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Hysteresis loops and the associated avalanche statistics of spin systems, such as the random-field Ising and
Edwards-Anderson spin-glass models, have been extensively studied. A particular focus has been on self-
organized criticality, manifest in power-law distributions of avalanche sizes. Considerably less work has been
done on the statistics of the times between avalanches. This paper considers this issue, generalizing the work
of Nampoothiri et al. [Phys. Rev. E 96, 032107 (2017)] in one space dimension to higher space dimensions. In
addition to the inter-event statistics of all avalanches, we also consider what happens when events are restricted
to those exceeding a certain threshold size. Doing so raises the possibility of altering the definition of time to
count the number of small events between the large ones, which provides for an analog to the concept of natural
time introduced by the geophysics community with the goal of predicting patterns in seismic events. We analyze
the distribution of time and natural time intervals both in the case of models that include only nearest-neighbor
interactions, as well as models with (sparse) long-range couplings.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q

I. INTRODUCTION

Many physical systems, when perturbed, respond in dis-
crete jumps between metastable states. The earth’s tectonic
plates provide an example of such behavior in the form of
earthquakes, which release a large amount of energy before
being pinned again1. Similarly, a sheet of paper creases and
tears in jerky movements, resulting in crackling sounds2, the
vortex lines of type-II superconductors depin when the elec-
tric current becomes large enough3, and the magnetic dipoles
of ferromagnets align with a changing external magnetic field
in individual steps4,5.

In these situations, and many others, the system waits in
its new configuration until further changes in a driving field
induce the next jump. The history of the sample is of great
importance. The configuration of the system is not just a func-
tion of the instantaneous value of the drive, but depends on the
path followed. In this manuscript, we study this phenomenon
from a relatively new perspective which focuses on the dis-
tribution of inter-event times, and how that distribution is af-
fected by the introduction of a threshold in the definition of an
event. Our goal is not only to gain additional insight into the
detailed mechanism of hysteresis, but also to examine the idea
of natural time6 in a more simple context than the geophysical
applications that have mainly been considered up to now.

Klein et al. have suggested1 that an alternate approach to
the prediction of large earthquakes is to use as a clock the
number of smaller earthquakes rather than quantifying inter-
vals via a traditional counting of days and years. Varotsos
et al. first introduced the term natural time to describe this
procedure7,8. Recent investigations have studied this concept
in complex stochastic nonlinear processes, including its use
in characterizing the current state of a system as it progresses
between events9. Investigating natural time with geophysi-
cal data is difficult owing to the absence or incompleteness of
historical, and even modern, data on small earthquakes; large
earthquakes are, fortunately, not excessively common. Addi-

tionally, controlled experiments are out of the question.
Here we use numerical simulations to analyze hysteresis

and natural time in the context of several simple disordered
and frustrated Ising spin models10–16 exhibiting magnetic hys-
teresis: the three-dimensional random-field Ising model, the
Sherrington-Kirkpatrick model, and the Viana-Bray model.
Our key results are: (i) The distribution of inter-event times
between all avalanches scales with the number of lattice
sites for the random-field Ising model and the Viana-Bray
model, but not for the Sherrington-Kirkpatrick model. (ii) The
pseudo-gap exponent θ, which characterizes the behavior of
the inter-event distribution for vanishing inter-event time, is
zero. (iii) The addition of long-range interactions decreases
the number of small inter-event times, but does not affect the
statistics of the intervals between large events, nor do they al-
ter θ. (iv) Despite exploring various models and parameter
regimes, we fail to find a situation where the predictive capa-
bility of the natural time method is strong for spin avalanches
in magnetic hysteresis. (v) By imposing a minimum avalanche
size threshold, different models can be classified by their inter-
event distribution. (vi) Finally, at a sufficiently large min-
imum avalanche size threshold, the inter-event time in the
Sherrington-Kirkpatrick model follows a Weibull distribution
with shape factor k ∼ 1, i.e., a Poisson distribution.

The use of simulations allows us to generalize to higher
dimensions a recent analytical study by Nampoothiri et al.17

on the inter-event time distribution of the one-dimensional
random-field Ising model. The central result of that work
was the computation of the distribution of times P (∆B) of
the magnetic field change ∆B between spin avalanches. (If
the magnetic field is increased at constant rate, ∆B is pro-
portional to time.) It was found that P (∆B) ∼ (∆B)θ as
∆B → 017, with θ = 0 for the short-range ferromagnetic
random-field Ising model, whereas θ = 0.95 for the long-
range antiferromagnetic case. Other studies of the distribution
of gaps between events have been conducted in the context of
amorphous solids and hard frictionless spheres18–22. There,
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FIG. 1. Hysteresis loop of the random-field Ising model of size
N = 1003 with a distribution of fields of widths R = 3, 4, and 5.
On a large scale, the curves appears to represent a smooth evolution
of the magnetization M(B). However, as can be seen in the inset,
the magnetization M(B) is composed of a series of discrete jumps.
∆M is the change in magnetization. ∆B is the inter-event time.

when the strain γ is sufficiently increased, a corresponding
stress drop follows. The distribution of gaps ∆γ highlights
differences between the yielding and depinning processes, and
reveals information on mechanical stability.

The paper is structured as follows. Section II introduces
the models studied, as well as the algorithmic approach and
analysis methods used. In Sec. III we present results on the
statistics of inter-event times for all avalanches and in Sec. IV
we repeat the analysis with the introduction of an event thresh-
old. Section V discusses the effects of additional small-world
bonds between the variables, followed by a study of return
point memory and concluding remarks in Sec. VII.

II. MODEL AND METHODS

We first consider the random-field Ising model (RFIM) de-
fined by the Hamiltonian

HRFIM = −J
∑
〈ij〉

SiSj −
∑
i

hiSi −B
∑
i

Si. (1)

Here Si = ±1 is a discrete degree of freedom at site i of a cu-
bic lattice with N sites, and 〈ij〉 represents a sum over near-
est neighbors. J is the exchange constant between nearest-
neighbor sites, and units are set so that J = 1. Each site i is
assigned a random magnetic field hi, drawn from a Gaussian
distribution

P (hi) =
1√
πR

exp(−h2
i /R

2). (2)

R controls the width of the distribution, and thereby the
strength of the disorder. A spatially uniform field B is used to
drive the hysteresis loop.
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FIG. 2. Distribution of avalanche sizes for field width R = 3
and 5. The distribution is known to have power-law behavior for
R = Rc ≈ 2.16. A critical region, for which power law behavior
persists for several decades of avalanche size, occurs up to R ≈ 4.
For details see Ref.28.

Unlike the ferromagnetic Ising model where hi = 0 ∀i,
the RFIM does not exhibit ferromagnetic order in d = 2 (or
below). As the temperature is lowered in higher space dimen-
sions, however, a freezing transition occurs. This is followed
by a ferromagnetic transition23–27. Here we are not concerned
with these aspects of the equilibrium finite-temperature phase
diagram, but instead focus on the evolution of the magneti-
zation as the external field B is sequentially changed, with
dynamics defined by each spin remaining parallel to its local
environment at each step, that is, effectively T = 0 (see be-
low).

Typical RFIM hysteresis curves are shown in Fig. 1. From
them, we can extract the size of all the individual magnetiza-
tion jumps S and hence their distribution. It is well known28

that this distribution has power-law behavior at low disorder,
which we reproduce in Fig. 2. We can also extract the dis-
tribution of time (as measured by the change in external field
∆B) between events. The latter quantity has been much less
studied than the former.

The Sherrington-Kirkpatrick model (SKM)29 is given by
the Hamiltonian

HSKM = −
∑
i<j

JijSiSj −B
∑
i

Si. (3)

In the SKM, every site i ∈ {1, . . . , N} interacts with every
other site j via Jij . That is, the interaction is infinite range.
The exchange constants Jij are disordered, and in our study
are given by a Gaussian distribution with zero mean and a
standard deviation of J0. We set J0 = 1 as our unit of en-
ergy. The SKM shows self-organized criticality (SOC) for all
disorder30,31.

Finally, we also study the Viana-Bray model (VBM)32 in
which each spin is randomly connected to z = 6 other spins.
Thus, the VBM is still long ranged, but with a finite coor-
dination number. Unlike the SKM, the VBM does not have
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SOC30. Note that the RFIM has an explicit parameter R with
which the disorder strength can be tuned whereas the SKM
and VBM do not.

In order to generate a hysteresis loop for the RFIM, we
compute the local fields,

Bi = −hi − J
∑

j∈N (i)

Sj , (4)

and for the SKM and VBM,

Bi = −
∑

j∈N (i)

JijSj . (5)

For the RFIM, N (i) includes the nearest neighbor spins,
whereas N (i) for the SKM consists of all spins, while the
six randomly chosen neighbors define N (i) for the VBM.

A hysteresis loop is generated as follows: Starting at B =
∞ we reduce B to a value Bk = max{Bi}. This is the
external field at which the spin Sk becomes unstable. Sk is
then reversed and the re-configuration of the lattice and of the
collection of local fields {Bi} is computed based on greedy
dynamics33. Once Sk flips and the local fields are recomputed,
the next most unstable spin l is flipped, i.e., its (updated) local
field is now greater than the external field: Bl > Sl · B. This
process is continued until all unstable spins are reversed. The
total count of spins flipped is recorded as the size of the asso-
ciated avalanche. The avalanche size determines the change in
magnetization ∆M , which is twice the total fraction of spins
which flip. At this point, the external field B is reduced once
again to the next largest {Bi} and the process is repeated un-
til all spins are flipped and the system reaches saturation, but
with the opposite sign of the magnetization. The inter-event
times are the values ∆B that the external field jumps between
each completed avalanche.

We begin, in Sec. III, by analyzing the distribution of time
intervals P (∆B) which results from using the most broad def-
inition of an avalanche, i.e., by including even the smallest
possible ∆M = 2/N , resulting from a single spin flip. We
also calculate the pseudo-gap exponent θ, given by P (∆B) ∼
(∆B)θ as ∆B → 0. This follows the procedure described in
recent literature17 on the one-dimensional RFIM.

Next, in Sec. IV we use a minimal threshold ∆M , only
above which a change in a spin configuration is considered an
event. We analyze how the distribution in inter-event times is
affected by making ∆M > 2/N . The introduction of such
a threshold ∆M allows us to consider alternate measures of
the interval between events. Specifically, we can define the
natural time ∆A between large avalanches by counting the
number of small avalanches (those with ∆M less than the
threshold) which occur between large ones. We also define
the total natural time ∆F between large avalanches to be the
total number of flipped spins (i.e., the change in magnetiza-
tion) which has accumulated. This latter procedure weights
each small avalanche by the number of spins which turned
over.

These different approaches to the inter-event time are
chosen to parallel analogous definitions in the geophysics
community34 where natural time employs only earthquakes
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FIG. 3. Scaling collapse of the distribution of inter-event times for
the RFIM at field width R = 2.3 and the VBM for various system
sizes N . If the field interval axis is scaled by N , the distributions for
different N coincide. That is, P (N,∆B) ∼ P̃ (N∆B). The van-
ishing slope at small ∆B indicates the pseudo-gap exponent defined
by P (∆B) ∼ (∆B)θ as ∆B → 0 obeys θ = 0, in agreement with
analytic results in one space dimension (d = 1).

exceeding a certain size as events and the number of small
earthquakes between the large ones is recorded. The cur-
rent state of an earthquake cycle is analyzed by constructing a
cumulative distribution function of inter-event times between
large earthquakes, which shows a Weibull form6,

f(t) = 1− e−(t/λ)k , (6)

Here λ is the scale parameter and k is the shape parameter.
For k < 1 the cumulative probability function of the Weibull
distribution has an initial rapid rise, while if k > 1 the ini-
tial slope is small. If k = 1, Eq. (6) becomes the inter-event
distribution of a Poisson process. The Weibull distribution is
commonly used in the materials science community to char-
acterize the time to failure, where k < 1 corresponds to a
failure rate which decreases with time. In contrast, k > 1
corresponds to a failure rate which increases with time. Mo-
tivated by the geophysics problem, we perform a similar fit
to the cumulative distribution of inter-event times in our spin
model hysteresis loops. By taking the natural logarithm of
both sides twice, Eq. (6) becomes

log[−log(1− f(t))] = klog(t)− klog(λ), (7)

so that a plot of the data in the form log[−log(1 − f(t))] vs
log(t) yields a linear relation if f(t) has a Weibull form.

III. STATISTICS OF ALL AVALANCHE INTER-EVENT
TIMES

We start by analyzing the distributions of time intervals that
occur between every avalanche, including avalanches of a sin-
gle flip, i.e., ∆M = 2/N . When an avalanche occurs, we
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FIG. 4. Distribution of inter-event times for the SKM. The distribu-
tions largely overlap, apart from a modest separation at small ∆B.
In sharp contrast to the RFIM and VBM data of Fig. 3, P (N,∆B)
does not show a scaling collapse to P (N∆B).

mark its magnetic field value. Then, we can define ∆B as the
difference between any two consecutive avalanches and accu-
mulate the distribution of inter-event times as P (∆B).

In order to compare distributions of different parameters
properly, P (∆B) is normalized. This is done by dividing by
the total number of intervals Nint. As R increases to large
values, the spins feel a wide range of random fields, and their
local fields Bi [Eq. (4)] become widely separated. In the
limit R → ∞, all events become single flips because the
contribution to Bi from the exchange interactions J is neg-
ligible in comparison. The total number of intervals Nint

approaches the number of lattice sites (spins) N . Similarly,
as R decreases, the total number of intervals becomes small.
At R = 0, the hysteresis loop becomes completely square,
Ni = 1, and the entire lattice flips from up to down at the sin-
gle external field value B = −2dJ , where d = 3 is the space
dimension. Normalizing P (∆B) to Nint eliminates this triv-
ial effect. The sum of all avalanches in the distribution equals
unity, independent of the choice of parameters.

We begin by analyzing the RFIM, plotting the distribution
of inter-event times in Fig. 3. Distributions of varying lat-
tice sizes N are seen to collapse if the event intervals ∆B are
scaled by N , that is

P (N,∆B) ∼ P̃ (N∆B) . (8)

The inter-event distribution for the VBM is similar to the
RFIM (see Fig. 3) and scales with the number of variables N .
Due to the fundamental difference between finite and diverg-
ing number of neighbors30, we expect the same scaling be-
haviour for differing finite coordination numbers of the VBM.

As can be seen in Fig. 4, the SKM distributions for different
lattice sizes collapse with an unscaled ∆B. Other than that,
the shape of the inter-event distribution of all avalanches is
similar to the RFIM (Fig. 3). Because the VBM is long ranged
and the RFIM is short ranged, but both have similar scaling
forms for P (∆B), we conclude that the connections between
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FIG. 5. Hysteresis loop for the RFIM with R = 3 and for the VBM
for different system sizes N . The shape is similar for various lattice
sizes for all disorders. As argued in the text, this independence of
lattice size underlies the scaling form P (N,∆B) ∼ P̃ (N∆B).

distant spins do not by themselves give rise to a change from
the RFIM collapse with N∆B. Instead, the most likely cause
of scaling differences is the presence of SOC at all disorder
strengths in the SKM due to the fully-connected topology.

Another way to gain insight into the scaling of inter-event
times is to observe the behavior of the hysteresis loops. While
hysteresis loops have been extensively studied30,35–38, we fo-
cus on the width of the loop in relation to the lattice size. For
the RFIM and VBM, the loops are the same width across all
lattice sizes (see Fig. 5). This means that the total time T for
traversal of the loop is constant. In the limit where events are
small and fairly isolated spatially, the number of events grows
linearly with lattice size N , and the time ∆B between events
is proportional to 1/N . This picture offers a qualitative expla-
nation of the dependence of P on N∆B.

The hysteresis loop for the SKM (Fig. 6) is different from
the VBM and the RFIM. Its width grows as the lattice size is
increased – the total time across the loop increases with N .
If we again consider a limit where events are small and fairly
isolated spatially, so that the number of events grows linearly
with lattice sizeN , the interval between individual events ∆B
is expected to be roughly independent of lattice size.

Returning to the RFIM, we consider the dependence of the
limit of inter-event time distribution at small ∆B on disor-
der width R. Figure 7 shows the distributions for different R
values. The quantity

C(R) = lim
N∆B→0

P̃ (N∆B), (9)

characterizes the value of the distribution at the smallest inter-
val sizes. The inset to Fig. 7, showing C(R), exhibits a peak
for R ≈ 3.7. Note that for the analytical calculation of the
one-dimensional case, C(R) peaks at R ≈ 117.

The flatness of P (∆B) as ∆B → 0 implies that the
pseudo-gap exponent θ = 0 for all R in the RFIM. It likewise
vanishes for the SKM and VBM. This value for the exponent
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FIG. 6. Hysteresis loop for the SKM. The width of the loop (e.g.,
at M = 0) increases with lattice size: ∆B ∼ 9, 17, and 23 for
N = 1000, 5000, and 10000 respectively. As argued in the text, this
dependence on lattice size underlies the difference in scaling behav-
ior from the RFIM and VBM cases.

is the same as the one-dimensional RFIM17. It has been ar-
gued that this is a consequence of the mapping between the
RFIM and a depinning process when the dimensionality is less
than 539. The depinning process is known to have θ = 018.
Thus our results confirm previous conjectures on the nature of
the gap statistics.

The inter-event time distributions P (∆B) of Figs. 3 and 4
illustrate the unpredictability of avalanche occurrences. The
distributions have significant weight over several orders of
magnitude of ∆B. The time between avalanches, as mea-
sured by the traditional definition ∆B (which is proportional
to the conventional time interval ∆t if B is swept at constant
rate), takes a very wide range of values. In Sec. IV we explore
whether alternate definitions might yield a narrower distribu-
tion, and hence more predictable intervals.

IV. STATISTICS OF ABOVE THRESHOLD INTER-EVENT
TIMES

In Sec. III we have seen that the distribution of inter-event
times P (∆B) is very broad when all avalanches are consid-
ered as events. We now re-analyze the distribution but impose
an event threshold LA. This both eliminates the small (and
therefore presumably more random) magnetization jumps,
and opens the door to counting the number of jumps as an
alternate definition of inter-event time. This latter procedure
follows suggestions in the geophysics community where in-
cluding an avalanche threshold was argued to help determine
where a certain geographic region is located in the earthquake
cycle.

In geophysics studies, the imposition of a threshold was
shown to lead to the inter-event distribution following a
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FIG. 7. Distribution of inter-event times for the RFIM for various
field widths R. C(R) [the value of the inter-event distribution at
small ∆B, Eq. (9)] is highest for R = 4. The behavior of C(R) is
nonmonotonic. The slope of P (∆B) is zero for small ∆B, confirm-
ing that θ = 0 for all R. Inset: C(R) [Eq. (9)] for a fine mesh of
R values. This allows for a more refined determination of the peak
position, R ≈ 3.7. This is in qualitative agreement with the d = 1
analytical result, which has a similar peak at R = 117.

Weibull process6. Here we use a similar approach, and ver-
ify if the statistics obey the same distribution. We examine
several definitions of the inter-event time: ∆A characterizes
the number of small avalanches, ∆F the total number of indi-
vidual flips. This complements the use of ∆B, the change in
magnetic field between events (see Sec. III).

If large avalanches tended to occur after relatively constant
numbers of small avalanches ∆A, then a plot of the cumula-
tive distribution function f(∆A) would take the form of an
abrupt step, reflecting a sharply peaked probability P (∆A),
i.e., large events separated by one specific ∆A. Figure 8
shows the cumulative distribution functions for different dis-
order strengthsR and for different choices of the thresholdLA
for counting small avalanches. We see no significant tendency
for the cumulative distribution to become more step-like than
when plotted as a function of ∆B.

Although the continued broadness of the distributions of
Fig. 8—despite the replacement of ∆B by ∆A and ∆F—
suggests that natural time does not sharpen the distribution of
inter-event spacing, we can still ask whether the underlying
distributions of inter-event times are similar to those found in
geophysics applications. Figure 8 shows the Weibull fits to
the distributions f in addition to the raw data.

While naively it appears that the data of Fig. 8 might follow
a Weibull inter-event distribution, a more discerning check is
made by plotting the data with modified axes: log[−log(1 −
f(t))] vs log(t). On these axes, the data should form a straight
line, as discussed earlier [see Eq. (7)].

First, we analyze the RFIM, where the distributions do not
appear to be well fit by a Weibull distribution by any definition
of time (see Figs. 9 and 10). We focus onR > Rc ∼ 2.16, the
critical value of R below which an infinite avalanche occurs
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from the Weibull form.

in which a macroscopic fraction of the spins all flip at once28.
Above Rc, ∆A and ∆B yield a curve that is concave down,
while ∆F yields a curve with an inflection point. The fact that
the distribution is concave down implies that there is a scarcity
of large-time intervals for the distributions to be Weibull. The
quality of the fits of RFIM inter-event times ∆B to a Weibull
distribution (Fig. 9) does not appear to be very sensitive to the
value of the avalanche threshold. In the case of natural time
∆F (Fig. 10) smaller threshold gives a somewhat better fit. In
either case, as LA increases, the average time between events
increases, which leads to a lower intercept with the vertical
axis; this follows from Eq. (7). The situation is rather differ-
ent for the SKM when using the inter-event time ∆B. As LA
is increased, the Weibull fit improves significantly, as shown
in Fig. 11. Interestingly, the shape parameter k is close to
unity, i.e., the distribution is Poissonian. The same fit im-
provement with larger LA occurs for the VBM (not shown),
but k ∼ 0.8 in that case. We are unable to determine if this
value of k varies with the VBM’s coordination number z, and
we might perform simulations of varying z in a future paper.
The SKM also provides interesting results for the natural time
methods. f(∆A) is rather close to a Weibull distribution for
all LA (Fig. 12). ∆F , however, provides a fit that worsens as
LA is increased. The VBM shows similar results in that both
methods of natural time provide the best fit at low LA.

V. EFFECT OF LONGER RANGE COUPLINGS

On large lattices, small avalanches amongst clusters of
spins which are far from each other are likely to occur in a
rather independent manner. This might be problematic for pe-
riodic large-event intervals, because avalanches which are de-
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coupled are unlikely to provide a predictive countdown to an
above-threshold event. In order to introduce a more collective
behavior of the entire cubic lattice, we introduce long-range
couplings by dividing the entire cubic lattice into randomly
selected pairs of sites. At the algorithmic level, this is accom-
plished by starting with site 0, and then randomly selecting
one of the other sites p0 of the lattice as a partner to site 0.
Note that p0 is not allowed to be one of the existing six near-
est neighbor sites. After this is done, both sites 0 and p0 are
eliminated as potential partners and one proceeds to site 1 (as-
suming p0 6= 1) and randomly assigns it a partner p1. This
process is continued until all sites in the cubic lattice have a
seventh neighbor. When assigned in this way, the probability
of a site being part of a pair is independent of the geometric
proximity between the two sites (as long as they are not near-
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FIG. 11. Cumulative distribution of the inter-event times for the
SKM with lattice size N = 10000. As LA is increased, the data
become more linear, which shows that the distribution of ∆B can
be approximated as Weibull at sufficiently large LA. The slope for
LA = 90 is k ∼ 1, which implies that the Weibull distribution
simplifies into a Poisson distribution. The same phenomenon occurs
in the VBM with a slope of k ∼ 0.8.
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FIG. 12. Cumulative distribution of the inter-event times for the
SKM with lattice size N = 10000. The data are approximately
linear for all LA, i.e., the distribution is Weibull.

est neighbors). These longer-range neighbors are coupled by
an exchange constant J ′, so that in the computation of the lo-
cal field, and hence the determination of whether to flip Si,
Eq. (4) is generalized to include pi as part of N (i). Setting
J ′ = 0 recovers the original nearest neighbor only model, and
increasing J ′ allows us, in a smooth manner, to increase the
long-range interactions across the lattice. Our model Hamil-
tonian thus becomes

H = −J
∑
〈ij〉

SiSj − J ′
∑
i

SiSpi −
∑
i

hiSi −B
∑
i

Si,

(10)

−1
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1
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J ′ = 1

J ′ = 2

J ′ = 3

J ′ = 5

FIG. 13. Hysteresis loops for the Hamiltonian in Eq. (10) for various
J ′ values. Here, R = 5, and the lattice size is N = 303. As the
strength of J ′ is increased, the hysteresis loop becomes steeper and
wider. This is due to the increased correlation of lattice sites, which
causes avalanches to occur at the same magnetic field value.

where pi is the long-range site connected to site i. A similar
procedure has previously been introduced in Ref.40 to study
finite-temperature phase transitions in Ising models with long-
range interactions (which prove to be of mean-field character)
and, more generally, are considered in the context of small-
world networks41.

Figure 13 shows hysteresis loops for the Hamiltonian pre-
sented in Eq. (10). The loops become steeper and the width is
increased with J ′. This occurs because different lattice sites
become correlated, which causes avalanches to combine. The
distribution of inter-event times ∆B is shown in Fig. 14. For
all J ′ values, the distribution is monotonically decreasing and
larger J ′ values suppress the frequency of small avalanches.
The pseudo-gap exponent is zero for any strength of the long-
range connections.
C(R), given by Eq. (9), is shown in Fig. 15 for different val-

ues of J ′. C(R) is nonmonotonic; the value of R for which
C(R) is largest grows with the strength of the long-range con-
nection. The overall curve is lowered when J ′ is increased.
As is to be expected, once the ratio of R to J ′ becomes large
enough that the local fields dominate the system, the curves
for C(R) collapse.

The lowering of C(R) with J ′ means there are fewer small
inter-event times for larger J ′ values at a given disorder R.
However, despite the shift in the distribution from smaller to
larger inter-event times, P (∆B) remains monotonically de-
creasing. These trends are present as well in Fig. 14, where
the distribution becomes visibly flatter as J ′ is increased.

In order to explain this phenomenon, consider J ′ = 0 and
two avalanches that occur separately in space and nearly si-
multaneously in time, i.e., at very similar global field value
B. In this moment, the two events are uncorrelated, and they
have a very small inter-event time ∆B. If long-range connec-
tions are included, it is plausible that the two avalanches might
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inter-event times when J ′ is increased. This is due to the additional
correlation between avalanches.
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FIG. 15. C(R) [Eq. (9)] plotted against the disorder strength R for
various J ′ values. C(R) is lowered as J ′ increases, and the curve
collapses onto the J ′ = 0 case when R becomes large enough.

now be correlated and occur simultaneously as J ′ grows. The
probability of small avalanches decreases and of large ones in-
creases, as seen in Fig. 16. This also implies that the frequency
of small inter-event times is reduced. The long-range correla-
tions do not ever result in a peak of P (∆A) or P (∆F ) which
would indicate specific most probable natural time spacings
which predict when a large avalanche would be imminent.

Although J ′ affects the quantitative value of P (∆B), as
well as P (∆F ) and P (∆A), it does not significantly change
their width. In short, the conjecture that J ′ might make
avalanches constant in natural time seems to be false.
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J ′ = 5.0

FIG. 16. Distribution of avalanche sizes plotted for various J ′ values
for N = 503 and R = 7. As J ′ increases, there are larger avalanche
sizes, and the distribution approaches the critical region, as described
in Ref.28. This is due to the correlation of lattice sites. Note that two
avalanches may occur at the same moment, which leads to a greater
amount of large avalanche sizes.

VI. RETURN POINT MEMORY

In the study of hysteresis loops, “return point memory” is a
central concept42–44. Instead of driving the system to satura-
tion, the external field B is lowered from infinity until some
intermediate field B0 is reached. At this point, B is raised to
B1 and then lowered back to B0, which creates an “internal”
hysteresis loop. If the system exhibits return point memory
(RPM), then the state (that is, the magnetization) of the sys-
tem is the same at both instances of B0.

It is natural to ask how the inter-event times along an inter-
nal hysteresis loop are distributed. It is known that both the
RFIM and the SKM exhibit RPM35,42. While the distribution
of inter-event times in the SKM has been shown to be well
approximated by a Weibull distribution for sufficiently large
LA (see Fig. 11), the RFIM inter-event times are not as well
described by a Weibull distribution (see Fig. 9). Therefore, we
simulate the RFIM for both R = 2.3 and R = 3 on a lattice
size of N = 2003 to study the inter-event times for internal
hysteresis loops. This helps identify whether RPM can help
the RFIM inter-event distributions become Weibull-like, and
the results can be directly compared to Figs. 8 and 9.

The results for internal hysteresis loops are shown in
Figs. 17 and 18. The data for LA = 0 approach a Weibull
distribution even though the data are not Weibull distributed
for the smallest nonzero large avalanche. While the data in a
log-log plot are not exactly linear for R = 2.3, there is still
a striking difference between LA = 0 and LA = 2. A more
detailed analysis on RPM is needed to fully understand the
behavior of small LA. However, we expect the same trend
to occur with alternate choices of disorder and RPM turning
points. Note that ∆A and ∆F are the same as the previous
case when the system is driven to saturation (see Fig. 10).
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FIG. 18. Cumulative distribution of the inter-event times for the
RFIM across an internal hysteresis loop, which exhibits return point
memory for R = 3 and N = 2003. The data are Weibull distributed
for LA = 0.

VII. CONCLUSIONS

We have evaluated the distribution of inter-event times
of the three-dimensional random-field Ising, Sherrington-
Kirkpatrick, and Viana-Bray models. Our motivation
was two-fold: First, to extend the analytic results for
this distribution—which have been obtained in one space
dimension17— to higher space dimensions, providing com-
plementary numerical results to the well-studied distributions
of the avalanche amplitudes. Second, to explore the idea of
natural time to study if the distribution is more sharply peaked
when measured by counting the number of small avalanches
rather than the change in field itself.

Our conclusions regarding the first point are summarized in
Figs. 3 and 4, which provide explicit forms for P (∆B) for
the different models. A central feature of our results is the
scaling relation, P (N,∆B) ∼ P̃ (N∆B) obeyed by both the
RFIM and VBM, whose validity we trace to a hysteresis loop
width which is nearly independent of lattice size N (Fig. 5).
In contrast, the SKM hysteresis loop width changes signifi-
cantly with N (Fig. 6), and P (N,∆B) does not scale. We
also observe a pseudo-gap exponent θ ≈ 0, which is the same
as in the one-dimensional case17. By examining the depen-
dence of the inter-event distribution on the disorder, one finds
nonmonotonic behavior where C(R) [Eq. (9)] peaks at∼ 3.7,
similar to the one-dimensional case.

Regarding the second point, we have added a large
avalanche threshold, similar to the large earthquake threshold
used in geophysics34. This leads to a distribution of inter-
event times for several methods of counting time. Count-
ing the number of individual spin flips, counting the small
avalanches, and the original measurement in terms of the
change in magnetic field. We see no evidence for a sharpening
of the inter-event time distribution function which would be a
confirmation that large events occur at a specific ∆A or ∆F .
The clock-time fit to a Weibull distribution, however, is im-
proved by the introduction of an event threshold LA (Fig. 11)
in the SKM. The distribution of the natural time ∆A can also
be fit to a Weibull distribution in the SKM (Fig. 12).

Finally, we applied the same analysis to inter-event distribu-
tions for a model system with added small-world bonds, i.e.,
bonds between random pairs of lattice sites. As the strength
of these small-world bonds is increased, there are fewer small
inter-event times and fewer small avalanches. This is due
to the increased correlation of lattice sites. As the corre-
lation increases, avalanches coalesce into large avalanches,
which reduces the number of small inter-event times and small
avalanche sizes. In some sense, the strength of the long-range
bonds could be thought of as a tuning parameter between the
distribution of avalanche sizes and inter-event times.

By adding the long-range bonds to the lattice, the inter-
event distributions of large avalanches do not change. There
is one main difference when long-range bonds are added.
Namely, the value of the critical disorder increases when the
strength of the long-range interactions are increased. As long
as the disorder relative to the critical region is the same, the
statistics of large avalanche inter-event times is the same for
any strength of the long-range interactions. Thus this mod-
ification of the model to make natural time a more effective
clock is seen not to be effective.

There are several possible objectives to a quantitative eval-
uation of inter-event times. One goal is a determination of
their distribution function. In such an investigation, it is pos-
sible that alternate definitions of time, ∆B, ∆A, or ∆F in
the work reported here, might lead to more simple or well un-
derstood distributions. We have shown that in the SKM, the
use of a finite event threshold and ∆A simplifies the nature of
P (∆A) to a Weibull distribution.

A second goal concerns the prediction of the next (large)
event. That requires not only finding the distribution function,
but also, through the use of an appropriate redefinition of time,
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acquiring a distribution function which is sharply peaked, so
the separation between events is known. This is, obviously, a
holy grail for earthquake prediction. We have not succeeded
in finding such a transformation for interacting spin models.
Nevertheless, we suggest that further exploring the idea within
simple models might be a useful, more controllable, comple-
ment to analysis of observational data.
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