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We study multiterminal Majorana and conventional superconducting islands in the vicinity of
the charge degeneracy point using bosonization and numerical renormalization group. Both models
map to the multichannel charge Kondo problem, but for noninteracting normal leads they flow to
different non-Fermi liquid fixed points at low temperatures. We compare and contrast both cases
by numerically obtaining the full crossover to the low temperature regime and predict distinctive
transport signatures. We attribute the differences between both types of islands to a crucial distinc-
tion of charge-2e and charge-e transfer in the conventional and topological case, respectively. In the
conventional case, our results establish s-wave islands as a new platform to study the intermediate
multichannel Kondo fixed point. In the topological setup the crossover temperature to non-Fermi
liquid behavior is relatively high as it is proportional to the level broadening and the transport re-
sults are not sensitive to channel coupling anisotropy, moving away from the charge degeneracy point
or including a small Majorana hybridization, which makes our proposal experimentally feasible.

I. INTRODUCTION.

The prospect of robust quantum computation using
Majorana zero modes1–5 sparked enormous experimental
interest in the material platforms that enable direct ob-
servation and study of these topological quasiparticles.
Among the leading platforms are proximitized semicon-
ductor nanowires with spin-orbit coupling, which are pre-
dicted to become topological superconductors and host
Majorana zero modes under external magnetic fields6,7.
The immense experimental effort over the last several
years has resulted in a significant improvement in ma-
terial and device fabrication quality, and also helped to
rekindle interest in mesoscopic superconductivity in semi-
conductor devices8–24.

When considering the physics of mesoscopic conduc-
tors and superconductors it is crucial to take into account
the Coulomb blockade effect that arises due to electron-
electron interaction. Since the charging energy of the
island depends quadratically on the number of electrons
it contains, it is possible to use an external gate to tune
two charge states of the island to be equal in energy.
In conventional superconductors, where putting an odd
number of electrons on the island requires an extra en-
ergy cost of the superconducting gap, the ground state
consists of an even number of electrons. This effect has
been directly observed as an even-odd asymmetry in alu-
minum islands25–28. On the other hand, in topological
superconductors zero energy Majorana bound states exist
that can accommodate an unpaired electron without any
additional energy. In this case, the degeneracy can occur
between states with even and odd number of electrons.
This even-odd degeneracy underlies the phenomenon of
electron teleportation29, which involves phase-coherent
transport of a single electron via the spatially separated
Majorana modes. A recent experiment13 on proximi-
tized InAs island connected to two normal leads via tun-
nel junctions observed a transition from resonant Cooper

pair transport to single-electron transport above a crit-
ical magnetic field, which is broadly consistent with the
scenario of transition from conventional to topological
superconducting island30,31.

The degeneracy between the two charge states of the
superconducting islands - 2N and 2N + 2 (2N + 1) in
conventional (topological) case - can be a source for
Kondo-type phenomena. These degenerate levels can be
represented as a pseudospin-1/2 object, which enables
observation of phenomena related to the multichannel
Kondo effect32,33. In the topological case, when the su-
perconductor is tuned into charge degeneracy, it has been
shown34,35 that the system exhibits quantized DC con-

ductance GijDC = 2e2

Nh in T = 0 limit for N Majorana
modes coupled to N normal leads by mapping the model
onto quantum Brownian motion (QBM) on a honeycomb
lattice36,37. Moreover, it has recently been shown that if
the topological superconductor is time-reversal-invariant,
the two-terminal island will realize two-channel Kondo ef-
fect without fine-tuning38. In the s-wave case, the setup
based on a two terminal island at charge degeneracy has
recently been shown39 to map to two channel Kondo
problem. These parallel developments not only enable a
direct comparison of the properties of both conventional
and topological setup, but also provide an attractive new
platforms for studies of quantum criticality.

While initially Kondo effect has been considered in
the context of dilute magnetic impurities, the interest
in this phenomenon has been revived after theoretical
proposals for its realization in normal state quantum
dots40–42 and subsequent experimental confirmation of
the predictions43,44. The next step was then the exten-
sion to the elusive multichannel Kondo effect, which was
again guided by theory45–49 and culminated with detailed
studies of various properties of this setup50–54. These
theoretical and experimental results established highly
tunable normal state nanostructures as a perfect window
into the world of strongly-correlated electron systems and
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so they are intensively studied in order to extract the
essence of the physical phenomena without the picture
being blurred by the complexity of the real materials.
Now we want to extend the realm of device platforms to
superconducting nanoislands.

Motivated by the above results on Majorana and con-
ventional superconducting islands, we expand on these
studies by comparing and contrasting the charge Kondo
effects due to even-odd and even-even degeneracies in
both types of mesoscopic islands using bosonization and
numerical renormalization group (NRG) methods. We
provide a mapping of the N terminal conventional super-
conductor island model to N channel charge Kondo prob-
lem in the bosonization language and then examine the
differences in the treatment of the Majorana island. For
non-interacting leads in the topological model the system
flows to strong coupling fixed point, as opposed to the
flow towards intermediate coupling in the conventional
case (see Fig.2). The non-Fermi liquid fixed point of Ma-
jorana island is robust to channel coupling asymmetry (in
contrast to anisotropy being a relevant perturbation at
the intermediate fixed point in the conventional system).
These differences between both types of islands in trans-
port properties are due to the crucial distinction of charge
2e transfer in the Andreev processes in the conventional
case versus charge e transfer by single electron tunneling
in the topological island29. In the topological case, while
each tunneling process transfers a single electron charge
e, due to the statistical transmutation34 the system be-
haves as if charge-e boson was transferred, which enables
a nontrivial mapping to a Kondo model34,35.

Using numerical renormalization group we first sup-
port our bosonization results at T = 0 by calculating
the residual entropy and conductance matrix elements.
For the conventional island we confirm that the DC con-
ductance in T = 0 approaches the predicted value of 2
and 8

3 sin2(π5 ) e2/h for 2 and 3 terminals, respectively. In
the Majorana setup for 3 terminals we obtain the an-

ticipated DC conductance of 2e2

Nh = 2/3 e2/h, which is
robust against the tunnel coupling anisotropy (even if
all three couplings are different) and moving away from
the charge degeneracy point. More importantly, we go
beyond the zero temperature limit and obtain the full
crossover to non-Fermi liquid fixed points in both cases.
In the conventional setup, our results establish the s-
wave island as a new platform for studying physics of the
intermediate multichannel Kondo fixed point. For Majo-
rana islands, we demonstrate that the transition at the
charge degeneracy point happens at a much higher tem-
perature than in the Coulomb valley regime of topological
Kondo effect studied previously55–67. Our results facili-
tate the experimental observation of quantized conduc-
tance in future. For the three terminal case, we predict
a non-trivial crossover between the regimes dominated
by two and three leads with an intermediate DC conduc-
tance plateau at 2/3 e2/h, which emerges at sufficiently
low temperature while tuning the tunnel coupling of the
third lead. This, together with the aforementioned ro-
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FIG. 1. (Color online) Multiterminal (a) conventional and
(b) Majorana islands at charge degeneracy (charging energy
is controlled by a gate). Both islands are connected to N
normal leads (blue) via either Andreev reflection or tunneling
into Majorana zero modes.

bustness to variation in setup parameters, provides an
experimental signature that can be used to verify our
claims for the Majorana island.

II. MODELS

In this work, we consider two types of setups with mul-
titerminal superconducting islands (Fig. 1). We begin by
describing the full Hamiltonian of the systems analyzed
in the following sections, which consists of three parts:

H = HC +HL +HT (1)

The central point of both setups considered in this paper
is a mesoscopic superconducting island, either of ordi-
nary s-wave or topological nature with a gap ∆ that is
the largest energy scale of the problem. In the s-wave
case, there are no quasiparticle excitations inside of the
superconducting gap and so in the usual BCS formalism
introducing an odd number of electrons into the island
requires an energy cost of ∆. On the other hand, the
topological superconductor hosts an even number of zero
energy Majorana bound states and this allows to put an
additional electron into the island without paying the
extra energy. Since we are studying a mesoscopic super-
conducting grain that is not grounded, we also have to
consider the charging effects which arise due to Coulomb
interactions. The electrostatics can be taken into account
by including into the Hamiltonian a term:

HC = EC(N̂ −Ng)2 (2)

where EC is the charging energy related to the capaci-
tance of the island, N̂ is the number of charges in the
superconductor and Ng is the potential determined by
the external gate. This tunability gives rise to a possible
degeneracy between the two charge states of the island.
However, the number of charges in the degenerate states
differs in both considered cases. For the conventional su-
perconductor, since we are working in the regime where
EC � ∆, we can consider the states with odd number of
electrons to be unfavorable energetically and so when we
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set Ng to be an odd integer 2N0 +1, according to (2), the
states with 2N0 and 2N0 + 2 electrons will be degenerate
and lowest in energy. The situation is different in the
topological superconductor, where there is no additional
energy cost for the states with an odd number of elec-
trons. There we can set Ng to 2N0 + 1

2 and then states
with 2N0 and 2N0 + 1 are degenerate. At very low tem-
peratures we can then restrict our Hilbert space to just
those pairs of charge states of the island. The subspace of
charge states can then be described by a pseudospin-1/2
object, with sz eigenstates corresponding to 2N0/2N0 +1
or 2N0/2N0 + 2 states. Then the slight deviation from
charge degeneracy point can be taken into account by in-
troducing Zeeman-like term δsz into Hamiltonian, where
δ can be tuned by the external gate.

A common part of both setups is a set of N normal
leads, which are tunnel coupled to the superconductor. In
the conventional superconductor setup they are described
by the Hamiltonian of spinful fermions with dispersion
linearized close to the Fermi energy:

HL = −ivF
N∑

a,σ=↑/↓

∫ ∞
0

dxψ†a,R,σ∂xψa,R,σ−ψ
†
a,L,σ∂xψa,L,σ

(3)
where ψa,r=L/R,σ=↑/↓(x) are operators annihilating
left/right moving modes with spin σ at the point x of
the lead a, combining into ψa,σ(x) = ψa,R,σ(x)eikF x +
ψa,L,σe

−ikF x. However, a difference arises in the topo-
logical case, because Majorana states couple only to one
of two spin components68,69. This allows to drop the spin
index in this case and consider spinless fermions.

The leads are semi-infinite, ending at x = 0 where they
are in contact with the superconductor. The exact form
of the tunneling Hamiltonian depends then on the type of
superconductor. In the case of the s-wave superconduc-
tor the charge transfer into the island will occur due to
the Andreev processes in which incident electron in the
lead is reflected as a hole and at the same time a single
Cooper pair is added to the superconductor. Using the
pseudospin-1/2 representation of the charge state of the
island we can write the tunneling Hamiltonian following
Ref.39:

HT =

N∑
a=1

ta(ψ†a,↑(0)ψ†a,↓(0)s− + ψa,↓(0)ψa,↑(0)s+) (4)

where we are either adding or removing two electrons
of opposite spin at x = 0 point of the lead a and at
the same time changing the charge state of the island
between 2N0 and 2N0+2. In writing this Hamiltonian we
assumed that the superconducting island is large enough
so that the crossed Andreev reflection is suppressed. On
the other hand, in the case of topological superconductor,
the tunneling will occur into the Majorana zero modes.
We also use pseudospin-1/2 representation of the charge
state, with transitions between the states with 2N0 and
2N0 + 1 electrons. Then the tunneling Hamiltonian has
the form34,35

HT =

N∑
a=1

(taψ
†
a(0)s−γa +H.c.) (5)

where ta are tunnel couplings to the leads, ψ†a(0) are
creation operators at the end of the leads and γa = γ†a
are Majorana operators.

Before turning to bosonization analysis of these mod-
els, we would like to comment on similarities and differ-
ences between superconducting islands and normal dots.
In normal dots with small energy level spacing transport
at charge degeneracy point is usually dominated by in-
elastic cotunneling events47 and therefore is incoherent.
In the case of an ordinary superconductor, transport oc-
curs via resonant tunneling of Cooper pairs and is also
incoherent. However, in topological islands, the resonant
tunneling processes through Majorana states are phase-
coherent29 and therefore allow for interference effects to
be used as probes for topological states.

III. BOSONIZATION ANALYSIS

Both setups can now be studied using bosonization
by transforming the normal leads into Luttinger liquids,
spinful in the case of s-wave island and spinless when
leads are coupled to Majorana zero modes. We derive the
results for the ordinary superconductor and then high-
light the differences that arise in the Majorana setup34,35.

A. S-wave island

After spinful bosonization, the Hamiltonian of the
leads has now the form70:

HL =

N∑
a=1

v

2π

∑
j=ρ,σ

∫ ∞
0

dxKj(∇θa,j)2+
1

Kj
(∇φa,j)2 (6)

where we have used the following convention:

ψa,r,σ(x) =
Ua,r,σ√

2πα
e
− i√

2
(rφa,ρ(x)−θa,ρ(x)+σ(rφa,σ(x)−θa,σ(x)))

(7)
with α being short distance cut-off and Ua,r,σ are the
Klein factors. Using (7) we can now express the tunneling
Hamiltonian using bosonic fields. Since the lead ends
at x = 0, we can impose the open boundary condition
ψa,L,σ(0) = ψa,R,σ(0). This in turn means that φρ/σ(0) =
0 and that Klein factors for right and left movers of each
spin are equal: Ua,R,σ = Ua,L,σ = Ua,σ. Alternative
approach would be to consider a single chiral bosonic
field obtained by unfolding right and left moving modes
onto a single axis extending from −∞ to ∞. Combining
all of this together we express the tunneling Hamiltonian
(4) as:

HT =

N∑
a=1

2ta
πα

(Ua,↑Ua,↓e
−i
√

2θa,ρ(0)s− +H.c.) (8)
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We can form a parity operator from the Klein factors
pa = iUa,↑Ua,↓ and since p2

a = 1 we can use the identity
eiγpa = cos(γ) + ipa sin(γ). For γ = π

2 this translates

to ipa = ei
π
2 pa , so we have Ua,↑Ua,↓ = −ipa = e−i

π
2 pa .

Thus the Klein factors translate to a phase shift, which
can be absorbed into the bosonic field, because the parity
in each lead is fixed as the only allowed tunneling pro-
cess transfers pairs of electrons. The final form of the
tunneling Hamiltonian is then:

HT =

N∑
a=1

2ta
πα

(e−i
√

2θa,ρ(0)s− + ei
√

2θa,ρ(0)s+) (9)

Therefore, both bosonic fields from the spin sector (θσ
and φσ) and φρ are not present in the tunneling Hamil-
tonian and are present only in the quadratic part of the
action. This means that we can integrate them out from
the imaginary time action. Moreover, the field θρ is taken
only at x = 0 in HT , so we can also integrate it out away
from x = 0. After this procedure, we obtain the imagi-
nary time action:

Ss−wave = Ss−wave
0 + Ss−wave

T (10)

Ss−wave
0 =

N∑
a=1

Kρ

2π

∫
dω

2π
|ω||θa,ρ(ω)|2 (11)

Ss−wave
T =

N∑
a=1

∫ β

0

dτ
J⊥,a

2
(e−i

√
2θa,ρ(0)s− +H.c) (12)

In anticipation of the connection of this action to the
multichannel Kondo problem we have introduced the no-
tation for the coupling J⊥,a = 4ta

πα .

B. Majorana island

The procedure of obtaining the effective boundary ac-
tion in the case of Majorana island is essentially the same,
with the important distinction that the leads now con-
tain effectively spinless electrons and so the bosonization
identity now takes form:

ψa,r(x) =
Ua,r√
2πα

e−i(rφa(x)−θa(x)) (13)

with α again being the short distance cut-off and Ua,r
are the Klein factors. The bosonized Hamiltonian of the
leads is:

HL =

N∑
a=1

v

2π

∫ ∞
0

dxK(∇θa)2 +
1

K
(∇φa)2 (14)

and tunneling Hamiltonian is:

HT =

N∑
a=1

2ta√
2πα

(e−iθa(0)s− + eiθa(0)s+) (15)

where the Klein factors hybridized with Majorana oper-
ators in a process of statistical transmutation34,71.

When the bosonic field is integrated out away from
x = 0, we obtain the imaginary time action:

SM = SM
0 + SM

T (16)

SM
0 =

N∑
a=1

K

2π

∫
dω

2π
|ω||θa(ω)|2 (17)

SM
T =

N∑
a=1

∫ β

0

dτ
J⊥,a

2
(e−iθa(0)s− + eiθa(0)s+) (18)

This time we made the identification J⊥,a = 4ta√
2πα

. It

is interesting to make a comparison between tunneling
parts of the action for both cases. Eqs. (12) and (18)
have virtually the same form, apart from the factor of√

2 in the exponent for the s-wave superconducting island
model. One can then perform the following transforma-
tion of the action (18): θa →

√
2θ̃a. In order to keep the

quadratic part of the action the same under this transfor-
mation, we also have to rescale the Luttinger parameter
K: K → K̃/2. This means that the topological system
will behave exactly the same as the conventional one, but
with the interaction parameter rescaled by a factor of 2.
This bears important consequences for the flow diagram
of the perturbative RG close to the non-interacting value
of K = 1.

C. Perturbative renormalization group analysis

Because we have shown that there exists a direct cor-
respondence between the actions for both s-wave and
topological islands, it is sufficient to perform perturbative
renormalization group analysis of the action of the s-wave
setup and then recover the behavior of the Majorana is-
land by substituting K̃ for Kρ. During the RG procedure
an additional term is generated which is proportional to
∂xφa,ρ, even if its coupling is initially zero. Therefore we
add it into the action right from the beginning with Jz
coupling:

Sz = −
N∑
a=1

v√
2
Jzsz∂xφa,ρ (19)

With this additional term and the relabeling of the
couplings done in the previous section, the complete
action for our problem has exactly the same form as
the anisotropic multichannel Kondo problem action36,37.
Therefore the analysis steps follow directly from the stan-
dard procedure applied previously to the Kondo problem.
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FIG. 2. (Color online)(a) Visualization of the QBM lattice
for N = 3. Each axis corresponds to number of Cooper pairs
(or electrons in topological island case) inside of a particular
lead. Blue and red points form planes to which the motion
of the particle is restricted for given N . (b) Renormalization
group flow for s-wave and topological superconducting (TSC)
islands conncted to N < 5 leads as a function of the Luttinger
parameter K. Stable and unstable fixed points are depicted
as solid and dashed lines, respectively. The bottom line cor-
responds to the limit of weak tunneling (t → 0) and the top
line corresponds to weak periodic potential (v~G → 0). Due to
rescaling of K, in the Majorana island case for non-interacting
leads (K = 1) is of strong coupling nature, compared to in-
termediate coupling for s-wave island.

We begin by considering the isotropic limit when all
J⊥,a = J⊥. In such a case the RG equations for the
couplings are:

dJz
dl

= J2
⊥(

1

Kρ
− N

2
Jz) (20)

dJ⊥
dl

= (1− 1

Kρ
)J⊥ + JzJ⊥(1− NKρ

4
Jz) (21)

Those equations are exact in Jz and perturbative in J⊥.
We notice that in the isotropic case the couplings flow
to the Toulouse fixed point, where Jz becomes 2

NKρ
and

its flow stops. This means that we can perform a uni-
tary transformation and eliminate the ∂xφρ term from
the Hamiltonian:

U = eiKρJz
√

N
2 Θ(0)sz (22)

U†HU = HL −
n∑
a=1

J⊥
2

(e
−i
√

2(θa,ρ(0)− 1√
N

Θ(0))
s− +H.c.)

(23)
where Θ(0) = 1√

N

∑
j θj,ρ(0) is the global mode.

We can now determine the fixed points of the problem
and understand them using the quantum Brownian mo-
tion correspondence. In QBM picture, the state of the
system is described as a position of a fictitious particle
placed in periodic potential with dissipative environment.
This enables approaching the problem from two dual per-
spectives: tunneling between the minima of a strong pe-
riodic potential and free motion with weak potential as a

perturbation. To make the mapping clearer we can write

the tunneling operators in the action as e−i
√

2~θρ ~R
(a)
0 s−,

where ~θρ = (θ1,ρ, ..., θN,ρ) and ~R
(a)
0 is a vector with 1

on the ath component and 0 on the rest. In this nota-

tion one can think of ~θρ as the momentum of the particle
and the number of charges in the leads (which is a vari-

able conjugate to ~θρ) describes the position of the parti-
cle. When the periodic potential is strong, the particle is
mostly localized in the minima of the potential which are

connected by the lattice vectors ~R
(a)
0 and only occasion-

ally tunnels between. Since we have charging energy in
our setup and the island can only accommodate a single
additional Cooper pair, the total number of charges in
the leads Ntot can only change between N/N + 2 and
the particle’s motion is restricted to two planes in the
N dimensional space. The corresponding lattices are 1D
zig-zag chain for N = 2 channels and N − 1 dimensional
hyperhexagonal lattice for N > 2. Both lattice types
are non-symmorphic with two atom basis, which corre-
sponds to presence or absence of the additional Cooper
pair in the superconducting island. An example of such
lattice for N = 3 leads is shown in Fig. 2(a). Each axis
corresponds to Ni of Cooper pairs present in the leads,
so 2N1 + 2N2 + 2N3 = N . Blue points form a plane
for one particular value of N , while red points form a
neighboring plane corresponding to N + 2.

In this language, the global mode introduced after the
unitary transformation at the Toulouse fixed point cor-

responds to the product of ~θρ and the vector ~R⊥ =
1√
N

(1, ..., 1) perpendicular to the planes to which the

particle motion is confined. The tunneling operators af-

ter the transformation are e
−i
√

2~θρ ~R
(a)

‖ s−, with ~R
(a)
‖ =

~R
(a)
0 − 1√

N
~R⊥. The scaling dimension of the tunneling

operator is then:

∆[e
−i
√

2~θρ ~R
(a)

‖ s−] =
|~R(a)
‖ |

2

Kρ
=

1

Kρ
(1− 1

N
) (24)

Therefore determining whether tunneling operator is rel-
evant depends on the Luttinger parameterKρ - the condi-

tion for relevancy is Kρ >
N−1
N . Importantly, this means

that for non-interacting electrons (Kρ = 1), for all N
the tunneling operator is relevant and the system will
be flowing in direction of decreasing periodic potential
strength, away from the localized fixed point. Since the
coupling increases substantially, the perturbation theory
breaks down and we need to find the stable fixed point
properties in another way. To do this, we can use the
dual perspective of looking at the QBM as a free motion
with weak potential perturbation. In this case, the peri-
odic potential can be expressed using its Fourier compo-

nents V (~r) =
∑

~G v~Ge
i ~G~r, where ~G are reciprocal lattice

vectors of the honeycomb lattice. Then the scaling di-
mension of the most relevant v~G (corresponding to the
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shortest ~G) is given by34:

∆[ei
~G~r] = Kρ|~G|2 = Kρ

(
1− 1

N

)
(25)

Again, relevancy of the periodic potential perturbation
depends on the value of Kρ. The criterion in this case is

Kρ <
N
N−1 , which for non-interacting leads is always sat-

isfied: the periodic potential is a relevant perturbation
to the free motion fixed point. Therefore, there have to
be additional fixed points between the localized and free
motion, including at least one stable. This analysis is
summarized for N < 5 in Fig. 2, which indicates sta-
ble and unstable fixed points as solid and dashed lines,
respectively. For N ≥ 5 there exists another unstable
intermediate coupling fixed point that has been analyzed
in more detail by Yi37. The stable intermediate coupling
fixed point for non-interacting leads has been studied us-
ing conformal field theory in the context of multichannel
Kondo problem72,73. Applying those results to our model
we can immediately find the zero temperature residual
entropy:

Simp(T = 0) = ln

(
2 cos

(
π

N + 2

))
(26)

Moreover, we can also deduce the zero temperature con-
ductance matrix elements to be:

Gij(T = 0) = 8 sin2

(
π

N + 2

)(
1

N
− δij

)
e2

h
(27)

The important distinguishing feature is that compared
to the Kondo problem, conductance matrix element here
is quadrupled. Each Andreev reflection process trans-
fers the charge of 2e between the leads and supercon-
ducting island, corresponding to doubling of the current
compared to conventional charge Kondo effect. This cur-
rent operator is then used in the Kubo formula to ob-
tain conductance as current-current correlation function
and the doubling translates in this way to quadrupling
of Gij(T = 0). The conformal field theory also gives the
scaling dimension of the leading irrelevant operator at
the intermediate fixed point that translates to the lead-
ing temperature correction to Gij(T = 0):

Gij(T ) = Gij(T = 0)

(
1− c

(
T

TK

)λ)
(28)

where λ is 1 for N = 247,74,75 and 2
5 for N = 333,51,73, c

is a constant on the order of unity, and TK is the Kondo
temperature. One important characteristic of the inter-
mediate fixed point is that it is unstable to channel cou-
pling asymmetry76,77: when one of the couplings is in-
creased, the system will flow to Fermi liquid fixed point
that describes the single channel Kondo model and when
one of the couplings is decreased, the system will behave
as N − 1 channel setup in low temperatures. In gen-
eral, the asymmetric system will behave as Nmax channel

setup at low energy scales, where Nmax is the number of
leads with the largest coupling value. This constitutes a
significant difficulty in performing experiments that ver-
ify the theoretical claims listed above.

Now we can turn to the case of Majorana island in
which we have to substitute Kρ → K̃ = 2K. This
change essentially shifts the flow diagram and redefines
the condition for relevancy of tunneling and weak pe-
riodic potential operators, which are now K > N−1

2N

and K < N
2(N−1) , respectively. This is also indicated

in Fig. 2(b) (which again is valid for N < 5 with a new
unstable fixed point appearing for N ≥ 5). The redefini-
tion of relevancy condition brings about a crucial change
for the non-interacting leads: while the tunneling opera-
tor is still relevant for K = 1, the weak periodic poten-
tial becomes irrelevant for all N . This means that the
free motion fixed point becomes stable and that conduc-
tance will assume maximum value allowed by the charge
conservation. Remembering that in Majorana island the
tunneling processes carry charge of 1e, we find that the
conductance is:

Gij(T = 0) = 2

(
1

N
− δij

)
e2

h
(29)

The weak periodic potential becomes now the leading
irrelevant operator and its scaling dimension will now
determine the exponent of the temperature correction of
the conductance:

∆irr = 2

(
1− 1

N

)
(30)

The form of the correction is still described by (28). The
change of the nature of the low temperature fixed point
comes with another major difference: the channel cou-
pling anisotropy, which corresponds to deformation of
the periodic potential becomes an irrelevant perturba-
tion and doesn’t cause the system to flow to the Fermi
liquid fixed point. This will be explored in more detail
in the numerical section.

IV. NUMERICAL RESULTS

To verify the analytical results and obtain a fuller un-
derstanding of the crossover regime between the fixed
points of the studied models, we employ numerical renor-
malization group (NRG), a powerful non-perturbative
method for obtaining thermodynamics and correlation
functions of quantum impurity systems, connected to
non-interacting leads78. As we want to capture the uni-
versal physics of this setup, we simplify the problem by
assuming that all the leads are identical with bandwidth
2D and a flat density of states ρ = 1/2D. Then we
express the Hamiltonians in the form suitable for cal-
culations as explained in the sections below. More de-
tails of the numerical calculation are presented in Ap-
pendix A. The NRG simulations have been performed



7

using NRG Ljubljana code, which internally makes use
of SNEG library79.

To directly relate our results to the experiment, we
focus on the DC conductance in our calculations. We
work in the framework of the linear response theory
and compute AC conductance using the Kubo formula
as the correlation function of number of electrons in
one lead and current in the other lead. This allows
to avoid computation of the delicate limit present in
the usual current-current correlation approach (see Ap-
pendix A). Finally, we obtain DC conductance as the
limit GjkDC(T ) = limω→0GjkDC(ω, T ) of the AC con-
ductance.

A. Superconducting island

We begin by analyzing the numerical results obtained
in the case of s-wave superconductor island. Since this
setup maps exactly to multichannel Kondo problem (as
shown above), which has been studied extensively us-
ing NRG, we only highlight that the Andreev reflection
Hamiltonian indeed reproduces the key results of Kondo
effect. The Hamiltonian used in NRG simulations is:

HNRG
SC = Hleads +

N∑
a=1

tac
†
a0↑c

†
a0↓f↓f↑ + H.c. (31)

where ca0σ are the fermionic operators at the end of the
Wilson chain that are connected to the superconducting
island and fσ describes the pair of fermionic states in
the island that are only both occupied or both empty
at the same time, simulating the two possible charge
states of the island. First, we look at the entropy of
the island at low temperatures (Fig. 3(a)). For both
two and three channel cases tuned to the critical point,
we observe residual entropy as in the usual Kondo ef-
fect. In the two channel case, the entropy flows to
S2ch(T = 0) = ln(2)/2, which is explained by the ob-
servation of Emery and Kivelson80 that 2 channel Kondo
model maps to a resonant level system with only half of
the impurity degrees of freedom coupled to the conduc-
tion electrons. For three channel case, the entropy flows

to S3ch(T = 0) = ln(1+
√

5
2 ), which is consistent with

the conformal field theory result and previous numerical
studies of regular Kondo effect81. The inset of Fig. 3(a)
shows scaling of the Kondo temperature for 2 channel
model as the tunnel couplings are varied and this de-
pendence also exactly follows the behavior of the charge
Kondo problem74:

TK/D ∼ ρJ exp(− π

4ρJ
) (32)

Next we move on to linear conductance between the
normal leads. In Fig. 3(b) we show the AC conductance
matrix element G12(ω) for several temperatures for the

case of 2 channels. All the curves follow the same uni-
versal behavior before saturating at their respective DC
limit, which in the limit of T = 0 is equal to 2e2/h as pre-
dicted by the low energy fixed point in the perturbative
renormalization group scheme and obtained previously
by Pustilnik et al.39 The values of G12(ω → 0) are then
determined for all the remaining temperatures and plot-
ted in Fig. 3(c), together with corresponding values for
the three channel setup. For the three channel setup,
the predicted value of 8

3 sin2(π5 ) ≈ 0.92 is also observed.
This calculated temperature dependence is then fitted
with the low temperature correction determined by the
scaling dimension of leading irrelevant operator at the in-
termediate fixed point. For T � TK we observe excellent
agreement of the calculated curve with the predicted ex-
ponent ∆G ∼ T in the case of two leads and ∆G ∼ T 2/5

in the case of three leads.
All of the results described above are unstable with

respect to the tunnel coupling anisotropy, so if the values
of ta are detuned from a common value, the system in
general flows to the Fermi liquid fixed point of the single
channel Kondo model as expected76.

B. Majorana island

In the numerical analysis of the Majorana island model
we limit our considerations to the first nontrivial case
with N = 3 leads. We consider a model which in-
clude 4 Majorana modes in the island, one of which is
not coupled to any lead. In such a system, the dimen-
sion of the Hilbert space is 4. It is then divided into
2 two-dimensional subspaces labeled by fermion parity
of the island. To transform the Hamiltonian to a form
suitable for NRG calculations, we introduce a spinless
fermion f† on the island to distinguish the two subspaces.
Each of the two dimensional parity subspaces is then de-
scribed by a pseudospin-1/2 impurity ~σ. We note that
this pseudospin-1/2 object is a different one than ~s used
in the bosonization treatment, which was related to dif-
ferent charge states of the island. Then Hamiltonian has
the following form

H = Hleads +

3∑
j=1

(tjψ
†
jσjf +H.c.) + δ(f†f − 1

2
). (33)

We then define the level broadening Γ = ρt2avg, where
tavg is the average tunnel coupling between the island
and the leads. Even though Majorana hybridization is a
relevant perturbation in our model, in most of our calcu-
lations we neglect it, motivated by experimental results13

that suggest minimizing the hybridization by using suffi-
ciently long nanowires is possible and allows for perform-
ing satisfactory measurements. However, in order to test
this assumption we performed some calculations with an
additional term Hhyb = bjkiγjγk. In our mapping of the
Majoranas to a pseudospin-1/2 object, this translates to
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FIG. 3. (Color online) (a) The impurity entropy Simp(T ) curves showing the crossover between local moment (Simp(T ) = ln(2))

and non-Fermi liquid fixed points (Simp(T ) = ln(
√

2) for 2 channels and ln( 1+
√
5

2
) for 3 channels). The inset shows that TK

obtained at the center of the crossover (blue points) is given by TK ≈ ρJ⊥ exp( π
4ρJ⊥

) (orange line). (b) G12(ω) conductance

matrix element for two channels in the isotropic case t1 = t2 = 0.15D for several temperatures. (c) DC conductance G12DC(T )

with a power-law correction given by the leading irrelevant operator for 2 (∆G ∼ T ) and 3 (∆G ∼ T 2/5) channels.

Hhyb = ~K · ~σ, an effective magnetic field for this spin.
Hamiltonian of Eq. (33) is now suitable for NRG treat-
ment.

In our numerical analysis we will be comparing the
model of topological superconductor island at charge de-
generacy (presented above) with the previously stud-
ied model57 that describes the island in the Coulomb
valley regime (topological Kondo regime). We begin
our investigation with the first property that distin-
guishes charge degeneracy point model from the topolog-
ical Kondo regime, namely the temperature of the tran-
sition from local moment fixed point to the non-Fermi
liquid fixed point. The dependence of the transition tem-
perature T ∗ on the lead coupling parameter can be estab-
lished in more detail by analyzing the flow of the entropy
of the island to the non-Fermi liquid fixed point, which
is shown in Fig. 4(a). The entropy values flow from
the local moment fixed point with Simp(T ) = ln(4) to

the non-Fermi liquid fixed point with Simp(T ) = ln(
√

3).
When the temperatures are expressed in the units of the
level broadening Γ, all the entropy curves collapse into
one universal dependence. Now we define the transi-
tion temperature T ∗ as the temperature for which the
impurity entropy attains the value

(
ln(4) + ln(

√
3)
)
/2

that is in the middle between values at the two fixed
points. We obtain it by numerically solving the equation
Simp(T ∗) = (ln(4) + ln(

√
3))/2 and plot it as a func-

tion of the level broadening (inset of Fig. 4(a)). The
line on which the T ∗ points lie is defined as T ∗ = cΓ,
where c ≈ 3.60 is a constant coefficient determined from
the fitting procedure. Since there is a direct relation
between T ∗ and Γ, one can assess the transition tem-
perature by estimating the value of level broadening as
g∆30, with g being sum of dimensionless conductances
and ∆ the superconducting gap in the Majorana island.
In such a case, level broadening values are of the or-
der of 10µeV. Such values translate to a temperature of

about few hundred mK. To contrast this with the previ-
ous proposals, in Fig. 4(b) we show the comparison be-
tween the crossover temperatures T ∗ for our model and
the model in the topological Kondo regime (details of
the model in the Appendix B) in the fully isotropic case
(t = t1 = t2 = t3). Even for large tunnel couplings T ∗ at
charge degeneracy point is at least 3 orders of magnitude
higher than in the topological Kondo regime. Moreover,
the Kondo temperature drops sharply with decreasing
couplings (TK ∼ (ρt)2 exp(−1/(2ρt))), while at charge
degeneracy point T ∗ ∼ t2, which can lead to a much eas-
ier experimental observation of the multi-terminal tele-
portation. Furthermore, it would be possible to directly
measure the dependence of the T ∗ on the tunnel cou-
plings by tuning them using external gates.

Next, we move to computing the transport proper-
ties of the three terminal Majorana island. We start
by analyzing the results exactly at the charge degener-
acy point (when δ = 0). In Fig. 5 (a), we show the
G12(ω) AC conductance matrix element in the isotropic
case (t1 = t2 = t3 = 0.05D) for varying temperatures.
All the computed curves follow a universal dependence
and at low temperature the fractional quantized value of
2/3e2/h is attained as predicted by the quantum Brow-
nian motion mapping. In Fig. 5 (b) the temperature de-
pendence of the G12DC DC conductance is shown. The
whole crossover happens over the span of approximately
two orders of magnitude in temperature, which means it
is much steeper than the crossover studied previously in
the topological Kondo regime. This is another factor that
can make the experiment possible - the increase of con-
ductance should start at several Kelvins and approach
the fractional quantized value for several mK. The quan-
tum Brownian motion mapping provides a prediction of
a universal power-law temperature correction to conduc-
tance at the strong coupling fixed point which has the
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FIG. 4. (Color online) (a) The collapsed (for T in units of Γ) island’s entropy Simp(T ) curves showing the crossover between
local moment (Simp(T ) = ln(4)) and non-Fermi liquid fixed points (Simp(T ) = ln(

√
3)). The inset shows the linear relation

T ∗ = cΓ with c ≈ 3.60 obtained from fitting. (b) Crossover temperature comparison between charge degeneracy point and the
topological Kondo (Coulomb valley) regime for several values of t = t1 = t2 = t3. The temperature at charge degeneracy point
is at least 3 orders of magnitude higher than in the topological Kondo regime.

FIG. 5. (Color online) (a) G12(ω) conductance matrix element in isotropic case t1 = t2 = t3 = 0.1D for several different
temperatures showing a universal behavior. c) G12DC(T ) DC conductance with a fit of the universal temperature power-law
correction with exponent of 2/3. (c) G12(ω) conductance matrix element in fully anisotropic case t1 = 0.0475D, t2 = 0.0525D
and t3 from the interval [0.00625D, 0.2D] with each curve increasing t3 by a factor of 2. Inset shows the temperature dependence
ofG12DC(ω) DC conductance for the case when t1 = t2 = 0.05D, t3 = 0.0125D with a non-monotonic behavior that is a signature

of crossover between two- and three-terminal teleportation. The curve is a fit of T 2/3 dependence.

form:

G12DC(T ) = G12DC(T = 0)
(

1− c′(T/T ∗)2/3
)
. (34)

The curve presented in the plot is a fit of the predicted
dependence and it correctly describes a significant part of
the crossover. This fact together with the high crossover
temperature should allow for experimental verification of
this low temperature conductance correction.

However, in a real experiment, reaching the exact
isotropic case requires fine-tuning. Therefore it is im-
portant to verify the prediction of robustness to chan-
nel coupling asymmetry. In Fig. 5(c) we show the
results for fully anisotropic set of coupling constants
(t1 = 0.0475D, t2 = 0.0525D and t3 varying in the range
[0.00625D, 0.2D] in T = 0, with each step increasing t3
by a factor of 2. In this case the DC conductance also
reaches the value of 2/3 e2/h independently of the initial

value of t3, which is in stark contrast to the s-wave island
model. Moreover, in the case of decreasing t3 one can ob-
serve a nontrivial crossover between the cases with 2 and
3 leads. For ω just below Γ the value of conductance goes
beyond the value of 2/3 and comes close to 1 e2/h, which
is the value corresponding to the electron teleportation
between only 2 leads. However, going further to lower fre-
quencies decreases conductance and it again attains the
fractional quantized value. This behavior is mimicked in
the temperature dependence of DC conductance, which
is shown in the inset of Fig. 5(c). We observe a non-
monotonic dependence, which first rises above the frac-
tional value for intermediate temperatures, but in the low
temperature limit goes back to 2/3 e2/h. The curve is a
fit of a T 2/3 dependence, in this case with a positive co-
efficient in front of it. This non-monotonic behavior can
be used as one of the experimental signatures of crossing
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FIG. 6. (Color online) G12DC(δ) DC conductance away from
charge degeneracy point for several temperatures. For low
temperatures the top of the curve becomes flattened at the
value of 2/3 e2/h, which implies robustness against charge
detuning.
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FIG. 7. (Color online) G12(ω) in the isotropic case t1 =
t2 = t3 = 0.1D for several values of hybridization strength
Kx 6= Ky 6= Kz with constant ratio 0.84 : 1 : 1.11 (K being
the proportionality constant). The hybridization affects con-
ductance only for very small frequencies (and temperatures),
so even a sizable overlap of Majorana states would not pre-
clude experimental observation.

between two- and three-terminal teleportation regimes.
However, due to the slow decay of conductance back to
the fractional value, reaching the low temperature limit
may prove to be more difficult.

Another important factor for the experimental verifi-
cation of our claims is the sensitivity to tuning the sys-
tem exactly to the charge degeneracy point. In Fig. 6
we present DC conductance of our system as a function
of the energy shift δ away from the charge degeneracy
point for 4 different temperatures. For the lowest tem-
perature, the curve becomes flattened at the top, which
corresponds to the conductance value of 2/3 e2/h. This
flat top means that even when one moves away from the
resonance, the observed conductance would still be equal
to the fractional quantized value. For increased temper-
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FIG. 8. (Color online) G12DC(t3) DC conductance slightly
away from charge degeneracy point (δ = 0.0035D) as a func-
tion of tunnel coupling of the third lead for several tempera-
tures. In high temperatures there is a simple transition from
0 to over 0.8 e2/h. When the system is cooled down, a plateau
emerges at 2/3 e2/h, signifying transition from 2 to 3 terminal
electron teleportation.

atures the curves become narrower, but still it is reason-
able to expect to observe a non-zero value of conductance
even when being away from the charge degeneracy point.
Nevertheless, this proves that tuning the system into the
vicinity of charge degeneracy point is crucial to observe
fractional conductance at the temperatures within the
experimental reach.

Finally, we study how the conductance is impacted
by introducing Majorana hybridization into our Hamil-
tonian. Since hybridization is a relevant perturbation,
one expects that in low temperatures it will significantly
change the behavior of conductance. In Fig. 7 we show
G12(ω) in the isotropic case t1 = t2 = t3 = 0.1D for sev-
eral generic values of hybridization strength Kx 6= Ky 6=
Kz with constant ratio 0.84 : 1 : 1.11 between the com-
ponents of ~K (additional results for different values of
~K components are presented in the Appendix B). The
conductance rises from 0, reaches value of 2/3 e2/h and
then at lower energy scales changes to some non-universal
value. The scale at which the crossover happens depends
on the hybridization strength. We define the transition
energy scale ωH as the value for which conductance is
in the middle between 2/3 e2/h and the non-universal
value. We can then extract ωH ∼ aK3/2, with value of
a dependent on the tunnel couplings in particular simu-
lation and in the cases presented here a = 0.1...0.7. The
most important fact is that even with a sizable magnitude
of hybridization, it affects conductance only in the very
low energy scales and the fractional quantized conduc-
tance still prevails in the range of temperatures available
in the experiment. This justifies neglecting the Majorana
hybridization in the rest of the calculations.

Having verified the claim of robustness of our results
with respect to the tunnel coupling anisotropy, charge
degeneracy detuning and showing that hybridization af-
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fects the results only at very low temperatures, we pro-
pose an experiment which yields a direct signature of the
multi-terminal Majorana-assisted electron teleportation.
In Fig. 8 we show the DC conductance as a function of
the tunnel coupling of the third lead for several different
temperatures slightly off the charge degeneracy point to
simulate the experimental conditions. At high temper-
atures, the conductance increases straight to the values
close to 1 e2/h while decreasing the tunnel coupling, as is
expected for the electron teleportation between 2 leads.
However, as the temperature is lowered a plateau at 2/3
e2/h emerges and it becomes wider in the process of cool-
ing down the system. Remarkably, the whole shape of
the curve changes, the increase of conductance starting
for larger tunnel couplings in lower temperatures, which
allows to observe the change for a large range of tunnel
coupling strengths. This change of conductance curve
shape provides a direct evidence of entering the multi-
terminal teleportation regime.

V. SUMMARY

We have shown that both the conventional and topo-
logical superconducting islands at charge degeneracy
point are interesting in their own right. By applying
bosonization techniques we demonstrated that the multi-
terminal s-wave superconductor island Hamiltonian maps
to the multichannel Kondo problem. For the case of non-
interacting leads this means that at low temperatures the
system is described by an intermediate coupling fixed
point that displays non-Fermi liquid behavior and for
which many observables are known from conformal field
theory. We supported the mapping by a numerical renor-
malization group calculation, which gives the residual
entropy and conductance consistent with the analytical
prediction. The intermediate fixed point is in general un-
stable to channel coupling asymmetry and so experimen-
tal verification would require fine-tuning. On the other
hand, due to Luttinger parameter rescaling the topologi-
cal superconductor island flows to a strong coupling fixed
point, which grants robustness to the anisotropy. This
conclusion is backed by numerical calculation in which
the conductance for N = 3 leads reaches the value of
2/3 e2/h independently of the initial tunnel couplings.
Moreover, the crossover to non-Fermi liquid fixed point
happens at experimentally plausible temperatures, com-
pared to the previous studies of topological Kondo ef-
fect. Thanks to this robustness, for the topological island
we have predicted distinctive experimental signatures of
crossover between two- and three-terminal cases: one is a
non-monotonic temperature dependence of DC conduc-
tance when coupling of one of the leads is decreased, the
other one is the change of the shape of tunnel coupling
strength dependence of DC conductance with a plateau
emerging at 2/3 e2/h while decreasing the temperature.
As the experimental control of the hybrid semiconductor-
superconductor structures sees rapid progress, our pre-

dictions may soon be verified in the laboratory.
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Appendix A: NRG calculation details

We perform the spectral function calculations in the
framework of full density matrix NRG82 using complete
basis set83 in order to properly account for finite tem-
perature effects. We also perform sliding parameter
averaging84–86 over 4 values of sliding parameter z to
remove spurious oscillations in the results. In the calcu-
lations of the s-wave island model we use the discretiza-
tion parameter Λ = 5 for 2 channel system and Λ = 10
for 3 channel system. To make the 3 channel case nu-
merically tractable, we use the interleaved Wilson chain
scheme81,87, which requires some fine-tuning of the in-
dividual tunnel couplings to obtain the critical behavior.
The cut-off energy has been set to Ecut = 14 for two leads
and Ecut = 8.5 for three lead case, with the maximum
number of kept states 15 000 and 40 000, respectively. In
the Majorana island part, we used Λ = 3 and kept up to
5000 states in each iteration.

We calculate conductance in the framework of linear
response theory using Kubo formula. To obtain the final
expression for conductance we follow a similar procedure
as in Appendix B of Galpin et al.57. Therefore, we study
how a perturbation of the form H ′(t) = Ômf(t)eηt (with
η → 0 to account for turning on the perturbation adi-
abatically) changes the equilibrium expectation value of

an operator Ôn. We use a standard result in the first
order of perturbation theory to express the change by:

δ〈Ôn(t)〉 = − i
~

Tr

∫ t

−∞
eηt

′
[Ôm, ρeq]Ôn(t− t′)f(t′)dt′

(A1)

where we define δ〈Ôn(t)〉 = Tr(ρ(t)Ôn − ρeqÔn), ρeq =
e−βH/Z and ρ(t) are the density matrices in equilibrium
and in the presence of the perturbation, respectively and
Ôn(t− t′) is defined in the interaction picture:

Ôn(t− t′) = e
i
~ Ĥ(t−t′)One−

i
~ Ĥ(t−t′) (A2)

To obtain conductance using the formula (A1) we have
to study how current through a lead Ij changes when
AC voltage Vk is applied to another lead. Therefore, we
make the following substitutions: Ôn → Ij = e〈Ṅj〉 =

e〈 i~ [H,Nj ]〉, Ôn → Nk and f(t) → eVk cos(ωt). This
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FIG. 9. (Color online) (a) Entropy of the island’s impurity Simp(T ) for temperatures expressing in the units of lead bandwidth
D for several tunneling coupling strengths. Entropy flows from Simp(T ) = ln(4) for high temperatures to the non-Fermi liquid
fixed point with Simp(T ) = ln(

√
3). (b) G13(ω) conductance matrix element in fully anisotropic case t1 = 0.095D, t2 = 0.105D

and t3 from the interval [0.125t1, 4t1] with each curve increasing t3 by a factor of 2. (c) G13DC(t3) DC conductance slightly
away from charge degeneracy point (∆g = 0.0035) as a function of tunnel coupling of the third lead for several temperatures.
The conductance has a nonmonotonic dependence, peaked at t3 ≈ 0.05D = t1 = t2. As the system is cooled down, the value
at the peak increases until it reaches 2/3 e2/h. Further lowering the temperature develops a plateau at this value.

FIG. 10. (Color online) Conductance matrix element (a) G12(ω) and (b) G13(ω) when Majorana hybridization term is added
to the Hamiltonian with Kx = Ky = 0, Kz 6= 0. (c) G12(ω) conductance matrix element when Majorana hybridization term is
added to the Hamiltonian with Kx = Ky = Kz = K. In this case G12(ω) = G13(ω).

leads to a formula for the current present in the perturbed
system:

Ij(t) = − ie
2Vk
~

Tr

∫ t

−∞
eηt

′
[Nk, ρeq]Ṅj(t− t′) cos(ωt′)dt′

(A3)

We change the variable of integration t′′ = t − t′ and
define conductance tensor element Gjk as:

Gjk(t, ω) =
∂Ij
∂Vk

=

= − ie
2

~
Tr

∫ ∞
0

eη(t−t′′)[Nk, ρeq]Ṅj(t
′′) cos(ω(t− t′′))dt′′

(A4)

To simplify the considerations we focus on the value of
conductance at t = 0. Using the cyclic property of trace
we arrive at:

Gjk(t = 0, ω) =

= − ie
2

~
Tr

∫ ∞
0

e−ηt
′′
ρeq[Nk, Ṅj(t

′′)] cos(ωt′′)dt′′ =

= − ie
2

2~

∫ ∞
0

e−ηt
′′
〈[Nk, Ṅj(t′′)]〉(eiωt

′′
+ e−iωt

′′
)dt′′

(A5)

Now we insert the complete basis of energy states and
compute the conductance using Lehmann spectral repre-
sentation. We finally arrive at:

Gjk(ω) =
e2

2~
(σjk(ω) + σjk(−ω)) (A6)

with

σjk(ω) =
1

Z

∑
m,n

En − Em + ω − iη
(En − Em + ω)2 + η2

(
e−βEm − e−βEn

)
×〈m|Nk|n〉〈n|Ṅj |m〉

(A7)
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During the NRG simulation we compute the imagi-
nary part of σjk(ω). The real part can be obtained af-
terwards by performing Kramers-Kronig transformation.
The quantity Gjk(ω) we show in the figures is:

Gjk(ω) = ImGjk(ω) =
e2

h
π (Imσjk(ω) + Imσjk(−ω))

(A8)
The advantage of the method presented above is ap-

parent when one calculates the DC conductance as a limit
ω → 0. The usual approach is to compute:

GjkDC = −2π lim
ω→0

ImK(ω)

ω
(A9)

where

K(ω) = − i
~

∫ ∞
0

ei(ω+iη)t〈[Ṅj , Ṅk(t)]〉dt (A10)

This approach involves calculation of a limit of a ra-
tio of two very small quantities, which may prove to be
unreliable numerically. The trade-off of the method we
used is that it requires computation of global operators
Nj , which depend not only on the impurity, but also on
the sites of the Wilson chains88.

Appendix B: Additional Majorana island NRG
results

In this section we present additional NRG simulation
results for the Majorana island. We begin with the de-
tails of the model we are comparing our results to. The
model describes the topological superconductor island in
the Coulomb valley regime. The Hamiltonian in this case
is57:

Ĥ = Ĥleads +
t1√

2
(σ+ψ†0ψ1 + σ−ψ†1ψ0) +

+
t2√

2
(σ+ψ†−1ψ0 + σ−ψ†0ψ−1) + t3σz(ψ

†
1ψ1 − ψ†−1ψ−1)

(B1)

where ψj are annihilation operators at the ends of the
three spinless leads and σ are the spin operators of the

impurity formed on the island. The Hamiltonian is ob-
tained by considering virtual transitions between leads in
second order perturbation theory. This results in much
stronger crossover energy scale dependence on the tun-
nel couplings and is one of the reasons for many orders of
magnitude of difference between the transition temper-
ature at charge degeneracy point and in the topological
Kondo regime.

In Fig. 9(a) we show the entropy Simp(T ) curves with
temperature expressed in units of the lead bandwidth D,
before collapsing all of them onto one curve as shown
in the main text. In Fig. 9(b) we show the conduc-
tance matrix element G13(ω) for several values of the
tunnel coupling of the third lead t3 (complementary plot
to Fig. 5(c) from the main text). In this case one can also
observe the transition to two-terminal teleportation: for
t3 < t1, t2 the conductance reaches the fractional quan-
tized value of 2/3 e2/h only for very low frequencies and
analogously, very low temperatures. For higher tempera-
tures the conductance is essentially 0 (in the same regime
G12(ω) is close to 1 e2/h). In Fig. 9(c) we show the
DC conductance G13DC(t3) for several different temper-
atures (complementary plot to Fig. 6(a) from the main
text). In this case, the conductance forms a peak with
the maximum for t3 close to the isotropic case. When the
temperature is decreased, at first the height of the peak
increases, but when it reaches 2/3 e2/h the increase stops
and instead a plateau is developed. This can also serve
as an experimental signature of multi-terminal electron
teleportation.

In Figs. 10(a) and (b) we present the results of cal-
culations with hybridization term that includes only the

z component of ~K. Since Kzσz ∼ iγ1γ2, this term con-
nects Majorana states coupled to leads 1 and 2, effec-
tively decoupling the third lead. This in turn gives 1
e2/h conductance at very low temperatures, the same as
in the case of the two terminal electron teleportation. At
the same time, conductance G13(ω) drops to 0 as a re-

sult of this decoupling. When the components of ~K are
all equal, the conductance is the same both in case of
G12(ω) and G13(ω) and is similarly equal to 2/3 e2/h
before decreasing to some non-universal value between 0
and 2/3.
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