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The Weyl particle is the massless fermionic cousin of the photon. While no fundamental Weyl
particles have been identified, they arise in condensed matter and meta-material systems, where their
spinor nature imposes topological constraints on low-energy dispersion and surface properties. Here
we demonstrate a topological circuit with Weyl dispersion at low-momentum, realizing a 3D lattice
that behaves as a half-flux Hofstadter model in all principal planes. The circuit platform provides
access to the complete complex-valued spin-texture of all bulk- and surface- states, thereby revealing
not only the presence of Weyl points and the Fermi arcs that connect their surface-projections, but
also, for the first time, the Berry curvature distribution through the Brillouin zone and the associated
quantized Chiral charge of the Weyl points. This work opens a path to exploration of interacting
Weyl physics in superconducting circuits, as well as studies of how manifold topology impacts band
topology in three dimensions.

Creating and probing particles with topologically non-
trivial dispersion is a growing endeavor with bene-
fits from exploration of exotic emergent phenomenol-
ogy in manybody physics1–3, to next-generation tech-
nologies (e.g., waveguides4 and circulators5). In two
dimensions, successes range from synthetic realizations
of graphene6,7 and Haldane’s model8, to spin-orbit cou-
pling9,10 and gauge fields11–20. Of particular interest are
implementations compatible with strong interactions be-
tween individual quantized excitations, where extensions
to the strongly correlated regime are possible. Candi-
date platforms include ultracold atoms in optical lat-
tices21, microwave photons in superconducting circuits22,
and Rydberg-dressed photons23 in optical resonators24.

Recently, there has been growing interest in exploring
the properties of three-dimensional quasi-particles, with
a particular focus on Weyl particles25, as they have not
been observed in nature. With a Hamiltonian of the form
H ∼ σ · p, these massless particles have a linear disper-
sion E ∝ ±|p|, and are chiral, meaning that their eigen-
states exhibit momentum-dependent spin-texture, with
a spin-momentum aligned high-energy branch, and an
anti-aligned low-energy branch: the momentum acts as
an effective Zeeman field for the spin in a 3D analog of
the Dirac fermion6,7. The additional symmetries of a
lattice system prevent Weyl dispersion over the full Bril-
louin zone (BZ), restricting the behavior to the vicinity
of “Weyl points”.

Weyl dispersion has recently been observed in optical,
microwave, and phononic meta-materials: A type-I Weyl
node, corresponding to a point-like Fermi-surface with
linear dispersion, was imaged in the projected disper-
sion relation of a gyroid microwave material via angle-
resolved transmission26, and the robustness of the sur-
face states demonstrated through introduction of local
defects27; a Type-II Weyl node, a highly tilted Weyl dis-
persion (see Fig. 5 of ref.28) where particle- and hole-
pockets touch at a point29,30, was observed through con-
ical diffraction, along with Fermi-arc-like surface states in

an array of laser-written waveguides31 and hyperbolic32
and helicoil33 microwave meta-materials; Most recently
a synthetic axial field was generated in a phononic Weyl
model34. Such a spinful 3D model must exhibit non-
trivial spin-texture in the vicinity of a linear dispersion
point (Weyl point), but to our knowledge, this is the first
synthetic platform to directly measure the Berry curva-
ture associated with this spin texture.

By extending our Z2 topological circuit15,35 into the
third dimension36–38, we provide the first experimental
realization of Weyl particles in a circuit. In a 3D ar-
ray of low-loss lumped circuit elements, we implement
a cubic lattice with π-flux per plaquette in all principal
planes39, realizing a Weyl band structure. Thanks to the
exquisite control afforded by the circuit platform, we re-
veal the system’s complex response with site-, energy-
and spin- resolved microscopy. With the flexibility of
non-local couplings between system edges, we impose pe-
riodic boundary conditions on some or all surfaces to
probe both bulk and surface physics. We are thus able
to measure the full spin-resolved band-structure of the
meta-material. We extract the Berry curvature from the
band-structure and ascertain that the Weyl points are
indeed quantized sources and sinks of Berry flux called
“chiral charges.” Finally, we perform a full reconstruction
of the surface states vs. momentum & energy and ob-
serve that the surface-projections of the the Weyl points
are indeed connected by Fermi arcs.

I. ENGINEERING A WEYL CIRCUIT

The Weyl model that we realize in our circuit is analo-
gous to a recent cold-atom proposal39 that may be viewed
as either a cubic lattice with π-flux penetrating each pla-
quette in each principal plane (x−y, x−z, and y−z), cor-
responding to a half-flux Hofstadter model in each plane
(and a two-site magnetic unit cell); or equivalently a cu-
bic lattice of spin-1/2’s with engineered spin-dependent
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Figure 1. A Weyl Circuit. (a) Topology of the tunneling connectivity of a minimal lattice model exhibiting Weyl points.
The unit cell consists of two sites, with A-sites shown in blue, and B-sites shown in orange. Zero-phase tunneling is represented
as cyan solid line, and π-phase tunneling as red dashed line. The lattice vectors are ẑ, û ≡ 1√

2
(x̂ + ŷ), and v̂ ≡ 1√

2
(x̂ − ŷ).

(b) To realize such a lattice with circuit components, all lattice-sites are replaced by inductors, and all tunnel-couplings by a
pair of capacitors. A zero-phase tunnel-coupling capacitively connects the positive end of one inductor to the positive end of
its neighbor, and the negative end to the negative end of the neighbor. A π-phase tunnel-connection capacitively couples the
positive end of an inductor to the negative end of its neighbor, and vice-versa. (c) Shows numerically calculated band structure
at ky = 0; apparent are four Weyl points in the first Brillouin zone.

tunneling. In either case, it is a 3D time-reversal sym-
metric tight-binding model on a cubic lattice; the two
sites in the magnetic unit cell generate the pseudo-spin
degree of freedom in the spin model (see Fig. 1).

The dispersion relation of this tight-binding Hamilto-
nian is (see Supplemental Material for details40): H(k) =
ε0 + h(k) · σ, with h(k)/2t0 = cos(kxa)x̂ − sin(kya)ŷ +
cos(kza)ẑ. The eigen-energies are thus: E±(k) = ε0 ±
2t0

√
cos2(kza) + cos2(kxa) + sin2(kya). The four Weyl

points are located at ka = π/2(±1, 0,±1), with energy
E = ε0 and chiral charges χ = − sgn(kxkz).

The crucial technique required to realize this Weyl
model in a circuit is the ability to generate a synthetic
magnetic flux by controlling tunneling phase, which we
achieve by capacitively coupling each end of each on-site
inductor its neighbors; swapping the connections gener-
ates a π phase shift in the tunneling amplitude15.

We assemble an 8× 8× 8 lattice of 2-site unit cells by
stacking printed circuit boards (PCBs) with connectivity
in x, y, and z directions shown in Fig. 1b. The lattice
translation vectors are û ≡ 1√

2
(x̂+ ŷ), and v̂ ≡ 1√

2
(x̂− ŷ),

and ẑ, parallel to physical edges of the circuit boards.
For the chosen component values (see Supplemental Ma-
terial for details40), the predicted Weyl point frequency
is fWeyl = 290 kHz, and the band-structure spans the
frequency range 230− 450 kHz.

II. PROBING BULK TOPOLOGY

To probe the bulk band structure without surface-state
contamination, we harness the unique control of our cir-

cuit realization15 to impose periodic boundary conditions
on all surfaces (see Supplemental Material for details40),
thus realizing a finite system which is all bulk.

We experimentally extract the band structure and spin
texture of the Weyl circuit by measuring the frequency-
dependent response of the circuit as a function of spatial
offset using a custom-built 3D scanner (see Supplemen-
tal Material for details40). Because we recover the full
magnitude and phase of the response, we are able to
reconstruct (via a Fourier transform) the momentum-
dependent response of the system. Plotting this re-
sponse vs ~k yields the lattice-photon dispersion shown
in Fig. 2a, plotted in the vicinity of the Weyl point at
k = (−π/2, 0,−π/2); at frequencies just above (or be-
low) the Weyl frequency fWeyl the equi-energy surface is
a near-sphere around the Weyl point– as the frequency
approaches fWeyl, the response collapses to into the Weyl
point. In Fig. 2b, equi-energy surfaces of the response are
plotted over the full Brillouin zone for frequencies above
fWeyl, revealing four Weyl points whose momenta are, as
anticipated k = (±π/2, 0,±π/2).

Our ability to resolve the complex-valued response on
both A and B sub-lattices permits a complete reconstruc-
tion of the spin-texture of the Bloch states. The arrows in
Fig. 2b reflect the measured spin-structure of the momen-
tum states on the upper energy-surface; Fig. 2c-d are cuts
at kz = π/2 and ky = 0, which are planes embedding two
Weyl points, and all four, respectively. It is apparent that
only near the Weyl point at k = (π/2, 0, π/2) does the
spin points everywhere radially - an inward radial hedge-
hog defect, while the other three Weyl points exhibit
hyperbolic hedgehogs; this is because we have chosen a
uniform definition of the spin-Bloch-sphere over the full
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Figure 2. Measured Band Structure of the Weyl Circuit. In a configuration with periodic boundary conditions physically
imposed along all three axes, it is possible to fully reconstruct the bulk band-structure by exciting a single site and measuring
the complex response at all sites as a function of frequency. A 3D spatial Fourier transform of the resulting response yields the
dispersion shown in (a) in the vicinity of the Weyl point at k = (π/2, 0, π/2). The response below (red) and above (purple) the
Weyl energy forms near-spherical shells in k-space, made slightly square by the finite (8× 8× 8) system size. These shells form
a conical (linear) dispersion around the Weyl point highlighted by the (red to purple) envelope surrounding the data. At the
energy of the Weyl point (green), the response is localized exclusively to the momentum of the Weyl point. The equi-energy
surfaces are plotted over the full Brillouin zone in (b), for the band above the Weyl frequency (color-scale same as (a)). The
equi-energy surfaces are aspheric at frequencies far from the Weyl points, a generic result arising from the eventual merger of
the Weyl cones into a single band. Also plotted (arrows) is the reconstructed spin-texture of the upper band Bloch functions
near the Weyl points; at k = (π/2, 0, π/2) the spin points everywhere inwardly - a radial hedgehog defect, while the other three
Weyl points exhibit hyperbolic hedgehog defects, from which we can deduce the chirality of the Weyl points: χ = − sgn(kxkz).
In (c) we plot a slice of the measured dispersion in kv − ku plane at the kz = π/2 of two Weyl points. In (d) we plot a slice in
the kx − kz plane at the ky = 0 of all Weyl points. Also shown, as arrows, are the projections of all the spin-texture into the
planes.

Brillouin zone - each Weyl point may be converted into
a radial hedgehog through a local spin-transformation of
even parity, from which the sign of the chiral charge of
the corresponding Weyl point may be observed directly
- outward/inward hedgehog for positive/negative chiral
charge, respectively.

Note that topological considerations require Weyl
points to come in pairs with opposite chiral charge41;
when discrete translation is the sole remaining symme-
try (inversion- and time-reversal- are broken) the BZ may
exhibit a single pair of Weyl points; the minimum is two
pairs if time-reversal symmetry is preserved. The first
Weyl fermions, observed in TaAs42,43, did not break time-
reversal symmetry and because of the complex structure
of TaAs, exhibited 12 pairs of Weyl points. Our platform
exhibits the minimum four pairs of Weyl points allowed
for a time-reversal symmetric system.

From the measured space- and spin- resolved Bloch-
functions we are able to extract the Berry curva-

ture pseudo-vector of the lower band Ω(k) via (see
Supplemental Material for details40): Ω(n)(k) =
i 〈∇kψn(k)|×|∇kψn(k)〉. The curvature is plotted in
Fig. 3a, and it is apparent that while the spin-texture
is gauge-dependent, the Berry curvature is not – each
Weyl point acts as either a source or sink of Berry curva-
ture, evident from the flow of curvature into/out-of the
points. The measured Berry curvature flow from sources
to the sinks is shown in Fig. 3b-c, where 2D slices of
the full 3D Brillouin zone are displayed. The overlaid
density plot depicts the measured chiral charge density
ρχ ≡ 1

2π∇k · Ω, exhibiting two (maximally localized,
delta-function-like) sources (positively charged, orange)
and two sinks (negatively charged, blue), located at the
four Weyl points. Integrating the Berry-flux over a sur-
face enclosing a single Weyl point yields chiral charges
of χ = 1

2π

‚
Ω · n̂ dS =

˝
ρχdV = +1,−1,+1,−1, in

agreement with theory (see Supplemental Material for
details40).
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Figure 3. Measured Berry Curvature, Berry Flux and Surface States. (a) shows the measured and interpolated Berry
curvature (arrows), and associated Berry flux (blue→orange is negative→positive), over the full Brillouin zone, for the lower
band. . Divergence of the Berry curvature is strictly zero except at four topological defects located at the Weyl points, carrying
±1 chiral charge, with +1 corresponding to sources of Berry flux (orange), and −1 to sinks (blue), evident from the flow of
the Berry curvature. Slices along kv − ku and kx − kz are shown in (b) and (c) respectively, highlighting the structure of
this flow. (d) & (e) show the measured surface states for even- and odd- numbers of layers in the v direction, respectively.
States residing on the top surface are depicted in shades of red proportional to excitation amplitude, while those on the bottom
surface are depicted in shades of blue. Only selected frequency planes are shown here and within each plane is a 8 × 8 pixels
surface Brillouin zone, limited by the system size as also shown in the Supplementary Materials. It is apparent that, in the
ν = fWeyl = 290kHz plane, the surface-projection of the Weyl points (outlined in dashed white squares) are connected by lines
(“Fermi-arcs”) of surface-states; for an even number of layers, the Fermi-arcs are within the Brillouin zone and overlap each
other on both top and bottom surfaces, while for an odd number of layers the Fermi-arc on the top surface (red) passes around
the Brillouin zone, exploiting its toroidal topology– a consequence of the gauge difference between even and odd layers (see
Supplemental Material for details40).

III. PROBING SURFACE STATES

The chiral charge of the Weyl nodes is also reflected
in the structure of the surface states. This is most eas-
ily understood44 by considering a simple material with
only one pair of Weyl nodes, and examining the states
on an infinite cylindrical surface whose axis n̂ is aligned
with the vector connecting the (oppositely charged) Weyl
points. The resulting 2D band structure, when computed
as a function of the axial momentum kn, will exhibit chi-
ral edge states when the Chern number at fixed kn is
non-zero (see Supplemental Material for details40). The
momentum-structure of these surface states is model-
dependent, but the surface channel must terminate at the
projections of the Weyl points onto the surface, yielding
“Fermi arcs” at fWeyl connecting the Weyl points; addi-
tional Weyl points (as in our experiment) result in more
arcs. More broadly, Fermi arcs only present on particular
surfaces (see Supplemental Material for details40).

We experimentally probe the surface physics by remov-
ing the periodic boundaries on the v̂ axis (see Supplemen-
tal Material for details40) and repeating our site-resolved
measurements on the faces of the resulting three-cylinder.
The measured surface band-structure is shown in Fig. 3d-
e; the Fermi arcs manifest as lines in ku−kz space, linking
the surface-projections of the pairs of Weyl points at a
frequency of 290 kHz. When the meta-material has an
even number of layers, the arcs on the top- and bottom-

surfaces follow the same path through the BZ. When the
meta-material has an odd number of layers, the Fermi
arcs on the top surface connect the Weyl points through
the BZ, and around the edge of the (toroidal) BZ on the
bottom surface, as anticipated theoretically45.

In conclusion, we have realized the first circuit support-
ing Weyl particles as excitations and explored its prop-
erties: We find two pairs of Weyl points, and by spin-
resolved spectroscopy directly map out the Berry cur-
vature over the full Brillouin zone, thereby ascertaining
that the Weyl points in each pair have opposite quantized
chiral charge. Further evidence of the chiral charge of the
Weyl points comes from the direct detection of Fermi-arc
surface states connecting their surface-projections. The
addition of ferrites will enable realization of even more
robust T-broken models16, while application of quantum
circuit techniques46 will enable qubit-mediated interac-
tions22, enabling study of the interplay of topology and
many-body physics47–50.

IV. METHODS

The lattice is composed of 8 stacked printed circuit
boards (PCBs), each containing two interleaved 8×8 sub-
lattices of inductors, capacitively coupled on both ends
to their nearest neighbors (see Supplemental Material for
details40). The 8 boards are further capacitively coupled
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together through additional inter-board headers. Peri-
odic boundary conditions are imposed by connecting the
opposite faces of the bulk together using ribbon cables
(see Supplemental Material for details40).

Each unit cell is composed of 2× 1.02(1) mH induc-
tors, and 12× 100(2) pF capacitors. A single inductor-
capacitor pair has a measured Q-factor of 136(9) (in the
frequency range from 233(3) kHz to 409(3) kHz), limited
by inductor ohmic loss.

We probe the lattice using an RF network analyzer to
excite a single lattice site (inductor) via a magnetically-
coupled drive coil, and measure site-by-site using a mag-
netic pick-up coil that is translated from site-to-site in
the lattice using a heavily modified 3D printer.

The circuit platform offers unique benefits including:
the ability to perform site- resolved measurements of
(complex) transport coefficients– a probe coil may be
placed inside the bulk to excite and measure the am-
plitude and phase response at any site; exquisite control
of global topology– in each dimension one may choose be-
tween periodic boundaries and (sharp) open boundaries,
the former proposed but unrealized in optical lattices51,

and the latter only recently achieved using real52–54 or
synthetic55–57 dimensions; more exotic topologies58 such
as Mobiüs strips15 and Klein bottles are also possible,
along with non-euclidean geometries arising from modi-
fied connectivity59.
Note added in proof : We recently became aware of the

work of Helbig et al., providing a new formalism, the
“impedance band-structure,” of circuit arrays60.

ACKNOWLEDGEMENTS

The authors would like to thank Michael Levin for
fruitful discussions. This work was supported by DOE
grant DE-SC0010267 for apparatus construction/data
collection and MURI grant FA9550-16-1-0323 for anal-
ysis. D.S. acknowledges support from the David and Lu-
cile Packard Foundation. This work was also supported
by the University of Chicago Materials Research Science
and Engineering Center, which is funded by National Sci-
ence Foundation under award number DMR-1420709.

∗ simonjon@uchicago.edu
1 I. Bloch, J. Dalibard, and W. Zwerger, Reviews of modern
physics 80, 885 (2008).

2 I. Carusotto and C. Ciuti, Reviews of Modern Physics 85,
299 (2013).
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