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Abstract

We propose a Fokker-Planck equation (FPE) theory to describe stochastic fluctuation and re-

laxation processes of lattice vibration at a wide range of conditions, including those beyond the

phonon gas limit. Using the time-dependent, multiple state-variable probability function of a vibra-

tion FPE, we first derive time-correlation functions of lattice heat currents in terms of correlation

functions among multiple vibrational modes, and subsequently predict the lattice thermal con-

ductivity based on the Green-Kubo formalism. When the quasi-particle kinetic transport theories

are valid, this vibration FPE not only predicts a lattice thermal conductivity that is identical to

the one predicted by the phonon Boltzmann transport equation, but also provides additional mi-

croscopic details on the multiple-mode correlation functions. More importantly, when the kinetic

theories become insufficient due to the breakdown of the phonon gas approximation, this FPE the-

ory remains valid to study the correlation functions among vibrational modes in highly anharmonic

lattices with significant mode-mode interactions and/or in disordered lattices with strongly local-

ized modes. At the limit of weak mode-mode interactions, we can adopt quantum perturbation

theories to derive the drift/diffusion coefficients based on the lattice anharmonicity data derived

from first-principles methods. As temperature elevates to the classical regime, we can perform

molecular dynamics simulations to directly compute the drift/diffusion coefficients. Because these

coefficients are defined as ensemble averages at the limit of δt → 0, we can implement massive

parallel simulation algorithms to take full advantage of the paralleled high-performance computing

platforms. A better understanding of the temperature-dependent drift/diffusion coefficients up to

melting temperatures will provide new insights on microscopic mechanisms that govern the heat

conduction through anharmonic and/or disordered lattices beyond the phonon gas model.
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I. INTRODUCTION

The phonon Boltzmann transport equation (BTE)1,2 has gained some renewed interests

as the default choice of transport theory to compute lattice thermal conductivity (κLatt) of

crystalline solids from first-principles3–9. The theoretical foundation of the phonon BTE is

the so-called phonon gas (PG) model10–13, which assumes that interactions among vibrational

modes are weak enough that the numbers of phonons of each mode follow the single-particle

Bose-Einstein distribution at equilibrium. As a kinetic theory, the phonon BTE further

assumes that (1) each quasi-particle phonon travels at a group velocity ~vg, and (2) the

lifetime τ of every phonon is finite because of the scatterings by lattice anharmonicity, lattice

defects/disorder, or other particles. For electronic insulators, the necessary inputs for a

phonon BTE calculation are the harmonic phonon spectra and the phonon scattering terms,

both of which can be numerically calculated using first-principles methods4,14–22. Multiple

implementations of the phonon BTE methods have been reported in recent years23–27, and

the calculated results adopting various theoretical and numerical approximations have been

systematically bench-marked among themselves and compared with available experimental

data. The overall good agreement between the first-principles computational results and

available experimental data for a large amount of crystals at moderate temperatures (T )

establishes the phonon BTE as a practical and robust computational tool to design advanced

technology materials with optimized thermal transport properties.

Meanwhile, concerns have been raised about the validity of the phonon BTE beyond the

PG limit, where interactions among vibrational modes are significant and the weakly in-

teracting quasi-particle approximation becomes insufficient28. A schematic plot of a typical

temperature dependence of κLatt in crystals is shown in Fig. 1. Within the PG approxima-

tion, the phonon BTE predicts that κLatt of a crystal decays to zero with increasing T at

the rate of 1/T or faster. However, experimental measurements29,30reveal that the deviation

from the 1/T scaling become noticeable as T approaches the melting temperature (Tmelt) of

the lattice, with κLatt eventually reaching a low constant value. The omnipresence of these

minimal thermal conductivities (κmin)31 in all crystalline lattices suggests that as a lattice

approaches its Tmelt, the increasingly strong anharmonic coupling among vibrational modes

causes the breakdown of the PG model. Such breakdown might occur at moderate temper-

atures in relatively soft solids with large thermal expansion32–34, or in the high temperature
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FIG. 1. Schematic plot of lattice thermal conductivity κLatt as a function of temperature T , up to

the melting temperature Tmelt.

phases of solids whose 0K phonon spectra contain imaginary frequencies35. In addition,

the phonon BTE incorporates the concept of phonon group velocity, which is not properly

defined in non-periodic solids such as alloys, glasses or amorphous semiconductors36, even

at the conditions where all the vibrational modes remain quasi-harmonic37.

When the accuracy of the phonon BTE theory is in question, the statistical linear response

transport theory38 is often combined with equilibrium molecular dynamics (MD) simulations

to predict thermal transport properties39–42. For example, the Green-Kubo (GK) formalism

states that thermal conductivity is proportional to the time-integral of the auto-correlation

function of heat flux43,44. Although the GK method is theoretically rigorous and valid

beyond the PG approximation, its current implementations, based on the evaluations of

atomic trajectories, i.e. displacements and velocities, over a long period of time, usually

require much more intensive computational loads. When no reliable empirical force-field

interatomic potentials exist, ab initio MD simulations are necessary to simulate the complex

lattice vibration. Yet, in practice, typical ab initio MD simulations are often carried out

with only relatively short simulation periods (i.e. on the order of a few pico-seconds) and

using relatively small super-cell models (i.e. on the order of a couple of hundred atoms)

because their computational loads scale as order N3, where N is the number of atoms in
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a supercell model. These numerical finite-size artifacts sometimes impose relatively large

uncertainties in the ab initio MD simulation results. Additional approximations are often

needed to extract potential energy of each atom from the ab initio total energies of the

supercell models in order to evaluate the correlation function of heat currents using the

ab initio MD simulation results.45–49.

More importantly, all the atomic trajectories in MD simulations have to be calculated nu-

merically, even at the weak scattering limit of the PG model. This lack of analytical solutions

of atomic trajectories in MD simulations hinders the development of quantitative theoretical

models to interpret the simulated current-current correlation functions because it provides

little insights on improving/correcting the PG model beyond the weak scattering limit. Ladd

et al50 proposed a normal mode analysis (NMA) approach to evaluate the phonon lifetimes τ

based on the damped oscillator approximation (DOA). Using the extracted phonon lifetimes,

they derived the so-called Peierls phonon-transport expression of κLatt, which is understood

to be only an approximate solution of the phonon BTE theory. Nevertheless, these types of

NMA methods have been useful to interpret the phonon scattering in a MD simulation, and

these methods have been implemented and further developed in recent years by many groups

using both empirical potentials and ab initio methods51–54. However, both the DOA and

the concept of phonon lifetime/relaxation-time should be adopted only as semi-quantitative

models because the cross-correlations among different vibrational modes can not always be

neglected. More robust theoretical models or concepts are needed to quantitatively interpret

the NMA results of numerical MD simulations.

In this paper, we present a time-dependent statistical theory to quantitatively describe

the thermal fluctuation and correlation properties of vibrational modes using a Fokker-

Planck equation55 for lattice dynamics. First, this vibration FPE theory does not treat

the interactions among different vibrational modes as small perturbations. Instead, our

theory includes two general sets of parameters, the drift A and the diffusion B coefficients,

to explicitly characterize the mode-mode interactions. The results of this vibration FPE,

expressed in terms of a time-dependent probability function of multiple-variable vibrational

micro-states, provide details of the dynamic relaxation processes of lattice vibration, and

are readily used by the linear response transport theory to compute κLatt beyond the quasi-

harmonic PG model.

Second, this vibration FPE provides detailed information on the time-correlation proper-
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ties of physical quantities without requirement of long time MD simulations. The proposed

vibration FPE derives the correlation functions based on the probability function governed

by the drift A and diffusion B coefficients, which are defined in terms of ensemble averages

at the δt → 0 limit. It is important to emphasize that no a priori forms of correlation

functions are assumed in a FPE calculation of correlation functions. As a result, when im-

plemented with first-principles methods, this vibration FPE is promising to be both accurate

and efficient to predict κLatt of novel and complex solids at wide-ranging conditions.

Finally, the κlatt predicted by the vibration FPE converges to the one from the conven-

tional phonon BTE within the PG model. Because the FPE’s parameters of a lattice vibra-

tion can be evaluated with either perturbative methods or simulation methods at the PG

approximation, our vibration FPE theory establishes a systematical computational method-

ology to analyze errors of the simple PG model and to delineate the breakdown conditions

of the PG approximation.

II. STOCHASTIC DYNAMICS OF LATTICE VIBRATION

A. Fokker-Planck equation

The first fundamental assumption of this proposed Fokker-Planck equation for lattice

vibration is that thermal lattice dynamics is a stochastic process at the microscopic level, and

the probabilistic transition dynamics from one vibration micro-state Γ to other thermally

accessible micro-states can be modeled with a statistical master equation38,55. When a

specific micro-state Γ0 is sampled at time t = 0, the initial probability function is simply:

P (Γ, t = 0|Γ0) = δ(Γ− Γ0). (1)

Regardless of the dynamic details of a stochastic process, the equilibrium ensemble theory

constrains that at the long time limit of t → ∞, the probability function evolves into the

canonical distribution function:

P (Γ, t→∞|Γ0)→ Peq(Γ) =
e
−E(Γ)
kBT

Zeq(T )
, (2)

where kB is the Boltzmann constant, T represents temperature, E(Γ) denotes the energy of

any micro-state Γ, and Zeq(T ) denotes the equilibrium canonical partition function of the
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lattice vibration. The evolution of this probability function P (Γ, t|Γ0) provides a general

and quantitative description of lattice thermal relaxation processes, from a single initially

sampled micro-state Γ0 to a set of the thermally accessible micro-states that correspond

to an equilibrium distribution governed by the equilibrium statistics. Here, the ergodic

condition in lattice vibration is assumed.

We further adopt the Born-von-Karman periodic boundary condition10 to specify the

vibrational micro-states with total N vibration modes, with N → ∞ for an infinitely

large crystal. When the α-th vibrational mode is occupied by nα phonons, the vibra-

tional mode is thermally excited to the quantum number nα, which is often referred as

the number of phonons at the α-th mode. We can further specify a vibrational micro-

state with a set of N -dimensional state-variables Γ = {n1, n2, · · · , nN} that represent the

number of phonons at each of the N vibrational modes. Through the Kramers-Moyal ex-

pansion of the master equation, the time-evolution of this probability function P (Γ, t|Γ0) =

P (n1, n2, · · · , nN , t|n0
1, n

0
2, · · · , n0

N) can be expressed in the form of a FPE38,55:

∂P

∂t
= −

N∑
α=1

∂

∂nα
[Aα(Γ) · P ] +

1

2

∑
αβ

∂2

∂nα∂nβ
[Bαβ(Γ) · P ]. (3)

The assumption of a FPE is that the third order expansion coefficients are approximately

zero. According to the Pawula theorem, all the higher order expansion coefficients are zero

if the third order expansion coefficients are zero55. Within this theoretical framework, the

drift Aα(Γ) and diffusion Bαβ(Γ) coefficients manifest the interactions among vibrational

modes, and they are defined as:

Aα(Γ) ≡ lim
δt→0

1

δt

∫ δt

0

dΓ
′
δnα(Γ,Γ

′
)P (Γ

′
, δt|Γ),

Bαβ(Γ) ≡ lim
δt→0

1

δt

∫ δt

0

dΓ
′
δnα(Γ,Γ

′
)δnβ(Γ,Γ

′
)P (Γ

′
, δt|Γ).

(4)

In the case that a stochastic lattice vibration can be modeled as a random process of tran-

sition from one vibrational micro-state Γ to another micro-state Γ
′

with a known rate of

transition wΓ→Γ′ , Eq. 4 can be approximated as:

Aα(Γ) ≈
∫
dΓ
′
[nα(Γ

′
)− nα(Γ)] · wΓ→Γ′ ,

Bαβ(Γ) ≈
∫
dΓ
′
[nα(Γ

′
)− nα(Γ)] · [nβ(Γ

′
)− nβ(Γ)] · wΓ→Γ′ .

(5)
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Within this statistical probability theory (Eq. 3), the dynamic details of a stochastic

lattice vibration rely on the knowledge of both drift A and diffusion B coefficients. As

formulated in Eq. 4, both A and B coefficients can be numerically calculated based on an

ensemble of microscopic simulations over a short period of simulation time δt. Because of the

short simulation periods for the parameter evaluation, it becomes practical to implement the

numerical simulations using accurate first-principles methods. The overall computational

loads of ensemble average, although still intensive, can be in principle distributed over

a cluster of computer nodes to take full advantage of the state-of-the-art parallel high-

performance computing platforms. Choosing an appropriate simulation period δt for the

parameter calculations is not merely a numeric issue. The length of δt reflects the level

of temporal coarse-graining. For example, in a bulk system, δt should be larger than the

oscillating periods, as well as the ballistic time periods, to ensure the assumption of a thermal

relaxation process. In addition, different values δt might be needed when there are more

than one drift/diffusion mechanism. In an amorphous lattice, the drift/diffusion time scale

for an extended vibrational mode likely differs significantly from that of a strongly localized

vibration mode. Extensive future studies are needed to gain a better understanding these

coefficients of a vibration FPE.

On one hand, the general forms for the A and B coefficients defined in Eq. 4 imply

that our proposed vibration FPE theory does not limit the magnitude of the mode-mode

interactions in a lattice to be perturbatively small, nor does it require each mode correspond

to a traveling wave with a specific group velocity ~vα. Consequently, this vibration FPE,

as formulated in Eq. 3, is valid for lattice vibration with a broad range of mode-mode

interactions, including lattice vibration with strong anharmonic modes and/or disorder-

induced spatially localized modes. On the other hand, in the weak scattering case that

both initial (Γ) and final (Γ
′
) quantum vibration states can be represented by the phonon

representation |n1, n2, n3, · · · , nN >, and ∆V̂ denotes perturbatively small deviations in the

vibration Hamiltonian from that of the ideal phonon gas, we can simply adopt Eq. 5 to

evaluate the A and B coefficients based on the rates of transition derived from the Fermi’s

golden rule:

wΓ→Γ′ =
2π

~
| < n

′

1, n
′

2, n
′

3, · · · , n
′

N |∆V̂ |n1, n2, n3, · · · , nN > |2. (6)
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B. Thermal relaxation: fluctuation and correlation

At thermal equilibrium, the instantaneous value of a quantity X, either macroscopic

or microscopic, fluctuates around its equilibrium value Xeq. The dynamical process that

brings the fluctuating value of X(t) back toward the Xeq is commonly referred as a thermal

relaxation process. A self-correlation function of X:

CXX(t) ≡ 〈δX(0) · δX(t)〉eq = 〈(X(0)−Xeq) · (X(t)−Xeq)〉eq, (7)

is often used to quantify the properties of this thermal relaxation process. When X can be

expressed in terms of micro-state variablesX(Γ), we can define a time-dependent expectation

value X(t|Γ0) based on the probability function P (Γ, t|Γ0) in the vibration FPE, staring with

the initial probability function shown in Eq. 1:

X(t|Γ0) ≡
∫
dΓP (Γ, t|Γ0) ·X(Γ),

dX(t|Γ0)

dt
≡
∫
dΓ
∂P (Γ, t|Γ0)

∂t
·X(Γ)

=
∑
α

[
∂X

∂nα
· Aα](t|Γ0) +

1

2

∑
αβ

[
∂2X

∂nα∂nβ
·Bαβ](t|Γ0).

(8)

Clearly, X(t) starts at its initial value of X(Γ0) =
∫
dΓδ(Γ−Γ0)X(Γ), and eventually relaxes

back to its equilibrium value of Xeq =
∫
dΓX(Γ)Peq(Γ) when P (Γ, t|Γ0) → Peq(Γ) at the

limit of t→∞. Similarly, the corresponding time-dependent statistical variance, defined as

∆X(t|Γ0) ≡ X2(t|Γ0) −X(t|Γ0)2, relaxes from its initial value of 0 to its equilibrium value

∆X,eq =
∫
dΓ(X(Γ)−Xeq)

2 · Peq(Γ) > 0.

By sampling the initial micro-states Γ0 with the equilibrium probability function Peq(Γ
0),

we can re-write the time-correlation function of X, defined in Eq. 7, as:

CXX(t) = 〈δX(Γ0) · δX(t|Γ0)〉eq

=

∫
dΓ0Peq(Γ0)(X(Γ0)−Xeq)

∫
dΓP (Γ, t|Γ0)(X(Γ)−Xeq),

(9)

where CXX(t = 0) = ∆X,eq, and CXX(t→∞)→ [
∫
dΓ0(X(Γ0)−Xeq)·Peq(Γ0)]·[

∫
dΓPeq(Γ)·

(X(Γ)−Xeq)] = 0. A concept of an effective relaxation time (τX) of X is frequently adopted

as the time integration of the normalized self-correlation function cXX(t) ≡ CXX(t)/∆X,eq:

τX ≡
∫ ∞

0

cXX(t)dt, (10)
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based on the approximation that cXX(t) ≈ e−t/τX .

The dynamical correlation between two different quantitiesX and Y that fluctuate around

their prospective equilibrium values (Xeq and Yeq can be quantitatively formulated in terms

of a cross-correlation function CXY (t):

CXY (t) ≡ 〈δX(0) · δY (t)〉eq = 〈(X(0)−Xeq) · (Y (t)− Yeq)〉eq, (11)

and this cross-correlation function can be re-written using the probability distribution func-

tion P (Γ, t|Γ0) of Eq. 3 :

CXY (t) = 〈δX(Γ0) · δY (t|Γ0)〉eq

=

∫
dΓ0Peq(Γ0)(X(Γ0)−Xeq)

∫
dΓP (Γ, t|Γ0)(Y (Γ)− Yeq),

(12)

where CXY (t → ∞) → [
∫
dΓ0(X(Γ0) − Xeq) · Peq(Γ0)] · [

∫
dΓPeq(Γ) · (Y (Γ) − Yeq)] = 0.

Since CXY (t = 0) =
∫
dΓ0Peq(Γ0)(X(Γ0)−Xeq) · (Y (Γo)− Yeq) = 〈(X −Xeq) · (Y − Yeq)〉eq,

the ratio cXY ≡ CXY (t = 0)/
√

∆X,eq ·∆Y,eq is often referred as the correlation ratio, with

cXY = 0 being interpreted as that the fluctuations in X and Y are statistically uncorrelated

at thermal equilibrium. It is important to emphasize that even at the condition of un-

correlated fluctuation at t = 0, i.e. CXY (t = 0) = 0, a time-dependent cross-correlation

function defined in Eq. 12 is not always zero at t > 0. An example is shown in Eq. 28 of

Sec. II C.

Because the self-correlation function formula in Eq. 9 is a special case of the cross-

correlation function formula in Eq. 12 with X = Y , we present only the results of the time

derivative of the cross-correlation function here based on Eqs. 8 and 12:

dCXY (t)

dt
=

∫
dΓ0Peq(Γ0)δX(Γ0)

dδY (t|Γ0)

dt

=

∫
dΓ0Peq(Γ0)δX(Γ0) · {

∑
µ

[
∂Y

∂nµ
· Aµ](t|Γ0) +

1

2

∑
µν

[
∂2Y

∂nµ∂nν
·Bµν ](t|Γ0)}.

(13)

where A and B are the parameters (Eq. 4 ) of the vibration FPE (Eq. 3). Using the

definitions of yµ ≡ ∂Y
∂nµ
· Aµ and yµν ≡ ∂2Y

∂nµ∂nν
· Bµν , we can re-write Eq. 13 in terms of the
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cross-correlation functions between X and yµ and those between X and yµν :

dCXY (t)

dt
=
∑
µ

〈δX(0) · yµ(t)〉eq +
1

2

∑
µν

〈δX(0) · yµν(t)〉eq

=
∑
µ

〈δX(0) · δyµ(t)〉eq +
1

2

∑
µν

〈δX(0) · δyµν(t)〉eq

=
∑
µ

CXyµ(t) +
1

2

∑
µν

CXyµν (t).

(14)

Furthermore, all the higher order time derivatives of CXY (t) functions can also be derived

from Eq. 14 in a recursive fashion.

Next, we summarize some key results in the case that X and Y are simply the α-th and

β-th state variables nα and nβ, with more details on the mathematical derivation given in

Appendix A. The commonly adopted concept of phonon occupation number of a vibrational

mode can be generalized as the time-dependent expectation value of the state variable nα

during a thermal relaxation process, i.e. nα(t|Γ0) ≡
∫
dΓnαP (Γ, t|Γ0), with nα(t|Γ0)→ nα,eq

and ∆α(t|Γ0) ≡ n2
α(t|Γ0) − nα(t|Γ0)2 → ∆α,eq at the t → ∞ limit. At the weak phonon

scattering limit of the PG model, the thermal equilibrium values of nα,eq follow the Bose-

Einstein distribution, and the corresponding statistical variances are ∆α,eq = nα,eq(nα,eq+1).

Applying the vibration FPE ( Eq. 3) to Eq. 8, we derive the time derivatives of nα(t|Γ0)

and ∆α(t|Γ0) as:

d

dt
nα(t|Γ0) =

∫
dΓAα(Γ)P (Γ, t|Γ0) = Aα(t|Γ0),

d

dt
∆α(t|Γ0) = Bαα(t|Γ0) + 2 · [nαAα(t|Γ0)− nα(t|Γ0) · Aα(t|Γ0)].

(15)

Furthermore, using Eqs. 11 and 12, we define the cross-correlation functions between the

fluctuating phonon numbers of the α-th mode and the β-th mode (also referred to as two-

mode correlation functions) as Cnαnβ(t) ≡ 〈δnα(0) ·δnβ(t)〉eq = 〈nα(0) ·nβ(t)〉eq−nα,eq ·nβ,eq,

with Cnαnβ(t = 0) = 〈δnα · δnβ〉eq = 〈nα · nβ〉eq − nα,eq · nβ,eq. We can further define the

normalized two-mode correlation functions as:

cαβ(t) ≡
Cnαnβ(t)√
∆α,eq ·∆β,eq

=

∫
dΓ0Peq(Γ

0)δnα(Γ0) · δnβ(t|Γ0)√
∆α,eq ·∆β,eq

. (16)

Since X = nα and Y = nβ, we have yµ = Aβ · δµβ and yµν = 0. Using Eq. 14, we can show

that:

dcαβ(t)

dt
=

CnαAβ(t)√
∆α,eq ·∆β,eq

=
〈δnα(0)Aβ(t)〉eq√

∆α,eq ·∆β,eq

=

∫
dΓ0Peq(Γ

0)δnα(Γ0) · Aβ(t|Γ0)√
∆α,eq ·∆β,eq

. (17)
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Multiple-mode correlation functions can be defined in a similar fashion. For example,

there is only one type of three-mode correlation function among the α-th, β-th, and γ-th

mode:

〈δnα(0) · δnβ(0) · δnγ(t)〉eq =

∫
dΓ0Peq(Γ

0)δnα(Γ0) · δnβ(Γ0) · δnγ(t|Γ0) =∫
dΓ0Peq(Γ

0)(nα(Γ0)− nα,eq) · (nβ(Γ0)− nβ,eq)
∫
dΓP (Γ, t|Γ0)(nγ(Γ)− nγ,eq),

(18)

and there are three types of four-mode correlation functions among four (α, β, µ, and ν)

modes:

〈δnα(0)δnβ(0)δnµ(0)δnν(t)〉eq =

∫
dΓ0Peq(Γ

0)δnα(Γ0) · δnβ(Γ0) · δnµ(Γ0) · δnν(t|Γ0) =∫
dΓ0Peq(Γ

0)(nα(Γ0)− nα,eq) · (nβ(Γ0)− nβ,eq) · (nµ(Γ0)− nµ,eq)
∫
dΓP (Γ, t|Γ0)(nν(Γ)− nν,eq),

(19)

〈δnα(0)δnβ(0)δnµ(t)δnν(t)〉eq =

∫
dΓ0Peq(Γ

0)δnα(Γ0) · δnβ(Γ0) · δnµ · δnν(t|Γ0) =∫
dΓ0Peq(Γ

0)(nα(Γ0)− nα,eq) · (nβ(Γ0)− nβ,eq)
∫
dΓP (Γ, t|Γ0)(nµ(Γ)− nµ,eq) · (nν(Γ)− nν,eq),

(20)

〈δnα(0)δnβ(t)δnµ(t)δnν(t)〉eq =

∫
dΓ0Peq(Γ

0)δnα(Γ0) · δnβ · δnµ · δnν(t|Γ0) =∫
dΓ0Peq(Γ

0)(nα(Γ0)− nα,eq)
∫
dΓP (Γ, t|Γ0)(nβ(Γ)− nβ,eq) · (nµ(Γ)− nµ,eq) · (nν(Γ)− nν,eq).

(21)

Within the PG model, the fluctuations of phonon occupation numbers at two different

modes are considered to be statistically independent at a thermal equilibrium, i.e. < nα ·

nβ >eq= nα,eq · nβ,eq for α 6= β. As a result, the values of the normalized time-correlation

function at t = 0 are simply cαβ(t = 0) = δαβ, where δαβ is the Kronecker-δ symbol. Yet,

the PG model does not state the value of a cross-correlation function (Eq. 16) at any other

time t 6= 0, except that cαβ(t) → 0 as t → ∞. Multiple-mode correlation functions remain

poorly understood, even within the PG model.
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C. Ornstein-Uhlenbeck Processes

The FPE for a well-studied class of stochastic processes, the so-called Ornstein-Uhlenbeck

(OU) processes56, can be solved analytically. To demonstrate the properties of these OU

processes, we start with a new set of zero-mean and unit-variance stochastic variables Γ̃ =

(x1, x2, x3, · · · , xN), i.e. 〈xλ〉eq = 0 and 〈xλ2〉eq = 1. The OU processes are defined in terms of

their specific form of drift and diffusion coefficients: Aλ(Γ̃) = −γλxλ and Bλλ′ (Γ̃) = 2γλδλ,λ′ ,

with γλ > 0. Consequently, the Fokker-Planck equation for an OU type processes can be

re-written in a separable multiple-variable partial differential equation:

∂P (Γ̃, t|Γ̃0)

∂t
=

N∑
λ=1

γλ[1 + xλ ·
∂

∂xλ
+

∂2

∂x2
λ

]P (Γ̃, t|Γ̃0), (22)

and its solution can be expresses as:

P (Γ̃, t|Γ̃0) =
N∏
λ=1

1√
2π∆λ(t)

e
−

[xλ − xλ(t)]2

2∆λ(t) , (23)

where, xλ(t) = xλ(Γ̃
0) · e−γλt. and ∆λ(t) = 1 − e−2γλt. More details on the solution of

an OU type FPE can be found in Appendix B. Here we highlight one key result of the

time-correlation between any two state variables xλ and xλ′ of an OU type process:

C̃λλ′(t) = 〈xλ(t
′
) · xλ′(t

′
+ t)〉eq = δλ,λ′e

−γλt. (24)

More interesting results on the multiple variable correlation functions, such as the three-

variable correlation functions: 〈xλ(t
′
) ·xλ′(t

′
) ·xλ′′(t

′
+ t)〉eq, 〈xλ(t

′
) ·xλ′(t

′
+ t) ·xλ′′(t

′
+ t)〉eq,

and the four-variable correlation functions 〈xλ(t
′
) ·xλ′(t

′
) ·xλ′′(t

′
) ·xλ′′′(t

′
+ t)〉eq and 〈xλ(t

′
) ·

xλ′(t
′
) · xλ′′(t

′
+ t) · xλ′′′(t

′
+ t)〉eq, 〈xλ(t

′
) · xλ′(t

′
+ t) · xλ′′(t

′
+ t) · xλ′′′(t

′
+ t)〉eq, are presented

in Appendix B.

For a lattice vibration to be classified as an OU process, its set of drift coefficients A(Γ)

in the vibration FPE (Eq. 3) must satisfy the following conditions:

Aα(Γ) = −
∑
β

Dαβ(
∆α,eq

∆β,eq

)1/2(nβ − nβ,eq),

dnα(t|Γ0)

dt
= −

∑
β

Dαβ(
∆α,eq

∆β,eq

)1/2(nβ(t|Γ0))− nβ,eq).
(25)
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Here Dαβ are matrix elements of the normalized drift matrix DDD, nα,eq and ∆α,eq are respec-

tively the equilibrium average value of the phonon number at α-th mode and the corre-

sponding statistical variance at the equilibrium with α, β = 1, 2, 3, · · · , N .

The DDD matrix, as defined in Eq. 25, is a semi-positive definite, real, and symmetric

N × N matrix with a set of N eigenvalues γλ and corresponding normalized eigenvectors

written as as ~uλ = (uλ,1, uλ,2, uλ,3, · · · , uλ,N) for λ = 1, 2, 3, · · · , N . We then can transform

the N -dimensional phonon number state variables Γ = {n1, n2, · · · , nN} into an equivalent

set of zero-mean and unit-variance state variables Γ̃ = (x1, x2, x3, · · · , xN) using this set of

eigenvectors:

nα = nα,eq + (∆α,eq)
1/2

N∑
λ=1

xλuλ,α,

xλ =
N∑
α=1

nα − nα,eq
∆α,eq

1/2
uλ,eq.

(26)

The linear transformation in Eq. 26 also shows that the diffusion Bαβ(Γ) coefficients for

an OU type lattice vibration are related to its drift coefficients Aα(Γ) through theDDD matrix:

Bαβ(Γ) = 2(∆α,eq ·∆β,eq)
1/2

N∑
λ=1

γλuλ,αuλ,β = 2(∆α,eq ·∆β,eq)
1/2Dαβ. (27)

In the rest of the paper, the DDD matrix is referred as the normalized drift/diffusion matrix.

Combining the results in Eqs 16, 24 and 26, we can show that the normalized two-mode

correlation functions cαβ(t) (Eq. 16) in this OU type lattice vibration are simply:

cαβ(t) =
N∑
λ=1

e−γλtuλ,αuλ,β, (28)

with cαβ(t = 0) =
∑N

λ=1 uλ,αuλ,β = δαβ. We can generalize the normalized two-mode

correlation functions in Eq. 28 in an integral form:

cαβ(t) =

∫ ∞
0

dγχαβ(γ)e−γt, (29)

with χαβ(γ) =
∑N

λ=1 uλ,αuλ,β · δ(γ − γλ). Eq. 29 indicates that a mode correlation function

cαβ(t) can be viewed as the t-space Laplace transformation of the γ-space function χαβ(γ).

We refer to χαβ(γ) as the Laplace spectral function of cαβ(t). At the N →∞ limit, a Laplace

spectral function χαβ(γ) converges to a continuous function defined in the spectral regime
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of [0, γmax]. The k-th moment of a χαβ(γ) function, defined as µαβ(k) ≡
∫∞

0
dγχαβ(γ) · γk,

is given as:

µαβ(k) =
N∑
λ=1

uλ,αuλ,βγλ
k =< α|DDDk|β >= (DDDk)αβ. (30)

The results in Eqs. 28 and 29 clearly demonstrate that in general the normalized mode

self-correlaltion functions of lattice vibration do not decay as an exponetial function of time,

and the time-integral of the cross-correlaltion functions are not zero for two different modes.

Some recent simulation studies53 have reported their implementation based on fitting the

MD simulated mode self-correlation functions based on an assumed formula of Cαβ(t) ≈

∆α,eq · δα,β · e−γαt, and they reported the fitted decay factors γα as the inverse of phonon

life-times τα = γ−1
α in the PG model. For such a simplification to be valid, the normalized

drift/diffusion matrix DDD has to be close to a diagonal matrix:

DDD ≈


γ1 0 0 . . . 0

0 γ2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . γN

⇐⇒ D−1D−1D−1 ≈


τ1 0 0 . . . 0

0 τ2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . τN

 . (31)

However, the off-diagonal terms in the DDD matrix characterize the phonon-phonon mode

scatterings, and they are usually not zero even within the approximation of the PG model.

Similarly, the cross-correlation functions between two vibrational modes are usually not zero

even within the approximation of the PG model.

The analytical solution of the probability function of an OU type vibration FPE also

predicts the time-correlation functions of multiple vibrational modes. For example, based

on the derivation in Appendix B, all the correlation functions of odd-number vibrational

modes are zero for an OU type lattice. There are three types of four-mode correlation

functions:

〈δnα(0)δnβ(0)δnµ(0)δnν(t)〉eq = (∆α,eq∆β,eq∆µ,eq∆ν,eq)
1
2

·
∑

λλ′λ′′λ′′′

(uλ,αuλ′,βuλ′′,µuλ′′′,ν) · 〈xλ(0) · xλ′(0) · xλ′′(0) · xλ′′′(t)〉eq

=(∆α,eq∆β,eq∆µ,eq∆ν,eq)
1
2 · [δαµcβν(t) + δβµcαν(t) + δαβcµν(t)],

(32)
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〈δnα(0)δnβ(t)δnµ(t)δnν(t)〉eq = (∆α,eq∆β,eq∆µ,eq∆ν,eq)
1
2

·
∑

λλ′λ′′λ′′′

(uλ,αuλ′,βuλ′′,µuλ′′′,ν) · 〈xλ(0) · xλ′(t) · xλ′′(t) · xλ′′′(t)〉eq

=(∆α,eq∆β,eq∆µ,eq∆ν,eq)
1
2 · [δµνcαβ(t) + δβνcαµ(t) + δβµcαν(t)],

(33)

〈δnα(0)δnβ(0)δnµ(t)δnν(t)〉eq = (∆α,eq∆β,eq∆µ,eq∆ν,eq)
1
2

·
∑

λλ′λ′′λ′′′

(uλ,αuλ′,βuλ′′,µuλ′′′,ν) · 〈xλ(0) · xλ′(0) · xλ′′(t) · xλ′′′(t)〉eq

=(∆α,eq∆β,eq∆µ,eq∆ν,eq)
1
2 · [δαβδµν + cαµ(t) · cβν(t) + cαν(t) · cβµ(t)],

(34)

with cαβ(t) being the normalized time-correlation function between α-th mode and β-mode

(Eqs. 16, 28 and 29), and the initial values of the four-mode time correlation functions

derived as 〈δnα(0)δnβ(0)δnµ(0)δnν(0)〉eq = (∆α,eq∆β,eq∆µ,eq∆ν,eq)
1
2 ·[δαβδµν+δαµδβν+δανδβµ].

III. LATTICE THERMAL CONDUCTIVITY

A. Green-Kubo Theory

The fluctuation-dissipation theorem provides a general statistical theory to connect the

equilibrium fluctuation processes of a macroscopic quantity e.g. the total heat current vector

~J = (Jx, Jy, Jz) in a solid and the related irreversible transport processes, such as heat

conduction at non-equilibrium conditions. Within the statistical linear response transport

theory, the thermal conductivity tensor κIJ , with I, J = x, y, z labeling the Cartesian axes,

is expressed in the Green-Kubo formula in terms of the time integral of the current-current

correlation functions43,44:

κIJ =
1

kBT 2ΩNcell

∫ ∞
0

dt〈JI(0)JJ(t)〉eq, (35)

where Ω and Ncell are respectively volume of the unit-cell and total number of cells in a

super-cell model with the Born-von Karman periodic boundary.

At the atomistic level, the heat current ~J is a function of atomic forces, displacements

and momenta, and various approximations have been proposed and discussed57. Assuming

the heat current vector is also a function of phonon numbers of modes, i.e. ~J = ~J({Γ}) =

16



~J(n1, n2, n3, · · · , nN), we can use Eq. 9 to evaluate the current-current correlation functions.

Under the condition of small thermal fluctuation, the Cartesian components of the heat

current vector can be simplified as:

JI ≈
∑
α

∂JI
∂∆nα

∆nα =
∑
i

ΛIα∆nα. (36)

The seminal Peierls formula of the heat current of a phonon gas, ~J =
∑

α ∆nα~ωα~vα, is an

approximation of this class, with ΛIα = ~ωαvαI . When the higher order terms(also referred

as the non-harmonic terms) in the J formula are included as the corrections to the linear

terms formulated in Eq. 36, we can re-write the JI as JI =
∑

i ΛIα∆nα+δJI . Consequently,

the current-current correlation functions can be expressed as:

〈JI(0)JJ(t)〉eq =
∑
αβ

ΛIαΛJβ〈∆nα(0)∆nβ(t)〉eq

+
∑
α

ΛIα〈∆nα(0)δJJ(t)〉eq

+
∑
α

ΛJα〈δJI(0)∆nα(t)〉eq

+ 〈δJI(0)δJJ(t)〉eq.

(37)

Wherever the non-harmonic δ ~J terms in the vibrational heat current in a lattice are not

negligible, time-correlation functions of multiple modes, such as the four-mode correlation

functions shown in Eq. 32, 33, 34, are needed to evaluate the current-current correlation

function shown in Eq. 37. At the condition that the general linear approximation of Eq.

36 is valid, the time integral of 〈JI(0)JJ(t)〉eq is approximated in terms of time-integrals of

normalized two-mode correlation functions cαβ(t):∫ ∞
0

dt〈JI(0)JJ(t)〉eq ≈
∑
αβ

ΛIαΛJβ

∫ ∞
0

dt〈∆nα(0)∆nβ(t)〉eq

=
∑
αβ

ΛIαΛJβ(∆α,eq ·∆β,eq)
1/2

∫ ∞
0

dtcαβ(t).

(38)

Based on the GK formula, we now express κLatt in the form of:

κIJ =
1

kBT 2ΩNCell

∑
αβ

ΛIαΛJβ(∆α,eq ·∆β,eq)
1/2

∫ ∞
0

dtcαβ(t). (39)

As shown in Eq. 28 of Sec. II C, when a lattice vibration can be approximated as an
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Ornstein-Uhlenbeck process, the lattice thermal conductivity is simply:

κIJ =
1

kBT 2ΩNCell

∑
αβ

ΛIαΛJβ(∆α,eq ·∆β,eq)
1/2

N∑
λ=1

∫ ∞
0

dte−γλtuλ,αuλ,β

=
1

kBT 2ΩNCell

∑
αβ

ΛIαΛJβ(∆α,eq ·∆β,eq)
1/2

N∑
λ=1

(γλ)
−1uλ,αuλ,β

=
1

kBT 2ΩNCell

∑
αβ

ΛIαΛJβ(∆α,eq ·∆β,eq)
1/2(DDD)−1

αβ .

(40)

B. Phonon Boltzmann Transport Equation

As a kinetic transport theory, the phonon BTE theory is valid only within the PG ap-

proximation, i.e. at a thermal equilibrium, each mode oscillates at a harmonic frequency

ω and the ensemble averaged number of phonons at this mode follows the Bose-Einstein

distribution neq(ω) = 〈n〉eq = 1
e(~ω/kBT )−1

and ∆eq = 〈n2〉eq − 〈n〉2eq = neq · (neq + 1). In

addition, the phonon BTE theory applies only to a crystalline solid, where each vibrational

mode of this translation-invariant periodic lattice corresponds to a reciprocal-space ~k vector

and a group velocity ~v = ~5k(ω).

When a constant temperature gradient ~5rT is imposed on the periodic lattice, the en-

semble averaged phonon numbers, nα for α = 1, 2, 3, · · · , N , are no longer able to relax back

to their original equilibrium values neq,α as a result of thermal diffusion. Instead, each nα

approaches a space-dependent value when a steady-state is reached:

(
∂nα
dt

)
= −

(
dnα
dt

)
diffusion

−
(
dnα
dt

)
scattering

= 0, (41)

where the diffusion term at the ~5rT → 0 limit is approximated as:

(
dnα
dt

)
diffusion

= −~vα · ~5rnα ' −
~ωα
kBT 2

nα,eq(nα,eq + 1)~vα · ~5rT. (42)

A common approximation for the scattering terms in the phonon BTE (Eq. 41) is the

so-called linearized approximation:(
dnα
dt

)
scattering

' −
N∑
β=1

√
nα,eq · (nα,eq + 1)

nβ,eq · (nβ,eq + 1)
· Lαβ · (nβ − nβ,eq), (43)

where LLL is referred as the linear phonon scattering matrix.
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By using the results of Eqs. 42 and 43 and the definition of φα ≡
nα − nα,eq√

nα,eq · (nα,eq + 1)
,

the steady-state phonon Boltzmann equation (Eq. 41) can be re-written as a set of linear

equations for φα with α = 1, 2, 3, · · · , N :

N∑
β=1

Lαβ · φβ = − ~ωα
kBT 2

√
nα,eq(nα,eq + 1)~vα · ~5rT. (44)

Similar to what we have derived in Sec. II C, we can solve the set of linear equations

using the eigenvectors and the eigenvalues of the matrix LLL:

φα = −
N∑
λ=1

γλ
−1uλ,α

N∑
β=1

~ωβ
kBT 2

√
nβ,eq(nβ,eq + 1)(~vβ · ~5rT )uλ,β

= −
N∑
β=1

(
N∑
λ=1

γλ
−1uλ,αuλ,β) · ~ωβ

kBT 2

√
nβ,eq(nβ,eq + 1)(~vβ · ~5rT )

= −
N∑
β=1

(LLL)−1
αβ ·

~ωβ
kBT 2

√
nβ,eq(nβ,eq + 1)(~vβ · ~5rT ),

(45)

where γλ and ~uλ are the λ-th eigenvalue and eigenvector of the matrixLLL, and (LLL)−1 represents

the inverse matrix of LLL.

Based on the Peierls formula for the heat current of a phonon gas, the lattice thermal

conductivity predicted by the linearized phonon BTE theory can be expressed as:

κIJ =
1

ΩNCell

∑
αβ

(LLL)−1
αβ ·

√
nα,eq(nα,eq + 1)

√
nβ,eq(nβ,eq + 1)~ωα~ωβ
kBT 2

vαI · vβJ

=
1

ΩNCell

∑
αβ

(cαcβ)1/2 · vαI · vβJ · (LLL)−1
αβ ,

(46)

where c = kB · ( ~ω
kBT

)2 · nα,eq · (nα,eq + 1) is the single mode heat capacity.

To compare κLatt predicted by the phonon BTE (Eq. 46) and the one by the OU type

vibration FPE (Eq. 40), we first note that in the limit of weak phonon scattering of the

PG model, the variance of the phonon number fluctuation of a mode ∆α,eq has already

been shown to converge to the value of nα,eq · (nα,eq + 1), and the Peierls formula of heat

current is valid. Furthermore, with the interpretation of phonon occupation number nα in

the phonon BTE as the time-dependent expectation value of the phonon number during the

thermal relaxation process, we conclude that the normalized drift/diffusion matrix DDD in an

OU type vibration FPE (Eq. 25) is identical to the linear phonon scattering matrix LLL, i.e.
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DDD →LLL, at the weak phonon scattering limit of the PG approximation. Consequently, κLatt

predicted by the vibration FPE (Eq. 40) converges to that predicted by the conventional

phonon BTE (Eq. 46). The so-called single mode relaxation approximation (SMRA) or

relaxation time approximation (RTA) of a kinetic transport model corresponds to the cases

where the phonon scattering matrix LLL (or the drift/diffusion matrix (DDD) can be treated as

a semi-positively defined diagonal matrix (Eq. 31).

C. Discussions and Future Applications

A comparison chart is shown in Table I to highlight commonality and distinction between

the atomistic MD simulation method and the vibration FPE. The MD simulation approach

has an absolute advantage in simulating the atomistic scale lattice heat currents at moder-

ate and high temperature, and it applies consistently to disordered solids, very anharmonic

solids, as well as fluids. However, MD simulations only provide a semi-quantitative de-

scription of the fluctuation properties of individual vibrational modes based on the damped

oscillator model. Firstly, corrections to the quantized lattice vibration have to be considered

at low temperature because of the classical nature of MD simulations. Secondly, the mode

lifetimes extracted from the numerical solutions of MD trajectories over long simulation

periods reflect only partial information on the fluctuation and relaxation processes in lattice

dynamics. Because of the assumption that all the cross-mode correlation functions between

two different vibrational modes are zero, the damped oscillator approximation is equivalent

to the single mode relaxation approximation or relaxation time approximation in kinetic

transport theories. The predicted κLatt from these approximate kinetic theories are known

to be noticeably underestimated comparing to those derived from the full solutions of the

phonon BTE theory at low temperature4,23 or in low dimension materials27.

In contrast, the vibration FPE approach complements the conventional MD simulation

approach for conditions in which the interactions among vibrational modes are moderate,

and it can be adopted to delineate the breakdown conditions of the PG model in MD

simulations. Based on vibration FPE, we propose that the PG model applies when the

OU approximation of the drift and diffusion coefficients (Eqs. 25 and 27) is valid. By

considering the normalized drift/diffusionDDD matrix in an OU type vibration FPE equivalent

to the scattering LLL matrix in a phonon BTE, we have proved for the first time that the
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TABLE I. Comparison chart for the molecular dynamics method and the vibration Fokker-Planck

equation method.

Molecular Dynamics Simulation Fokker-Plank Equation

Thermal

Conductivity

κ

Green-Kubo Formula: κIJ =
1

ΩkBT 2

∫ ∞
0

〈Jα(0)Jβ(t)〉eqdt with J(t) as the fluctuating heat current

Required Input : the time-correlation function of heat current 〈Jα(0)Jβ(t)〉eq.

Heat

Current

J

J =
1

2

∑
i

∑
j>i

Fij · (vi + vj)(ri − ri)

ri,vi ∼ atomic position/velocity

Fij ∼ force between two atoms

J({n1, n2, · · · , nN ) = J0 + ∆J, n ∼ phonon numbers

Harmonic heat current: J0 =
∑

α nα~ωαvgα, (ω, vg) ∼ frequency/group velocity

Anharmonic heat current: ∆J→ beyond the Perierls approximation, not yet formulated

Dynamics

Classical Newton’s 2nd Law

Fi = −∇riV (r1, · · · , rn)

V ∼ many-body inter-atomic potential

Quantum, Semi-Classical, and Classical

Aα(Γ) ≡ lim
δt→0

1

δt

∫ δt

0
dΓ
′
δnα(Γ,Γ

′
)P (Γ

′
, δt|Γ)

Bαβ(Γ) ≡ lim
δt→0

1

δt

∫ δt

0
dΓ
′
δnα(Γ,Γ

′
)δnβ(Γ,Γ

′
)P (Γ

′
, δt|Γ)

Phonon

Gas

Limit

Damped Oscillators and Mode Lifetimes

V = Vharmonic + ∆Vanh,∆Vanh � Vharmonic

Only numerical solution for ri(t), vi(t)

Normal mode analysis:

• Long simulation time is necessary

• Self-correlation functions cαα(t) often

assumed to be e−t/τα

• Cross correlations cαβ(t) often assumed

to be zero

• Three/four-mode correlation functions

rarely discussed

OU Approximation of drift/diffusuion coefficients⇐⇒ Phonon Gas Model

Aα(Γ) = −
∑

β Dαβ
√

∆α,eq/∆β,eq)δnβ, Bαβ(Γ) = 2
√

∆α,eq ·∆β,eq)Dαβ

Analytical Solution: P (Γ̃, t|Γ̃0) =
∏N
λ=1

1√
2π∆λ(t)

e
−

[xλ − xλ(t)]2

2∆λ(t)

Analytical formulas of multiple-mode time-correlation function:

• Two-mode: cαβ = 〈δnα(0) · δnβ(t)〉eq/
√
〈δn2

α〉eq · 〈δn2
β〉eq

=
N∑
λ=1

e−γλtuλ,αuλ,β ⇒
∫ ∞

0
dγχαβ(γ)e−γt with N →∞

• Three-mode: 〈δnα(0)δnβ(0)δnµ(t)〉eq = 0

• Four-mode: 〈δnα(0)δnβ(0)δnµ(0)δnν(t)〉eq =

[δαµcβν(t) + δβµcαν(t) + δαβcµν(t)]
√
〈δn2

α〉eq〈δn2
β〉eq〈δn2

µ〉eq〈δn2
ν〉eq

κLatt derived from the linear response transport theory converges to that from the kinetic

transport theory within the PG approximation.

When the interactions among vibrational modes are perturbatively small, the normal-

ized drift/diffusion DDD matrix can be derived by using quantum perturbation theories for

lattice vibration at low temperature. As temperature elevates to the semi-classical and

classical regime, we can implement numerical algorithms to directly compute normalized

drift/diffusion coefficients with first-principles MD simulations. As these coefficients are de-

fined in the short time limit, high-performance parallel computer platforms can be utilized

to distribute the computational loads of such simulations in parallel. When the temper-

ature dependence of the drift/diffusion coefficients are extracted and tested with the OU

approximation, we are able to not only quantitatively determine the temperature condition

in which the PG model breaks down, but also identify the individual vibrational modes that

lead to the breakdown.
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IV. CONCLUSIONS

In summary, we have developed a vibration Fokker-Planck equation theory to describe

stochastic lattice dynamics in solids. Instead of simulating the atomic trajectories using the

molecular dynamics methods, this statistical theory characterizes the fluctuation and relax-

ation processes in terms of a time-dependent, multiple-mode probability function, evolving

from a thermally sampled single micro-state at t = 0 (Eq. 1) to the equilibrium distribution

over all the accessible micro-states as t→∞ (Eq. 2). The dynamical properties that govern

the stochastic processes at atomistic scale are coarse-grained into two sets of parameters of a

vibration FPE, the drift A and diffusion B coefficients of vibrational modes (Eqs. 3 and 4).

At the limit of weak mode-mode interactions, these coefficients can be derived with quantum

perturbation theories, such as the Fermi’s golden rule (Eq. 5 and 6). Beyond the pertur-

bation approximation, these coefficients can be directly computed by using MD methods

over short simulation time periods (i.e. δt ≈ 0). Thus, the intensive computational loads of

sampling a large amount of initial micro-states of a vibrating lattice can be distributed in a

computer platform with massive parallel algorithms.

Our time-dependent probability theory presents a new paradigm to compute correlation

functions among vibrational modes (Eqs. 16 and 17). The advantage of this statistical ap-

proach is clearly demonstrated at the Ornstein-Uhlenbeck condition (Sec. II C), in which the

vibration FPE has an analytical solution (Eqs. 23 - 26) and the correlation functions among

multiple modes (Eqs. 28, 32 - 34) can be derived in terms of eigenvalues and eigenvectors

of the normalized drift/diffusion matrix DDD (Eqs. 25 and 27). By equating the DDD matrix in

an OU type vibration FPE with the conventional phonon scattering matrix LLL (Eq. 43) in

a phonon BTE, we have presented the first rigorous mathematical proof to equalize κLatt

results from both the Green-Kubo theory (Eq. 40) and the BTE theory (Eq. 46) with the

Peierls harmonic heat current formula (Eq. 36).

Although both the vibration FPE theory and the phonon BTE theory predict identi-

cal κLatt results within the PG model, the vibration FPE provide additional theoretical

insights on the heat conduction mechanism at microscopic level. Firstly, the vibration

FPE theory quantatitively defines the contributions to the overall κLatt from both the self-

correlaltion functions of individual modes and the cross-correlation functions between two

different modes (Eq. 39). Secondly, the vibartion FPE further predicts all the multiple-
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mode correlation functions, which can be analyzed in future to account effects of anharmonic

correction terms in heat flux28,57. Finally, when perturbation theories become insufficient

to evaluate the phonon scattering matrix LLL of a phonon BTE, the full set of matrix ele-

ments of LLL, instead of merely effective phonon lifetimes, can be computed as the normalized

drift/diffusion coefficients of an OU type FPE by using the MD simulations over short time

periods.

To study the mechanisms of lattice heat conduction beyond the PG model, it is critical

to establish a quantatitive criterion that delineates the breakdown conditions. The theoret-

ical analysis presented in this paper indicates that the OU condition of stochastic lattice

dynamics (Eqs. 25 and 27) might serve as such breakdown criterion. We are currently

implmenting MD methods to compute the temperaure-depedent drift/diffusion coefficients

up to the melting temperature of a lattice. Various numerical methods, such as adiabatic

elimination of variables method, matrix continued-fraction method, or variational methods,

will be examined to solve the vibration FPE byond the OU approximation55. It is promising

that this vibration FPE presents a new theoretical framework to accurately and effectively

predict the stochastic vibrational processes and the thermal transport properties of solids

within and beyond the PG model.
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Appendix A: Expectation values and statistical variances of numbers of phonons

This appendix provides some derivation details on some formulas about the expectation

values and statistical variances of the phonon numbers shown in Sec. II.

We first define the time-dependent expectation values of the following three quantities
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using the ensemble average approach shown in Sec. II B:

nα(t|Γ0) ≡ 〈nα〉 =

∫
dΓnαP (Γ; t), (A1)

nαnβ(t|Γ0) ≡ 〈nαnβ〉 =

∫
dΓnαnβP (Γ; t), (A2)

∆αβ(t|Γ0) = 〈nαnβ〉 − 〈nα〉〈nβ〉. (A3)

Using the vibration FPE shown in Eq. 3, we then prove that the first-order t-derivatives

of these three quantities in Eqs. A1 to A2 have the following forms:

dnα
dt

=

∫
dΓnα

∂

∂t
P (Γ, t|Γ0)

= −
∑
i

∫
dΓnα

∂

∂ni
[Ai(Γ) · P (Γ, t|Γ0)]

+
1

2

∑
ij

∫
dΓnα

∂2

∂ni∂nj
[Bij(Γ) · P (Γ, t|Γ0)].

(A4)

For α 6= i, we have
∫
dΓnα

∂

∂ni
[Ai(Γ)P (Γ, t|Γ0)] = 0. Similarly,

∫
dΓnα

∂
∂ni

∂
∂nj

[Bij(Γ)P (Γ, t|Γ0)] =

0 for α 6= i or β 6= j. As a result, Eq. A4 is now simplified as:

dnα(t|Γ0)

dt
= −

∫
dΓnα

∂

∂nα
(Aα · P ) +

1

2

∫
dΓnα

∂2

∂nα∂nα
(Bαα · P ), (A5)

with
∫
dΓnα

∂

∂nα
(Aα ·P ) =

∫
dΓ

∂

∂nα
(nα ·Aα ·P )−

∫
d(ΓAα ·P ) = −

∫
dΓAα(Γ) ·P (Γ, t|Γ0) =

−Aα(t|Γ0), and
∫
dΓnα

∂

∂nα

∂

∂nα
(Bαα ·P ) =

∫
dΓ ∂

∂nα
[nα

∂

∂nα
(BααP )]−

∫
dΓ

∂

∂nα
(BααP ) = 0.

We now get:

dα(t|Γ0)

dt
= Aα(t|Γ0). (A6)

Similarly, we can show that

dnαnβ(t|Γ0)

dt
= nαAβ(t|Γ0) + nβAα(t|Γ0) +Bαβ(t|Γ0). (A7)

Consequently, we also have:
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d∆αβ(t|Γ0)

dt
=
dnαnβ(t|Γ0)

dt
− nα(t|Γ0) · dnβ(t|Γ0)

dt
− nβ(t|Γ0) · dnα(t|Γ0)

dt

= Bαβ(t|Γ0) + [nαAβ(t|Γ0)− nα(t|Γ0) · Aβ(t|Γ0)] + [nβAα(t|Γ0)− nβ(t|Γ0) · Aα(t|Γ0)].

(A8)

Appendix B: Analytical solutions of the FPE for an OU process

In this appendix we verify the analytical solutions of an OU type FPE (Eq. 22) shown

in Sec. II C. For a probability function of one stochastic variable x with zero-mean and

unit-variance, the corresponding OU type FPE can is given as:

∂P (x, t)

∂t
= γ · (1 + x · ∂

∂x
+

∂2

∂2x
)P (x, t). (B1)

With d
dt
x = −γx, d

dt
x2 = 2γ(1 − x2), and the initial values x and x2 being x0 and (x0)2

respectively, we have:

x = x0e
−γt,

∆ = x2 − x2 = 1− e−2γt.
(B2)

We skip the details of derivation and only show that the analytical solution of Eq. B1 is

given as:

P (x, t) =
1√

2π∆(t)
e
−

(x− x(t))2

2∆(t) . (B3)

Using the analytical solution in Eq. B3, we can show that ∂P (x,t)
∂t

on the left hand side of

Eq. B1 is:

∂P (x, t)

∂t
=

∂[
1√

2π∆(t)
]

∂t
e
−

(x− x(t))2

2∆(t) +
1√

2π∆(t)

∂[e
−

(x− x(t))2

2∆(t) ]

∂t

= γ[1−∆−1(t)]P (x, t) + γ[
(x− x(t))2

∆2(t)
− x · (x− x(t)

∆(t)
]P (x, t)

= γ[1−∆−1(t) · (1− xx(t) + x2) + ∆−2(t) · (x− x(t))2]P (x, t).

(B4)

From the analytical solution in Eq. B2, we also have ∂P (x,t)
∂x

= −∆−1(t) ·(x−x(t)) ·P (x, t)

and ∂2P (x,t)
∂x2 = −∆−1(t) + ∆−2(t) · (x− x(t))2 · P (x, t). These results give us the right hand
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side of Eq. B1 in the form of:

γ · [1 + x · ∂
∂x

+
∂2

∂2x
]P (x, t)

= γ · [1− x ·∆−1(t) · (x− x(t))−∆−1(t) + ∆−2(t) · (x− x(t))2] · P (x, t)

= γ · [1−∆−1(t) · (1− x · x(t) + x2) + ∆−2(t) · (x− x(t))2] · P (x, t).

(B5)

With both Eq. B4 and Eq. B5, we now verify that the probability function in Eq. B3 is

indeed the analytical solution of Eq. B1.

For the case N > 1, the N -dimensional probability function of an OU type FPE (Eq.

22) can be expressed in a separable form P (Γ̃, t) =
∏N

λ=1 fλ(xλ, t), and one N -variable FPE

(Eq. 22) is converted into N sets of partial differential equations:

∂fλ(x, t)

∂t
= γλ · (1 + xλ ·

∂

∂xλ
+

∂2

∂2xλ
)fλ(x, t), (B6)

where λ = 1, 2, 3, · · ·N . Similar to the solution shown in Eq. B3, we have the N sets of

solutions of fλ(x, t) = (2π∆λ)
−1/2 · e

−
(xλ − xλ)2

2∆λ , with xλ = xλ,0e
−γλt and ∆λ = 1− e−2γλt.

Plugging these results in the separable multiple-variable formula, we now can verify that the

analytical solution of Eq. 22 is indeed the probability function shown in Eq. 23.

The analytical solutions of the probability function for an OU type FPE allows us to

directly derive the correlation functions among these state variables with zero-means and

unit-variances. For example, the time correlation functions between any two stochastic

variables can be shown as the following familiar forms:

〈xλ(t
′
) · xλ′(t

′
+ t)〉eq = 〈xλ(0) · xλ′(t)〉eq

= 〈xλ · xλ′〉eqe−γλ′ t = δλ,λ′e
−γλt.

(B7)

Meanwhile, we can prove that all three-variable correlation functions for a multiple vari-

able OU process zero:

〈xλ(0) · xλ′(0) · xλ′′(t)〉eq = 〈xλ · xλ′ · xλ′′〉eqe−γλ′′ t

= 0 · e−γλ′′ t = 0,
(B8)

〈xλ(t) · xλ′(0) · xλ′′(t)〉eq = 〈xλ · xλ′ · xλ′′〉eqe−2γλ′′ t + 〈xλ〉eq · (1− e−2γλ′′ t) · δλ′λ′′

= 0 · e−2γλ′′ t + 0 · (1− e−2γλ′′ t) · δλ′λ′′ = 0.
(B9)
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We can further generalize that the correlation functions of odd-number variables, such as

three-variable, five-variable, etc, are all zero. Meanwhile, the correlation functions of even-

number variables are not always zero. For example, for four-variable correlation functions,

we have the following free formula:

〈xλ(0) · xλ′(0) · xλ′′(0) · xλ′′′(t)〉eq = 〈xλ · xλ′ · xλ′′ · xλ′′′〉eqe−γλ′′′ t

=(δλλ′′′ · δλ′λ′′ + δλ′λ′′′ · δλλ′′ + δλ′′λ′′′ · δλλ′)e−γλ′′′ t,
(B10)

〈xλ(0) · xλ′(t) · xλ′′(t) · xλ′′′(t)〉eq

=〈xλ · xλ′ · xλ′′ · xλ′′′〉eqe−(γλ′+γλ′′+γλ′′′ )t + 〈xλxλ′〉eq · e−γλ′ t · (1− e−2γλ′′ t) · δλ′′λ′′′+

〈xλxλ′′〉eq · e−γλ′′ t · (1− e−2γλ′ t) · δλ′λ′′′ + 〈xλxλ′′′〉eq · e−γλ′′′ t · (1− e−2γλ′ t) · δλ′λ′′

=(δλλ′ · δλ′′λ′′′ + δλλ′′ · δλ′λ′′′ + δλλ′′′ · δλ′λ′′) · e−(γλ′+γλ′′+γλ′′′ )t+

e−γλt · [δλλ′ · δλ′′λ′′′ · (1− e−2γλ′′ t) + δλλ′′ · δλ′λ′′′ · (1− e−2γλ′ t) + δλλ′′′ · δλ′λ′′ · (1− e−2γλ′ t)]

=(δλλ′ · δλ′′λ′′′ + δλλ′′ · δλ′λ′′′ + δλλ′′′ · δλ′λ′′)e−γλt,

(B11)

〈xλ(0) · xλ′(0) · xλ′′(t) · xλ′′′(t)〉eq

=〈xλ · xλ′ · xλ′′ · xλ′′′〉eqe−(γλ′′+γλ′′′ )t + 〈xλxλ′〉eq · (1− e−2γλ′′ t) · δλ′′λ′′′

=(δλλ′′ · δλ′λ′′′ + δλλ′′′ · δλ′λ′′ + δλλ′ · δλ′′λ′′′)e−(γλ′′+γλ′′′ )t + δλλ′ · δλ′′λ′′′ · (1− e−2γλ′′ t)

=δλλ′ · δλ′′λ′′′ + (δλλ′′ · δλ′λ′′′ + δλλ′′′ · δλ′λ′′)e−(γλ+γλ′ )t.

(B12)
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