

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Magnetic dichroism in the Kondo insulator SmB_{6}

 W. T. Fuhrman, J. C. Leiner, J. W. Freeland, M. van Veenendaal, S. M. Koohpayeh, W. Adam Phelan, T. M. McQueen, and C. Broholm
Phys. Rev. B 99, 020401 — Published 9 January 2019
DOI: 10.1103/PhysRevB.99.020401

Magnetic dichroism in the Kondo insulator SmB_6

W. T. Fuhrman, $^{1,\,2,\,3,\,*}$ J. C. Leiner, $^{4,\,5,\,6}$ J. W. Freeland, $^{7,\,\dagger}$ M. van Veenendaal, $^{8,\,7}$ S.

M. Koohpayeh,³ W. Adam Phelan,^{3,9} T. M. McQueen,^{3,9,10} and C. Broholm^{3,10,11}

¹Center for Nanophysics and Advanced Materials, Department of Physics,

University of Maryland, College Park 20742, USA

² The Schmidt Science Fellow Program, in partnership with the Rhodes Trust, Oxford, United Kingdom

³Institute for Quantum Matter and Department of Physics and Astronomy,

The Johns Hopkins University, Baltimore, Maryland 21218 USA

⁴Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea

Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

⁶Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

⁷Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

⁸Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA

⁹Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218 USA

¹⁰Department of Materials Science and Engineering,

The Johns Hopkins University, Baltimore, Maryland 21218 USA

¹¹NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA

(Dated: November 27, 2018)

Samarium hexaboride (SmB₆) is a purported topological Kondo insulator, with theory predicting that the experimentally observed metallic surface states manifest from a topologically non-trivial insulating bulk band structure. The insulating bulk itself is driven by strong correlations, and both bulk and surface are known to host compelling magnetic and electronic phenomena. We employed X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) at the Sm M_{4,5} edges to probe the surface and bulk magnetic properties of Sm²⁺ and Sm³⁺ within SmB₆. We observed an unexpected anti-alignment to the applied field of the Sm³⁺ magnetic dipole moment below T = 75 K and of the total orbital moment of samarium below 30 K. The total bulk magnetization at 2 K is, however, positive and driven by Sm²⁺ Van Vleck susceptibility as well as 1% paramagnetic impurities with $\mu_{\text{Eff}} = 5.2(1) \ \mu_{\text{B}}$. This indicates the diamagnetic-like Sm³⁺ magnetism is only a portion of the net magnetization, partially offsetting the response of paramagnetic impurities known within the bulk.

The growing interest and application of topology in condensed matter physics has renewed investigations into SmB₆, a cornerstone material of condensed matter and materials science which has now been studied for more than 50 years.[1–3] Evidence continues to grow in support of the claim that SmB₆ is a topological Kondo insulator, with an insulating bulk at low temperatures and a topologically protected metallic surface, though there is not universal agreement.[3–9]

In light of the potential topological aspects of SmB_6 , great attention has been focused on its surface phenomena.[7, 10–13] The strongly-correlated nature of the insulating state implies that topological surface states should also be strongly correlated, with potentially exotic implications.[14–16] Complicating and enriching matters, magnetic impurities are common in SmB_6 , introducing in-gap states and disrupting the surface state.[17–20] Samarium vacancies, which are difficult to avoid in floating-zone grown crystals, also produce states in the gap and may contribute to low-temperature properties such as thermal transport.[21, 22]

Recently, there have been a variety of unexpected experimental observations surrounding the low-energy magnetism in SmB_6 (e.g. quantum oscillations, optical conductivity, specific heat), with debate persisting over the origin of these measurements (surface/bulk and intrinsic/extrinsic).[18, 23-28] Understanding the magnetism of SmB_6 is of crucial importance because the protection of surface states relies on the preservation of time reversal symmetry. [29] Here we report the surface and bulk sensitive X-ray Magnetic Circular Dichroism (XMCD) measurements which directly probe the magnetizable components of Sm^{3+} and Sm^{2+} , thus offering a unique view into the low-energy magnetism in SmB_6 . We measure vacuum cleaved and nominally pure, stoichiometric SmB_6 as well as vacuum-cleaved Sm-deficient and carbon-doped samples. Surprisingly, the data reveal the net magnetic moment carried by Sm^{3+} is anti-aligned to the applied field for temperature (T) below 75 K despite positive bulk magnetization. This component is readily observed at the surface via electronic vield XMCD and indicated at similar magnitude by bulk sensitive fluorescence yield XMCD. We relate this observation to known paramagnetic impurities within these samples and infer that Sm^{3+} is antiferromagnetically coupled with larger moment paramagnetic impurities.

 SmB_6 crystals in nominally stoichiometric, carbondoped, and $\text{Sm}_{1-x}\text{B}_6$ versions were grown using the floating zone (FZ) technique as described by Phelan et al.[31] Starting materials were polycrystalline SmB_6 rods (Test-

FIG. 1. XAS and XMCD spectra at T = 8 K, $\mu_0 H = 5$ T. Data were normalized by scaling the maximum at the M₅ edge (1079 eV). Shaded portions show relative contributions of Sm²⁺ and Sm³⁺. (a) TEY shows the XAS of the surface (approx 2 nm thickness), while TFY spectra show the bulk response (inset). (b) XMCD TEY and linear combination of Sm²⁺ and Sm³⁺ XMCD spectra calculated with Xclaim.[30] XMCD was similar for a sample exposed to air (grey triangles). Inset shows XMCD of Sm-deficient and carbon-doped samples.

bourne Ltd, 99.9%). Previous elemental analysis indicated rare-earth and alkaline earth impurities at the 10^3 ppm scale present in starting materials and grown samples. These impurities form stable hexaborides with similar lattice parameters to SmB₆ and thus readily occupy the Sm-site. Summing up their concentrations indicates approximately 2% (1% magnetic with weighted average moment $\mu_{avg} = 5 \mu_B$) impurities per formula unit. Extensive details about the concentrations and ubiquity of impurities in samples grown from these starting materials can be found in the supplementary material of ref. [19].

The XAS and XMCD measurements were conducted at beam line 4-ID-C of the Advanced Photon Source located at Argonne National Laboratory. SmB₆ crystals were notched to facilitate (100) cleavage. Crystals were cleaved after placement in the vacuum chamber (8×10^{-9} Torr) for measurement. Surface and bulk sensitive XAS and XMCD spectra were collected simultaneously using total electron yield (TEY) and total fluorescence yield (TFY) respectively with circularly polarized x-rays in a near normal (80°) configuration. The applied field was along the beam direction and it defines the positive \hat{z} direction. The TEY mode probes approximately the first 2 nm of the SmB₆ surface, while TFY is bulksensitive. The XMCD spectra were obtained point-bypoint by subtracting right from left circular polarized XAS data. Measurements were taken for both positive and negative applied field directions and then we take a difference of these two spectra XMCD= $\frac{1}{2}$ (XMCD($H_z > 0$)-XMCD($H_z < 0$)) to eliminate polarization dependent systematic errors. The correct sign of the XMCD spectrum was confirmed in a subsequent measurement against a known paramagnetic response. The stoichiometric sample central to this study was cleaved more than 24 hours before measurement, sufficient time for complete surface reconstruction.[32]

The isotropic and dichroic x-ray absorption spectra were calculated using Xclaim[30] in the atomic limit [33, 34], which is appropriate for the largely localized rare earth 4f electrons. The Hamiltonian includes spin-orbit interaction in the 3d and 4f orbitals and Coulomb interactions in the 4f shell and between the 4f shell and the 3d core hole. Parameters were obtained in the Hartree-Fock limit and the values for the Coulomb interaction were scaled down to 80% to account for screening effects. The calculated spectra are consistent with pure, divalent, and trivalent Sm compounds. Fits of the relative contributions of Sm²⁺ and Sm³⁺ allow for a small shift in energy (<1 eV) with fixed relative energy profiles.

The XAS near the M_5 (1080 eV) and M_4 (1105 eV) absorption edges (Fig. 1(a)) show distinct peaks from $\mathrm{Sm}^{2+}(4f^6)$ and $\mathrm{Sm}^{3+}(4f^5)$ in both the TEY and TFY channels. At the M edges, the bulk sensitive TFY XMCD signal is weak and distorted by self-absorption effects, and so we proceed first with analysis of the surface sensitive TEY XMCD.[35–37] In field at low temperatures, the presence of both divalent and trivalent Sm is clearly visible in the pre-edge region of M_5 where their dichroism features are opposite. Additionally, the main line of Sm^{2+} causes a significant negative dichroic feature around 1077 eV that is not present in the dichroic spectrum of Sm^{3+} . This dichroic spectrum is evidence of magnetizable moments at the surface of SmB_6 . Because this response is observed in vacuum cleaved samples, it cannot be attributed to the formation of surface oxides. Subtle changes in the dichroic features do occur following exposure to air, however, the fundamental conclusion remains unaltered as the qualitative behavior of Sm^{2+} and Sm^{3+} is unchanged (i.e. Sm^{3+} orientation relative to field does not change). The TEY XMCD in field is similar for carbon-doped, and Sm-deficient samples (inset of Fig. 1(b)), with integrated mean squared XMCD $(\int_{M_{4.5}} \sqrt{\text{XMCD}^2})$ of 0.017 (pure), 0.014 (Sm deficient), 0.013 (carbon-doped). This indicates that the conditions of the initial sample that yield dichroic features are robust against other common impurities/defects. We thus

infer that impurities known to be present at the 2% level are the predominant extrinsic factor relating to magnetizable Sm^{3+} moments.

At higher temperatures, the TEY XMCD is dominated by Sm^{2+} (Fig. 2(a)). This contribution is evidenced by the Sm^{2+} pre-edge M₅ peak at 1073.5 eV which shows little temperature dependence. While Van Vleck type $J = 0 \text{ Sm}^{2+}$ paramagnetism has only weak temperature dependence, free $J = 5/2 \text{ Sm}^{3+}$ carries a magnetic moment which should give rise to a Curie term $\propto 1/T$ in the corresponding magnetic susceptibility. Indeed, upon cooling below 75 K a substantial feature at M₅ develops along with a weaker M₄ structure. However, the Sm³⁺ leading edge of M₄ (1100.5 eV) and fitted Sm³⁺ contribution show these dichroic features are associated with magnetized Sm³⁺ which is anti-aligned with field rather than simply free paramagnetic moments.

In addition to the fitting described above, sum rule analysis directly provides the Sm orbital moment through integration of the XMCD spectra over both the M_4 and M_5 edges (Fig.2(a) inset).[38] Given the weak temperature dependence of the Van Vleck Sm^{2+} component, the total orbital moment extracted from the TEY XMCD through sum rule analysis is expected to follow the fitted Sm^{3+} component, offset by a constant. At high temperatures, the total orbital moment is positive, changing sign as temperature is reduced below 30 K. This change in sign to a negative total orbital moment at low-temperatures is model-independent evidence of a net negative orbital magnetic moment carried by Sm at low T. Subtracting off the high-T (100 K) Sm^{2+} component, we can compare the change in orbital moment (related to Sm^{3+}) to the expected Hund's rule value of $\langle L_{z_a} \rangle = 5$, finding $\Delta \langle L_z \rangle / \langle L_{z_a} \rangle = 1.5\%$ of the total Sm as magnetized Sm^{3+} at 8 K and 6 T. For reference, at 8 K and 6 T smallmoment Sm³⁺ ($\mu_{\rm Eff} = 0.85 \ \mu_B$) yields 14% of its saturated moment while large moment impurities ($\mu_{\rm Eff} \approx 5$) should be magnetized to 63% of their saturated moment.

The temperature and field dependence of the change in TEY (surface) XMCD, $\Delta \langle L_z \rangle / \langle L_z a \rangle$, can be fit by a negative Langevin function, $L(x) = c(\coth(x) - 1/x)$, where c is the concentration and x is the product of effective moment, field, and inverse temperature, x = $\mu_{\rm Eff} \ \mu_o H/(k_B T)$. This fit yields $\mu_{\rm Eff} = 3.6(9)\mu_{\rm B}$ with a concentration of 2.7(5)% of the total population of Sm at saturation. This moment is larger than the Sm^{3+} moment, but close to the weighted average impurity moment. The implied concentration is also similar to the impurity concentration. In zero field (Fig. 2(b)), the TEY XMCD shows no evidence of magnetization beyond the experimental detection limit (< 2% of the 5 T response at the M_5 peak, 1079.5 eV), an indication against surface ferromagnetism at 8 K. However, these magnetic components may have a magnetically ordered phase at sufficiently low temperatures, as suggested by hysteretic

FIG. 2. TFY(surface) XMCD temperature and magnetic field dependence. (a) XMCD temperature dependence. Circled energies in the main panel indicate TEY XMCD spectra indicative of a single valence (1073.5 eV for Sm²⁺ and 1100.5 eV for Sm³⁺) Inset shows temperature dependence of the fitted Sm²⁺ and Sm³⁺ XMCD amplitudes and integrated Δ XMCD relative to 100 K ($\propto \Delta \mu_L$). (b) Magnetic field response of the M₅ edge TEY XMCD at 8 K. Inset shows the contributions from Sm²⁺ and Sm³⁺. In the insets, the dotted lines show a Langevin fit ($\mu_{\rm Eff} = 3.6(9)\mu_{\rm B}$, concentration 2.7(5)%) of the combined temperature dependence below 75 K and field dependence at 8 K

magnetotransport.[39]

The bulk-sensitive TFY XMCD also indicates dichroic features within the bulk of SmB_6 (Fig.3(b)). If the bulk XMCD signal were entirely Sm^{2+} in origin, it would be expected to carry the weak temperature dependence seen of Sm^{2+} in TEY. However, upon cooling, the trailing edge of M_5 develops a dichroic feature which mirrors that of the surface (1081 eV-1083 eV). The TEY and TFY dichroic features are similar in magnitude, and the change in integrated TFY XMCD decreases with lowering temperature. This is indicative of negative-moment magnetizable Sm^{3+} within the bulk as well as at the surface of SmB_6 .

To contextualize the dichroic features associated with Sm^{3+} with the net magnetic properties of bulk SmB_6 ,

FIG. 3. Bulk properties of nominally pure SmB₆ sample. (a) The magnetization data is fit by a Van Vleck contribution (solid black line) and a paramagnetic impurity contribution (shaded) of 1% impurites with $\mu_{\rm Eff} = 5.2 \ \mu_{\rm B}$. Insets show susceptibility taken at 5 T and heat capacity with comparison to the previously published heat capacity of a high-purity sample.[40] We attribute shaded portions to impurities. Sample data also appears in the supplementary information of Ref. [19], without fitting. (b) TFY XMCD (bulk). At 8 K, a negative dichroic feature develops from 1081 eV - 1083 eV as for TEY. The temperature dependence counter-indicates solely Sm²⁺.

we investigated the magnetization and susceptibility of the stoichiometric sample (Fig. 3(a)), reported previously without analysis.[31] A flattening of the susceptibility (Fig. 3(a) inset) occurs at 60 K, forming a broad hump before an eventual upturn at low T. The rounded maximum suggests short range antiferromagnetic correlations. The low T upturn is variable across samples of SmB_6 and can be attributed to a Curie-like susceptibility of weakly interacting magnetic impurities. At lowtemperatures, M(H) is well fit by the sum of a linear component (M = 0.0052 $\mu_{\rm B}T^{-1}$ f.u.⁻¹) associated with Van Vleck magnetism and a Langevin function of 1% magnetic impurities with an effective moment 5.2(1) $\mu_{\rm B}$ (Fig. 3(a)). Such fits have been shown to be effective over wide ranges of impurity concentrations, fields, and temperatures in SmB_6 .[18] The overall positive moment seen in bulk magnetization measurements indicates the predominant contribution to the low T uniform magnetization is not the negative-moment Sm^{3+} magnetism seen by XMCD. However, Sm^{3+} coupled antiferromagnetically to larger moment impurities would appear anti-aligned with field when observed independently.

The observed bulk magnetization is also consistent with screening of magnetic impurities known to be in these samples from previous elemental analysis.[19] While the XAS edges probed here limit sensitivity to Sm 4f electrons, previously described moment-screening in Gd-doped SmB_6 provides a basis for comparison.[18]. Assuming a similar effect, the expected moment screening of the bulk magnetization for 1% magnetic impurities (known to be present through elemental analysis[19]) would be 10% (.05 $\mu_{\rm B}$), similar to the inferred bulk Sm³⁺ of order 1% of $\mu_{\rm Sm} = 0.85 \mu_{\rm B} \ {\rm Sm}^{3+}$ (.0085 $\mu_{\rm B}$). The enhanced low-temperature heat capacity seen in our stoichiometric sample relative to a high-purity sample (Fig.3(a) inset) is also consistent with the enhanced heat capacity associated with impurities and moment screening. High-quality starting materials yield SmB₆ samples with more than an order of magnitude smaller heat capacity at 2 K.[40]

Polishing has a more substantial effect than carbondoping and Sm vacancies on Sm valence in our samples. Our stoichiometric, in-situ vacuum cleaved samples have a TEY valence at 8 K of 2.65(3) while previously measured polished samples grown from the same starting materials are dominated by Sm^{3+} .[31] Temperature dependence of the valence of the stoichiometric cleaved sample shows a weak minimum at approximately 20 K, consistent with previous reports. [41, 42] Importantly, all cleaved samples clearly show a dichroic response from Sm^{2+} , a distinct component of the intrinsic magnetism of SmB_6 and an indication that the intermediate valence phase is being probed. This, as well as the close proximity to a trivial insulating phase dictated by valence, indicates that caution is warranted in preparing and analyzing materials for which topological properties are measured. [43]

We have observed a dichroic response for magnetizable Sm^{3+} below 75 K in SmB_6 via XMCD. The net magnetizable moment is anti-aligned with the applied field and paramagnetic-like. The XMCD signal is insensitive to carbon doping and Sm-deficiencies, indicating the negative Sm^{3+} moment is robust in the presence of other potential defects and impurities. By comparison to the net positive magnetization, we relate this Sm^{3+} to shared impurities, well-known to be at the level of 2% (1% magnetic) in the samples measured.[19] The role of the boron framework is unknown, though there are previous indications of the importance of phonon coupling in the low-energy regime, and recent reports indicate that there is substantial overlap of the samarium and boron electron wave functions.[44]

The positive bulk magnetization distinctly requires that the observed negative Sm^{3+} moment is not the pre-

dominant magnetization within the bulk. Nonetheless, the bulk-sensitive TFY XMCD, though complicated by self-absorption effects, indicates a negative Sm^{3+} moment. If the observed XMCD is intrinsic and present within the bulk, this implies the Kondo singlet ground state is modified by magnetic field despite previous magnetization measurements on higher-purity samples showing almost exclusively Van Vleck magnetization to at least 60 T.[45] An exotic form of diamagnetism has been proposed at very low fields for SmB_6 . [46] However, given the impact of even modest impurity concentrations on the low-energy physics within SmB_6 (and present in our samples in appreciable quantities), a natural explanation for our observations is that the magnetizable Sm^{3+} antialigns to the applied field as a consequence of strong coupling to larger moment paramagnetic impurities. In this way the diamagnetic-like response that we detect for Sm^{3+} can be associated with bulk compensated paramagnetism.

We note that XMCD of another floating-zone sample with a small magnetic impurity concentration (inferred by magnetization) was recently reported.[47] The total moment of Sm^{3+} was reported as aligned with field at the surface (TEY), with a very small contribution antialigned within the bulk(TFY). In contrast, we observe an anti-aligned moment for Sm^{3+} at the surface and within the bulk occurring at similar magnitudes. Both results are consistent with our interpretation of magnetic impurities dramatically altering the magnetic behavior of Sm^{3+} within the bulk and surface of SmB_{6} .

This project was supported by UT-Battelle LDRD 3211-2440. The work at IQM was supported by the US Department of Energy, office of Basic Energy Sciences, Division of Material Sciences and Engineering under grant DE-FG02-08ER46544. W.T.F. is grateful to the ARCS foundation and the Schmidt Science Fellows program, in partnership with the Rhodes Trust, for the partial support of this work. MvV was supported by the U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-03ER46097. Work at Argonne National Laboratory was supported by the U. S. DOE, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357.

- * wfuhrman@schmidtsciencefellows.org
- [†] freeland@anl.gov
- H. A. Eick and P. W. Gilles, Journal of the American Chemical Society 81, 5030 (1959).
- [2] T. Kasuya, K. Takegahara, T. Fujita, T. Tanaka, and E. Bannai, Le Journal de Physique Colloques 40, C5 (1979).
- [3] S. Wolgast, Ç. Kurdak, K. Sun, J. Allen, D.-J. Kim, and Z. Fisk, Phys. Rev. B 88, 180405 (2013).

- [4] M. Dzero, K. Sun, V. Galitski, and P. Coleman, Phys. Rev. Lett. **104**, 106408 (2010).
- [5] F. Lu, J. Z. Zhao, H. Weng, Z. Fang, and X. Dai, Phys. Rev. Lett. **110**, 096401 (2013).
- [6] V. Alexandrov, M. Dzero, and P. Coleman, Phys. Rev. Lett. 111, 226403 (2013).
- [7] D. Kim, S. Thomas, T. Grant, J. Botimer, Z. Fisk, and J. Xia, Scientific reports 3 (2013), doi:10.1038/srep03150.
- [8] Y. S. Eo, A. Rakoski, J. Lucien, D. Mihaliov, C. Kurdak, P. F. S. Rosa, D.-J. Kim, and Z. Fisk, arXiv preprint arXiv:1803.00959 (2018).
- [9] P. Hlawenka, K. Siemensmeyer, E. Weschke, A. Varykhalov, J. Sánchez-Barriga, N. Shitsevalova, A. Dukhnenko, V. Filipov, S. Gabáni, K. Flachbart, et al., Nature Communications 9, 517 (2018).
- [10] A. Stern, M. Dzero, V. Galitski, Z. Fisk, and J. Xia, Nature materials 16, 708 (2017).
- [11] V. Alexandrov, P. Coleman, and O. Erten, Phys. Rev. Lett. **114**, 177202 (2015).
- [12] X. Zhang, N. P. Butch, P. Syers, S. Ziemak, R. L. Greene, and J. Paglione, Phys. Rev. X 3, 011011 (2013).
- [13] J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z. Ye, M. Xu, Q. Ge, S. Tan, X. Niu, <u>et al.</u>, Nat. Commun. 4, 3010 (2013).
- [14] P. Nikolić, Phys. Rev. B **90**, 235107 (2014).
- [15] K. Akintola, A. Pal, S. Dunsiger, A. Fang, M. Potma, S. Saha, X. Wang, J. Paglione, and J. Sonier, arXiv preprint arXiv:1802.04295 (2018).
- [16] W. Fuhrman, J. Leiner, P. Nikolić, G. E. Granroth, M. B. Stone, M. D. Lumsden, L. DeBeer-Schmitt, P. A. Alekseev, J.-M. Mignot, S. Koohpayeh, <u>et al.</u>, Physical review letters **114**, 036401 (2015).
- [17] D.-J. Kim, J. Xia, and Z. Fisk, Nature materials 13, 466 (2014).
- [18] W. T. Fuhrman, J. R. Chamorro, P. A. Alekseev, J.-M. Mignot, T. Keller, P. Nikolic, T. M. McQueen, and C. L. Broholm, arXiv preprint arXiv:1707.03834 (2017).
- [19] W. Phelan, S. Koohpayeh, P. Cottingham, J. Tutmaher, J. Leiner, M. Lumsden, C. Lavelle, X. Wang, C. Hoffmann, M. Siegler, et al., Scientific reports 6 (2016).
- [20] W. Fuhrman and P. Nikolić, arXiv preprint arXiv:1807.00005 (2018).
- [21] M. E. Valentine, S. Koohpayeh, W. A. Phelan, T. M. McQueen, P. F. S. Rosa, Z. Fisk, and N. Drichko, Phys. Rev. B 94, 075102 (2016).
- [22] M. Boulanger, F. Laliberté, M. Dion, S. Badoux, N. Doiron-Leyraud, W. Phelan, S. Koohpayeh, W. Fuhrman, J. Chamorro, T. McQueen, <u>et al.</u>, Physical Review B **97**, 245141 (2018).
- [23] N. J. Laurita, C. M. Morris, S. M. Koohpayeh, P. F. S. Rosa, W. A. Phelan, Z. Fisk, T. M. McQueen, and N. P. Armitage, Phys. Rev. B 94, 165154 (2016).
- [24] P. K. Biswas, Z. Salman, T. Neupert, E. Morenzoni, E. Pomjakushina, F. von Rohr, K. Conder, G. Balakrishnan, M. C. Hatnean, M. R. Lees, D. M. Paul, A. Schilling, C. Baines, H. Luetkens, R. Khasanov, and A. Amato, Phys. Rev. B 89, 161107 (2014).
- [25] Z. Xiang, B. Lawson, T. Asaba, C. Tinsman, L. Chen, C. Shang, X. H. Chen, and L. Li, Phys. Rev. X 7, 031054 (2017).
- [26] M. Hartstein, W. Toews, Y.-T. Hsu, B. Zeng, X. Chen, M. C. Hatnean, Q. Zhang, S. Nakamura, A. Padgett, G. Rodway-Gant, et al., Nature Physics (2017).
- [27] H. Shen and L. Fu, arXiv preprint arXiv:1802.03023

(2018).

- [28] N. Harrison, arXiv preprint arXiv:1803.04021 (2018).
- [29] L. Fu, C. L. Kane, and E. J. Mele, Physical review letters 98, 106803 (2007).
- [30] J. Fernández-Rodríguez, B. Toby, and M. van Veenendaal, J. Electron. Spectrosc. Relat. Phenom. 202, 81 (2015).
- [31] W. A. Phelan, S. M. Koohpayeh, P. Cottingham, J. W. Freeland, J. C. Leiner, C. L. Broholm, and T. M. Mc-Queen, Phys. Rev. X 4, 031012 (2014).
- [32] V. Zabolotnyy, K. Fürsich, R. Green, P. Lutz, K. Treiber, C.-H. Min, A. Dukhnenko, N. Shitsevalova, V. Filipov, B. Kang, et al., arXiv preprint arXiv:1801.03315 (2018).
- [33] B. T. Thole, G. van der Laan, J. C. Fuggle, G. A. Sawatzky, R. C. Karnatak, and J.-M. Esteva, Phys. Rev. B 32, 5107 (1985).
- [34] J. B. Goedkoop, B. T. Thole, G. van der Laan, G. A. Sawatzky, F. M. F. de Groot, and J. C. Fuggle, Phys. Rev. B 37, 2086 (1988).
- [35] M. Pompa, A. M. Flank, P. Lagarde, J. C. Rife, I. Stekhin, M. Nakazawa, H. Ogasawara, and A. Kotani, Phys. Rev. B 56, 2267 (1997).
- [36] M. Nakazawa, H. Ogasawara, A. Kotani, and P. Lagarde, Journal of the Physical Society of Japan 67, 323 (1998).
- [37] G. van der Laan and A. I. Figueroa, Coordination Chemistry Reviews 277, 95 (2014).
- [38] P. Carra, B. Thole, M. Altarelli, and X. Wang, Physical

Review Letters 70, 694 (1993).

- [39] S. Wolgast, Y. S. Eo, T. Öztürk, G. Li, Z. Xiang, C. Tinsman, T. Asaba, B. Lawson, F. Yu, J. W. Allen, K. Sun, L. Li, i. m. c. Kurdak, D.-J. Kim, and Z. Fisk, Phys. Rev. B 92, 115110 (2015).
- [40] M. Orendáč, S. Gabáni, G. Pristáš, E. Gažo, P. Diko, P. Farkašovský, A. Levchenko, N. Shitsevalova, and K. Flachbart, Phys. Rev. B 96, 115101 (2017).
- [41] M. Mizumaki, S. Tsutsui, and F. Iga, in J. Phys.: Conf. Ser., Vol. 176 (IOP Publishing, 2009) p. 012034.
- [42] Y. Utsumi, D. Kasinathan, K.-T. Ko, S. Agrestini, M. Haverkort, S. Wirth, Y. Wu, K. Tsuei, D. Kim, Z. Fisk, et al., Physical Review B 96, 155130 (2017).
- [43] V. Alexandrov, M. Dzero, and P. Coleman, Phys. Rev. Lett. 111, 226403 (2013).
- [44] P. J. Robinson, X. Zhang, T. McQueen, K. H. Bowen, and A. N. Alexandrova, The Journal of Physical Chemistry A 121, 1849 (2017).
- [45] B. Tan, Y.-T. Hsu, B. Zeng, M. C. Hatnean, N. Harrison, Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M. Johannes, et al., Science, aaa7974 (2015).
- [46] O. Erten, P.-Y. Chang, P. Coleman, and A. M. Tsvelik, Phys. Rev. Lett. **119**, 057603 (2017).
- [47] K. Chen, T. Weng, G. Schmerber, V. Gurin, J.-P. Kappler, Q. Kong, F. Baudelet, A. Polian, and L. Nataf, Physical Review B 97, 235153 (2018).