝑔 = 𝛼
√︁

~
2𝑀Ω , and

𝜉k = 𝜖k − (𝜇 − �̃�) is the band dispersion measured rela-
tive to the chemical potential. The additional constant

�̃� = 𝛼2

𝐾 = 2𝑔2

~Ω arises from the fact that the displacement

is coupled to �̂�𝑖,𝜎 − 1
2 instead of �̂�𝑖,𝜎 in Eq. (1). This

shift restores the condition that 𝜇 = 0 corresponds to
half-filling when 𝑡′ = 0, even in the 𝑒-𝑝ℎ coupled case.
Physically, it amounts to shifting the zero of the lattice
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displacement operator �̂�𝑖 − 𝛼
𝐾 → �̂�𝑖 when going from

Eq. (1) to Eq. (2).

In what follows, we work on a two-dimensional (2D)
square lattice with NN hopping 𝑡 and NNN hopping
𝑡′. The resulting electron band dispersion is 𝜖k =
−2𝑡 [cos(𝑘𝑥𝑎) + cos(𝑘𝑦𝑎)] − 4𝑡′ cos(𝑘𝑥𝑎) cos(𝑘𝑦𝑎), where
the bandwidth 𝑊 = 8𝑡 when |𝑡′| ≤ 0.5𝑡. We use a con-
ventional definition for the dimensionless 𝑒-𝑝ℎ coupling
𝜆 = 2𝑔2/(𝑊Ω) to facilitate easy comparisons with QMC
calculations. Finally, we set our choice of units so that
~ = 𝑘B = 𝑎 = 𝑀 = 1, where ~ is the reduced Planck
constant, and 𝑘B is the Boltzmann constant.

B. Momentum-Dependent Interactions

Our algorithm can treat momentum dependent inter-
actions, wherein the 𝑒-𝑝ℎ coupling 𝑔 in Eq. (2) depends
on the phonon wavevector q with |𝑔(q)|2 = 𝑔2𝑓(q), where
𝑓(q) is a shape function. Physically, such coupling con-
stants arise when the 𝑒-𝑝ℎ interaction couples the elec-
tron density to neighboring atomic displacements. Moti-
vated by the 𝑒-𝑝ℎ coupling to the oxygen phonon modes
in the high-𝑇𝑐 cuprates,82–84 we will consider three dif-
ferent cases

𝑓(q) =

⎧⎪⎨⎪⎩
1 (Isotropic),

cos2
(︀
𝑞𝑥
2

)︀
+ cos2

(︀ 𝑞𝑦
2

)︀
(Buckling),

sin2
(︀
𝑞𝑥
2

)︀
+ sin2

(︀ 𝑞𝑦
2

)︀
(Breathing).

(3)

The “isotropic” case corresponds to the conventional Hol-
stein model. The “buckling” case approximates the 𝑒-𝑝ℎ
vertex expected for 𝑐-axis polarized Cu-O bond-buckling
modes for in the cuprates while the “breathing” case ap-
proximates the momentum dependence expected for the
Cu-O bond-stretching modes.

For a general momentum dependent 𝑒-𝑝ℎ coupling,
we define the dimensionless 𝑒-𝑝ℎ coupling constant as
𝜆 = [2𝑔2/(𝑊Ω)]⟨𝑓(q)⟩, where 𝑓(q) for the buck-
ling and breathing modes both satisfy: ⟨𝑓(q)⟩ =
𝑁−1

∑︀
q∈FBZ 𝑓(q) ≈ 1

(2𝜋)2

∫︀ 𝜋

−𝜋
d2𝑞 𝑓(q) = 1.

C. Self-consistent Migdal Approximation

In this section we describe how the electron and
phonon self-energies are computed self-consistently.31

For convenience, we adopt the 4-vector notation 𝑘 ≡
(k, i𝜔𝑛) and 𝑞 ≡ (q, i𝜈𝑚) for the momentum-(Matsubara)
frequency coordinates and 𝑥 ≡ (r, 𝜏) for the position-
(imaginary) time coordinates. The fermionic and bosonic
Matsubara frequencies are given by 𝜔𝑛 = (2𝑛+1)𝜋𝑇 and
𝜈𝑚 = 2𝑚𝜋𝑇 , respectively, with 𝑛,𝑚 ∈ Z. The imaginary
time is constrained to the range 𝜏 ∈ [0, 𝛽], where 𝛽 = 1/𝑇
is the inverse temperature.

The dressed single-particle electron Green’s function

(a) Σ(k) = +

(b) Π(q) =

(c) χCDW(q) = = +

(d) χSC(q) = = +

FIG. 1. The Feynman diagrams for (a) the electron self-
energy Σ(𝑘), (b) phonon self-energy Π(𝑞), (c) CDW suscepti-
bility 𝜒CDW(q), (d) and pairing susceptibility 𝜒𝑆𝐶 , evaluated
within the self-consistent Migdal approximation. The lines
(double lines) represent bare (dressed) electron propagators
𝐺0 (𝐺); the wiggly lines (double-wiggly lines) represent bare
(dressed) phonon propagators 𝐷0 (𝐷). The black dot rep-
resents the bare 𝑒-𝑝ℎ coupling vertex. The equation in (c)
defines a series of particle-hole ring diagrams and the recur-
rence equation in (d) defines a series of particle-particle ladder
diagrams.

𝐺(𝑘) can be expressed using Dyson’s equation as

𝐺(𝑘) =
[︀
𝐺−1

0 (𝑘)− Σ(𝑘)
]︀−1

= [i𝜔𝑛 − 𝜉k − Σ(𝑘)]
−1

, (4)

where 𝐺0(𝑘) = (i𝜔𝑛 − 𝜉k)
−1 is the bare electron Green’s

function and Σ(𝑘) is the electron self-energy. The dressed
phonon Green’s function 𝐷(𝑞) is similarly given by

𝐷(𝑞) =
[︀
𝐷−1

0 (𝑞)−Π(𝑞)
]︀−1

= −
[︂
𝜈2𝑚 +Ω2

2Ω
+ Π(𝑞)

]︂−1

, (5)

where 𝐷0(𝑞) = −2Ω/(𝜈2𝑚 + Ω2) is the bare phonon
Green’s function and Π(𝑞) is the phonon self-energy.
The skeleton diagram for the electron self-energy

within Migdal approximation is shown in Fig. 1(a). Since
the vertex corrections are neglected, the full electron self-
energy includes only two terms Σ(𝑘) = ΣF(𝑘) + ΣH.
The Fock term ΣF(𝑘) includes all non-crossing “rainbow”
Feynman diagrams if the dressed𝐺-skeleton is fleshed out
with the self-energy diagrams, and the Hartree term ΣH

includes the dressed 𝐺-skeleton but with the bare phonon
propagator 𝐷0 instead of 𝐷 to avoid double counting.
According to rules for the Feynman diagrams, we have

ΣF(𝑘) = − 1

𝑁𝛽

∑︁
𝑞

|𝑔(q)|2𝐷(𝑞)𝐺(𝑘 − 𝑞), (6)

and

ΣH =
2|𝑔(0)|2
𝑁𝛽

𝐷0(0)
∑︁
𝑘′

𝐺(𝑘′)ei𝜔𝑛′0+

= |𝑔(0)|2𝐷0(0)𝑛, (7)
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where

𝑛 =
2

𝑁𝛽

∑︁
𝑘′

𝐺(𝑘′)ei𝜔𝑛′0+ = 2𝐺(r = 0, 𝜏 = 0−). (8)

The Hartree term is independent of 𝑘 and thus a con-
stant that is typically absorbed into the definition of the
chemical potential 𝜇− �̃� → 𝜇− �̃�−ΣH. Here, we refrain
from this practice to facilitate easier comparisons to the
chemical potentials used in QMC methods, which include
all Feynman diagrams. Note that at half-filling (𝑛 = 1),
ΣH = −�̃� = −2|𝑔(0)|2/Ω.
The skeleton diagram for the phonon self-energy within

Migdal approximation is shown in Fig. 1(b) and has the
analytical form

Π(𝑞) =
2|𝑔(q)|2
𝑁𝛽

∑︁
𝑘

𝐺(𝑘)𝐺(𝑘 + 𝑞). (9)

It is useful to use Π(𝑞) to define the irreducible charge
susceptibility

𝜒0(𝑞) = − Π(𝑞)

|𝑔(q)|2 = − 2

𝑁𝛽

∑︁
𝑘

𝐺(𝑘)𝐺(𝑘 + 𝑞), (10)

which diagrammatically corresponds to Fig. 1(b) with
two 𝑒-𝑝ℎ coupling vertices removed [i.e., the first term
on the right-hand side of the equation in Fig. 1(c)].

D. Charge-density-wave and Pairing
Susceptibilities

The charge-density correlation at a wavevector q is
measured by the CDW susceptibility

𝜒CDW(q) =
1

𝑁

∫︁ 𝛽

0

d𝜏
⟨︀
𝜌q(𝜏)𝜌

†
q(0)

⟩︀
c
, (11)

where

𝜌q(𝜏) ≡
∑︁
𝑖,𝜎

e−iq·R𝑖𝑐†𝑖,𝜎(𝜏)𝑐𝑖,𝜎(𝜏). (12)

In Eq.(11), we have used the notation for the connected
correlation function defined as ⟨�̂�𝑦⟩c = ⟨�̂�𝑦⟩ − ⟨�̂�⟩⟨𝑦⟩.
When significant charge-density correlations are present
on the lattice, the CDW susceptibility becomes strongly
peaked at an ordering vector q = qmax. For this reason,
we will primarily use and discuss the momentum-space
representation 𝜒CDW(q). For spin-singlet 𝑠-wave pairing
due to 𝑒-𝑝ℎ coupling, the superconducting correlations
are measured by the pairing susceptibility

𝜒SC =
1

𝑁

∫︁ 𝛽

0

d𝜏
⟨
Δ̂(𝜏)Δ̂†(0)

⟩
, (13)

where

Δ̂(𝜏) ≡
∑︁
𝑖

𝑐𝑖,↑(𝜏)𝑐𝑖,↓(𝜏). (14)

In the thermodynamic limit, the temperatures at
which the pair field and CDW susceptibilities diverge cor-
respond to the transition temperatures 𝑇 SC

𝑐 and 𝑇CDW
𝑐 ,

respectively. In the case of a q = (𝜋, 𝜋) CDW order, the
temperature dependence of 𝜒CDW should follow the 2D
Ising universality class, which can be used to find 𝑇CDW

𝑐

[see Sec. (III B)]. By comparison, 𝜒SC diverges much more
sharply as a function temperature. In the latter case, we
can obtain an accurate measure of 𝑇 SC

𝑐 by extrapolating
1/𝜒SC(𝑇 ) to zero.
The CDW susceptibility within the Migdal approxima-

tion is obtained by summing the particle-hole ring dia-
grams shown in Fig. 1(c), which is formally identical to
the random-phase approximation (RPA) or the 𝐺𝑊 ap-
proximation for the Coulomb interaction in the electron
gas. The CDW susceptibility is largest at zero-frequency,
so to determine 𝑇CDW

𝑐 we calculate

𝜒CDW(q) =
𝜒0(q, 0)

1 + |𝑔(q)|2𝐷0(q, 0)𝜒0(q, 0)

=
𝜒0(q, 0)

1− 𝜆𝑊𝑓(q)𝜒0(q, 0)
. (15)

Here, we have used 𝐷0(q, 0) = −2/Ω, |𝑔(q)|2 = 𝑔2𝑓(q),
and 𝜆 = 2𝑔2/(𝑊Ω). In principle, the momentum depen-
dence of a dispersive phonon mode Ωq can be included
in the function 𝑓(q). This is not the case, however, for
any nonzero Matsubara frequencies.46

The pairing susceptibility within the Migdal approxi-
mation is obtained by summing the particle-particle lad-
der diagrams shown in Fig. 1(d) and is given by

𝜒SC =
1

𝑁𝛽

∑︁
𝑘

𝐺(𝑘)𝐺(−𝑘)Γ(𝑘), (16)

where the vertex function Γ(𝑘) is obtained by solving the
vertex equation

Γ(𝑘) = 1− 1

𝑁𝛽

∑︁
𝑘′

|𝑔(q)|2𝐺(𝑘′)𝐺(−𝑘′)𝐷(𝑞)Γ(𝑘′), (17)

where 𝑞 = 𝑘 − 𝑘′.

III. COMPUTATIONAL DETAILS

A. Self-consistent Iterations with FFT

To obtain the dressed electron and phonon Green’s
functions, 𝐺 and 𝐷, we self-consistently solve Eqs. (4)–
(9), while the chemical potential 𝜇 is adjusted to fix the
filling 𝑛 after every iteration. Once the self-consistent
solutions for 𝐺 and 𝐷 are obtained, we then evaluate
the CDW and pairing susceptibilities using Eq. (15) and
Eq. (16), respectively. An independent self-consistency
loop is performed to solve for the pairing vertex function
in Eq. (17) after the converged Green’s functions are ob-
tained. Both the momentum and Matsubara frequency
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summations in these equations can be viewed as convo-
lutions and thus are evaluated efficiently using FFTs.

Our algorithm for self-consistent calculations of the
Green’s functions is summarized in the flowchart shown
in Fig. 2. The input parameters include the temperature
𝑇 , the filling 𝑛, the energy dispersion 𝜖k, the phonon
frequency Ω, and the 𝑒-𝑝ℎ coupling function |𝑔(q)|2 [or
equivalently the dimensionless coupling strength 𝜆 and
the momentum dependent part of the coupling function
𝑓(q)]. We discretized the first Brillouin zone using a
uniform 𝑁 = 𝑛k × 𝑛k momentum grid, which corre-
sponds to a square lattice with 𝑁 sites and periodic
boundary condition in real space. For computational
purposes, the fermionic and bosonic Matsubara frequen-
cies 𝜔𝑛 = 2𝜋(2𝑛+1)/𝛽 and 𝜈𝑚 = 2𝜋𝑚/𝛽 are defined over
a range defined by −𝑁𝑐 ≤ 𝑛,𝑚 ≤ 𝑁𝑐 − 1. This cutoff
corresponds to evenly dividing the imaginary time inter-
val 0 ≤ 𝜏 ≤ 𝛽 into 2𝑁𝑐 parts, with 𝜏𝑙 = (𝑙 − 1)𝛽/(2𝑁𝑐),
where 1 ≤ 𝑙 ≤ 2𝑁𝑐+1. For the electron Green’s function
𝐺(𝜏), the end points should be understood as 0+ and 𝛽−

due to the discontinuities of 𝐺(𝜏) at these points. Here,
𝑁𝑐 is determined by 𝑁𝑐 = 𝜔𝑐𝛽/(2𝜋), where 𝜔𝑐 is an en-
ergy cut-off that is much larger than the band width 𝑊 .
Most of the results obtained here used a cutoff 𝜔𝑐 ≥ 100Ω
which implies that the cutoff was close to 𝑊 for Ω = 0.1𝑡.
We have checked that larger cutoffs produce no changes
in the results. When in doubt, we recommend a more
conservative cutoff 𝜔𝑐 ≥ 10𝑊 .

The iteration loop begins with an initial value for elec-
tron self-energy Σ(𝑘) = 0 (or the converged Σ at the
previous temperature 𝑇 data point). The iteration loop
then continues through the following steps in sequence:

1. The dressed electron Green’s function 𝐺(𝑘) is com-
puted by Dyson’s equation with the chemical po-
tential 𝜇 adjusted to fix the filling 𝑛 at the input
value.

2. The irreducible susceptibility is computed by
𝜒0(𝑥) = −𝐺(𝑥)𝐺(−𝑥) = 𝐺(r, 𝜏)𝐺(r, 𝛽 − 𝜏) with
𝐺(𝑥) obtained from 𝐺(𝑘) by FFT and the spatial
inversion symmetry assumed.

3. The dressed phonon Green’s function 𝐷(𝑞) is com-
puted by the Dyson’s equation with 𝜒0(𝑞) obtained
from 𝜒0(𝑥) by the inverse FFT (iFFT) and then an
effective interaction 𝑉 (𝑞) = −|𝑔(q)|2𝐷(𝑞) is com-
puted and transformed to 𝑉 (𝑥) by FFT.

4. A new electron self-energy Σ(𝑥) = 𝑉 (𝑥)𝐺(𝑥) is
computed and transformed back to Σ(𝑘) by iFFT.

Note that the addition of the constant Hartree term ΣH

to the self-energy is optional since 𝜇 is adjusted in every
iteration. The final step of the iteration loop checks for
convergence using max |Σnew(𝑘)−Σold(𝑘)| < 𝜀, where the
absolute error is typically 𝜀 = 10−8𝑡. If the self-energy
Σ(𝑘) is converged, final values for the Green’s functions
𝐺 and 𝐷 are recomputed and used to find the CDW and
pairing susceptibilities. If not, a new dressed electron

Begin

Input:
T , ǫk, filling n,
e-ph coupling g(q)

Σ(k) = 0

µ, G(k) G(x)

χ0(q) χ0(x)

Π(q) = −2g2(q)χ0(q)

D−1(q) = D−1
0 (q)−Π(q)

V (q) V (x)

Σ(k) Σ(x)

Σ(k) + ΣH(k) → Σ(k)

Convergence?

Output:
Σ(k), µ, G(k), χ0(q),
χCDW(q), χSC(q)

End

FFT

iFFT

V (q) = −g2(q)D(q)
FFT

iFFT

ΣH(k) = ng2D0|q=0

Yes

No

G−1(k) = G−1
0 (k)− Σ(k)

FIG. 2. Algorithm for self-consistent iterations of Green’s
functions and self-energies with FFT. The Hartree self-energy
ΣH = 𝑛|𝑔(q = 0)|2𝐷0(𝑞 = 0) = −2𝑛|𝑔(0)|2/Ω is a constant
during iterations, and thus in practice the computation of
ΣH and the shift of electron self-energy Σ(𝑘) → Σ(𝑘) + ΣH

can be moved outside the iteration loop and done after the
convergence.

Green’s function is computed by Dyson’s equation, and
the iteration loop continues. The self-consistency condi-
tion can usually be achieved within 20–100 iterations.

For the algorithm described above, three issues regard-
ing our implementation deserve further remarks. The
first remark concerns the Fourier transform of variables

𝑘 = (k, i𝜔𝑛)
FFT−−−⇀↽−−−
iFFT

𝑥 = (r, 𝜏), where we need to con-

sider the fact that the FFT only applies to discrete vari-
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ables. In our case, the transform between k and r is
straightforward for the lattice model, but the transform
between 𝜔𝑛 and 𝜏 requires special care, especially for
the electron Green’s function. When transforming from
𝐺(𝜔𝑛) to 𝐺(𝜏), an infinite number of Matsubara frequen-
cies must be summed to reproduce the discontinuity of
𝐺(𝜏) between 𝜏 = 0+ and 𝜏 = 0−. We accomplish such
a feat by approximating 𝐺(𝜔𝑛) with the bare electron
Green’s function 𝐺0(𝜔𝑛) for |𝜔𝑛| > 𝜔𝑐, and thus the sum
of Matsubara frequencies 𝜔𝑛 with 𝑛 → ±∞ can be car-
ried out analytically. Transforming 𝐺(𝜏) to 𝐺(𝜔𝑛) re-
quires a Fourier integral transform over the continuous
variable 0 < 𝜏 < 𝛽. This Fourier integral is evaluated
exactly following the interpolation of 𝐺(𝜏) using a con-
tinuous function such as spline or piecewise polynomial
on the discrete 𝜏 grid. Further technical details on this
procedure are provided in Appendix A.

On a related note, Ref. 85 showed that if the effective
interaction 𝑉 (𝜔𝑛) has a simple analytical form, then the
analytical form of the high frequency tail of Σ(𝜔𝑛) can be
obtained and added to the sum with a finite frequency
cut-off. As a result, the effect of the frequency cut-off
is reduced, and a relatively low value can be chosen to
speed up the computation together with an FFT similar
to the one given here. However, comparing to Ref. 85, the
major advantage of our algorithm is that it applies to any
form of effective interaction 𝑉 (𝜔𝑛), including ones where
the bosonic self-energy modifies the interaction, without
any additional cost.86

The second remark concerns the use of the Ander-
son acceleration (also called Anderson mixing) algo-
rithm,87–89 which can be used to improve and acceler-
ate the convergence of the simple fixed-point iteration
scheme presented above. Conceptually, Anderson mixing
is a generalization of and an improvement to the simple
mixing iteration method. In terms of our problem, the
simple mixing dictates that �̃�new = 𝛼𝐺new+(1−𝛼)𝐺old

is used in the next iteration instead of 𝐺new, where
0 < 𝛼 < 1 is a constant. Using Anderson mixing, values
of 𝐺old from the previous 𝑀 iteration steps are mixed ac-
cording to the coefficients {𝛼𝑖}𝑀𝑖=1, which are optimized
for each iteration. In practice, we find that Anderson
mixing is usually more efficient than simple mixing, even
if an optimal 𝛼 is chosen for simple mixing. Although
both methods require a similar number of iterations to
converge the self-energy, the Anderson mixing provides
as much as a ten-fold reduction of the iterations required
to converge the pairing vertex. For a detailed description
of the algorithm, see Ref. 89.

The final remark concerns the behavior of our algo-
rithm close to a phase transition 𝑇𝑐 or sometimes sim-
ply at low 𝑇 , where the initial input self-energy at
the first iteration sometimes yields a diverged charge
susceptibility. This premature divergence occurs when
𝜆𝑊𝑓(q)𝜒0(q, 0) > 1 for a few q points around the
CDW ordering vector in the denominator of Eq. (15).
To circumvent this problem we impose the condition
𝜆𝑊𝑓(q)𝜒0(q, 0) ≤ �̃�, where �̃� is a constant that is close

to but less than unity. More specifically, we selectively
change the value of 𝜒0(q, 0) such that 𝜆𝑊𝑓(q)𝜒0(q, 0) =
�̃� at the offending q points. Once the calculation is stabi-
lized after a few iterations, this condition is removed. In
practice, we allow �̃� to take values increasingly closer to
unity, and usually in the range 0.995–0.99999. This cutoff
is particularly important as the calculation approaches
𝑇CDW
𝑐 , where we expect the charge density instabilities

to be present. Establishing a proper cutoff sequence of �̃�
can improve the quality of 𝑇CDW

𝑐 extrapolation.

FIG. 3. An example of extrapolating the inverse CDW and
pairing susceptibilities to zero to obtain 𝑇𝑐 on a lattice with
𝑁 = 64×64 and a coupling constant 𝜆 = 0.3. The dashed and
dashed-dotted lines are linear fits to the three lowest temper-
ature points and their intercepts on 𝑇 -axis are the respective
estimated 𝑇𝑐’s in this procedure. This extrapolation is accu-
rate for the superconducting 𝑇 SC

𝑐 ; however, the more gradual
approach of 1/𝜒CDW(qmax) to the 𝑇𝑐 region makes 𝑇CDW

𝑐

more susceptible to over(under)-estimation. Therefore, we
use a different procedure to estimate 𝑇CDW

𝑐 by fitting the low
temperature 𝜒CDW(𝑇 ) to the 𝑇 -dependence of the 2D Ising
universality class (See Sec. III B).

B. Determination of Phase Transition
Temperatures

To determine the phase transition temperatures 𝑇CDW
𝑐

and 𝑇 SC
𝑐 , we compute the CDW and pairing susceptibil-

ities 𝜒CDW(q, 𝑇 ) and 𝜒SC(𝑇 ) with decreasing tempera-
tures from above the phase transitions. In the thermody-
namic limit (𝑁 → ∞), the susceptibilities should diverge
as 𝑇 → 𝑇𝑐. For a finite-size lattice, this divergence is lim-
ited once the correlation length 𝜉 becomes comparable to
the lattice size. Our goal is to determine 𝑇𝑐 in the ther-
modynamic limit by using sufficiently large lattice sizes
such that a reliable extrapolation to 𝑁 → ∞ limit can
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be performed.

FIG. 4. The dependence of 1/𝜒CDW on the size of the lat-
tice near 𝑇CDW

𝑐 . For smaller lattice sizes, the temperature
dependence deviates strongly from what is expected in the
thermodynamic limit (𝑁 → ∞). Consequently, the criti-
cal temperatures 𝑇CDW

𝑐 found by fitting 𝜒CDW(qmax) with
a model function 𝜒2D-Ising(𝑇 ), depends strongly on the value
of 𝑁 (see Fig. 5).

These values can be extracted in one of two ways: (i)
by extrapolating the low 𝑇 behavior of the inverse sus-
ceptibilities 1/𝜒CDW(qmax) and 1/𝜒SC to zero as a func-
tion of temperature (e.g. Fig. 3); or (ii) by fitting the
susceptibilities near the transition temperature with the
appropriate asymptotic forms expected for their univer-
sality class in 2D.

It is well known37 that the pairing susceptibility in
a 2D system has a similar behavior to the Kosterlitz-
Thouless90 phase transition. However, we do not use
this universality class in practice to find 𝑇 SC

𝑐 because we
have found that the extrapolation of 1/𝜒SC to the tem-
perature axis provides a reliable estimate for 𝑇 SC

𝑐 (e.g.,
see Fig. 3) because of the relatively sharp divergence of
the pairing susceptibility within the Migdal approxima-
tion. On the other hand, this same extrapolation proce-
dure offers a 𝑇CDW

𝑐 with a rather tenuous justification.
As seen in Fig. 3, extrapolating the last few points in
1/𝜒CDW(qmax) tends to estimate the 𝑇CDW

𝑐 significantly
lower than the last obtainable point in the numerical cal-
culation. Close to the transition, 𝜒CDW(qmax = (𝜋, 𝜋))
is expected to follow the Ising universality class,38 which

follows 𝜒2D-Ising(𝑇 ) = 𝐴
⃒⃒⃒
𝑇−𝑇𝑐

𝑇𝑐

⃒⃒⃒−𝛾

, where 𝛾 = 7/4. The

critical temperatures can thus be obtained by fitting the
CDW susceptibility results to this model. Notice that
the slope 1/𝜒2D-Ising(𝑇 ) approaches zero as 𝑇 → 𝑇+

𝑐 .
This partially explains the potential inaccuracy of lin-
ear extrapolation for 𝑇CDW

𝑐 since it is expected that
1/𝜒CDW(qmax) will not sharply cross the temperature
axis.

FIG. 5. The finite size dependence of 𝑇𝑐 on the logarithm
of the total number of sites log2(𝑁) for the Holstein model
(isotropic 𝑒-𝑝ℎ coupling). The fillings 𝑛 = 1.0 and 𝑛 = 0.75
correspond to parts of the phase diagram that yield CDW and
SC phases, respectively, for Ω/𝑡 = 1.0, 𝜆 = 0.3, and 𝑡′ = 0.
The value of 𝑇 SC

𝑐 has converged for 𝑁 = 16 × 16, whereas
𝑇CDW
𝑐 has significant dependence on lattice size 𝑁 . The value

of 𝑇CDW
𝑐 was obtained from the model fit 𝜒2D-Ising(𝑇 ). For

log2(𝑁) ≥ 8, the values of 𝑁 are identical to those shown
in the legend of Fig. 4. Five additional smaller lattice sizes
(
√
𝑁 = 4, 6, 8, 10, 12) are plotted for 𝑇 SC

𝑐 to show the varia-
tions due to finite size effects.

The accuracy of the Ising fit to 𝜒CDW significantly de-
pends on the lattice-size. In fact, at smaller sizes such
as 4 × 4 and 8 × 8, the model above is a remarkably
poor descriptor of the 𝜒CDW results. As we increase the
lattice to 128 × 128 and above, we see that the suscep-
tibility more closely follows the expected Ising form (See
Fig. 4). The resulting finite size dependence of 𝑇CDW

𝑐

is shown in Fig. 5 for the isotropic coupling case, with
Ω/𝑡 = 1, at half-filling. Here, the changes in 𝑇CDW

𝑐

are pronounced until 𝑁 ∼ 1282 while 𝑇 SC
𝑐 is approxi-

mately flat for𝑁 ≥ 162. Furthermore, as shown in Fig. 3,
for fillings very close to the CDW and superconductivity
phase boundary, the comparable values for 𝑇CDW

𝑐 and
𝑇 SC
𝑐 make the careful extrapolation more important. We

adhere to a convention that when the CDW and super-
conducting phases have comparable transition tempera-
tures, the winning phase is determined by the larger of
the extrapolated 𝑇CDW

𝑐 and 𝑇 SC
𝑐 .

IV. RESULTS

A. Temperature-filling Phase Diagram

First, we report the full temperature-filling phase dia-
gram within the Migdal approximation for the 2D Hol-
stein model with isotropic 𝑒-𝑝ℎ coupling 𝑔(q) = 𝑔 and
only the NN hopping 𝑡. Fig. 6 shows results for hole-
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FIG. 6. (Color online) The temperature-filling phase diagram for the Holstein model for (a) Ω = 0.1𝑡, (b) Ω = 0.5𝑡, and (c)
Ω = 𝑡. Results were obtained on a 𝑁 = 1282-site lattice and for a dimensionless coupling 𝜆 = 0.3.

FIG. 7. (Color online) A comparison of the three phase dia-
grams shown in Fig. 6.

doped case with filling 0 ≤ 𝑛 ≤ 1 and three different
phonon frequencies. The electron-doped side is identical
due to particle-hole symmetry. The phase boundaries in
all three panels in Fig. 6 are plotted together in Fig. 7
for an easy comparison.

As expected, we observe the competition between
CDW and superconducting (SC) ground states, where
the CDW phase dominates close to half-filling. For large
phonon frequencies, the CDW phase always appears at
qmax = (𝜋, 𝜋) but is rapidly suppressed for a small de-
gree of doping away from half-filling. For the smallest
phonon frequency (Ω = 0.1𝑡), we find larger values of

𝑇CDW
𝑐 indicating a slight decrease in 𝜒0. Moreover, we

observe an incommensurate CDW phase for filling lev-
els below 𝑛 ≈ 0.8. This incommensurate ordering can
be distinguished from the commensurate case by noting
that when 𝑇 → 𝑇CDW

𝑐 , the function 𝜒CDW(q) develops
peaks at qmax = (𝜋, 𝜅𝜋) with 0 < 𝜅 ≤ 1 (and its sym-
metry equivalent positions). These four peaks split off
from a single broader peak originally centered at (𝜋, 𝜋) at
high temperatures as 𝑇 → 𝑇CDW

𝑐 . At intermediate tem-
peratures, these four peaks largely overlap resulting in
a plateau centered at (𝜋, 𝜋). In the commensurate case,
𝜒CDW(q) has a single global maximum at (𝜋, 𝜋) for nearly
all the temperatures examined. We also observe strong
incommensurate charge correlations when Ω is large but
in this case the superconducting phase forms before the
long-range incommensurate charge order forms.

Once the CDW correlations are sufficiently suppressed
at lower values of 𝑛, the 𝑠-wave superconducting corre-
lations dominate. Our results show that superconduct-
ing transition temperature 𝑇 SC

𝑐 depends strongly on the
phonon frequency Ω. The fact that 𝑇 SC

𝑐 strongly depends
on Ω while 𝑇CDW

𝑐 depends more on electronic properties
is in qualitative agreement with solutions to the Holstein
model in the infinite dimensional limit.50 Interestingly,
we observe non-monotonic behavior in the superconduct-
ing 𝑇𝑐, where the maximum value of 𝑇𝑐 occurs for fillings
away from the CDW phase boundary. This “dome” in the
superconducting region of the phase diagram becomes
more pronounced as the phonon frequency increases. We
will discuss the origin of this behavior in Sec. IVE.
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FIG. 8. (Color online) Comparison of the temperature-filling phase diagrams for Holstein model with or without NNN hopping
𝑡′. (a) Ω = 0.1𝑡, 𝑡′ = 0; (b) Ω = 𝑡, 𝑡′ = 0; (c) Ω = 0.1𝑡, 𝑡′ = −0.25𝑡; and (d) Ω = 0.1𝑡, 𝑡′ = −0.25𝑡. Results were obtained on a
𝑁 = 1282 site lattice and for a dimensionless coupling 𝜆 = 0.3.

B. The effects of longer-range hopping on the
phase diagram

Previous studies of the Holstein model39 and the at-
tractive Hubbard model91 found that enhanced pairing
occurs when the Fermi level 𝐸F lies near the Van Hove
singularity once NNN hopping is included. With this mo-
tivation, we now turn our attention to the effects of 𝑡′ on
the phase diagram. In this case, the lack of particle-hole
symmetry requires us to consider the temperature-filling
phase diagram across the full range of electronic fillings,
as shown in Fig. 8. We consider two representative val-
ues Ω = 0.1𝑡 [Figs. 8(a) and 8(c)] and Ω = 𝑡 [Figs. 8(b)
and 8(d)] and fix 𝑡′ = −0.25𝑡, chosen to reflect a phase
factor of opposite sign commonly encountered in diagonal
hopping scenarios. We note that a choice of opposite sign
merely creates a mirror image (with respect to 𝑛 = 1) of
depicted the phase diagrams, i.e., changing 𝑛 → 2− 𝑛 in
the 𝑥-axis.

Many of the effects of 𝑡′ can be understood from its
influence on the bare electronic structure. The Van Hove
singularity in the bare 2D electronic density of states
(DOS) shifts below (above) the middle of the band when
𝑡′ < 0 (𝑡′ > 0) and, moreover, the Fermi surface in-
herits curvature that weakens nesting near half-filling.

These changes, which are not mutually exclusive, are
collectively associated with the suppression of charge-
density correlations near half-filling. Upon hole doping,
the Fermi surface for 𝑡′ < 0 moves towards the Van Hove
singularity, thus increasing the electron energy degener-
acy where strong pairing correlations are already present
and enhancing the superconducting correlations on the
hole-doped side of the phase diagram. Conversely, the
superconducting state on the electron-doped side of the
phase diagram is suppressed. These changes are most
prominent for large Ω and clearly seen in the contrast
between the top (for 𝑡′ = 0) and the bottom row (for
𝑡′ ̸= 0) in Fig. 8.

The effects of a longer-range hopping are more sub-
tle for the smaller phonon frequency Ω = 0.1𝑡. Here, 𝑡′

lowers the transition temperatures of the commensurate
and incommensurate CDW phases both for all dopings.
At the same time, the boundary of the incommensurate
CDW region is modified such that it extends towards
smaller values of 𝑛 with hole doping. Likewise, the SC
phase on the hole-doped side is confined to a smaller re-
gion of fillings but with an enhanced superconducting 𝑇𝑐.
On the electron-doped side, the superconducting region
also extends over a broader range of fillings but the over-
all 𝑇𝑐 is suppressed.
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FIG. 9. (Color online) The charge susceptibility for three decreasing temperatures plotted using contours over a window of 𝜆
vs 𝑛. Panels (a)–(c) show the Holstein (isotropic) coupling case, where a strong CDW susceptibility peaked at qmax = (𝜋, 𝜋)
emerges near and at half-filling. Panels (d)–(f) show results for the buckling case, which reveal the onset of susceptibility peaked
at qmax = (0, 0). This is not representative of a CDW with long range order and could be an indication of phase separation.
The last row of panels (g)–(i) show results for the breathing mode coupling, which strongly favors a CDW phase peaked at
qmax = (𝜋, 𝜋) for larger regions of the parameter space. Introducing the breathing and buckling mode q-dependence into the
𝑒-𝑝ℎ coupling has significant influence over the competition between pairing correlations and charge-density correlations.

Similar asymmetric features in the phase diagram can
result from other modifications/extensions of the Hol-
stein model. For instance, adding a small anharmonic
term to the Holstein Hamiltonian also results in an asym-
metric phase diagram with a larger SC phase and sup-
pressed CDW phase on one side of half-filling.92 In that
case, the changes in the phase diagram are the result
of the modified phonon potential, which constrains the
phonon displacements and enhances superconductivity.
A more recent study focused on the electron effective
mass 𝑚*;93 however, in the 2D weak coupling case, the
changes to 𝑚* resulting from 𝑡′ ̸= 0 are quite small and
effectively negligible. We also note that NNN hopping
can influence the competition between charge density and
pairing correlations. In some real materials (e.g., tran-
sition metal dichalcogenides) it can be difficult to de-
termine whether CDW and SC correlations are working
together or competing for order.94 In this simple model
calculation, we find evidence for the latter through the

absence of both large pairing and charge density correla-
tions together near a critical temperature, as well as a
decreasing 𝑇 SC

𝑐 near the SC-CDW phase boundary.

C. Momentum Dependent Electron-Phonon
Coupling

The traditional Holstein model can be easily extended
by introducing fermionic (k) and bosonic (q) momentum
dependence to the 𝑒-𝑝ℎ coupling constant 𝑔 → 𝑔(k,q).
As mentioned in section (II B), our FFT-based algorithm
can easily incorporate models where the vertex depends
on the boson wavevector 𝑔(q). In general, we have found
that convergence of the self-consistent equations is more
challenging for such models near phase transitions, and
it can become difficult to develop a full temperature de-
pendence for the susceptibilities across all fillings relative
to the isotropic coupling case. Nevertheless, we have ob-
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FIG. 10. (Color online) The pairing susceptibility for three decreasing temperatures plotted using contours over a window of
𝜆 vs 𝑛. Similar to Fig. 9, panels (a)–(c) correspond to the Holstein (isotropic) coupling case, panels (d)–(f) for the buckling
mode coupling, and panels (g)–(i) for the breathing mode coupling. Each temperature progression shares qualitatively similar
features with pairing correlations largely suppressed at these temperatures. However, it should be noted that the Holstein
case is unique. With the CDW region so closely confined to the half-filling region, pairing correlations can develop at higher
temperatures. A superconducting phase does emerge for each of the 𝑔(q) cases, but the strong charge density correlations in
the buckling and breathing mode cases push the SC boundary to lower values of 𝑛.

tained results for several popular models for the high-T𝑐

cuprates with a momentum dependent 𝑔(q), which we
present in this section.

The behavior of the susceptibilities 𝜒CDW and 𝜒SC for
a given 𝑔(q) is examined across a small range of 𝜆 val-
ues in Fig. 9 and Fig. 10, respectively. All of the results
were obtained using a 32×32 lattice with Ω/𝑡 = 0.5, and
NN-hopping only (𝑡′ = 0). The first, second, and third
rows of the figures correspond to isotropic, buckling, and
breathing models, respectively (see Sec. II B). The indi-
vidual columns show results for temperatures 𝑇/𝑡 = 0.4,
0.2, and 0.1 from left to right. The white regions indicate
parameter ranges where no data is plotted. The vertical
axis in Fig. 9 and Fig. 10 contain data points for ten
values of 𝜆 separated by increments of Δ𝜆 = 0.022̄. Al-
though the spacing in filling points along the horizontal
axis is comparable (Δ𝑛 = 0.025), the plot range is larger,
making it appear as though Δ𝜆 was disproportionately
coarse. As a result, we see that the boundary separating

the susceptibility contours from the white region is jagged
in appearance. Although the boundary is expected, it
should be smooth in the limit where Δ𝜆 → 0. Therefore,
no physical meaning should be attributed to the uneven
nature of the boundary. Despite this unwanted cosmetic
detail, the white region beyond the (colored) contours is,
to a good approximation, where the system would have
settled into a charge ordered phase peaked at some vector
qmax.

For the isotropic and breathing cases, we find that the
CDW correlations are strongest at qmax = (𝜋, 𝜋). These
results are expected since q = (𝜋, 𝜋) corresponds to a
strong nesting condition near half-filling and 𝑔(q) for the
breathing mode is largest at this wavevector. For the
buckling case, we find the CDW correlations are strongest
at qmax = (0, 0). This is also not surprising since 𝑔(q)
for this model places most of the scattering weight on
qmax = (0, 0) and none on the nesting vector (at half-
filling) (𝜋, 𝜋). We interpret large charge correlations at
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qmax = (0, 0) as a reflection of a tendency towards phase
separation since we are considering a single-orbital model
without the possibility for any intracell charge order.

By comparing the results at different temperatures it
becomes clear that the momentum dependent models
yield higher 𝑇CDW

𝑐 ’s than the isotropic case. For the
Hosltein coupling [Figs 9(a)–(c)] the CDW correlations
build somewhat tightly around half-filling whereas they
extend much further as a function of both 𝑛 and 𝜆 once
a momentum dependent coupling is introduced. A mo-
mentum dependent coupling also influences the 𝑠-wave
pairing tendencies. As shown in Fig. 10, the contour
lines for large values of 𝜒SC

𝑐 extend over larger 𝑛 and 𝜆 in
the Holstein case. We have performed other calculations
confirming that the 𝑠-wave superconducting correlations
generally shift to more dilute fillings and lower 𝑇 once
the 𝑒-𝑝ℎ vertex depends on q. It should be emphasized
that the contours in Fig. 10 can be somewhat deceptive
since the temperatures at which 𝜒SC are plotted are well
above 𝑇 SC

𝑐 . For instance, 𝜒SC seems to be peaked at oc-
cupancies of 𝑛 ∼ 0.8−1 and couplings 𝜆 ∼ 0.1 in Fig. 10,
but this peak actually shifts to lower fillings and larger
𝜆 values as the temperature is lowered further. When
we decrease the temperature so that 𝑇 ≈ 𝑇 SC

𝑐 , we see a
rapid growth of 𝜒SC near the phase boundary as shown
in Fig. 11(b). This figure reveals that the highest 𝑇 SC

𝑐

occurs for larger 𝜆 (for the range shown) and the fea-
tures leading to the SC dome in Fig. 6(b) can be seen. If
we were to superimpose Fig. 11(b) onto Fig. 11(a), the
correlations for pairing and a CDW would form a valley
in-between the domes for each phase, reminiscent of the
phase diagrams presented earlier.

D. Renormalized Phonon Dispersions at Half-filling

Until now we have largely focused on the electronic
properties of the model. It is also instructive, however,
to consider the renormalization of the phononic prop-
erties in proximity to the CDW phase. In this sec-
tion, we present the spectral properties of the phonons,
which are obtained by analytically continuing the phonon
Green’s function to the real axis using Padé approx-
imants.95 Fig. 12 shows the phonon spectral function
𝐵(q, 𝜔) = − Im𝐷(q, i𝜈𝑚 → 𝜔 + i0+)/𝜋 as a function of
temperature along the high-symmetry path of the first
Brillouin zone. Here, we are considering the case of
a momentum-independent Holstein coupling, half-filling
𝑛 = 1.0, 𝜆 = 0.19, and Ω/𝑡 = 1.0. These spectra compare
well with the results obtained from determinant QMC
simulations96 carried out for comparable values of 𝜆 but
on a smaller lattice (𝜆 = 0.25, 8× 8).

Our first observation is that the overall energy of
the phonon branch has softened significantly due to the
electron-phonon coupling. Due to the proximity of the
CDW phase, the phonon spectral function also has a
pronounced Kohn-like anomaly, where spectral weight
becomes concentrated at q = (𝜋, 𝜋) and 𝜔 ≈ 0. As

FIG. 11. (Color online) For the isotropic coupling case with
Ω = 0.5𝑡, 𝑇 = 0.04𝑡, and 𝑡′ = 0, we plot the (a) charge-density
wave susceptibility 𝜒CDW(qmax) and (b) singlet-pairing sus-
ceptibility 𝜒SC using a 32×32 lattice. At this lower tempera-
ture we see the pairing correlations becoming more significant
around 𝜆 = 0.3 and 𝑛 ≈ 0.66, which corresponds to a point
near the top of the 𝑇 SC

𝑐 -dome in Fig. 6.

the temperature is lowered, and the charge correlations
grow, spectral weight is redistributed to lower energies
and the Kohn anomaly becomes sharper. Although it is
not shown here, we have also found that in the case of
the buckling mode coupling, the spectral weight indeed
concentrates at q = 0.
We expect that the renormalization of the phononic

properties will influence the superconducting phase in
nontrivial ways. For example, within weak coupling BCS
theory, the superconducting transition temperature is
given by 𝑇𝑐 ∝ Ωexp(−1/𝜆). The phonon dispersion en-
ters this expression twice, once in the prefactor and once
in the dimensionless coupling constant 𝜆 ∝ 1/Ω. The
softening of the phonon branch observed in Fig. 12 will,
therefore, simultaneously reduce the energy scale of the
Cooper pairs and enhance the pairing strength. Which
of these effects dominates is a nontrivial question, which
is addressed in the following section.

E. Origin of the Superconducting Dome

As we noted in Sec. IVA, we observe a non-monotonic
behavior in the superconducting 𝑇𝑐, where the maximum
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FIG. 12. (Color Online) The temperature dependence of
the phonon spectral function 𝐵(q, 𝜔) = − Im𝐷(q, i𝜈𝑚 →
𝜔+i0+)/𝜋 for the half-filled Holstein model with 𝜆 = 0.1875.
Results were obtained on an 𝑁 = 1282 cluster and the an-
alytic continuation was performed using Padé approximants.
The actual CDW transition temperature is 𝑇CDW

𝑐 = 0.144𝑡.

value of 𝑇𝑐 occurs for fillings away from the boundary of
the CDW phase. This “dome” in the superconducting re-
gion of the phase diagram becomes more pronounced as
the phonon frequency increases and arises from an inter-
play of the renormalized phononic and electronic proper-
ties.

To better understand how the dome appears, we ex-
amined several quantities commonly linked to pairing.
These include the electronic density of states (DOS)
𝑁(𝜔) (per spin), the Eliashberg function 𝛼2𝐹 (𝜔), the

renormalized 𝑒-𝑝ℎ coupling 𝜆𝛼2𝐹 , the logarithmic aver-
age frequency 𝜔log, and the superconducting critical tem-
perature 𝑇𝑐 (estimated by various approaches from the

quantities examined here). All of these quantities are
calculated and shown in Fig. 13 over a range of elec-
tron occupancy 𝑛 ∈ [0.6, 0.8] using a fixed momentum
k-grid 𝑁 = 64 × 64, 97 𝑡′ = 0, a bare phonon frequency
Ω = 𝑡, and a bare dimensionless 𝑒-𝑝ℎ coupling 𝜆 = 0.3.
Note that for panels 13(a) and 13(b), the calculations are
performed on the imaginary frequency axis at a temper-
ature 𝑇 = 0.07𝑡, 98 and then analytically continued onto
the real frequency axis using Padé approximants95 with
a small imaginary part 𝜂 = 0.005𝑡. Moreover, the fre-
quency 𝜔 in these two plots is measured with respect to
the chemical potential 𝜇. The calculation of 𝜇 occurs on
the imaginary axis, and any shifts in 𝜇 stemming from the
Padé procedure, if they exist, are negligibly small since
the filling from integrating the DOS over 𝜔 is essentially
unchanged.

The DOS is calculated by summing the electron spec-
tral function 𝐴(k, 𝜔) = −Im[𝐺(k, 𝜔)]/𝜋 over momentum
and is given by

𝑁(𝜔) =
1

𝑁

∑︁
k

𝐴(k, 𝜔), (18)

where 𝐺(k, 𝜔) ≡ 𝐺(k, i𝜔𝑛 → 𝜔 + i0+). In Fig. 13(a),
the solid curves represent 𝑁(𝜔) at various fillings, with
the bright (dark) colors corresponding to smaller (larger)
values of 𝑛. The two dash-dotted curves are the noninter-
acting DOS for the lowest filling 𝑛 = 0.6 (light blue) and
the highest filling 𝑛 = 0.8 (dark blue) and are obtained
from the exact result at 𝑇 = 0 (elliptic integral function
for a cosine band structure). Although not shown here,
a plot of the non-interacting DOS for 𝑇 ̸= 0 using a fi-
nite k-grid would also exhibit a broadened profile similar
to 𝑁(𝜔); however, unlike the interacting case, the peak
position would remain at half-filling (i.e. the Van Hove
singularity). The effect of filling in the non-interacting
case is just a rigid band shift of 𝜇, while the shape of
the interacting DOS, has a strong dependence on the
filling. In fact, the interacting DOS at the 𝜔 correspond-
ing to half-filling is strongly suppressed to a small hump
for 𝑛 = 0.6, and even disappears for 𝑛 = 0.8. Lastly,
and perhaps most importantly, the DOS near and at the
Fermi level 𝑁F = 𝑁(0) has a non-monotonic dependence
on the filling 𝑛. More specifically, the peak actually shifts
from 𝜔 > 0 for 𝑛 ∼ 0.6 to 𝜔 < 0 for 𝑛 ∼ 0.8. In other
words, this shift of the peak in 𝑁(𝜔) approximately fol-
lows the 𝑇𝑐 dome over 𝑛 as it moves from 𝜔 > 0 to 𝜔 < 0.

The isotropic Eliashberg function 𝛼2𝐹 (𝜔), also known
as the electron-phonon spectral function, can be obtained
by taking a double Fermi-surface average of the product
between the squared 𝑒-𝑝ℎ coupling |𝑔(q)|2, the phonon
spectral function 𝐵(q, 𝜔), and the DOS at the Fermi-
level 𝑁F = 𝑁−1

∑︀
k 𝛿(𝜉k′), given by

𝛼2𝐹 (𝜔) = ⟨⟨𝑁F|𝑔(k− k′)|2𝐵(k− k′, 𝜔)⟩⟩FS, (19)
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FIG. 13. (Color online) (a) the electron density of states
𝑁(𝜔), (b) the Eliashberg function 𝛼2𝐹 (𝜔) multiplied by a
factor of 𝑁F/𝑁

fd
F , and (c) 𝑇𝑐, 𝜔log, and 𝜆 as a function of 𝑛.

A factor of 𝑁F/𝑁
fd
F is included in 𝛼2𝐹 (𝜔) and 𝜆𝛼2𝐹 (𝜔). The

factor of 𝑁F/𝑁
fd
F is used to account for differences between

the exact DOS and the DOS estimated by a sum of delta
functions.

where the double Fermi surface average is defined by

⟨⟨𝑓(k− k′)⟩⟩FS =

∑︁
k

∑︁
k′

𝑓(k− k′)𝛿(𝜉k)𝛿(𝜉k′)∑︁
k

∑︁
k′

𝛿(𝜉k)𝛿(𝜉k′)
. (20)

Here, the phonon spectral function 𝐵(q, 𝜔) is calculated
from the renormalized phonon Green’s function as de-
fined in Section IVD. The delta functions appearing in
Eq. (20) and in other calculations are not true Dirac delta
functions but are instead “smeared” delta functions, de-
noted as 𝛿(𝑥). These approximate delta functions are
used when the system is constrained to a finite k-grid.
We use a Fermi-Dirac smearing given by

𝛿fd(𝑥) = − d

d𝑥

(︂
1

e𝑥/𝜎 + 1

)︂
=

1

4𝜎 cosh2
(︀

𝑥
2𝜎

)︀ ,
which we use to obtain a DOS at the Fermi-level 𝑁 fd

F =

𝑁−1
∑︀

k 𝛿fd(𝜉k) with the broadening parameter 𝜎 = 𝑇 .
The family of curves in Fig. 13(b) shows the change in
𝛼2𝐹 (𝜔) over a range in 𝑛. We have included factor of
𝑁F/𝑁

fd
F in 𝛼2𝐹 (𝜔) to account for the differences between

the exact DOS
Notice that 𝛼2𝐹 (𝜔) in Fig. 13(b) (for all fillings shown)

is peaked at a frequency lower than the bare frequency
Ω = 1.0𝑡, indicating that the phonon branch has renor-
malized. Recall from Fig. 12 that phonon spectral weight
shifts to lower frequency as the temperature is lowered,
indicating corrections to the dispersion stemming from
the formation of a CDW. For fillings relevant to the 𝑇𝑐-
dome, the dispersion also shows signatures of compet-
ing CDW order developing, but now it is incommensu-
rate. This implies that the system can approach a super-
conducting phase and simultaneously show signatures of
CDW driven renormalization of the phonon dispersion.
Referring back to Fig. 7, the 𝑇CDW

𝑐 for the incommensu-
rate CDW (Ω = 0.1𝑡) is smaller than the 𝑇 SC

𝑐 -dome at
Ω = 1.0𝑡. Thus, at larger values of Ω, the incommensu-
rate CDW correlations and their effects are present but
never fully develop before the system becomes supercon-
ducting.

The dimensionless 𝑒-𝑝ℎ coupling constant 𝜆𝛼2𝐹 can be
derived from the Eliashberg function via

𝜆𝛼2𝐹 = 2

∫︁ ∞

0

d𝜔
𝛼2𝐹 (𝜔)

𝜔
. (21)

This quantity measures the effective electron-phonon
coupling after the phonon dispersion and the electron
spectrum are renormalized by the interaction. It is plot-
ted in Fig. 13(c) and includes the same factor of 𝑁F/𝑁

fd
F

introduced for 𝛼2𝐹 (𝜔). The approximately monotonic
increase in this coupling across the range of filling 𝑛 is
generally favorable for pairing and thus also 𝑇𝑐. In the
same figure, we also show the filling dependence on the
logarithmic average frequency 𝜔log, given by

𝜔log = exp

(︂
2

𝜆

∫︁ ∞

0

d𝜔

𝜔
𝛼2𝐹 (𝜔) ln(𝜔)

)︂
. (22)
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The value of 𝜔log monotonically decreases across the fill-
ing range, reflecting the softening of the phonon branch
as the CDW correlations develop. Since 𝑇𝑐 ∝ 𝜔log, we
might expect a reduction in 𝑇𝑐, however, there will be

additional interplay with the change in 𝜆𝛼2𝐹 .

To supplement our results for the superconducting 𝑇𝑐

obtained within the Migdal approximation we have also
estimated the superconducting critical temperatures us-
ing three approaches commonly found in the literature.

First, we obtained 𝑇𝛼2𝐹
𝑐 by solving the linearized gap

equation [Eq. (B1)] using the computed 𝛼2𝐹 (𝜔) as in-

put. In Fig. 13(c), the data for 𝑇𝛼2𝐹
𝑐 most closely fol-

lows the 𝑇𝑐 found within the Migdal approximation, ex-
hibiting dome-like behavior. If we exclude the correc-
tive factor of 𝑁F/𝑁

fd
F in 𝛼2𝐹 (𝜔), which accounts for the

renormalization of the electron spectral function at the

Fermi-level, the calculated 𝑇𝛼2𝐹
𝑐 exhibits a monotonic

increasing dependence on the filling 𝑛 within the range
considered here. For the second and third estimates,
we used the Allen-Dynes-modified McMillan (ADM) for-
mula [Eq. (B3)],99 which we denote 𝑇ADM

𝑐 , and the
ADM+𝑓 formula [Eq. (B4)] to find 𝑇ADM+𝑓

𝑐 . Both of
these formulas underestimate the critical temperature
significantly, and only the 𝑇ADM+𝑓

𝑐 results exhibit non-
monotonicity. The wide discrepancy between the various
methods for calculating 𝑇𝑐 should be taken in to account
when estimating the superconducting transition temper-
ature from simplified, Fermi-surface averaged, isotropic
Migdal-Eliashberg equations.

From this analysis, we conclude that the 𝑇 SC
𝑐 dome

is tied to the competition of three renormalized quanti-

ties: the monotonic rise in 𝜆𝛼2𝐹 which enhances pairing,
the decrease in 𝜔log which weakens the energy scale of
pairing, and the non-monotonic filling dependence of the
DOS around the Fermi-level. In particular, it is interest-
ing to note how the quasiparticle properties are renormal-
ized at different fillings and how this affects the value of
𝑇𝑐. While it is sometimes claimed in the literature that a
superconducting dome is indicative of an unconventional
pairing mechanism,100 our results indicate that this is
not necessarily the case. A superconducting dome can
be obtained in proximity to competing phases and this
behavior will be more common in materials with narrow
bandwidths (i.e., large values of Ω/𝑡).

Effective Interaction

The bare effective electron-electron interaction for the
Holstein model is purely local in real space and conse-
quently uniform in momentum space. However, in the
fully self-consistent approach, the effective interaction is
related to the renormalized phonon propagator as shown
by the double-wiggly line in the Migdal self-energy in
Fig. 1(a). Thus the formation of a momentum depen-
dent renormalized phonon branch indicates that the ef-
fective electron-electron interaction must develop some
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FIG. 14. (Color online) The effective interaction 𝑉 normal-
ized by the bare interaction parameter 𝑣0 = 2𝑔2/Ω for vari-
ous fillings 𝑛 in (a) momentum space 𝑉 (q, i𝜈𝑚 = 0), and (b)
along the 𝑟𝑥-direction in real space 𝑉 (𝑟𝑥, 𝑟𝑦 = 0, i𝜈𝑚 = 0).
In (a), the data points are obtained from self-consistent cal-
culations and the solid lines are from the corresponding fit
to Lorentzian functions with the method of least squares. In
(b), the open circles are from the discrete Fourier transform
of 𝑉 (q) (dots) in panel (a); the lines are a cosine Fourier
integral transform of the fitted Lorentzian function in panel
(a). The sign convention for the effective interaction in this
figure is 𝑉 > 0 (𝑉 < 0) for attractive (repulsive) interaction.
The colors of the lines or symbols indicate the value of the
filling with bright (dark) color for small (large) filling 𝑛. The
bare phonon frequency Ω = 𝑡, the bare 𝑒-𝑝ℎ coupling constant
𝜆 = 𝑣0/𝑊 = 0.3, and the temperature is fixed at 𝑇 = 0.07𝑡
which is close to the superconducting critical temperatures
for the chosen range of electron filling 𝑛.

real space structure and become nonlocal, and a deeper
understanding of this interaction will shed light on the
factors for enhancing or suppressing transition temper-
atures. In this section we therefore examine the static
effective interaction 𝑉 (q) ≡ 𝑉 (q, i𝜈𝑛 = 0) in momentum
space, and its (discrete) Fourier transform 𝑉 (r = R𝑖) on
the lattice.

Defining the bare interaction parameter 𝑣(q) =
2𝑔2/Ω ≡ 𝑣0, we rewrite the bare 𝑒-𝑝ℎ coupling constant
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𝜆 = 𝑣0/𝑊 , where 𝑊 is the band width. The renormal-
ized interaction can thus be related to the CDW suscep-
tibility in Eq. (15) as

𝑉 (q) = 𝑉 (q, i𝜈𝑚 = 0) =
𝑣0

1− 𝑣0𝜒0(q)
(23)

where 𝜒0(q) ≡ 𝜒0(q, i𝜈𝑚 = 0). In momentum space
𝑉 (q) has either a single peak or quadruple peaks de-
pending on whether the dominant CDW correlations oc-
cur at the commensurate vector qmax = (𝜋, 𝜋) or the in-
commensurate vectors given by qmax = (𝜋, 𝜅𝜋), and its
symmetry-related points. In this case, we are again inter-
ested in the range of fillings 𝑛 ∈ [0.6, 0.8] relevant to the
SC-dome where we always observe an incommensurate
structure. To better understand the analytical proper-
ties of the interaction, we have fit 𝑉 (q) with a sum of
four 2D Lorentzians

𝑉 (q) ≈
4∑︁

𝑠=1

𝑣max

𝜉2|q− qmax,𝑠|2 + 1
, (24)

where qmax,𝑠 denotes all points related to qmax = (𝜋, 𝜅𝜋)
by rotational symmetries, and 𝜉, 𝜅, and 𝑣max are fit-
ting parameters obtained by a least-squares fit to the
data. The symmetry of 𝑉 (q) and its associated fit per-
mit us to look along one cut of the 2D-momentum space
q = (𝑞𝑥, 1)𝜋 as shown in Fig. 14(a). As the filling is in-
creased for fixed Ω = 𝑡, and 𝑇 = 0.07𝑡, we see that the
ordering vectors approach qmax = (𝜋, 𝜋) and the effective
interaction peak value 𝑣max becomes increasingly larger.
The real-space structure of the effective interaction

can be obtained form the Fourier transform 𝑉 (r) =
𝑁−1

∑︀
q∈BZ 𝑉 (q)eiq·r. Applying this procedure to the

Lorentzian fits gives a functional form

𝑉 (r) ≈ 𝑣max

𝜋𝜉2
𝑅(𝑟𝑥, 𝑟𝑦)𝐾0

(︂ |r|
𝜉

)︂
(25)

where r = (𝑟𝑥, 𝑟𝑦), 𝑅(𝑟𝑥, 𝑟𝑦) = cos(𝜋𝑟𝑥 + 𝜋𝑟𝑦)[cos(|𝜅 −
1|𝜋𝑟𝑥)+cos(|𝜅−1|𝜋𝑟𝑦)], and 𝐾𝜈(𝑧) is the modified Bessel
function of the second kind with 𝜈 = 0. The effec-
tive interaction 𝑉 (r) obtained from our self-consistent
Migdal calculations and its corresponding fits are plotted
in Fig. 14(b) along the 𝑟𝑥-axis, extending from the origin
to a point where the effective interaction amplitudes ta-
per off. At low filling the interaction 𝑉 (r) is noticeably
weaker and has a shorter estimated range 𝜉 ≈ 0.5 (lattice
spacing 𝑎 = 1) making it essentially local in extent. As
the filling increases, we see the emergence of oscillatory
behavior and a more extended effective interaction. Be-
tween 0.7 ≤ 𝑛 ≤ 0.8, on the decreasing side of the 𝑇𝑐

dome, the correlation length approximately ranges from
2.3 ≤ 𝜉 ≤ 5.7.
A recent paper101 by Langmann et al. proposed that

a superconducting dome is not necessarily associated
with competing orders or exotic superconductivity, but
instead can be the result of a finite-range potential.
Notably, they used a few phenomenological forms in

real space for these finite-range potentials without self-
consistently renormalizing them at different fillings across
the dome. Although we observe a finite-range potential
and a 𝑇𝑐-dome, we cannot deduce such a causation be-
tween them within our approach. As was discussed in
the previous section, the filling dependence of the inter-

acting DOS 𝑁(𝜔), the coupling 𝜆𝛼2𝐹 , and 𝜔log support
the role of competing orders for our problem. Moreover,
the real-space structure of the effective interaction is di-
rectly linked to the formation of a q-dependent phonon
dispersion due to the formation of long-range CDW cor-
relations.

Comparison to Previous Findings

Although we do not aim to present a comprehensive re-
view of the literature surrounding the Holstein model and
Holstein-like models, there are some other studies whose
results can further contextualize the relevant physics in
these models. For instance, some features of the tem-
perature filling phase diagram have been explored by
using different approaches such as the modified varia-
tional Lang-Firsov transformation,27 strong-coupling ex-
pansions,102 and QMC.92 These studies are not explicitly
focused on the weak-coupling regime where the Migdal
approximation is most applicable, but there are some
similarities worth noting.
In Ref. 27, a large CDW dome near half-filling and

a small SC phase at lower fillings are found; however,
in the phase diagram there are additional inhomoge-
neous phases including a CDW+NO phase (consisting
of phase separated CDW and Non-Ordered regions) and
a CDW+SC phase (consisting of phase separated CDW
and SC regions). On the other hand, Ref. 57 found in
the phase diagram a homogeneous supersolid (SS) phase
where the CDW and SC orders coexist. It is beyond the
scope of the present work to study the SS phase since
it requires considering coexisting CDW and SC orders in
the symmetry broken states. However, such an investiga-
tion is possible using our theory and numerical implemen-
tation after considering the anomalous Green’s function.
In the range of parameters used, we did not observe any
indication of phase separation for the Holstein model. A
phase separation transition is an analog to the condensa-
tion transition between gas and liquid. In lattice models,
it was first studied and observed in the extended Hubbard
model103–105 with a nearest-neighbor Hubbard interac-
tion, later in the Hubbard model,106,107 and in a 𝑒-𝑝ℎ
coupled case, the Hubbard-Holstein model.108,109 Unlike
CDW order, for a phase separation transition 𝜒CDW(q)
diverges at q = 0. Therefore, for an anisotropic 𝑒-𝑝ℎ
coupling with strong forward scattering, it is possible to
find a phase separation transition.110 We note that we
do see indications for this physics for our buckling mode
case.

Two previously mentioned references92,102 focus on the
addition of anharmonic phonon oscillations and find that
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anharmonicity enhances the overall size and spread of
the SC region of the phase diagram. However, the maxi-
mum 𝑇𝑐 is not enhanced significantly beyond that of the
maximal values attained in the truly harmonic (Holstein)
model. This result parallels the changes we discussed in
section IVB when diagonal hopping is permitted. Al-
though setting 𝑡′ ̸= 0 enhances the pairing (and thus
𝑇 SC
𝑐 ) relative to 𝑡′ = 0, the improvement in the greatest

value of 𝑇 SC
𝑐 is modestly small.

V. SUMMARY AND CONCLUSIONS

We have presented a detailed analysis of the Holstein
model within a fully self-consistent Migdal approxima-
tion, where both the renormalization of the electron and
phonon properties are treated on an equal (approximate)
footing. Using an efficient implementation based on fast
Fourier transforms, we were able to simulate the model
on lattice sizes much larger than those considered in
the past. Our results revealed significant finite size ef-
fects when determining the CDW transition tempera-
tures. This result should be kept in mind when simulat-
ing the Holstein model using numerically exact methods
such as QMC that are limited to smaller lattice sizes.

Comprehensive phase diagrams were mapped as a
function of filling, revealing a mix of expected and unex-
pected features. For large phonon frequencies, the dom-
inant CDW ordering vector occurs at qmax = (𝜋, 𝜋);
however, at smaller frequencies, superconducting 𝑇𝑐’s are
lowered sufficiently far to allow an incommensurate CDW
phase to occupy a small range of fillings adjacent to the
commensurate CDW phases near half-filling. The 𝑠-wave
superconducting phase was present at lower values of the
filling and was enhanced with increasing Ω. Moreover,
the filling dependence of 𝑇 SC

𝑐 was non-monotonic with a
peak near 𝑛 ≈ 0.7. We addressed the possible factors re-
sponsible for this dome by studying the filling dependence
of the interacting DOS, the renormalized 𝑒-𝑝ℎ coupling,
and 𝜔log, and found that all three have competing ef-
fects on the pairing. The DOS around the Fermi-surface
exhibits non-monotonicity akin to 𝑇 SC

𝑐 across the same
range of 𝑛, while the renormalized 𝑒-𝑝ℎ coupling and the
𝜔log increased and decreased over this range respectively.
The latter two changes generally enhance and suppress
pairing correlations, respectively, hence, they provide a
measure of the competition. Characterization of the ef-
fective electron-electron interaction 𝑉 over both momen-
tum and position space show that a very local (short
range) interaction becomes further extended by several
lattice constants as 𝑛 approaches half-filling. We cannot,
however, attribute the origin of our superconducting 𝑇𝑐

dome to this finite-range interaction in contrast to other
approaches.101

The addition of a nonzero NNN hopping 𝑡′ < 0 (𝑡′ > 0)
to the electronic band promotes larger pairing correla-
tions in the SC phase for 𝑛 < 1 (𝑛 > 1) and suppresses
the charge density correlations. Asymmetry in the phase

diagram across the full range of filling is consistent with
the asymmetry in the DOS due to 𝑡′ ̸= 0 which makes
more states available for pairing at fillings away from
half-filling. Moreover, the NNN hopping also weakens
nesting at the Fermi surface, which in turn suppresses
the CDW and thus reduces competition between the SC
and CDW phases. In addition, anisotropic 𝑒-𝑝ℎ cou-
plings and the corresponding correlations are compared.
Lastly, we showed that 𝑔(q) modeling the breathing and
buckling oxygen modes in the high-𝑇𝑐 cuprates induce a
much larger range of charge density correlations and a
suppression of superconductivity relative to the isotropic
coupling.
Implementation of the fully self-consistent Migdal-

Eliashberg equations has been made freely available to
the public.81
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Appendix A: Fast Fourier Transform of Physical
Quantities

We consider the Fourier transform

𝑓(r, 𝜏) =
1

𝑁𝛽

∑︁
k

∞∑︁
𝑛=−∞

ei(k·r−𝜔𝑛𝜏)𝑓(k, i𝜔𝑛), (A1)

where we choose the plane wave ei𝑘·𝑥 = ei(k·r−𝜔𝑡) =
ei(k·r−𝜔𝑛𝜏), and the inverse Fourier transform

𝑓(k, i𝜔𝑛) =
∑︁
r

∫︁ 𝛽

0

d𝜏 e−i(k·r−𝜔𝑛𝜏)𝑓(r, 𝜏). (A2)

Note that 𝜔𝑛𝜏 = 𝜔𝑡 because the mappings between
imaginary and real time-frequency variables are 𝜏 → i𝑡
and i𝜔𝑛 → 𝜔, respectively. Since the summations of
k and r range over the discretized first Brillouin zone
and the lattice sites R𝑖, respectively, the discrete Fourier
transform using FFT is straightforward. Therefore, we
need only discuss FFT between time and frequency do-
mains. As such, r and k arguments will be suppressed
in the function 𝑓 which stands for the Green’s function
𝐺, self-energy Σ, the effective interaction 𝑉 , or the ir-
reducible susceptibility 𝜒0. As stated in the main text,
𝜔𝑛 = (2𝑛 + 1)𝜋/𝛽 is fermionic Matsubara frequency in
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𝐺(i𝜔𝑛) and Σ(i𝜔𝑛), and 𝜔𝑛 = 2𝑛𝜋/𝛽 is bosonic Mat-
subara frequency in 𝑉 (i𝜔𝑛) and 𝜒0(i𝜔𝑛). In the self-
consistent iterations, we perform a FFT on 𝐺(i𝜔𝑛) and
𝑉 (i𝜔𝑛), and an iFFT on Σ(𝜏) and 𝜒0(𝜏).
For a practical calculation using the FFT we must

use a finite number of Matsubara frequencies in the
sum. The uniform fermionic and bosonic Matsubara fre-
quency grids 𝜔𝑛 = (2𝑛+ 1)𝜋/𝛽 and 𝜔𝑛 = 2𝑛𝜋/𝛽, where
−𝑁𝑐 ≤ 𝑛 ≤ 𝑁𝑐 − 1, are used in the sum for 𝐺(i𝜔𝑛) and
𝑉 (i𝜔𝑛), respectively. Since 𝐺(i𝜔𝑛) ∼ 𝒪( 1

𝜔𝑛
) for large

frequency, the Fourier transform featured in Eq. (A1)
has convergence issues for 𝐺(i𝜔𝑛) (see the discussion
in the last part of Chapter 3 in Ref. 33). Therefore,

we subtract a function 𝐺𝜉
0(i𝜔𝑛) = 1/(i𝜔𝑛 − 𝜉) with the

same large frequency dependence as 𝐺(i𝜔𝑛), use the fact

that 𝛽−1
∑︀∞

𝑛=−∞ e−i𝜔𝑛𝜏𝐺𝜉
0(i𝜔𝑛) = −e(𝛽−𝜏)𝜉/(e𝛽𝜉+1) for

𝜏 > 0, and obtain the final formula for the Fourier trans-
form

𝐺(𝜏 > 0) =
1

𝛽

𝑁𝑐−1∑︁
𝑛=−𝑁𝑐

e−i𝜔𝑛𝜏 �̃�(i𝜔𝑛)−
e(𝛽−𝜏)𝜉

e𝛽𝜉 + 1
, (A3)

where �̃�(i𝜔𝑛) = 𝐺(i𝜔𝑛) − 𝐺𝜉
0(i𝜔𝑛). Any constant value

𝜉 can be used, provided that |𝜉| ≪ 𝜔𝑛=𝑁𝑐
. In our cal-

culations, we use 𝜉 = 𝜉k, i.e., the band dispersion. This
choice is usually more accurate and requires smaller cut-
off number 𝑁𝑐 than other choices. Setting 𝜉 = 0, one
recovers the familiar formula

lim
𝜏→0

𝐺(𝜏) =
1

𝛽

𝑁𝑐−1∑︁
𝑛=𝑁𝑐

𝐺(i𝜔𝑛)−
1

2
sgn 𝜏. (A4)

which is Eq. (17.36) on page 153 of Ref. 33.
For iFFT, we must reformulate the Fourier inte-

gral transform 𝑓(i𝜔𝑛) =
∫︀ 𝛽

0
d𝜏 ei𝜔𝑛𝜏𝑓(𝜏) into a discrete

Fourier transform. The pitfall and the method for do-
ing this are discussed in Chapter 13.9 of Ref. 111 and in
Chapter 2.10.2 of Ref. 112. As mentioned in the main
text, the correct way to accomplish this task is to com-
pute the Fourier integral exactly after interpolating 𝑓(𝜏)
on the discrete 𝜏 grid using a continuous function such
as spline or piecewise polynomial. Here, we choose the
piecewise polynomial (Lagrange polynomial) and provide
the explicit formula for the second (quadratic) order,
which appears to be absent from literature.

Denote 𝛿 = 𝛽/𝑁𝜏 , the 𝜏 grid 𝜏𝑙 = (𝑙 − 1)𝛿, where

1 ≤ 𝑙 ≤ 𝑁𝜏 + 1, 𝑓𝑙 = 𝑓(𝜏𝑙), and 𝑓𝑙 = ei𝜔𝑛𝜏𝑙𝑓(𝜏𝑙). If the
discontinuity exists at 𝜏 = 0 and 𝛽, the end points should
be understood as 0+ and 𝛽−. The quadratic Lagrange
polynomial used for interpolation is

𝑓(𝜏) ≈ 𝑓𝑙
(𝜏 − 𝜏𝑙+1)(𝜏 − 𝜏𝑙+2)

(𝜏𝑙 − 𝜏𝑙+1)(𝜏𝑙 − 𝜏𝑙+2)

+ 𝑓𝑙+1
(𝜏 − 𝜏𝑙)(𝜏 − 𝜏𝑙+2)

(𝜏𝑙+1 − 𝜏𝑙)(𝜏𝑙+1 − 𝜏𝑙+2)

+ 𝑓𝑙+2
(𝜏 − 𝜏𝑙)(𝜏 − 𝜏𝑙+1)

(𝜏𝑙+2 − 𝜏𝑙)(𝜏𝑙+2 − 𝜏𝑙+1)
, (A5)

where 𝜏𝑙 ≤ 𝜏 ≤ 𝜏𝑙+2. Using the above interpolating func-
tion, the final result for the Fourier integral transform
is

𝑓(i𝜔𝑛) = (𝑐1 + 𝑐2 + 𝑐3)

𝑁𝜏∑︁
𝑙=1

𝑓𝑙 − (𝑝3 + 𝑐3)𝑓Δ

+ (𝑠1 − 𝑐2 + 𝑝3)𝑓1 + (𝑠2 − 𝑐3)𝑓2 + 𝑠3𝑓3

+ 𝑝1𝑓𝑁𝜏−1 + (𝑝2 − 𝑐1)𝑓𝑁𝜏 , (A6)

where

𝑓Δ = 𝑓(𝜏 = 0+)− 𝑓(𝜏 = 0−) = 𝑓1 − 𝑓𝑁𝜏+1,

𝑐1 =
𝛿

4
(𝐼22 − 3𝐼12 + 2𝐼02), 𝑐2 = −𝛿e−i𝜔𝑛𝛿

2
(𝐼22 − 2𝐼12),

𝑐3 =
𝛿e−2i𝜔𝑛𝛿

4
(𝐼22 − 𝐼12), 𝑠1 =

𝛿

4
(𝐼21 − 3𝐼11 + 2𝐼01),

𝑠2 = −𝛿e−i𝜔𝑛𝛿

2
(𝐼21 − 2𝐼11), 𝑠3 =

𝛿e−2i𝜔𝑛𝛿

4
(𝐼21 − 𝐼11),

𝑝1 =
𝛿ei𝜔𝑛𝛿

4
(𝐼21 − 𝐼11), 𝑝2 = −𝛿

2
(𝐼21 − 𝐼01),

𝑝3 =
𝛿e−i𝜔𝑛𝛿

4
(𝐼21 + 𝐼11),

and 𝐼𝑣𝑢 =
∫︀ 𝑢𝛿

0
d𝑥 ei𝜔𝑛𝑥𝑥𝑣/𝛿𝑣+1, (𝑣 ∈ {0, 1, 2}), for which

the closed analytical form can be found using integration
by parts. At this point, the sum in Eq. (A6) is suitable
for evaluation by a FFT.
Note that for 𝜔𝑛 = 0 (only for bosonic frequencies),

we should use 𝐼𝑣𝑢 = 𝑢𝑣+1/(𝑣 + 1) and thus (𝑐1, 𝑐2, 𝑐3) =
(1, 4, 1)𝛿/6, (𝑠1, 𝑠2, 𝑠3) = (𝑝3, 𝑝2, 𝑝1) = (5, 8,−1)𝛿/24.
Then Eq. (A6) becomes the usual composite Simpson’s
rule that applies to both even and odd number of inter-
vals:

𝑓(i𝜔𝑛 = 0) = 𝛿

[︂
3

8
𝑓1 +

7

6
𝑓2 +

23

24
𝑓3 +

𝑁𝜏−2∑︁
𝑙=4

𝑓𝑙 +
23

24
𝑓𝑁𝜏−1

+
7

6
𝑓𝑁𝜏

+
3

8
𝑓𝑁𝜏+1

]︂
, (A7)

which is a formula also found in Ref. 111.

Appendix B: Linearized Isotropic Gap Equation and
Modified McMillan 𝑇𝑐 Formulas

The linearized isotropic gap equation is given by99,113

Φ𝑛 =
∑︁
𝑛′

𝐾𝑛,𝑛′Φ𝑛′ , (B1)

where 𝐾𝑛,𝑛′ = 𝜋𝑇 (𝜆𝑛,𝑛′ − 𝜇*)/(|𝜔𝑛′ |𝑍𝑛′), 𝑍𝑛 = 1 +
(𝜋𝑇/𝜔𝑛)

∑︀
𝑛′ 𝜆𝑛,𝑛′𝜔𝑛′/|𝜔𝑛′ |, and 𝜆𝑛,𝑛′ is given by the

Eliashberg spectral function 𝛼2𝐹 (𝜔)

𝜆𝑛,𝑛′ =

∫︁ ∞

0

d𝜔
2𝜔𝛼2𝐹 (𝜔)

(𝜔𝑛 − 𝜔𝑛′)2 + 𝜔2
. (B2)
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Here, 𝜔𝑛 and 𝜔𝑛′ are the fermionic Matsubara frequen-
cies. The frequency dependent gap function is defined as
Δ𝑛 = Φ𝑛/𝑍𝑛. In this work, we set Coulomb pseudopo-
tential 𝜇* = 0 when solving the linearized gap equation
for 𝑇𝑐, which is defined as the temperature when the
largest eigenvalue of the matrix 𝐾𝑛,𝑛′ reaches unity from
below.

The Allen-Dynes-modified McMillan (ADM) 𝑇𝑐 for-
mula99 for weak coupling strength reads

𝑇𝑐 =
𝜔log

1.2
exp

(︂
− 1.04(1 + 𝜆)

𝜆− 𝜇*(1 + 0.62𝜆)

)︂
. (B3)

For intermediate coupling strength, Allen and Dynes
further modified the above formula with two additional

coefficients 𝑓1 and 𝑓2. The corresponding 𝑇𝑐 formula99

(ADM+𝑓) is given by

𝑇𝑐 =
𝑓1𝑓2𝜔log

1.2
exp

(︂
− 1.04(1 + 𝜆)

𝜆− 𝜇*(1 + 0.62𝜆)

)︂
, (B4a)

𝑓1 =

[︃
1 +

(︂
𝜆

2.46(1 + 3.8𝜇*)

)︂3/2
]︃1/3

, (B4b)

𝑓2 = 1 +
(𝜔2/𝜔log − 1)𝜆2

𝜆2 + [1.82(1 + 6.3𝜇*)(𝜔2/𝜔log)]2
. (B4c)

Here, 𝜔2 =
[︀
(2/𝜆)

∫︀∞
0

𝜔𝛼2𝐹 (𝜔)d𝜔
]︀1/2

and 𝜆 = 𝜆𝑛,𝑛 =

𝜆𝛼2𝐹 . Again, it should be noted that we set 𝜇* = 0 when
calculating 𝑇𝑐.
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