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We theoretically investigate the role of spin fluctuations in charge transport through a magnetic
junction. Motivated by recent experiments that measure a nonlinear dependence of the current on
electrical bias, we develop a systematic understanding of the interplay of charge and spin dynam-
ics in nanoscale magnetic junctions. Our model captures two distinct features arising from these
fluctuations: magnon-assisted transport and the effect of spin-transfer torque on the magnetocon-
ductance. The latter stems from magnetic misalignment in the junction induced by spin-current
fluctuations. As the temperature is lowered, inelastic quantum scattering takes over thermal fluctu-
ations, exhibiting signatures that make it readily distinguishable from magnon-assisted transport.

I. INTRODUCTION

The accurate electrical detection and control of the
spin degree of freedom of electrons remains a central
goal of spintronics. An early success of the field was
the demonstration of magnetoresistance in conducting
magnetic multilayers, allowing for the determination of
the magnetic state of a heterostructure via its electrical
resistance.1–3 Later shown was the possibility of writ-
ing magnetic states by the application of large current
densities.4–10 An electrical current traversing the struc-
ture becomes spin polarized by one magnetic layer and
exerts a spin-transfer torque (STT) on another11–13. If
the STT is large enough to overcome damping, it can
induce switching between magnetic states with differ-
ent electrical resistance, thereby paving the way for a
current-driven “write” complement to the “read” func-
tionality of magnetoresistance.14,15

In structures with large macrospins, it typically suffices
to characterize charge transport in linear response. How-
ever, as devices are scaled down and the spins of the com-
ponents become smaller, magnetic fluctuations become
increasingly important and can give rise to new interplays
between magnetic dynamics and electrical transport,
which may manifest through nonlinear charge transport
features.

One known example of this interplay is magnon-
assisted transport (MAT) originating from inelastic
electron-magnon scattering.16 A second effect stems from
changes in the magnetoresistance of a heterostructure
caused by STT-altered misalignments of the magnetic
components.17 While such misalignments arise from ther-
mal fluctuations at high temperatures, recent work has
argued that in nanostructures at low temperatures, such
an effect is quantum mechanical in nature.18

As both MAT and STT may manifest as zero-bias
kinks in the electrical response, a careful theoretical
treatment is necessary to distinguish these, as well as
to elucidate the nature (classical versus quantum) of the

STT in nanoscale junctions.19 Previous theoretical stud-
ies, such as quantum master equation approaches20, treat
quantum spin fluctuations, but focus on spin dynamics
rather than charge transport features. Others, including
a quantum Green’s function approach21, formally inte-
grate spin fluctuations and focus on the ensuing magne-
totransport.

In this paper, we develop a self-consistent treatment
for spin fluctuations coupled to the electrical response
of a magnetic heterostructure, incorporating the relevant
inelastic processes and including both thermal and quan-
tum fluctuations on equal footing. Developing a quantum
rate equation for magnetic dynamics, in particular, al-
lows for the phenomenological inclusion of dissipation to
the environment and the incorporation of pertinent non-
linearities. Our model allows for a parsing and compari-
son of the contributions of the different effects to overall
electrical response. Our approach yields simple, analytic
equations that, in addition to laying bare the underlying
physics, makes clear the temperature, bias and junction-
size regimes in which different effects dominate.

Our model offers two key insights. (1) While our re-
sults are compatible with the interpretation of [18], we
go beyond a phenomenological description of magnon
emission. The low-temperature STT predicted by our
model, which includes quantum fluctuations, results in
a zero-bias resistance kink. Our model also describes
the crossover from classical (thermal) STT at high tem-
peratures to the quantum behavior at low temperatures,
which is marked by a change in the resistance from a
monotonic dependence on bias to a local extremum. (2)
We show that both types of STT may be readily dis-
tinguished from MAT by reversing the relative magnetic
orientation in the junction, as well as by the bias scales on
which they appear. Additionally, we predict that both
MAT and STT give rise to a flat resistance at biases
smaller than the magnetic field energy, which may be
observed at higher fields.

The paper is organized as follows. In Sec. II, we start
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FIG. 1. Upper left figure: magnon-assisted transport (MAT).
Electrons excite or destroy magnons as the move across a het-
erostructure. Lower left figure: spin-transfer torque (STT)
alteration of the magnetoresistance. The STT alters fluctua-
tions of the spin S, affecting the 〈S〉 and thereby the magneto
conductance Gm. Right figure: MTJ schematic. The mag-
netic island does not hold charge, but the island spin S, which
is allowed to fluctuate, gives rise to spin-dependent hopping
between the left and right-leads.

.

by briefly discussing the physical processes behind MAT
and STT, after which we introduce our model Hamil-
tonian for spin-dependent electron transport, which we
generalize to include spin fluctuations. In Sec. III, using
the Kubo formula, we then compute the charge trans-
port resulting from this generalized Hamiltonian, includ-
ing both inelastic and elastic electron hopping. The in-
elastic current is MAT, while the elastic current includes
magnetoresistance, which depends on the magnetic state.
Next, in Sec IV we determine the steady-state magnetic
dynamics by computing the spin transfer rate (i.e., the
STT) from the same inelastic scattering processes; the
resulting expression for the magnetic steady-state is fi-
nally reinserted back into the current to give the full,
self-consistent charge dynamics. Finally, on the basis of
the resulting expression for the current, in Sec V we dis-
cuss the contributions of both STT and MAT to the non-
linear I − V curves over different ranges of temperature
and bias.

II. MODEL

Before introducing our model, we briefly discuss the
physics of MAT and STT. Consider a conducting mag-
netic junction, in contact with metallic reservoirs. Under
an electrical bias, electrons flow from one energy reser-
voir, across the junction, to the other. If the bias is large
enough, some of the electrons may undergo spin-flip scat-
tering, creating a magnetic excitation, a magnon, of the
magnetic components of the junction. The electron cor-

respondingly loses some energy to a magnon, entering a
lower energy state in the other energy reservoir (see up-
per left of Fig. 1). This inelastic transport, i.e. MAT,
has been shown to manifest as a zero-bias kink in the
electrical response.16,22–24

Meanwhile, the junction magnetoconductance Gm de-
pends generally on the relative orientations of magnetic
layers; because spin-fluctuations of the different layers
change, on average, the relative orientations of the layers,
the magnetoresistance obtains a correction δGm propor-
tional to the amplitudes of the fluctuations. Under a bias,
the STT may enhance or reduce the amplitude of the
spin-fluctuations,25–28 altering δGm and self-consistently
changing the current I flowing across the heterostructure.
As a result, the current may demonstrate a nonlinear
dependence on bias. At high temperatures, these spin-
fluctuations are thermal in nature (coresponding to clas-
sical STT). However, the dependence of the magnetocon-
ductance on bias has been observed as a zero-bias kink in
the differential resistance of a nanopillar spin valve, which
is known to persist at low temperatures.29,30 In [18], it
was argued that such features may arise from quantum
STT. Importantly, this STT incorporates spontaneous
magnon emission, which gives rise to a dependence of
the resistance on the absolute value |I| of the current,
thereby manifesting as the zero-bias kink: remarkably,
spin fluctuations are enhanced for both directions of cur-
rent, which stands in contrast to classical predictions.19

We now turn to the task of writing a minimal model
that captures both effects. To incorporate inelastic spin-
flip scattering of electrons naturally, we focus on a mag-
netic tunnel junction (MTJ) (oriented in a parallel or
antiparallel configuration). While some quantitative dif-
ferences in charge transport may arise between sequen-
tial tunneling and coherent electron transport through a
metallic devices such as that in Ref. [18], we expect our
results to be qualitatively generic (barring special fea-
tures associated with mesoscopic resonances, Coulomb
blockade, or any band-structure anomalies).

In our model the role of magnetization of one of the
leads is ascribed to the spin of a magnetic nano-island
connecting the leads (see right of Fig. 1), which gives rise
to spin-dependent charge transport through the junction
barrier. The island spin is allowed to fluctuate, coupling
magnetic fluctuations with charge transport. Charge
transport occurs between a metallic lead on the right
and a magnetic metallic lead on the left, between which
electrons map hop. We suppose that both leads are large
reservoirs whose properties are unaffected by transport,
with the magnetic polarization of the left-lead fixed in
the +z direction; in addition we suppose that the spin
of the left-lead is sufficiently large that its fluctuations
may be neglected. While the right-lead is nonmagnetic,
we consider the spins of electrons traversing the junction
to be coupled to the spin S of the magnetic island, which
connects the leads but does not hold electrons; the am-
plitudes for electron hopping from one lead to the other
thus depend on the orientation of the electron spin rela-
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tive to S. For a fixed, semiclassical S, the corresponding
tunneling Hamiltonian can be written generally:

ĤT =
∑
σσ′

∑
νν′

γ
(σσ′)
νν′ b̂†νσâν′σ′ +H.c. , (1)

where the amplitudes γ
(σσ′)
νν′ depend on the unit vector

n = S/S~ of the island spin, with S = |S|/~ as the is-

land spin. Here âν′σ′ and b̂νσ are annihilation operators
for electrons in left-lead eigenstate ν′ and spin σ′ and
right-lead eigenstate ν and spin σ, respectively; the in-
dices σ, σ′ =↑, ↓ denote spin orientations relative to the
z direction. Note that we do not include magnetism of
the left-lead in the tunneling Hamiltonian, Eq. (1), but
will subsequently include it through the left-lead density
of states. For a model isotropic in spin space, we may
expand in powers of n · σ̌, where σ̌ is a vector of Pauli
matrices, with ˇ. . . denoting 2 × 2 spin-structure. One
obtains the semiclassical expression:

γ̌νν′ = Aνν′ Ǐ +Bνν′n · σ̌ , (2)

(with Ǐ as the 2×2 identity) which is general in the
absence of magnetism in the leads and constitutes an
isotropic Kondo model.

To parametrize thermal and quantum fluctuations of
the tunnel island macrospin, we quantize S via the
Holstein-Primakoff transformation:

Ŝz ≡ ĉ†ĉ− S, Ŝ− ≡ Ŝx − iŜy =
√

2S − ĉ†ĉĉ ≈
√

2Sĉ ,
(3)

where ĉ is a bosonic magnon annihilation operator. We
will restrict ourselves to biases below the STT-induced
classical instability,12 so that the average direction of n
is fixed and fluctuations are incoherent: 〈ĉ〉 = 0. In writ-
ing Eq. (3), we have chosen the direction of 〈S〉 to be
oriented antiparallel (i.e. in the −z direction) to the left-
lead spin in equilibrium; thus a magnon, which carries
spin opposite to the spin order parameter, is associated
with a quantum +~z of angular momentum. (The other
case we will consider, the parallel orientation, may be
obtained by changing the sign of the left reservoir polar-
ization PL). For simplicity, we specialize to fluctuations
of the macrospin only, with higher energy magnon modes
assumed to be energetically inaccessible. In addition, we
restrict ourselves to a large spin S � 1 and small magnon
occupation numbers, N = 〈δŜz〉 = 〈ĉ†ĉ〉 � S, allowing
for the expansion of the radical in Eq. (3).

Writing n as S/S~ in Eq. (2) and inserting Eq. (3), we
find the tunneling Hamiltonian, Eq. (1), has two phys-
ically distinct contributions: HT ≈ He + Hi. The first
term,

He =
∑
σ=±

∑
ν,ν′

t̂
(σ)
νν′ b̂

†
νσâν′σ +H.c. , (4)

conserves magnon number and gives rise to elastic scat-
tering of electrons through the tunnel junction. Here,

t̂
(±)
νν′ = Aνν′ ∓ Bνν′ + 2Bνν′ ĉ†ĉ/S (with ± denoting spin

orientation in the positive (negative) z direction) cap-
ture mixing of the spin-dependent hopping amplitudes
by fluctuations of the island spin. The second term,

Hi =
1√
S/2

∑
νν′

Bνν′

(
ĉ†b†ν↓aν′↑ + ĉb†ν↑aν′↓

)
+H.c. ,

(5)

describes inelastic spin-flip processes in which magnons
are created or destroyed as electrons traverse the tun-
nel barrier. These terms, He and Hi, are field-theoretic
representations of STT and MAT, respectively.

III. CHARGE TRANSPORT

In this section, we compute the charge current I =

(−e)∑ν,σ ∂t〈b̂†νσ b̂νσ〉 = −(−e)∑ν,σ ∂t〈â†νσâνσ〉 into the
right-lead perturbatively to second order in the ampli-
tudes Aνν′ and Bνν′ (with e > 0 as the negative of the
electron charge), driven by an electrical bias across the
MTJ. We take as our unperturbed Hamiltonian H0 =∑
ν

(
εσν â

†
νσâνσ + εν b̂

†
νσ b̂νσ

)
+ ~Ωĉ†ĉ, where εσν and εν

are the left and right-lead single particle energies, respec-
tively, and Ω is the ferromagnetic resonance frequency of
the island spin. To simplify our model, we suppose the
leads are good spin reservoirs, so that no spin accumu-
lates there.

To second order in the tunneling amplitudes, we ob-
tain a charge current for both the parallel (〈S〉 oriented
in the z direction) and antiparallel (〈S〉 oriented in the−z
direction) configurations with elastic and inelastic contri-
butions,

I = Ie + Ii , (6)

respectively arising from He and Hi. Here

Ie = GV , Ii = (Gφ/e)∆~ΩS−1 [N− − ηPL (N+ −N)] ,
(7)

where V = VL − VR is the voltage bias. In the elastic
term, the conductance G depends on the magnon number
N and is given by G = G0 + ηGm(1−N/S), with

G0 ≡ Gφ
∑
νν′

A(+)
Lν′(εF )ARν(εF )(|Aνν′ |2 + |Bνν′ |2) ,

Gm ≡ 2Gφ
∑
νν′

A(−)
Lν′(εF )ARν(εF )Re [A∗νν′Bνν′ ] , (8)

where we have assumed a flat electronic density of states
near the Fermi surfaces εF of the leads. Here, Gφ =
2e2/h is the spin-degenerate quantum of conductance,
and η = ±1 for parallel (antiparallel) transport. Further-
more, ARν(ε) is the right-lead spectral function, while

A(±)
Lν′(ε) = (AL↑ν′(ε)±AL↓ν′(ε))/2, with ALσν′(ε) as the

spin-σ left-lead spectral function.
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In the inelastic term in Eq. (7), ∆ is a dimensionless
parameter quantifying inelastic charge transport:

∆ ≡ 2
∑
νν′

A(+)
Lν′(εF )ARν(εF )|Bνν′ |2 , (9)

which vanishes when the island is nonmagetic, while PL
is an effective left-lead polarization:

PL ≡ 2
∑
νν′

A(−)
Lν′(εF )ARν(εF )|Bνν′ |2/∆ . (10)

When magnetism of the island is turned off (Bνν′ = 0),
transport is elastic and the total charge current reduces
to I = G0V . Last,

N±(V ) ≡ 1

2~Ω
{nB (~Ω− eV ) [~Ω− eV ]

± nB (~Ω + eV ) [~Ω + eV ]} (11)

describes electron-hole excitations in the leads, with
nB [ε] = [eε/T − 1]−1 as a Bose-Einstein distribution, and
T the temperature in units of energy. The dependence
of Ii on V through the functions N±(V ) captures MAT,
i.e. the alteration of charge transport caused by the ab-
sorption or emission of a magnon energy quantum ~Ω by
an electron traversing the tunnel barrier.

The transport coefficients in Eq. (7) allow for a more
transparent parametrization in the simplifying case A =
Aνν′ and B = Bνν′ . There, PL reduces to traditional def-
inition of polarization, PL = (DL↑−DL↓)/(DL↑+DL↓),
where DLσ =

∑
ν′ ALσν′(εF ). Defining a complex is-

land polarization P ≡ B/A, one finds that G0 =
GφDLDR|A|2(1 + |P |2), Gm = 2G0Re[P ]PL/(1 + |P |2),
and ∆ = 2(G0/Gφ)|P |2/(1 + |P |2), where DL = (DL↑ +

DL↓)/2 and DR =
∑
ν A

(+)
Rσν(εF ) are the left-lead spin-

averaged and right-lead densities of states.

In the limit of infinite S, magnetic fluctuations of is-
land spin do not contribute to the current. Here, the
inelastic term in Eq. (6) vanishes, while the elastic term
reduces to the classical expression for current traversing
an MTJ with fixed orientations of the magnetic leads,
I = (G0 + ηGm)V , i.e. a linear dependence of I on V
that depends on the island orientation through η.

At finite S, however, the current depends nonlinearly
on the bias V through the electron-hole functions N±
and the magnon number N . The dependence of Gm on
N = S − 〈Ŝz〉/~ can be interpreted as a change in the
magnetoconductance δGm = (−N/S)Gm due to the av-
erage misorientation of the fluctuating island spin away
from left-lead polarization direction z. At zero bias, the
current vanishes if N = N+(0) = nB(~Ω) ≡ N0, i.e. the
magnons are in equilibrium with the electron-hole exci-
tations in the leads. At finite bias, however, N is driven
out-of-equilibrium and depends on V . To obtain the full
dependence of I on V , then, we turn to spin-transfer and
magnon dynamics.

IV. SELF-CONSISTENT SPIN DYNAMICS

In this section, we compute the bias dependence of the
magnon occupation number in the steady-state, which is
driven from equilibrium by the STT. The same inelas-
tic scattering processes described above drive magnetic
dynamics.17 The corresponding island spin dynamics can
be captured by a simple rate equation for the magnon
number:

~Ṅ = −2αp~Ω (N −N0) + Im , (12)

where Im is the rate of angular momentum transfer
to the island spin from the leads. The damping coef-
ficient αp parametrizes coupling of the spin S to the
lattice, which, in the absence of Im, equilibrates N to
N0. The spin current Im is obtained by calculating the
rate of change of the z-component of angular momen-

tum of the leads, I
(s)
L = (~/2)

∑
ν,σσ′ σzσσ′∂t〈â†νσâνσ′〉 and

I
(s)
R = (~/2)

∑
ν,σσ′ σzσσ′∂t〈b̂†νσ b̂νσ′〉, and exploiting con-

servation of total z-spin by HT , i.e. Im = −I(s)L − I(s)R .
One obtains again to second order:

Im = −2αe~Ω (N −N+) + 2αePL (N−~Ω +NV ) , (13)

where αe = ∆/Sπ, so that electron fluctuations become
increasingly important with decreasing junction size ∼ S.
The first term, ∝ N − N+ = (1 + N+)N − N+(1 + N),
is the difference between the rate of electron-hole emis-
sion/magnon absorption (∝ 1 + N+) and the rate of
magnon emission/electron-hole absorption (∝ 1 + N),
and is nonzero due to the noncancellation of the spon-
taneous magnon and electron-hole emission terms. At
zero bias, the second term in Eq. (13) vanishes, leaving

~Ṅ = −2(αe + αp)~Ω(N −N0); here the rate of change
of the magnon occupation number is the difference be-
tween the emission rate due to driving by fluctuations of
phonons and electron-holes in the leads, and the absorp-
tion rate corresponding to dissipation of the magnetic
dynamics back into the leads and lattice.

In the steady-state (Ṅ = 0), the out-of-equilibrium
magnon number is given by N = Ns(V ), with

Ns(V ) = γN0 + γÑ , (14)

which is plotted in Fig. 2. Here γ = 1/(1 + V/Vc) and

Ñ = (αe/αp)(N+(V ) − N0 − PLN−(V ))/(1 + αe/αp).
The quantity Vc = η(1 + αp/αe)~Ω/ePL is the voltage
threshold for the so-called “swasing” instability;12 we re-
strict ourselves to biases |V | < Vc. The deviation of the
magnon population away from the equilibrium value N0

may interpreted as STT-induced alteration of the mag-
netic state of the island. The first term in Eq. (14) repre-
sents thermal fluctuations N0 of S, which are enhanced
by a factor γ by STT; when PL = 0, Vc diverges, and
this term no longer depends on V . The second term in
Eq. (14), which vanishes at V = 0, is an effective STT
arising from inelastic electron-magnon scattering. This
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FIG. 2. Left figure: steady-state magnon number Ns,
Eq. (14), versus bias V for T/~Ω = 0 (blue) to 10 (red) in units
of 1, for the antiparallel MTJ configuration with αp/αe = 25.
The symmetry between positive and negative V is broken
by the left-lead polarization PL = 0.2. Employing the pa-
rameterization from the discussion below Eq. (11) and taking
P = PL, one has ∆(Gφ/G0) = (Gm/G0) = P 2/(1 + P 2).
At high-temperatures, the STT gives rise to a monotonically
increasing magnon occupation number, while at low tempera-
tures, a minimum near zero bias is formed. Upper right inset:
electron/hole pairs giving rise to spin and charge transport at
zero temperature.

.

term survives at PL = 0, as impinging out-of-equilibrium
electrons are known to depolarize spin even without a
polarizing layer,31 acting as an effective heating of the
ferromagnetic island spin.32 In the limit of infinite S, one
has αe and therefore Vc diverge, so Ns(V ) is fixed at N0,
and S is no longer altered by the STT.

According to Eq. (14), two types of temperature
regimes for STT may be distinguished. At high temper-
atures where N0 � Ñ so N ≈ γN0, classical STT dom-
inates, and N depends monotonically on V/Vc. Here,
the bias dependence of N thus arises from the STT-
alteration of thermal fluctuations of S. At low tem-
peratures where N0 � Ñ , the classical interpretation
of STT-enhanced thermal fluctuations of S no longer
holds, and quantum STT dominates. Since Ñ/N0 ∼
(αe/αp)/(1 + αe/αp) ∼ 1/(const + S), the classical-
to-quantum transition occurs at lower temperatures for
larger S, suggesting that such a quantum effect will man-
ifest only in sufficiently small junctions or sufficiently low
temperatures. Even as T → 0, where N0 = 0, the junc-
tion exhibits a nonlinear electrical response. This zero
temperature, quantum STT can be understood as fol-
lows. Thermal fluctuations of S and electron-hole pairs
within each lead freeze out. However, electron-hole pairs
across the junction, split by V , are available for inelastic
magnon scattering (see schematic, right side of Fig. 2):
because nB (~Ω± eV ) = −Θ (∓eV − ~Ω) at zero tem-
perature, where Θ(x) is the step function, the electron-
hole functions N± are nonzero when e |V | > ~Ω. These

pairs drive a nonequilibrium magnon population γÑ ,
which can be interpreted as the generation of an effec-
tive nonzero magnon temperature.32

T
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�10 10
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FIG. 3. Plot of the ratio of r = G′STT/G′MAT as a function
of bias V and temperature T , demonstrating the relative im-
portance of STT to MAT in the nonlinear charge transport
features. MAT dominates over STT at low temperatures and
biases. Blue (red) contours correspond MAT (STT) domi-
nating, i.e. to r < 1(r > 1) in steps of 1/2. The black,

solid lines correspond to N0 = Ñ ; at temperatures above this
line, N0 > Ñ and classical STT-driven thermal fluctuations
dominate the response GSTT; below, Ñ > N0, and inelastic-
scattering dominates. The parameters are the same as Fig. 2,
so S/Sc = 25. Upper left and right insets: r for S/Sc = 250
and S/Sc = 2.5 respectively, with the same axes-scale as the
main figure. For S < Sc, r no longer depends on S; for
S � Sc, MAT dominates over STT for a larger range of tem-
peratures and biases, reflecting the decreased importance of
fluctuations of S.

V. ELECTRICAL RESPONSE OF MTJ

Let us summarize our key results: Eqs. (6), (7)
and (14). In order to obtain the full dependence of the
current on voltage, we insert N = Ns(V ) into Eq. (6).
Two effects give rise to a nonlinear relationship between
I and V : MAT (dependence of Ii on V via N±(V )) and
STT (dependence of I on V via the magnon distribution
N). In an experiment, these effects may manifest as non-
linear features in, e.g., the electrical resistance R = V/I.
In order to parse which effect dominates the nonlinear-
ity in R at a given temperature and bias, it is helpful to
write the differential conductance G = dI/dV as:

G = G0 + ηGm + GMAT + GSTT , (15)

where GMAT ≡ ∂V Ii|N=Ns(V ) is the differen-

tial conductance arising from MAT and GSTT ≡
∂NI|N=Ns(V ) ∂VNs(V ) is the differential conductance

STT. To isolate the nonlinear features, we consider the
ratio r ≡ ∂V GSTT/∂V GMAT

33, which is plotted in Fig. 3.
The resistance R at various temperatures is shown in
Fig. 4.

At low temperatures (T � ~Ω) and biases (e|V | .
~Ω), r � 1 (blue regions of Fig. 3), and MAT dominates
the dependence of the resistance R = V/I on V . Here we
find that for all orientations of the MTJ, i.e. both signs
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FIG. 4. Main figure: low temperature resistance R versus
bias for parallel (P) and antiparallel (AP) configurations, re-
spectively corresponding to η = ±1, as well as PL = Gm = 0
(left-lead unpolarized). Shown are temperatures ranging from
T/~Ω = 0 (blue) to 2 (red) in steps of 1/4. MAT dominates
at temperatures T � ~Ω and e|V | . ~Ω, but vanishes as the
temperature is raised. Inset: high temperature R versus bias
for the parallel configuration, for temperatures ranging from
T/~Ω = 0 (blue) to 8 (red) in steps of 1/2. At T = 0, the
resistance exhibits a maximum around zero bias, reflecting
MAT. At T/~Ω ∼ 1 the resistance exhibits a minimum near
zero bias, stemming from quantum STT. As T is further in-
creased, classical STT dominates, and R no longer shows a
local extrema near zero bias. All unspecified parameters are
the same as in Fig. 2. We find that the MAT-induced resis-
tance plateau survives at PL = Gm = 0, as only one magnetic
component is required to inelastically scatter electrons.

of η, MAT manifests as a plateau in the resistance16,22–24

(see Fig. 4). Note that generally features of MAT due to
macrospin fluctuations manifest on the bias scale e|V | ∼
~Ω.

At high temperatures (T & ~Ω) and/or biases (e|V | �
~Ω), r � 1 (red regions of Fig. 3), and STT determines
the nonlinear of behavior of R. The two STT tempera-
ture regimes, corresponding to classical STT (N0 � Ñ)

and quantum STT (Ñ � N0), as discussed above, give
rise to different behaviors of the resistance. At higher
temperatures where N ≈ γN0, the resistance depends
monotonically on V through γ near zero bias; at lower
temperatures where N ≈ γÑ , the resistance, like N ,
shows an extremum (see inset, Fig. 4). The transition
from a monotonic dependence of R on V reflects the
change from classical spin fluctuations γN0, which are
enhanced only for one direction of current, to γÑ , which
are enhanced for either direction. Such a transition, from
monotonically changing R to extremum, is seen clearly
in [18]. For the parameters chosen in Fig. 4, the classical-
to-quantum occurs at a temperature near T ∼ ~Ω. Im-
portantly, unlike the effect of MAT, which is observable
in the range e|V | ∼ ~Ω, the STT extrema persist over an

energy range eVc (� ~Ω for PL � 1), due to γ. As with
MAT, these features survive at zero-temperature.

It should be noted that the value of S, which can be
assumed to scale with the junction size, also determines
the regions in which classical STT, quantum STT and
MAT dominate the nonlinear signal (see upper insets
of Fig. 3). The quantity Sc ≡ ∆/παp, defined so that
S/Sc = αp/αe, provides a convenient reference value.
For larger values of S/Sc, STT-driving of N away from
N0 is increasingly suppressed, and MAT dominates over a
wider range of biases and temperatures, with our results
reducing to those of [16] in those ranges. In addition,
when |V | is sufficiently large that STT dominates over
MAT, the temperatures below which quantum STT dom-
inates over classical STT (corresponding to Ñ < N0),
decreases with increasing values of S/Sc, reflecting the
suppression of quantum spin fluctuations. This helps to
explain why quantum STT may be expected to play a
significant role in the electrical properties of small (in
the case of [18], nanoscale) MTJs.

The various parameters are readily estimated. Typ-
ical ferromagnetic resonance frequencies Ω ∼ 10 GHz
∼ 10−6eV/~ corresponds to a crossover temperature of
about 0.1 K. For external field strengths of ∼ 1T , how-
ever, comparable to those used in [18] and correspond-
ing to resonance frequencies ∼ 100 GHz ∼ 10−5eV/~,
the crossover temperature becomes ∼ 1 K, which can be
further increased by decreasing S (see upper right inset
of Fig. 3), decreasing αp (thereby increasing Sc), or in-
creasing the bias. Taking G0 ∼ Ω−1 and P ∼ 10−1, cor-
responds to ∆ ∼ 106; for a conservative value αp = 10,
this corresponds to a reference spin Sc ∼ 105.

We conclude this section with qualitative predictions
for experiments. First, as both quantum STT and MAT
depend on the functions N±(V ), at low temperatures
T � ~Ω the resistance is flat at biases below the magnon
gap, e|V | ≤ ~Ω, as impinging electrons are not suf-
ficiently energetic to excite magnons. Thus, we ex-
pect that at sufficiently large magnetic fields, the low-
temperature resistance for biases e|V | ≤ ~Ω should be
flat for nanoscale junctions wherein the micromagnetic
modes are gapped out and our macrospin model is valid.
For the parameters in [18], for example, this corresponds
to a current range of |I| < 0.1mA, which may be be-
yond the resolution of the experiment. Second, at low
temperatures, one may determine whether MAT or STT
dominates by changing the orientation of the magnetic
junction. The zero-bias extrema in the resistance due
to MAT are always plateaus in the resistance, whereas
those due to quantum STT are valleys (plateaus) in the
parallel (antiparallel) configuration18,29,34–36 (see Fig. 4).
This is to be expected, as inelastic scattering of electrons
by magnons does not require a polarizer (scattering by
phonons, for example, will show similar behavior), while
the magnetoconductance clearly depends on the sign of
η.
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VI. CONCLUSION AND DISCUSSION

We have demonstrated how a combination of inelastic
charge transport and STT generate a rich dependence of
the resistance on voltage. In particular, we have shown
how MAT and STT amplification of both equilibrium
and nonequilibrium spin fluctuations driven by inelastic
scattering can generate a low temperature nonlinear re-
sistance similar to that observed experimentally18,29.

Future work may expand on our model. For simplic-
ity, this model treats only one magnon mode, but in
general, at high temperatures a spectrum of modes may
contribute, enhancing the nonlinear features; if the spec-
trum is known, our model can be adapted accordingly by
weighing the current, Eq. (6), by a density of states and
integrating over magnon energy ~Ω. The incorporation
of higher energy (> ~Ω), micromagnetic excitations ex-
tends the temperatures at which MAT can be studied.16

Joule heating, absent in our model, can generate ther-
mal fluctuations of the spin, even if the ambient tem-
perature is low; while such an effect is dismissed in [18],
it must be generally addressed. Furthermore, our the-
ory is perturbative in the tunneling coefficients Aνν′ and

Bνν′ , and we neglect higher order terms in the tunnel-
ing coefficients,21 which for small values lead to Kondo
correlations at low temperatures. Absent in our model
are also nonparabolic electronic band structure features
of the normal metals, which can give rise to a nonlinear
resistance. In the case when the island is physically sep-
arate from right lead, mesoscopic low-bias anomalies in
spin-dependent transport37 may result, which could ob-
scure the magnetotransport features studied in this pa-
per.

In addition, when V approaches the swasing threshold,
N can become on the order of S, so that our expansion
of the radical in Eq. (3) breaks down, and a more care-
ful treatment is required. While classical current-driven
instabilities in MTJs have already been observed,6,38 it
remains to be seen how fluctuations of the magnetic order
modify charge transport for V greater than Vc.
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