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We compute the ratio of the pairing gap ∆ at T = 0 and Tc for a set of quantum-critical models in
which the pairing interaction is mediated by a gapless boson with local susceptibility χ(Ω) ∝ 1/|Ω|γ
(the γ model). The limit γ = 0+ (χ(Ω) = log |Ω|) describes color superconductivity, and models
with γ > 0 describe superconductivity in a metal at the onset of charge or spin order. The ratio
2∆/Tc has been recently computed numerically for 0 < γ < 2 within Eliashberg theory and was
found to increase with increasing γ [T-H Lee et al, arXiv:1805.10280]. We argue that the origin of
the increase is the divergence of 2∆/Tc at γ = 3. We obtain an approximate analytical formula for
2∆/Tc for γ ≤ 3 and show that it agrees well with the numerics. We also consider in detail the
opposite limit of small γ. Here we obtain the explicit expressions for Tc and ∆, including numerical
prefactors. We show that these prefactors depend on fermionic self-energy in a rather non-trivial
way. The ratio 2∆/Tc approaches the BCS value 3.53 at γ → 0.

I. INTRODUCTION

The BCS theory of superconductivity1 is rightly con-
sidered to be one of the most elegant theoretical works
of the 20th century. Not only it explains how to ob-
tain the energy gap in the fermionic spectrum, ∆, and
the transition temperature Tc as functions of material-
dependent parameters, but it also predicts that the ratio
2∆/Tc = 3.53 is a material-independent universal num-
ber. Measurements on ordinary superconductors, like
aluminum, did find 2∆/Tc ratio consistent with BCS the-
ory2 However, in other materials, including novel super-
conductors, 2∆/Tc is higher. The two obvious reasons,
particularly applicable to the cuprates, are non-s-wave
superconductivity3,4 and pseudogap physics5. Another
potential reason is the sensitivity of 2∆/Tc to strong
coupling effects. They are often associated with Mott
physics6, however a large 2∆/Tc ∼ 8 − 13 (depending
how ∆ is defined, see below) has been found in Eliash-
berg calculations of phonon-mediated s-wave supercon-
ductivity2,7–10, in the limit when, Debye frequency ωD
is vanishingly small, but electron-phonon interaction g is
finite (in this limit, both Tc and ∆ scale with g, Refs.11).

Phonon-mediated pairing at ωD → 0 is a specific re-
alization of a more generic situation when the pairing is
mediated by a massless boson with susceptibility χ(q,Ω),
minimally coupled to fermions. Other examples include
pairing between fermions at a half-filled Landau level,
when a massless boson is a gauge field with Landau
overdamped propagator χ(q,Ω) ∝ 1/(q2 + a|Ω|/q) (e.g.,
Ref.12) and pairing in a metal at the onset of an instabil-
ity towards a charge or a spin order either with q = 0 or
with a finite lattice momentum, 13–32 The pairing prob-
lem in these systems is often considered within the com-
putational scheme similar (but not identical) to the one
originally used by Eliashberg in his analysis of phonon-
mediated superconductivity33. Namely, the fully renor-
malized pairing vertex is obtained by summing up series
of ladder diagrams, like in BCS theory but with dynami-
cal bosonic propagator χ(q,Ω), and with fermionic propa-

gators, which include one-loop fermionic self-energy. The
latter comes from the same fermion-boson interaction
and is computed self-consistently with the pairing ver-
tex. Higher-order self-energy corrections and non-ladder
renormalizations of the pairing vertex are assumed to be
small [a necessary condition is a requirement that a soft
boson is a slow mode compared to a fermion, i.e., for
the same momentum, a typical bosonic frequency must
be smaller than a typical fermionic frequency]. Within
this approximation34, the momentum integration in the
Eliashberg equations can be performed exactly for a given
pairing symmetry35, and the problem reduces to the
set of coupled 1D integral equations for frequency de-
pendent pairing vertex Φ(ω) and fermionic self-energy
Σ(ω)2,7,10,13,14. For spin-singlet pairing, which we con-
sider here, the two equations are, in Matsubara frequen-
cies

Φ(ωn) = πT
∑
m

Φ(ωm)√
[ωm + Σ(ωm)]2 + Φ(ωm)2

χL(ωn − ωm)

Σ(ωn) = πT
∑
m

ωm + Σ(ωm)√
[ωm + Σ(ωm)]2 + Φ(ωm)2

χL(ωn − ωm).(1)

Here χL(Ωm) is the effective, local, dimensionless bosonic
susceptibility (it is equal to g2χ(q,Ωm) integrated over
Fermi surface with form-factors for a given pairing chan-
nel s, p, d, etc). For electron-phonon problem at van-
ishing Debye frequency, χL(Ω) = g2/|Ωm|2. We con-
sider a generic model with χL(Ω) = gγ/|Ωm|γ — the γ
model. For a nematic and Ising-ferromagnetic critical
points γ = 1−D/3, where D is a spatial dimension, for
antiferromagnetic critical point γ = (3 − D)/2, models
with other values of γ have also been identified15,16,36–38.
A similar set of equations for the frequency dependent
pairing vertex and fermionic self-energy emerges in the
dynamical mean-field theory (DMFT) approach, and it
was argued that for DMFT analysis of a Hund metal
within three-band Hubbard model for Fe-based super-
conductors yields χl(Ω) ∝ 1/|Ω|1.2 in a wide range of
frequencies39,40. As additional complication, the form of
χL(Ω) may by itself depend on Φ due to feedback from su-
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perconductivity on the bosonic propagator41,42 This can
be incorporated by treating γ below Tc as temperature-
dependent parameter.

The goal of our study is to extract some new physics
from the analysis of 2∆/Tc in the γ-model. The pairing
gap ∆(ωn) is related to the pairing vertex as ∆(ωn) =
Φ(ωn)/(1 + Σ(ωn)/ωn), and the Eliashberg equation for
∆(ωn) is

∆(ωn) = πT
∑
m

∆(ωm)− ωm
ωn

∆(ωn)√
ω2
m + ∆(ωm)2

gγ

|ωn − ωm|γ
(2)

The Tc is obtained as the highest temperature at which
Eq. (2) has a solution. Note that the term with m = n in
the r.h.s. of (2) (the self-action term) can be neglected
due to vanishing of the numerator. To see this more
clearly, one has to add a small mass term M to the in-
teraction and take the limit M → 0 only at the end of
calculations. The numerator in (2) vanishes at m = n
for any M . This vanishing is the consequence of the can-
cellation between the contributions to the gap equation
from the renormalization of the pairing vertex and the
self-energy43–45, and it has the same physics origin as
the Anderson theorem – the independence of Tc on non-
magnetic impurities46. Indeed, the term with m = n
describes the scattering with zero frequency transfer, av-
eraged over finite momentum transfers, i.e., its role in the
gap equation is equivalent to that of elastic scattering by
non-magnetic impurities. We remind in this regard that
we consider spin-singlet pairing. For spin-triplet pairing,
the r.h.s. of the equation for the pairing vertex contains
the extra overall factor −1/3, and the term with m = n
does not vanish, in analogy with the case when impurities
are magnetic47

For the gap ∆ at T = 0 we will use ∆0 = ∆(πT ) at the
lowest temperature. One can show that ∆0 = ∆(ω = 0)
on the real axis. An alternative is to associate ∆ with the
frequency at which the density of states has a maximum,
∆DOS. In BCS theory ∆0 = ∆DOS and 2∆0/Tc = 3.53,
but in the γ model, ∆DOS > ∆0 (this is probably true for
all Eliashberg calculations, not necessary at a QCP). In a
phonon superconductor with ωD = 0, ∆DOS ≈ (π/2)∆0.
This accounts for the discrepancy in reported 2∆/Tc ra-
tio: 2∆0/Tc ∼ 8.3, while 2∆DOS/Tc ∼ 12.9 (Refs.2,7).

The ratio of 2∆/Tc in the γ model has been recently
analyzed numerically for 0 < γ ≤ 2 and was found to
increase rapidly with increasing γ40. We obtained the
same result (see Fig.3) and also found that the increase
of 2∆/Tc accelerates at larger γ. The goal of our work
is to provide an explanation for the increase. We argue
that 2∆/Tc actually diverges at γ → 3. The divergence
is the direct consequence of the fact that at T = 0, when
Matsubara frequencies become continuous variables, the
integral in the r.h.s. of the gap equation (2) becomes
singular at ωm ≈ ωn (

∫
dxx2/|x|γ diverges at γ ≥ 3).

We obtain analytical formulas for Tc and ∆ near γ = 3
and argue that they remain valid in a wide range of γ < 3.

Another goal of our study is to analyze the opposite
limit of small γ. Here we explore the fact that for any

γ > 0, χL(Ω) = (g/|Ω|)γ is a decreasing function of Ω,
in which case the r.h.s. of the gap equation is ultra-
violet convergent, and there is no need to impose an up-
per cutoff in the frequency summation in (2). We ob-
tain the explicit expressions for Tc and ∆ in the small
γ limit. We show that Tc = QTω0 and ∆ = Q∆ω0,
where ω0 = g(1.4458γ)1/γ and QT and Q∆ are are nu-
merical factors of order one. The scale ω0 has been iden-
tified before25 To obtain it, one can neglect fermionic self-
energy, i.e., treat fermions as free quasiparticles, like in
BCS theory. However, to obtain the factors QT and Q∆

one need to include the subleading terms in γ, and these
additional terms do depend on the non-Fermi liquid self-
energy Σ(ω) ∝ ω1−γ

m . We show that the self-energy con-
tributions to QT and Q∆ are rather non-trivial, and the
result is very different from the one in a weakly coupled
Fermi liquid, where the self-energy changes the exponen-
tial factor e−1/λ into e−(1+λ)/λ = e−1/λ/e (Refs.37,48,49

Still, we show that self-energy equally affects Tc and ∆,
such that 2Q∆/QT = 3.53, as in BCS theory. We com-
puted Tc and ∆ numerically at small γ, and found good
agreement with our analytical results.

The structure of the paper is as follows. In Sec. II we
briefly review how ∆ and Tc are obtained in BCS theory.
In Sec.III we study the case when γ is small and obtain
explicit formulas for both Tc and ∆. The prefactors QT
and QD are calculated both analytically and numerically.
In Sec.IV we show the divergence of ∆ when γ → 3.

II. BCS THEORY

To set the stage for our calculations, we briefly outline
how 2∆/Tc is obtained in BCS theory. Here, χL(Ω) = λ
is frequency independent, and ∆(ωn) = ∆. The fre-
quency sum in the gap equation diverges at large ωm
and one has to set the upper cutoff Λ. We then have

1 = λ

Λ
2πTc∑
m=0

1

m+ 1/2
= Li

(
3

2
+

Λ

2πTc

)
− Li

(
1

2

)
,

1 = λ

∫ Λ

0

dω√
ω2 + ∆2

= λ log
2Λ

∆
, T = 0 (3)

where Li(z) =
∫ z

0
dx/ log x is a logarithmic integral.

Using Li (3/2 + Λ/(2πT )) − Li (1/2)) = log 2eCΛ/(πT ),
where C = 0.577216 is the Euler’s constant, we imme-
diately obtain Tc = (2eCΛ/π)e−1/λ, ∆ = (2Λ)e−1/λ,
and 2∆/Tc = 2π/eC = 3.52775. In Eliashberg theory
with χL = λ one also has to include the self-energy
Σ = λω, Eq. (1), and then Tc = (2eC−1Λ/π)e−1/λ,
∆ = (2Λ/e)e−1/λ. The ratio 2∆/Tc still remains 3.53.

III. SMALL γ

We first consider the case when χL(Ω) = (g/|Ω|)γ with
small but finite γ. As we said, for any finite γ, the paring
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kernel χL(ωn − ωm)/|ωm| decreases faster than 1/|ωm|,
i.e., frequency summation over m in the r.h.s. of the
gap equation (2) converges. This eliminates the need to
introduce an upper frequency cutoff Λ, that is Tc and ∆
remain finite even when Λ is infinite.

The small γ limit has been considered before. Previous
studies analyzed the pairing susceptibility at T = 0 and
identified the large scale ω0 = g(1.4458γ)−1/γ � g, at
which this susceptibility diverges. We obtain Tc ∼ ω0

explicitly by solving the linearized gap equation at a finite
T and non-linear gap equation at T = 0, and find the
proportionality factors.

A. Calculation of Tc.

Consider first the linearized gap equation (the limit
∆m → 0). Neglecting the term with m = n in the r.h.s.
of (2), one can re-express (2) as

∆n

(
1 +

Σ̃n
n+ 1/2

)
=
KT

2

∑
m 6=n

∆m

|m+ 1/2|
1

|n−m|γ
,

Σ̃n =
KT

2

∑
m 6=n

sign(m+ 1/2)

|n−m|γ
(4)

where Σ̃n is the self-energy without the “self-action”
term, and KT =

(
g

2πT

)γ
. For n = 0,−1, Σ̃0 = Σ̃−1 = 0

for n ≥ 1, Σ̃n = KT

∑n
1

1
mγ , and for n < 0, Σ̃−n−1 =

−Σ̃n (Refs.44,50).
We will see below that it will be sufficient to analyze

Eq. (4) for large Matsubara number n, however we will

need all internal m. At large n, Σ̃n ≈ KTn
1−γ . Substi-

tuting this into (4), we obtain

∆n

(
1 +KT

1

(n+ 1/2)γ

)
=
KT

2

∑
m6=n

∆m

|m+ 1/2|
1

|n−m|γ

(5)
For internal |m| < |n|, the r.h.s. of (5) scales as 1/|n|γ
Substituting this dependence back into the r.h.s. of (5)
we find that the summation over m converges and yields
O(1/γ). Matching 1/|n|γ dependence on both sides of
Eq. (5), we find KT ∼ γ, i.e., Tc ∝ g(1/γ)1/γ .

In order to find the prefactor in Tc ∝ g(1/γ)1/γ we
need to compute KT to the second order γ. For this we
search for the solution in the form

∆n =
1

|n+ 1/2|γ
∞∑
p=0

ap
|n+ 1/2|γp

. (6)

Without loss of generality we set a0 = 1, as the linear
equation does not fix the overall magnitude of ∆n. Sub-
stituting this ∆n into (5) and matching the prefactors
for 1/|n + 1/2|pγ with p = 1, 2, 3..., we obtain recursive
relations for ap:

ap = −Zap−1

(
1

p!(p+ 1)!
+ γ

)
, (7)

and the self-consistent condition on Z (which determines
Tc(γ)):

1

Z
=

∞∑
p=0

ap

(
1

p+ 1
+ γ log 4eC

)
(8)

Here Z = KT /γ. The terms O(γ) in the r.h.s. of Eq.
(7) are due to the self-energy, which mixes 1/|n|pγ and
1/|n|(p+1)γ gap components in Eq. (5), the O(γ) term
in the r.h.s. of Eq. (8) comes from the summation over
Matsubara frequencies with m = O(1).

Solving Eq. (7) we obtain

ap = (−Z)p
(

1

p!(p+ 1)!
+ γ

p+ 2

3p!(p− 1)!

)
, p ≥ 1 (9)

and we remind that a0 = 1. Substituting the expressions
for ap into (8) we find that it reduces to

1 = −
∞∑
p=1

(−Z)p

(p!)2
− γ log 4eC

∞∑
p=1

(−Z)p

p!(p− 1)!

−γ
3

∞∑
p=2

(−Z)p(p+ 1)

p!(p− 2)!
(10)

The sums are expressed in terms of Bessel functions, and
Eq. (10) becomes

J0(2
√
Z) = γ log 4eC

√
ZJ1(2

√
Z)−

γ

3

(
Z3/2J1(2

√
Z) + ZJ2(2

√
Z)
)

(11)

Without O(γ) terms in the r.h.s, the condition on Tc
is J0(2

√
Z) = 0. This equation has multiple solutions,

which is fundamentally important for the understanding
of the phase diagram of the γ-model51,52. For our current
purposes, however, it is sufficient to consider only the so-
lution with the highest Tc, i.e., with the smallest Z. The
first zero of J0(2

√
Z) is at Z = Z0 = 1.4458. This yields

(g/2πT )γ = 1.4458γ(1 + O(γ)), i.e.,Tc = QTω0, where,
we remind, ω0 = (1.4458γ)−1/γ is the characteristic scale
extracted from the analysis of the pairing susceptibility
at T = 0 (Ref.25) and QT is the prefactor O(1), which
we determine below. The large n asymptotics of the cor-
responding eigenfunction ∆n is

∆n =
1

|n|γ

(
1− 2Z

(2!)2|n|γ
+

3Z2

(3!)2|n|2γ
+ ...

)
=

1

|n|γ
∞∑
m=0

(
Z

|n|γ

)m
(−1)m

m!(m+ 1)!
=

1

(Z|n|γ)1/2
J1(2

√
Z/|n|γ). (12)

To obtain the prefactor QT , we need to include terms
of order γ because (1 + αγ)1/γ = eα(1 +O(γ)). For this

we expand near Z = Z0 using J0(2
√
Z) = J0(2

√
Z0) −

(Z−Z0)J1(2
√
Z0)/

√
Z0. Substituting this expansion into

(11), we obtain

Z = Z0

[
1− γ

(
log

4eC

2.25978

)]
(13)
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FIG. 1. Numerical results of Tc in units of g for different
γ. The inset shows our numerical data for small γ and the
red curve is the fitting curve based on (14) with a prefactor
QT = 0.4934.

Using Z = KT /γ = (g/(2πT ))γ/γ and Z0 = 1.4458, we
obtain from Eq. (13)

Tc = QTω0 = QT g (1.4458γ)
−1/γ

(1 +O(γ)) , (14)

where

QT =
1

2π

(
4eC

2.25978

)
= 0.5018 (15)

In QT , the term 4eC comes from the summation over
Matsubara frequencies m = O(1), and the factor 2.25978
comes from the self-energy. The 4eC term is the same as
in BCS theory, but the self-energy contribution 2.25978
is different from e = 2.71828 in BCS theory. This is
because even for the smallest γ, Tc is determined by large
Matsubara numbers, for which Σ̃n/ωn = KT /|n|γ cannot
be approximated by a constant.

Our numerical results for Tc(γ) are shown in Fig.1.
The calculation requires care as for small γ, the solution

of (2) still depends on the number of Matsubara points
M even when M ∼ 104. We obtained Tc by solving
the gap equation on mesh of M = m ∗ 103 points with
m ranging between 4 and 16 and then extrapolating to
M →∞ (see Appendix A for details). We see from Fig.1
that the numerical results for Tc/g are well described by

(1.4458γ)
−1/γ

dependence in a surprisingly broad range
of γ (roughly up to γ ≈ 0.5). The numerical prefactor
QT , extracted from the data at small g, is 0.4934, very
close to QT = 0.5018 in (15). We went even further and
computed the next terms in the expansion in γ. We found
(see Appendix B for details) that the O(γ2) correction to
Z is quite small even for γ ≤ 1, due to small prefactor.
We believe this is the reason why, even for γ = 1, the
analytical Tc = 0.35g is reasonably close to the numerical
value Tc = 0.26g.

B. Calculation of the gap at T = 0.

We next consider the non-linear gap equation at T = 0.
We follow the same line of reasoning as above and search
for the solution for the gap at high frequencies in the
form

∆(ω) = ∆f
( ω

∆

)
. (16)

Substituting into the gap equation, rescaling ω/∆ = ω̄,
and introducing K̄ = (g/∆)

γ
, we obtain from (5)

f(ω̄)

(
1 +

K̄

|ω̄|

)
=
K̄

2

∫
dω̄′f(ω̄′)√

(ω̄′)2 + f2(ω̄′)

1

|ω − ω′|γ
(17)

Like before, we search for f(ω̄) in the form

f(x) =
1

xγ

(
1 +

a

xγ
+

b

x2γ
+ ...

)
(18)

For each component of f(x) we represent∫
dω̄′

|ω̄′|pγ
1√

(ω̄′)2+f2(ω̄′)

1
|ω−ω′|γ as Ā+ B̄, where

Ā =

∫
dω̄′

|ω̄′|pγ
1√

(ω̄′)2 + f2(ω̄′)

1

|ω − ω′|γ
−
∫ ∞

1

dω̄′

|ω̄′|1+pγ

(
1

|ω − ω′|γ
+

1

|ω + ω′|γ

)
B̄ =

∫ ∞
1

dω̄′

|ω̄′|

(
1

|ω − ω′|γ
+

1

|ω + ω′|γ

)
(19)

In Ā, the contribution from large ω̄′ cancels out, and the
remaining integral reduces to Ā = 2C̄/|ω|γ , where

C̄ =

∫
dω̄′

|ω̄′|pγ
1√

(ω̄′)2 + f2(ω̄′)
−∫ ∞

1

dω̄′

|ω̄′|1+pγ
(20)

The integral does not contain 1/γ and its leading, γ-
independent piece can be computed right at γ = 0,
where f(ω̄′) = 1. This piece is C̄ =

∫∞
0
dx/
√
x2 + 1 −∫∞

1
dx/x = log 2.
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FIG. 2. Numerical results for ∆ (in units of g) for different γ.
The inset shows numerical data for small γ, and the red curve
is the fitting based on (22). The prefactor Q∆, extracted from
the fit, is Q∆ = 0.87.

For the term B̄, we obtain to order O(γ)

B̄ =
2

|ω̄|γ

∫ ω̄

1

dω̄′

|ω̄′|1+pγ
+ 2

∫ ∞
ω̄

dω̄′

|ω̄′|1+(p+1)γ
(21)

Evaluating the integrals and matching the prefactors for
1/|ω̄|pγ in the r.h.s and the l.h.s of the gap equation, we
obtain

∆ = Q∆ω0 = Q∆g (1.4458γ)
−1/γ

,

Q∆ =

(
2

2.25978

)
= 0.885 (22)

Combining (14) and (22), we obtain 2∆/Tc =
2QD/QT = 2π/eC = 3.53, like in BCS theory. In the
inset of Fig.2 we show our numerical results for ∆ at
γ < 0.5. The numerical ∆(γ) indeed scales with ω0. The
prefactor Q∆, extracted from numerical data, is 0.87,
very close to the analytical Q∆ = 0.885. The ratio 2∆/Tc
is plotted in Fig.3. It clearly approaches the BCS value
when γ → 0.

IV. Tc AND ∆ IN THE γ-MODEL WITH γ ≤ 3.

We now consider the γ model with exponent γ > 1.
We show that the ratio 2∆/Tc increases with γ and di-
verges at γ = 3. We argue that this divergence is the pri-
mary reason why earlier works2,7,9,10 found a very large
(but finite) 2∆/Tc by solving Eliashberg equations for a
phonon superconductor with effective phonon-mediated
pairing interaction g2/(Ω2 + ω2

D) in the limit when the
Debye frequency vanishes, but the coupling g remains
finite (this corresponds to γ = 2 in our notations).

FIG. 3. Numerical results for 2∆
Tc

for different γ

A. Calculation of Tc

The onset temperature of the pairing at large γ has
been earlier analyzed by the two of us and collabora-
tors44 Tc decreases with increasing γ and saturates at
Tc = g/(2π) in the formal limit γ → ∞. At large γ,
the gap equation becomes local in the sense that the
largest contribution to the r.h.s. of the gap equation
(5) for a given n comes from m = n ± 1, i.e., ∆n is
predominantly coupled to ∆n−1 and ∆n+1. This lo-
cal pairing problem can be solved exactly, and the re-
sult is K ≡ (g/(2πTc))

γ
= 1/s, where s = 1.1843

is the solution of J3/2+1/s/J1/2+1/s = s − 1. Then

Tc = s1/γg/(2π) = g
2π

(
1 + 1

γ log s+ ...
)

. The dots stand

for O(1/γ2) terms, which cannot be obtained within a lo-
cal approach. The Tc, obtained numerically (Fig.1), in-
deed saturates at g/(2π) at large γ and is actually rather
close to this value for all γ > 1.

B. Calculation of ∆ at T = 0

It is convenient to write the gap equation at T = 0 as

∆(ω)ω =
gγ

2

∫
dω′√

(ω′)2 + ∆2(ω′)

∆(ω′)ω −∆(ω)ω′

|ω − ω′|γ
=

gγ

2

∫
dω′

∆(ω′)√
(ω′)2 + ∆2(ω′)

sign(ω − ω′)
|ω − ω′|γ

+

gγ

2

∫
dω′

ω′√
(ω′)2 + ∆2(ω′)

∆(ω′)−∆(ω)

|ω − ω′|γ
(23)

The first contribution to the r.h.s. of (23) can be re-
expressed by shifting the integration variable as

gγ

2

∫ ∞
0

dx

xγ−1

 1√
1 +

(
x−ω

∆(x−ω)

)2
− 1√

1 +
(

x+ω
∆(x+ω)

)2


(24)
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FIG. 4. The behavior of ∆(πT ) vs T for γ = 3.5 and γ = 4.
The red dots are numerical results and the blue lines are the

scaling forms ∆ ∼
(

1
T

) γ−3
3 .

The second contribution can be re-expressed by collecting
the terms with positive and negative ω′ as

gγ

2

∫ ∞
0

dω′ω′√
(ω′)2 + ∆2(ω′)

×

(∆(ω′)−∆(ω))

(
1

|ω − ω′|γ
+

1

|ω + ω′|γ

)
(25)

Both contributions have infra-red divergencies
∫
dx/xγ−2

at γ > 3, as one can easily verify. However, the inte-
gral in (24), diverges already if we approximate the gap
∆(ω) as a constant ∆ at low frequencies, while in the
second contribution, Eq. (25), the divergent piece con-
tains ∂2∆(ω)/∂ω2. We assume that this second contri-
bution is smaller and focus on the first one. We set ex-
ternal ω in (23) and approximate its l.h.s. as ∆ω, where
∆ = ∆(ω = 0). The equation on ∆ is then obtained by
expanding in Eq. (24) to linear order in ω. Neglecting
again the derivatives of ∆(ω) we obtain

∆ =

∫ ∞
0

dx

xγ−2

∆(x)

(∆2
x + x2)3/2

(26)

For γ close to 3 the integral is determined by small x, and
we can approximate ∆(x) by ∆. The remaining integra-
tion over x can be carried out exactly, and we obtain

∆ = g

(
Γ
(
γ
2

)
Γ
(

3−γ
2

)
√
π

) 1
γ

(27)

When γ approaches 3, ∆ diverges as (1/(3− γ))
1/3

. For
γ = 2, Eq. (27) yields ∆ = g. We note in passing
that ∆ given by (27) also diverges as (1/γ)1/γ at small
γ, however the assumption that the integral in (24) is
determined by small x obviously does not work there.

As independent verification, we computed ∆(πT ) at a
finite temperature for γ > 3 and indeed found that it
diverges as T → 0. We show the results in Fig.4 along

with ∆(πT ) ∝ (1/T )
γ−3

3 obtained by a straightforward
scaling analysis. We see from Fig.4 that numerical results
reproduce this behavior quite well.

Combining Tc ≈ g/(2π) and Eq. (27) we obtain, for
γ ≤ 3,

2∆

Tc
= 4π

(
Γ
(
γ
2

)
Γ
(

3−γ
2

)
√
π

) 1
γ

(28)

Near γ = 3,

2∆

Tc
≈ 4π

(
1

3− γ

)1/3

. (29)

In Figs. 1, 2, and 3 we show the numerical results for
2∆/Tc in the full range of γ. We see that Tc mono-
tonically decreases with increasing γ and saturates at
Tc = g/(2π) at large γ, while ∆ is non-monotonic – it di-
verges at γ → 0 and γ → 3 and has a minimum at γ ≈ 1.
The ratio 2∆/Tc monotonically increases with increasing
γ and diverges at γ = 3. At γ = 2, 2∆/Tc = 8.3, is
already quite large, consistent with earlier works 2,7,9,10.
We see that the large 2∆/Tc for γ = 2 reflects the fact
that at this γ 2∆/Tc already accelerates towards the di-
vergence at γ = 3. If we substitute γ = 2 into our analyt-
ical formula for γ ≤ 3, Eq. (28), we find 2∆/Tc ∼ 12.5,
which is larger than the numerical result, but not too far
from it.

V. CONCLUSIONS

In this paper we analyzed superconducting Tc and
2∆/Tc ratio in a metal at the verge of an instability to-
wards a spin or a charge order. Near the instability, the
dominant interaction between fermions is the exchange of
soft bosonic fluctuations of spin or charge order parame-
ter. In spatial dimension D ≤ 3 this interaction gives rise
to a non-Fermi liquid behavior either on a whole Fermi
surface or in hot regions, but also provides a strong at-
traction in at least one pairing channel. We considered
a subset of such systems, in which soft bosons can be
regarded as slow modes compared to electrons, and the
pairing can be treated within Eliashberg theory with an
effective local interaction χL(Ωm) = (g/|Ωm|)γ (the γ
model). The same effective theory emerges for the pair-
ing between fermions at the half-filled Landau level and
in models studied within DMFT.

The γ model with γ = 2 describes electron-phonon
superconductivity in the special limit when Debye fre-
quency vanishes but fermion-boson coupling g remains
finite, i.e., the boson-mediated interaction is (g/|Ω|)2.
This problem has been extensively studied in the
past 2,7,9–11. It was well established that Tc ≈ 0.18g and
∆(0) ≈ 0.75g remain finite, but their ratio 2∆/Tc ≈ 8.3
is much larger than in BCS theory. T-H Lee et al re-
cently analyzed numerically 2∆/Tc in the γ-model for
γ < 2 (Ref.40) and found that the ratio monotonically
increases with increasing γ.

One goal of our work was to provide an explanation for
this increase. We considered a larger range of γ ≤ 3 and
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found that 2∆(0)/Tc diverges at γ → 3 (Tc remains finite
in this limit, but ∆0 diverges). We obtained analytical
formulas for Tc and ∆ near γ = 3 and argued that they
remain valid in a relatively wide range of γ < 3. We
also computed Tc and ∆ numerically and found good
agreement between analytical and numerical results.

Another goal of our work was to analyze the opposite
limit of small γ. Here we obtained the exact expressions
for Tc and ∆ with numerical prefactors. We emphasize
that for any non-zero γ, the normal state self-energy has
a non-Fermi liquid form at small frequencies, and non-
Fermi-liquid behavior does affect the values of Tc and
∆.

A word of caution. In our analysis we focused on the
solution of the linearized gap equation with the highest
Tc and on the ”conventional” solution of the non-linear
equation at T = 0, for which ∆(ωm) is a regular function
of frequency with no sign changes. There exist other so-
lutions of the gap equation, for which ∆(ωm) oscillates.
For γ < 2, there is little doubt that the conventional
solution with no-nodal ∆(ωm) has the largest conden-
sation energy. However, for γ > 2, it is possible that
the largest condensation energy is for an unconventional
solution with oscillating ∆(ωm). This would affect the
ratio of 2∆/Tc. Still, even if this is the case, our anal-
ysis is applicable to γ ≤ 2, and it explains why 2∆/Tc
increases with γ. Also, Tc in our analysis is the onset
temperature for the pairing instability. In the absence of
fluctuations it coincides with the actual superconducting
Tc, but when fluctuations are present, the actual Tc,act
likely gets smaller, while our mean-field Tc marks the on-
set of pseudogap behavior. Our 2∆/Tc should then be
understood as the ratio of the gap at T = 0 to the onset
temperature for pseudogap behavior. And, finally, in our
analysis we neglected the feedback from the gap opening
on the form of χL(Ω) (e.g., the development of the reso-
nant peak in the spin-fluctuation propagator due to the
opening of d−wave or s+− gap). Within the γ model this
last effect can be captured by allowing γ to vary with T
below Tc towards a smaller value.
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VI. APPENDIX

A. Details of numerical calculations at small γ

The results of numerical calculations of Tc and ∆ at
small γ are presented in the insets in Fig.1 and Fig.2. The
analysis requires care as at small γ the numerical results
depend on the number of Matsubara points M , and to

obtain reliable results one should properly extrapolate to
M = ∞ We solved the linearized gap equation on the
sets of M = 4000, 8000 and 16000, identified Tc with
the temperature when the largest eigenvalue crosses 1,
and extrapolated the results to M = ∞. We show the
extrapolation procedure in Fig 5a. In our calculation of
∆(πT ) as the solution of the non-linear gap equation,
we used the fact that ∆ rather quickly saturates below
Tc, set the temperature to be 0.3Tc, computed ∆(πT )
for M = 4000, 8000, 16000, 20000, and 30000 Matubara
points, and then extrapolated to M = ∞. We show the
extrapolation procedure in Fig. 5b.

B. The calculation of Tc at small γ to order O(γ2)

.
In this subsection we extend our analysis from Sec.

III A to include terms of next order in γ. The specific
goal here is to understand whether there corrections are
small for γ = 0.2, which is the smallest γ for which the
comparison between analytic and numerical data is pos-
sible.

The calculations follow the same path as the ones we
reported in Sec. III A in the main text, i.e., we write
∆ as the sum of partial components ∆n = (1/|n +
1/2|γ)

∑∞
p=0 ap/|n+ 1/2|γp, like in Eq. (7), obtain recur-

sive relations for ap, and obtain Tc from self-consistent
equation on Z = KT /γ = (g/(2πT )γ/γ. However, at
each step we extend the analysis to next order in γ. We
skip the details of the calculations are report the results.
The recursive relation are

ap = −Zap−1

(
1

p!(p+ 1)!
+ γ∗

)
(30)

where γ∗ = γ(1 + 0.165γ). The self-consistent condition
on Z is

1

Z
=

∞∑
p=0

ap

(
1

p+ 1
+ γ log 4eC + 1.353γ2(p+ 1)

)
(31)

The solution of the recursive relation (30) to order γ2 is

ap = (−Z)p × (32)(
1

p!(p+ 1)!
+ γ∗

p+ 2

3p!(p− 1)!
+ γ2 bp

90(p+ 1)!(p− 2)!

)
where

bp = 6 + 31p+ 16p2 + 26p3 + 5p4 (33)

The last term in the self-consistency equation (31) is al-
ready of order γ2, and it can be computed using the
leading, γ-independent terms in ap. The corresponding
sum over p reduces to

∞∑
p=0

(−Z)p

(p!)2
= J0(2

√
Z) (34)
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FIG. 5. Extrapolation procedure for Tc and ∆ (in units of g) for γ = 0.15, 0.2 and 0.25. By extrapolating to M → ∞, we
obtained Tc = 10500, 243, and 29, respectively, and ∆ = 18620, 440, and 54.6 respectively. The red lines for ∆(1/N) are double

exponential fits (a1e
−α1/N + a2e

−α2/N ).

At T = Tc, J0(2
√
Z) is by itself of order γ, hence this

term is actually of order γ3 and can be neglected. Eval-
uating the remaining sums analytically and numerically,
we obtained

J0(2
√
Z) = γ log 4eC

√
ZJ1(2

√
Z)−

γ

3

(
Z3/2J1(2

√
Z) + ZJ2(2

√
Z)
)
− 0.30246γ2 (35)

The solution of (35) to order γ2 is

Z = Z0

(
1− γ log 3.15265 + 0.036γ2

)
, (36)

where, we remind Z0 = 1.4458 is the smallest solution of
J0(2
√
Z) = 0. We see that the γ2 term has a very small

prefactor. Hence the critical value of KT is only weakly
affected by the O(γ)2 term.

1 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
106, 162 (1957); Phys. Rev. 108, 1175 (1957).

2 D. Scalapino, in Superconductivity, edited by R. Parks
(CRC Press, 1969).

3 S. Maiti and A. V. Chubukov, Phys. Rev. B 83, 220508
(2011).

4 K. A. Musaelian, J. Betouras, A. V. Chubukov, and
R. Joynt, Phys. Rev. B 53, 3598 (1996).

5 M. R. Norman, D. Pines, and C. Kallin, Advances in
Physics 54, 715 (2005).

6 P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys.
78, 17 (2006).

7 J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).
8 F. Marsiglio and J. P. Carbotte, Phys. Rev. B 43, 5355

(1991).
9 R. Combescot, Phys. Rev. B 51, 11625 (1995).

10 F. Marsiglio and J. P. Carbotte, “Electron-phonon super-
conductivity,” in Superconductivity: Conventional and Un-
conventional Superconductors, edited by K. H. Bennemann
and J. B. Ketterson (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008) pp. 73–162.

11 P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905
(1975); G. Bergmann and D. Rainer, Zeitschrift für Physik
263, 59 (1973); F. Marsiglio and J. P. Carbotte, Phys.
Rev. B 43, 5355 (1991); A. Karakozov, E. Maksimov,

and A. Mikhailovsky, Solid State Communications 79, 329
(1991).

12 N. E. Bonesteel, I. A. McDonald, and C. Nayak, Phys.
Rev. Lett. 77, 3009 (1996).

13 A. Abanov, A. V. Chubukov, and A. M. Finkel’stein, EPL
(Europhysics Letters) 54, 488 (2001).

14 A. Abanov, A. V. Chubukov, and J. Schmalian, Advances
in Physics 52, 119 (2003).

15 D. T. Son, Phys. Rev. D 59, 094019 (1999).
16 A. V. Chubukov and J. Schmalian, Phys. Rev. B 72,

174520 (2005).
17 S.-S. Lee, Phys. Rev. B 80, 165102 (2009); D. Dalidovich

and S.-S. Lee, Phys. Rev. B 88, 245106 (2013).
18 S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Phys. Rev.

B 80, 155129 (2009); E. G. Moon and S. Sachdev, Phys.
Rev. B 80, 035117 (2009).

19 E.-G. Moon and A. Chubukov, Journal of Low Tempera-
ture Physics 161, 263 (2010).

20 M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127
(2010); Phys. Rev. B 82, 075128 (2010).

21 D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys.
Rev. B 82, 045121 (2010).

22 R. Mahajan, D. M. Ramirez, S. Kachru, and S. Raghu,
Phys. Rev. B 88, 115116 (2013); A. L. Fitzpatrick,
S. Kachru, J. Kaplan, and S. Raghu, Phys. Rev. B 88,

http://dx.doi.org/10.1103/PhysRev.106.162
http://dx.doi.org/10.1103/PhysRev.106.162
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRevB.83.220508
http://dx.doi.org/10.1103/PhysRevB.83.220508
http://dx.doi.org/10.1103/PhysRevB.53.3598
http://dx.doi.org/10.1080/00018730500459906
http://dx.doi.org/10.1080/00018730500459906
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.62.1027
http://dx.doi.org/10.1103/PhysRevB.43.5355
http://dx.doi.org/10.1103/PhysRevB.43.5355
http://dx.doi.org/10.1103/PhysRevB.51.11625
http://dx.doi.org/10.1007/978-3-540-73253-2_3
http://dx.doi.org/10.1007/978-3-540-73253-2_3
http://dx.doi.org/10.1103/PhysRevB.12.905
http://dx.doi.org/10.1103/PhysRevB.12.905
http://dx.doi.org/10.1007/BF02351862
http://dx.doi.org/10.1007/BF02351862
http://dx.doi.org/10.1103/PhysRevB.43.5355
http://dx.doi.org/10.1103/PhysRevB.43.5355
http://dx.doi.org/https://doi.org/10.1016/0038-1098(91)90556-B
http://dx.doi.org/https://doi.org/10.1016/0038-1098(91)90556-B
http://dx.doi.org/10.1103/PhysRevLett.77.3009
http://dx.doi.org/10.1103/PhysRevLett.77.3009
http://stacks.iop.org/0295-5075/54/i=4/a=488
http://stacks.iop.org/0295-5075/54/i=4/a=488
http://dx.doi.org/10.1080/0001873021000057123
http://dx.doi.org/10.1080/0001873021000057123
http://dx.doi.org/10.1103/PhysRevD.59.094019
http://dx.doi.org/10.1103/PhysRevB.72.174520
http://dx.doi.org/10.1103/PhysRevB.72.174520
http://dx.doi.org/10.1103/PhysRevB.80.165102
http://dx.doi.org/10.1103/PhysRevB.88.245106
http://dx.doi.org/10.1103/PhysRevB.80.155129
http://dx.doi.org/10.1103/PhysRevB.80.155129
http://dx.doi.org/10.1103/PhysRevB.80.035117
http://dx.doi.org/10.1103/PhysRevB.80.035117
http://dx.doi.org/10.1007/s10909-010-0199-y
http://dx.doi.org/10.1007/s10909-010-0199-y
http://dx.doi.org/10.1103/PhysRevB.82.075127
http://dx.doi.org/10.1103/PhysRevB.82.075127
http://dx.doi.org/10.1103/PhysRevB.82.075128
http://dx.doi.org/ 10.1103/PhysRevB.82.045121
http://dx.doi.org/ 10.1103/PhysRevB.82.045121
http://dx.doi.org/10.1103/PhysRevB.88.115116
http://dx.doi.org/ 10.1103/PhysRevB.88.125116


9

125116 (2013); Phys. Rev. B 89, 165114 (2014); G. Tor-
roba and H. Wang, Phys. Rev. B 90, 165144 (2014); A. L.
Fitzpatrick, G. Torroba, and H. Wang, Phys. Rev. B 91,
195135 (2015), and references therein.

23 E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein,
and A. P. Mackenzie, Annual Review of Condensed Matter
Physics 1, 153 (2010).

24 P. Monthoux, D. Pines, and G. G. Lonzarich, Nature 450,
1177 (2007); D. J. Scalapino, Rev. Mod. Phys. 84, 1383
(2012).

25 M. A. Metlitski, D. F. Mross, S. Sachdev, and T. Senthil,
Phys. Rev. B 91, 115111 (2015).
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