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We compute specific heat C(T ) in a strongly hole-doped Fe-based superconductor, like KFe2As2, which has
only hole pockets. We model the electronic structure by a three-orbital/three pocket model with two smaller
hole pockets made out of dxz and dyz orbitals and a larger pocket made out of dxy orbital. We use as an input
the experimental fact that the mass of dxy fermion is several times heavier than that of dxz/dyz fermions. We
argue that the heavy dxy band gives the largest contribution to the specific heat in the normal state, but the
superconducting gap on the dxy pocket is much smaller than that on dxz/dyz pockets. We argue that in this
situation the jump of C(T ) at Tc is determined by dxz/dyz fermions, and the ratio (Cs − Cn)/Cn is a fraction
of that in a one-band BCS superconductor. At T < Tc, C(T ) remains relatively flat down to some T ∗, below
which it rapidly drops. This behavior is consistent with the data for KFe2As2 and related materials. We use
one-parameter model for the interactions and fix this only parameter by matching the experimental ratio of the
gaps on the two dxz/dyz pockets. We argue that the resulting parameter-free model reproduces quantitatively the
data on C(T ) for KFe2As2. We further argue that the very existence of a finite T ∗ < Tc favors s+− gap structure
over d−wave, because in the latter case T ∗ would almost vanish.

Introduction. Rich physics of Iron-based supercon-
ductors (FeSC) continues to attract strong attention from
the condensed-matter community [1–13]. One of the most
debated issues in the field is the strength of correlations.
On one hand, FeSCs have Fermi surfaces, and most display
a metallic, Fermi-liquid like behavior in some temperature
range above superconducting Tc. On the other, there is a
clear distinction between the observed electronic structure
and the one obtained by first-principle calculations for free
fermions. Some researchers believe that this difference can
be accounted for by including the momentum-dependent
self-energy [14], which modifies the dispersion but leaves
fermions and their collective degrees of freedom fully co-
herent (this is often termed as ”itinerant scenario”, see e.g.,
Ref. [9, 15]). Others argue that at energies relevant to super-
conductivity and competing orders, fermions can be viewed
as correlated yet itinerant, but collective magnetic excita-
tions should be viewed as at least partly localized (a ”Hund
metal scenario”, see, e.g., Ref. [16, 17]). And others further
argue [18, 19] that electronic excitations should be viewed
as itinerant on some Fe-orbitals and as nearly localized on
other orbitals (an ”orbital selective Mottness” scenario).

From the perspective of Mott physics, the best candidates
to display Mott behavior are strongly hole-doped FeSCs,
like KFe2As2 [20–25], as for these systems the tendency to-
wards electron localization has been argued to develop at a
smaller Hubbard U (Ref. [18, 19]). Low-energy fermionic
states in KFe2As2 are composed of fermions from three or-
bitals, dxy, dxz, and dyz, the last two are related by C4 sym-
metry [20]. Specific heat measurements in KFe2As2 have
shown that above superconducting Tc, specific heat coef-
ficient C(T )/T scales as a + bT 2, as expected in a metal,
but a is larger than in other FeSCs [25–30]. Because a is
proportional to the sum of the effective masses for differ-
ent bands, large value of a implies that at least one effective
mass is large. Within the Mott scenario, the mass enhance-
ment comes from frequency-dependent self-energy, Σ(ω).

This self-energy narrows the dispersion and simultaneously
reduces the quasiparticle residue Z, transferring 1− Z spec-
tral weight into Hubbard sub-bands. The effect is believed
to be the strongest for the band made of fermions from dxy
orbital [18, 19]. However, band narrowing and accompa-
nying mass enhancement can be also caused by innocuous
reasons like smaller hopping integral for dxy fermions or
closeness to a Van-Hove singularity (see [31] and refer-
ences therein). In the latter case, large value of the spe-
cific heat coefficient can be understood already within the
itinerant scenario. ARPES data do indeed show [31–33]
that the dxy band is more narrow than the bands made by
fermions from dxz and dyz orbitals, but Hubbard sub-bands
have not been yet detected in KFe2As2. Furthermore, some
ARPES data on KFe2As2 and other FeSCs show that dxy
excitations are as sharp as excitations from dxz/dyz bands
[21, 34]. This makes the interpretation of specific heat data
above Tc somewhat ambiguous.

In this communication we analyze whether one can sepa-
rate between Mott and itinerant scenarios by analyzing spe-
cific heat data in the superconducting state. Given that dxy
fermions have the largest mass, i.e., the largest density of
states (DOS), there are four possibilities for system behav-
ior below Tc. They are depicted in Fig. 1. One possibil-
ity (panel (a)) is that superconductivity predominantly de-
velops on the heavy dxy orbital because of larger DOS. If
this is the case, the system’s behavior is the same as in
a one-band superconductor: the specific heat jump at Tc,
δC/Cn = (Cs−Cn)/Cn, is of order one, and C(T ) varies as a
function of a single variable T/Tc below Tc. Another (panel
(b)) is that superconductivity develops at Tc on dxz/dyz or-
bitals, but the temperature dependence of C(T ) below Tc
is still determined by the heavy dxy orbital. In this situa-
tion δC/Cn is small, but C(T ) below Tc is the same as in
panel (a). The third possibility (panel (c))is that not only
(Cs − Cn)/Cn at Tc but also the behavior of C(T ) in some
T range below Tc is determined by dxz/dyz orbitals, while
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FIG. 1. Four different scenarios for the behavior of C(T )/T in the three-pocket model with light dxz/dyz bands and a heavy dxy band. (a)
the specific heat both above and below Tc is determined by the dxy band; (b) The specific heat jump is defined by the gap opening on
dxz/dyz bands, but T dependence of C(T ) below Tc is still determined by the dxy band; (c) The specific heat jump at Tc and the behavior
at Txy < T < Tc is determined by dxz/dyz bands, while the contribution to C(T ) from the dxy band remains the same as in the normal state
(the dashed line). Below Txy, the gap on the dxy band becomes larger than T , and C(T )/T rapidly drops; (d) the case when Txy = 0.

fermions on the dxy orbital have smaller gap and can be
treated as non-superconducting down to Txy < Tc. In this
situation (Cs − Cn)/Cn is small, C(T )/T varies slowly be-
tween Tc and Txy towards a finite value (equal to normal
state C(T )/T for dxy fermions), and rapidly drops below
Txy. And the fourth possibility (panel (d)) is that fermions
on the dxy orbital do not pair down to T = 0, i.e., Txy = 0.

The data for KFe2As2 from several groups [25–30] show
that (i) the specific heat jump at Tc is much smaller than
the BCS value, (ii) between Tc and approximately Tc/6,
C(T )/T decreases rather slowly towards a finite value, (iii)
below Tc/6, C(T )/T rapidly drops and tends to zero at
T → 0. This behavior is consistent with the one in Fig.
1(c). We analyze whether this behavior can be understood
by just assuming that the dxy band is heavier than the other
two bands (and, hence, the DOS for this band is the largest),
or one needs to additionally include the reduction of quasi-
particle Z for the dxy band. A momentum/frequency in-
dependent Z can be absorbed into the renormalization of
the interactions involving dxy fermions, hence the issue is
whether mass/DOS variation between dxy and dxz/dyz bands
is sufficient to describe the data, or one needs to addition-
ally assume that the interactions involving dxy fermions are
weaker than the ones between dxz and dyz fermions.

We argue that the difference in the masses is sufficient to
describe the observed behavior. Namely, we obtain the be-
havior in Fig. 1(c) by analyzing the model of three Γ− cen-
tered dxz/dyz and dxy hole pockets in 2 Fe zone, and invoking
mass difference but keeping the interactions on all three or-
bitals comparable in strength. If Z on the dxy orbital is small
in KFe2As2, this will additionally reduce the value of Txy.
We note in passing that our theoretical scenario is different
from the one presented in Ref. [30] as we do not require
that KFe2As2 is close to a magnetic quantum criticality. It
is also different from the one in Ref. [26] where the temper-
ature evolution of C(T ) was largely attributed to the gaps on
hole barrels near (π, π) in 2 Fe zone. We emphasize that the
existing ARPES data didn’t detect superconducting gaps on
the hole barrels, but did detect the gaps on the three Γ−

centered hole pockets which we consider. Several earlier
works [28, 29] analyzed the behavior of C(T ) in KFe2As2
within the phenomenological two-gap model, constructed
in analogy with the two-gap model for MgB2 (Ref. [35]).
Our reasoning is similar to these works in the sense that we
have larger gaps on dxz/dyz pockets and a smaller gap on
Dxy pocket. On the other hand, our analysis is based micro-
scopic three-band model, and we reproduce experimental
C(T ) with no free parameters.

The model. The electronic structure of KFe2As2 in the
physical 2-Fe Brillouin zone consists of 3 hole pockets, lo-
cated at the Γ-point, and hole barrels near (π, π). There is no
evidence of superconductivity on the hole barrels, and we
neglect them in our analysis. Two inner Γ-centered pock-
ets are made out of fermions from dxz and dyz orbitals, and
the outer pocket is made out of fermions from dxy orbital
[20]. We take as an input that the dxy band has larger band
mass/DOS than dxz/dyz bands. We follow earlier works [36–
39] and describe superconductivity within the low-energy
model with H = H0 + Hint, where the quadratic Hamilto-
nian H0 is given by 2 × 2 matrix for dxz and a separate term
for dyz fermions, and Hint is the Hubbard-Hund interaction,

dressed by contributions from high-energy fermions.

To study superconductivity, we convert from orbital to
band basis, i.e., diagonalize the quadratic form to H0 =∑

k εc,kc†kck + εd,kd†k dk + ε f ,k f †k fk, where ck and dk are lin-
ear combinations of fermions from dxz and dyz orbitals, and
f -operators describe dxy fermions. The pairing interaction
has s-wave and d-wave components (see Ref. [37] and Sup-
plementary material (SM) for details). We focus first on s-
wave superconductivity and discuss d−wave pairing later.
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The pairing interaction in s−wave channel is

HS C =
∑

k,p,s,s′

[
Uccc†skc†s′−kcs′pcs−p + Uddd†skd†s′−kds′pds−p+

+Ucd

(
c†skc†s′−kds′pds−p + H.c.

)
+ U f f f †sk f †s′−k fs′p fs−p

+
(
U f cc†skc†s′−k fs′p fs−p + U f dd†skd†s′−k fs′p fs−p + H.c.

)]
,

(1)
where for circular hole pockets, bare interactions are Ucc =

Udd = Ucd = (U + J′)/2, U f f = U/2, and U f c = U f d = J′
2 .

After renormalizations from high-energy fermions, all cou-
plings become different, and, most important, U2

cd becomes
larger than UccUdd (Refs. [37, 38, 40]). This gives rise to
an attraction in the s+− channel.
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FIG. 2. Diagrammatic expressions for Gorkov’s gap equations.
Triangles with different filling represent SC vertexes on different
bands. Solid, dashed, and dotted lines represent c, d, f -fermions
respectively. Wavy lines represent interactions between fermions.

Superconductivity. Superconducting Tc and s−wave
gaps on the three Γ−centered hole pockets at T ≤ Tc are
obtained by solving the set of coupled linearized gap equa-
tions, presented in Fig. 2. In analytical form we have∆c

∆d
∆ f

 = −L

νcUcc νdUcd ν f U f c
νcUcd νdUdd ν f U f d
νcU f c νdU f d ν f U f f


∆c
∆d
∆ f

 , (2)

where L = ln Λ
Tc

, Λ - is the upper cutoff, and νc, νd, and ν f
are densities of states, proportional to the band masses. In
our case, νc ∼ νd, and ν f is larger. We present the full
solution for the gap in the SM and here show the result

for ~∆ = (∆c,∆d,∆ f )T =

(
1, α,−β νc

ν f

)T
to leading order in

νc,d/ν f , where α and β do not depend on ν f (see SM for ex-
act expressions). The key observation here is that the gap ∆ f
on the dxy pocket is small in the ratio of νc,d/ν f . This is the
consequence of the fact that s+− superconductivity develops
on c and d pockets (not to be confused with s+− pairing in
systems with both electron and hole pockets), while the gap

on the dxy pocket does not develop on its own, but rather
is induced by inter-orbital pairing interactions (∆ f scales
with U f c,U f d). Note that ∆ f is non-zero only when c and
d pockets are treated as non-equivalent, otherwise α = −1
and β = 0.

To minimize the number of parameters, below we
set Ucd,U f f ,U f c,U f d equal to their bare values in the
Hubbard-Hund model (see above) and use J = J′ = 0.4U
[39]. Then Ucd = 0.7U,U f f = 0.5U,U f c = U f d = 0.2U
[10, 41]. We model the renormalization of U2

cd − UcUdd
into a positive variable, necessary for s+− superconductiv-
ity, by a single parameter x, by setting Ucc = Ubare

cc (1− x) =

0.7U(1 − x),Udd = Ubare
dd (1 + x) = 0.7U(1 + x) We used

the experimental values νd/νc = 1.33, ν f /νc = 3.17 from
Ref. [30] and set x = 0.5 to match the experimental value
of α ≈ −0.4 (Ref. [20]). The same x gives βνc/ν f ∼ 0.06,
consistent with [20].

The specific heat. To calculate C(T ), we compute the
internal energy E(T ) above and below Tc and use C(T ) =

dE/dT . To obtain E(T ) we construct a BCS Hamiltonian
with anomalous terms with prefactors ∆c, ∆d, and ∆ f , and
diagonalize it. This yields

E(T ) = −
∑

i=c,d, f

νi

∫
dεi

ε2
i + ∆2

i /2√
ε2

i + ∆2
i

tanh

√
ε2

i + ∆2
i

2T
+ ...

(3)
where dots stand for temperature-independent terms. We
express ∆d and ∆ f via ∆c and E(T ) in powers of ∆c. To first
order in νc,d/ν f we obtain E(T ) = E(Tc)−(νc+νdα

2)|∆c|
2/2.

The contribution from the f band is small in νc,d/ν f de-
spite that the DOS for this band is large. Using ∆c(T ) ∝√

Tc − T , we then obtain that the magnitude of the jump of
the specific heat at Tc does not depend on ν f . The specific
heat above Tc, on the other hand, comes primarily from the
dxy band simply because DOS for this band is the largest.
As a result, δC/Cn ∝ νc,d/ν f is small, unlike in a one-band
BCS superconductor, where it is O(1). We present the full
expression for δC/Cn in the SM.

To obtain C(T ) below Tc, we assume, following [12]
that the ratios ∆d/∆c and ∆ f /∆c remain the same as near
Tc, and ∆c(T ) has the same temperature dependence as in
BCS superconductor. We then find from (3) that in the T
range where ∆ f (T ) ≈ −(βνc/ν f )∆c(T ) is smaller than T ,
the contribution to the specific heat from the dxy band re-
mains the same as in the normal state. As the consequence,
C(T )/T evolves from its maximal value right below Tc to a
finite value equal to the specific heat coefficient from non-
superconducting dxy band. This behavior changes below
T ∼ Txy, at which ∆ f (Txy) = Txy. At such low temperatures
the gap on the dxy band cannot be neglected, and the con-
tribution to the specific heat from this band rapidly drops,
and, as a result, C(T )/T rapidly drops towards zero value at
T = 0.

In Fig. 3 we show the result of numerical calculation of



4

the specific heat coefficient, using experimental values from
the DOS’s from Ref. [30]. The behavior is the same as pre-
sented schematically in panel (c) of Fig. 1, and agrees quan-
titatively with the experimental data for KFe2As2 (Refs.
[25, 28–30, 42–44]). We emphasize that we fixed the only
interaction parameter x by matching the measured [20] ratio
of ∆d/∆c, hence our C(T ) is obtained with no fitting param-
eters. We reproduce the experimental location of Txy, and
the overall behavior of C(T ) below Tc.
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FIG. 3. The result of the numerical evaluation of the specific heat
coefficient C(T )/(γT ) within our model (C(T ) = γT above Tc).
The dashed line shows C(T )/(γT ) for dxy orbital in the normal
state. The magnitude of the jump of C(T ) at Tc and the overall
behavior of C(T )/(γT ) below Tc agrees well with the experimental
data from [25, 28–30, 42–44].

d−wave pairing. Some experimental data, most
notably on the thermal conductivity [45, 46], have been
interpreted as evidence for d−wave pairing symmetry in
KFe2As2. This is in variance with laser ARPES study
[20, 24], whose results were interpreted as evidence for the
s−wave pairing. Theoretical results show that s−wave and
d−wave pairing components are both attractive and compa-
rable in strength, with RPA calculations [38] favoring s+−

superconductivity and early functional RG calculations [47]
favoring d−wave pairing. By all these reasons, it is instruc-
tive to analyze C(T ) for d−wave pairing.

Within our model of circular pockets, d−wave pairing in-
volves only c and d− pockets. The d−wave component of
the pairing interaction is

HS C =
∑

k,p,s,s′

[
Ũccc†skc†s′−kcs′pcs−p + Ũddd†skd†s′−kds′pds−p−

−Ũcd

(
c†skc†s′−kds′pds−p + H.c.

)]
cos 2φk cos 2φp,

(4)
where φk and φp are angles along the Fermi surfaces. At
the bare level (i.e., without integrating out high-energy
fermions) Ũcc = Ũdd = Ũcd = (U − J′)/2. There also
exists the sin 2φk sin 2φp interaction component, but it does
not give rise to new physics and we skip it. After renor-
malization Ũcc and Ũdd split, and, most importantly, Ũ2

cd
becomes larger than ŨccŨdd [48]. Like for the s+− case, the
enhancement of the inter-pocket pairing interaction gives

rise to an attraction and a non-zero Tc for d−wave pairing.
The matrix equation for the d−wave gap is

(
∆c
∆d

)
= −

L
2

(
νcŨcc −νdŨcd
−νcŨcd νdŨdd

) (
∆c
∆d

)
. (5)

Evaluating the eigenfunctions, substituting them into the
expression for the internal energy E(T ), and differentiat-
ing over T , we obtain the behavior as in panel (d) of Fig.
1. Namely, the jump δC/Cn at Tc is small, and C(T )/T
below Tc drops but tends to a finite value at T = 0, equal
to C(T )/T for non-superconducting dxy band. This does
not agree with the data, which clearly show that C(T )/T
drops below Txy < Tc. This result holds for arbitrary C4-
symmetric dispersion, as long as the interaction in the or-
bital basis is local, and the larger hole pocket can be approx-
imated as pure dxy. By all accounts (see e.g., Ref. [12]), the
admixture of dxz/dyz orbital states to the composition of this
pocket is very small (a percent), so Txy, even if finite, should
be truly small.

Conclusions. In this paper we studied the specific heat
of KFe2As2. We argued that C(T ) in the normal state is
chiefly determined by the heavy dxy pocket, however super-
conductivity predominantly involves dxz/dyz pockets, while
the gap on the dxy pocket is either induced, but is small (for
s−wave pairing), or not induced at all (for d−wave pair-
ing). This gives rise to the behavior when (i) the jump of
C(T ) at Tc is much smaller than the BCS value, and (ii)
below Tc specific heat coefficient C(T )/T initially evolves
towards a finite value, equal to normal state contribution
from dxy band. For s−wave pairing, C(T )/T eventually
drops below a certain Txy (Figs. 1 (c) and 3). If the pair-
ing is d−wave, Txy = 0 in our analysis, and is likely quite
small in a more general case. The experimentally detected
behavior of C(T )/T (Refs. [25, 28–30, 42, 43]) is more
consistent with s−wave pairing. We used the detuning of
interactions on dxz and dyz pockets from their bare values as
a single adjustable parameter to reproduce the data on gap
ratio on the two small pockets [20]. After that, our theory
has no free parameters. It reproduces the magnitude of the
jump at Tc, the shape of C(T )/T below Tc, and the value
of Txy. We emphasize that we did not assume that inter-
actions involving dxy fermions are additionally reduced due
to potentially small quasiparticle residue Z for fermions on
the dxy band. The reduction of Zxy under hole doping fol-
lows from quite solid theoretical arguments [17, 18], what
is less clear is whether the reduction is strong enough to af-
fect C(T ). If it is, the overall behavior of C(T )/T will not
change compared to our analysis, but Txy will decrease fur-
ther compared to Tc. A systematic study of C(T ) in doped
K1−xBaxFe2As2 is needed to determine the influence of Zxy
on the specific heat.
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