
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Information scrambling in chaotic systems with dissipation
Yong-Liang Zhang, Yichen Huang (黄溢辰), and Xie Chen
Phys. Rev. B 99, 014303 — Published  9 January 2019

DOI: 10.1103/PhysRevB.99.014303

http://dx.doi.org/10.1103/PhysRevB.99.014303


Information scrambling in chaotic systems with dissipation

Yong-Liang Zhang,∗ Yichen Huang (黄溢辰),† and Xie Chen‡

Department of Physics and Institute for Quantum Information and Matter,

California Institute of Technology, Pasadena, California 91125, USA

(Dated: November 21, 2018)

Chaotic dynamics in closed local quantum systems scrambles quantum information, which is man-
ifested quantitatively in the decay of the out-of-time-ordered correlators (OTOC) of local operators.
How is information scrambling affected when the system is coupled to the environment and suffers
from dissipation? In this paper, we address this question by defining a dissipative version of OTOC
and numerically study its behavior in a prototypical chaotic quantum chain in the presence of dis-
sipation. We find that dissipation leads to not only the overall decay of the scrambled information
due to leaking, but also structural changes so that the ‘information light cone’ can only reach a finite
distance even when the effect of overall decay is removed. Based on this observation we conjecture
a modified version of the Lieb-Robinson bound in dissipative systems.

I. INTRODUCTION

Chaos happens not just in classical systems but in
quantum systems as well1–8. One characteristic signa-
ture of quantum chaos is the scrambling of quantum in-
formation which can be quantitatively described by the
out-of-time-ordered correlator (OTOC)9–37. More specif-
ically, suppose that information is encoded initially in a
local operator A. Under the dynamics generated by a lo-
cal Hamiltonian H =

∑

i hi, A(t) = eiHtAe−iHt grows in
size and becomes non-local as t increases. As A grows in
size, it starts to overlap with local operators B at other
spatial locations and ceases to commute with them. The
effect of information scrambling is then manifested as the
growth in the norm of the commutator [A(t), B]. Corre-
spondingly it is also manifested as the decay of (the real
part of) the OTOC 〈A†(t)B†A(t)B〉β which is related to
the commutator as

ℜ 〈A†(t)B†A(t)B〉β = 1−
1

2
〈[A(t), B]†[A(t), B]〉β , (1)

where local operators A,B are both unitary, 〈·〉β rep-
resents the thermal average at the inverse temperature
β = 1/T , and ℜ denotes the real part.
In a chaotic system, the decay of OTOC is usually

expected to exhibit the following features: First, after
time evolution for a very long time, information initially
encoded in A becomes highly nonlocal and cannot be
accessed with any individual local operatorB. Therefore,
all OTOCs at infinite temperature β = 0 decay to zero
at late time15,18,23,25

lim
t→∞

ℜ 〈A†(t)B†A(t)B〉β=0 = 0, (2)

where the local operators A and B are traceless.
Secondly, in chaotic 0-dimensional systems, the OTOC

starts to decay at early time in an exponential way18

ℜ 〈A†(t)B†A(t)B〉β = f1 −
f2
n
eλLt +O

(

1

n2

)

, (3)

where the constants f1, f2 depend on the choice of oper-
ators A,B, and n is total number of degrees of freedom.

The exponent of the exponential – the Lyapunov expo-
nent – characterizes how chaotic the quantum dynamics
is. It is bounded by λL ≤ 2π

β
17–20 and is expected to be

saturated by quantum systems corresponding to black
holes.
Thirdly, in a system with spatial locality, informa-

tion spreads at a certain speed, giving rise to a de-
lay time before OTOC starts to decay. In some simple
cases17,18,21,38,39, the early-time behavior of OTOC is ap-
proximately described by

f ′1 − f ′2e
λL(t−dBA/vB) + higher-order terms (4)

with f ′1, f
′
2 that depend on A,B and the local degrees

of freedom. dBA is the distance between the local op-
erators A and B. The higher-order terms can be de-
scribed by O( 1

n2 ) in large-n systems17 or O(e−2λLdBA/vB )

in spin systems18. That is, information spreads with a
finite velocity vB – the butterfly velocity – and forms
a ‘light cone’16–18. In general quantum chaotic spin sys-
tems with small local Hilbert space dimensions and short-
range interactions, like random circuit models40–46, the
wave front of the light cone becomes wider while prop-
agating out and Refs.47,48 give an in-depth study of the
general form of the early time decay of OTOC. The deep
connection between OTOC and quantum chaos gener-
ated a lot of interest in the topic, both theoretically and
experimentally. Several protocols have been proposed to
measure these unconventional correlators in real experi-
mental systems49–59.
The measurement of OTOC in real experimental sys-

tems is complicated by the fact that the system is not
exactly closed and suffers from dissipation through cou-
pling to the environment. How does dissipation affect the
measured signal of OTOC? More generally, we can ask
how does dissipation affect information scrambling in a
chaotic system? Dissipation leads to leakage of informa-
tion, and therefore it is natural to expect that any signal
of information scrambling would decay. Is it then possi-
ble to recover the signatures of information scrambling in
a dissipative system and observe the existence of a light
cone?
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To address these questions, we numerically study a
prototypical model of chaotic spin chain12,16,18,60 – the
Ising model with both transverse and longitudinal fields
– in the presence of some common types of dissipation:
amplitude damping, phase damping and phase depolariz-
ing. Due to the lack of a “small parameter” as explained
in ref.48, there is no well-defined Lyapunov exponent in
this system. Thus we focus on the structural changes of
the light cone, which manifests information scrambling.
The Hamiltonian of the system with open boundary

condition is

Hs = −J
[

N−1
∑

i=1

σzi σ
z
i+1 +

N
∑

i=1

(hxσ
x
i + hzσ

z
i )
]

, (5)

where N is the number of spins, and we choose the pa-
rameters to be J = 1, hx = −1.05 and hz = 0.5. This
model, far from any intergrability limits60, is believed to
have chaotic dynamics. We find that if OTOC is mea-
sured using the protocol given in Ref.49, dissipation leads
to the decay of the signal not only due to information
leaking into the environment, but also information re-
structuring. We define a corrected OTOC to remove the
effect of leaking, so that the light cone can be recovered
to some extent. However, due to the re-structuring, the
recovered light cone only persists to a finite distance.
The paper is organized as follows. In Sec. II, we re-

view the dynamics of dissipative systems and define a
dissipative version of OTOC based on the measurement
protocol given in Ref.49. In Sec. III, after observing the
fast overall decay of the dissipative OTOC, we define a
corrected OTOC to remove the effect of overall informa-
tion leaking in the hope of recovering the information
light cone. However, we see that the corrected light cone
still only persists for a finite distance. In Sec. IV, we
point out that the corrected light cone is finite due to in-
formation re-structuring and investigate the relationship
between the width of the partially recovered light cone
and the strength of dissipation. In Sec. V, we conjecture
a modified Lieb-Robinson bound for dissipative systems
based on our observation regarding OTOC in the previ-
ous sections.

II. MEASUREMENT OF OTOC IN

DISSIPATIVE SYSTEMS

In this section, we provide a brief review of the dy-
namics of dissipative systems, and then generalize the
definition of OTOC to dissipative systems based on the
measurement protocol in Ref.49.
A dissipative system is an open quantum system S

coupled to its environmentE. In this coupled system, the
total Hamiltonian is H = Hs+He+Hint, where Hs(He)
is the Hamiltonian of the system (environment) and Hint

is the interaction term. The reduced density matrix of
the system S changes as a consequence of its internal
dynamics and the interaction with the environment E.

In most cases, the initial state is assumed to be a product
state ρs(0)⊗ ρe(0). Under the Born, Markov and secular
approximations, the dynamical evolution of a dissipative
system ρs(t) = tre[e

−iHtρs(0)⊗ ρe(0)e
iHt] = V(t) · ρs(0)

can be described by the Lindblad master equation61

dρs(t)

dt
= L · ρs(t) = −i[Hs, ρs(t)]+

∑

k

Γ

2

(

2Lkρs(t)L
†
k − ρs(t)L

†
kLk − L†kLkρs(t)

)

, (6)

where V(t) is the dynamical map that connects ρs(0) to
ρs(t), L is the Liouvillian super-operator, the first com-
mutator with Hs represents the unitary dynamics, the
dissipation rate Γ is a positive number, and the Lind-
blad operators Lk describe the dissipation. Some com-
mon types of dissipation61,62 act locally on each spin via
the Lindblad operators in three different scenarios:

amplitude damping: Lk =

√

1

2
(σxk − iσyk), (7)

phase damping: Lk =

√

1

2
σzk, (8)

phase depolarizing: Lk =
1

2
σxk ,

1

2
σyk ,

1

2
σzk, (9)

where k denotes the k-th spin. Different pre-factors are
selected to ensure that the Liouvillian super-operator at
site k has the same largest nonzero eigenvalue −Γ in dif-
ferent dissipative channels.
In the Heisenberg picture, the adjoint dynamical map

V†(t) acting on the Hermitian operators is defined by
tr[O(V(t) · ρs)] = tr[(V†(t) · O)ρs] for all states ρs. If
the Lindblad operators do not depend on time, then the
adjoint master equation describing the evolution of the
operator OH(t) = V†(t) · O is61

dOH(t)

dt
= L† ·OH(t) = i[Hs, OH(t)]+

∑

k

Γ

2

(

2L†kOH(t)Lk −OH(t)L†kLk − L†kLkOH(t)
)

,

(10)

where L† is the adjoint Liouvillian super-operator.
Given both the dynamical and the adjoint dynamical

map, how should we define the OTOC in a dissipative
system? Should we just replace A(t) with V†(t) ·A or do
something more complicated? In order to give a meaning-
ful answer to this question, we need to specialize to a par-
ticular measurement scheme of OTOC and see how the
measured quantity changes due to dissipation. We choose
to focus on the measurement scheme given in Ref.49.
Let us analyze in more detail how the measurement

scheme would be affected if dissipation is present. With-
out dissipation, the protocol involves the system whose
unitary dynamics generated by Hs is to be probed and
a control qubit c. The system is initialized in a thermal
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state ρs or eigenstate |ψ〉s and the control qubit is initial-
ized in state |+〉c =

1√
2
(|0〉c+ |1〉c). Ignoring dissipation,

the measurement scheme involves the following steps of
unitary operations:

(1) : U1 = Is ⊗ |0〉〈0|c +Bs ⊗ |1〉〈1|c,

(2) : U2 = e−itHs ⊗ Ic

(3) : U3 = As ⊗ Ic,

(4) : U4 = eitHs ⊗ Ic,

(5) : U5 = Bs ⊗ |0〉〈0|c + Is ⊗ |1〉〈1|c,

where As and Bs are both local unitary operators in the
system. Finally, measurement of σxc is performed to get
the real part of OTOC. A nice property of this protocol is
that it works for both pure states and mixed states, which
allows straightforward generalization to open systems.
Note that the above protocol involves both forward

and backward time evolution. With dissipation, we as-
sume that only the Hamiltonian of the system is reversed
during the backward time evolution while the effect of
the environment is unchanged. The reason is that He

and Hint are usually out of control in experiments. Un-
der this setup, if forward time evolution is governed by
Hf = Hs +He +Hint, then backward time evolution is
governed by Hb = −Hs + He + Hint. Correspondingly,
the backward dynamical map Vb and adjoint dynamical

map V†b differ from the forward ones Vf = V , V†f = V† by
a minus sign in front of Hs.
This setup is different from the naive time reversal de-

scribed by H ′b = −Hf = −(Hs +He +Hint). Under the
setup of naive time reverse, if the dynamics of the total
system is believed to be chaotic, then the expectation
is that OTOCs F (t, As, Bs) of local operators in subsys-
tem s have the capability to detect the ballistic butterfly
light cone. Ref.46 confirms this expectation via investi-
gating the OTOCs of local operators in subsystem s in
the random circuit model of composite spins.
In the presence of dissipation, and assuming that the

dissipative part of the dynamics cannot be naively re-
versed, the full protocol now proceeds as follows. Ini-
tially the system is prepared with density matrix ρs(0).
In addition, a control qubit c is initialized in the state
|+〉c = 1√

2
(|0〉c + |1〉c). The total initial state is ρinit =

ρs(0) ⊗ |+〉〈+|c. The final state is ρf after sequentially
applying the following super-operators

(1) : S1 = C(Is ⊗ |0〉〈0|c +Bs ⊗ |1〉〈1|c),

(2) : S2 = Vf (t)⊗ Ic,

(3) : S3 = C(As ⊗ Ic),

(4) : S4 = Vb(t)⊗ Ic,

(5) : S5 = C(Bs ⊗ |0〉〈0|c + Is ⊗ |1〉〈1|c),

ρf = S5 · S4 · S3 · S2 · S1 · ρinit, (11)

where I is the identity super-operator, and the conju-
gation super-operator is defined by C(U) · ρ = UρU †.
Finally we perform the measurement σxc to get the real

part of OTOC

F (t, A,B) := tr(σxc ρf )

= ℜ tr

(

(

V†b (t) · B
†
s

)

As

(

Vf (t) ·
(

Bsρs(0)
)

)

A†s

)

. (12)

In this paper, we focus on the case where the initial state
of the system is prepared in the equilibrium state at in-
finite temperature, i.e. ρs(0) = Is/2

N and the unitary
operatorsAs and Bs are selected as local Pauli operators,
for example, Bs = σz1 , As = σzi .

III. DISSIPATIVE OTOC CORRECTED FOR

OVERALL DECAY

In this section, we observe that the information light
cone disappears due to the fast overall decay of OTOC
in dissipative systems. In order to recover the light cone
as much as possible, we propose a corrected OTOC to
remove the effect of overall decay due to the information
leaking in dissipative systems.
In a quantum system without dissipation, the OTOC

F (t, A,B) = ℜ〈A†B†b (t)ABb(t)〉β=0 has the same capa-
bility to reveal the light cones with different time scaling

as the operator norm of the commutator [B†b (t), A
†] in

the Lieb-Robinson bound16,17,29, where B†b (t) is the op-

erator eitHbB†e−itHb = e−itHsB†eitHs in the Heisenberg

picture. When t < dBA/vB, the support of B
†
b (t) and A

†

are approximately disjoint, so F (t, A,B) is almost equal
to 1, where dBA is the distance between the local opera-
tors A and B and vB is the butterfly velocity. The OTOC

begins to decay15–19 when the support of B†b(t) grows to
A†. Furthermore, in chaotic systems, OTOC decays to
zero at late time in the thermodynamic limit15,18,23,25.
As shown in the upper left panel of FIG. (1), the OTOC
F (t, A,B) is able to reveal the ballistic light cone of in-
formation scrambling.
In the presence of dissipation, information is leaking

into the environment while being scrambled. Thus V†b (t)·
B† and the OTOC begin to decay when t > 0. Intuitively,
dissipation destroys the light cone revealed by the OTOC
F (t, A,B) because the OTOC decays to zero in a short
time which is independent of the spatial distance between
local operators A and B. In FIG. (1), our numerical
calculations confirm that the light cone is destroyed. The
OTOC F (t, σzi , σ

z
1) decays to zero for all i approximately

when t > 4/J .
In dissipative systems, there are two factors leading to

the decay of F (t, A,B): (i) the decay of V†b (t) ·B
† related

to the information leaking caused by dissipation, (ii) the

non-commutativity between V†b (t) ·B
† and A†. Informa-

tion scrambling is manifested only in (ii) but it might be
overshadowed by (i). Is it possible to remove the effect of
information leaking and recover the destroyed light cone?
One natural idea is to divide the OTOC F (t, A,B) by a
factor representing the decay related to information leak-
ing. The identity operator I commutes with arbitrary
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FIG. 1. OTOC F (t, σz

i , σ
z

1) in the chaotic Ising chain (5)
with no dissipation (upper left), amplitude damping (upper
right), phase damping (lower left), and phase depolarizing
(lower right). The dissipation rate is Γ = 0.1 in these three
dissipative channels.

operator, and therefore F (t, I, B) is a factor representing
the overall decay of quantum information due to leaking
only. Therefore, we propose a corrected OTOC to detect
the light cone

F (t, A,B)

F (t, I, B)
. (13)

The numerical results in FIG. (2) show that the cor-
rected OTOC is able to recover the information light cone
to some extent in small systems (N = 12), with either
the dissipation of amplitude damping, phase damping or
phase depolarizing.
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FIG. 2. Corrected OTOC F (t, σz

i , σ
z

1)/F (t, I, σz

1) in the
chaotic Ising chain (5) with no dissipation (upper left), am-
plitude damping (upper right), phase damping (lower left),
and phase depolarizing (lower right). The dissipation rate is
Γ = 0.1 in these three dissipative channels.

For small dissipation rate, does the corrected OTOC
have the capability to recover the destroyed light cone
in the thermodynamic limit? The answer is no. Due to
the limited computational resources, we simulate a rela-
tively large system with 24 spins. FIG. (3) shows that
the boundary of the light cone revealed by the corrected
OTOC gradually disappears in space. Based on this re-
sult, we expect that the corrected OTOC only has a finite
extent in the thermodynamic limit.
Here let us briefly talk about the numerical methods

we used. When N = 12, quantum toolbox in Python63,64

is used to numerically solve the master and adjoint mas-
ter differential equations (Eqs. (6)(10)). When N = 24,
our numerical simulations are based on the time-evolving
block decimation (TEBD) algorithm after mapping ma-
trix product operators to matrix product states65–67,
which is able to efficiently simulate the evolution of op-
erators or mixed states. In the singular value decompo-
sition, we ignore the singular values sk if sk/s1 < 10−8,
where s1 is the maximal one. And the bond dimension is
enforced as χ ≤ 500. Due to the presence of dissipation,
the entanglement growth in the matrix product opera-
tor is bounded. Therefore, the OTOC can be efficiently
calculated using the TEBD algorithm.
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FIG. 3. Corrected OTOC F (t, σz

i , σ
z

1)/F (t, I, σz

1) recovers
some part of the light cone in the channel of phase depolariz-
ing with dissipation rate Γ = 0.1 and system size N = 24.

IV. THE WIDTH OF THE PARTIALLY

RECOVERED LIGHT CONE

The finite extent of the light cone revealed by the cor-
rected OTOC indicates that, besides the overall decay of
quantum information, dissipation also leads to structural
changes in the scrambled information. In this section, we
are going to give a qualitative argument as to why and
how the structural change happens.
In particular, we find that the re-structuring happens
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at late time in two aspects: (i) few-body terms dominate
when compared with many-body terms (ii) at fixed time,
the weight of few-body terms decays in space.
Let us define the few-body and many-body terms, and

their weights. Consider the operator B†b (t) = V†b (t) · B
†

which can be written in the basis of products of Pauli
matrices as

B†b (t) =
∑

S

bS(t)S =
∑

i1i2···iN
bi1i2···(t)σ

i1
1 σ

i2
2 · · ·σiNN ,

(14)

where the Pauli string S is a product of Pauli ma-
trices σi11 σ

i2
2 · · ·σiNN with ik = 0, x, y, or z. In the

above decomposition, a few-body (many-body) term is
a Pauli string with few (many) non-trivial Pauli matri-
ces. |bS(t)|

2/
∑

S′ |bS′(t)|2 represents the weight of the
Pauli string S.
Our qualitative arguments are mainly based on the

Suzuki-Trotter expansion of the adjoint propagator in the
infinitesimal time steps

B†b (t+ τ) = V†b (τ) ·B
†
b (t) ≈ eL

†
Dτ · (B†b (t)− iτ [Hs, B

†
b(t)]),
(15)

where L†D is the adjoint super-operator of the dissipation
and τ is the infinitesimal time interval. Based on this
expression, we are able to qualitatively discuss the oper-
ator spreading in the space of operators during the time
evolution.
The nearest-neighbor interactions in Hs lead to oper-

ator growth in space. If there is no dissipation, every
term inside the light cone is expected to have approxi-
mately equal weight at late time25, so F (t, A,B) is ap-
proximately equal to 0 inside the light cone.
Intuitively dissipation leads to operator decay. Many-

body terms decay at a higher rate than few-body terms,
so few-body terms dominate at late time in dissipa-
tive systems. In the channel of phase depolarization,

eL
†

Dτ · σki = e−Γτσki(ki = x, y, z). In one step of evo-
lution, the decaying factors of one-body, two-body and
m-body terms are respectively e−Γτ , e−2Γτ and e−mΓτ .
Many-body terms decay faster than few-body terms.
Amplitude and phase damping channels have similar be-
haviors. In the dominating few-body terms, firstly we
need to consider one-body terms. Secondly, the nearest-
neighbor two-body terms cannot be ignored because the
nearest-neighbor interactions in Hs (Eq. (15)) transform
one-body operators into nearest-neighbor two-body op-
erators. Our simulations support these qualitative ar-
guments. FIG. (4) shows that the sum of the weights
of one-body and nearest-neighbor two-body terms ap-
proximately exceeds 90% at late time in the dissipative
channels.
Moreover, because of dissipation, the weight of few-

body terms decays in space at the same time. In the

time-evolved operator V†b (t) · σ
z
1 , few-body terms on the

right are sequentially generated from the ones on the left.

For example, one-body term σ
ki+1

i+1 is generated via the
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FIG. 4. Color plot of the weights of few-body terms in the
chaotic Ising chain (5) with N = 12 spins and dissipation rate
Γ = 0.1. Dashed (dotted) line denotes the total weight of
one-body (nearest-neighbor two-body) terms in the operator

V†
b
(t) ·σz

1 , while the solid line is the sum of dotted and dashed
lines. Black, blue, and red lines are the results for dissipative
channels of amplitude damping, phase damping and phase
depolarizing respectively.

path σkii → σ
k′i
i σ

k′i+1

i+1 → σ
ki+1

i+1 , where ki, k
′
i, k
′
i+1, ki+1

are non-trivial indicies x, y or z. Considering the gener-
ating paths and the different decaying rate of few-body
terms, we find that extra spatial decaying factor exists

when comparing the coefficients of σ
ki+1

i+1 and σkii . Spa-
cial decaying factors accumulate during the scrambling
of information, so the weight of few-body terms decays
in space at the same time. In FIG. (3), the corrected
OTOC F (t, σzi , σ

z
1)/F (t, I, σ

z
1) approaches 1 from left to

right at late time t. In the channel of phase depolariz-
ing, (1 − F (t, σzi , σ

z
1)/F (t, I, σ

z
1)) is proportional to the

weight of few-body terms Si near site i at late time, i.e.
|bSi(t)|

2/
∑

S′ |bS′(t)|2. Thus the numerical result con-
firms that the weight of few-body terms decays in space
at the same time.
Besides the qualitative discussions, we are going to

quantitatively study the relationship between the width
d(Γ) of the partially recovered light cone and the dis-
sipation rate Γ. Appendix A provides a lower bound
√

ǫavLR/Γ, where a is the distance between two nearest
neighbor sites, vLR is the Lieb-Robinson velocity and ǫ is
a small number. This inequality is shown to be satisfied
for the width of the light cone revealed by the corrected
OTOC in the channel of phase damping or phase depo-
larizing. In general, we expect that d(Γ) obeys a power
law c/Γα when the dissipation rate Γ is sufficiently small.
Now we discuss how to find the width d(Γ) of the

partially recovered light cone in the numerical calcu-
lations. Our criterion is that if the difference of cor-
rected OTOCs at (t1 = (dBA − w/2)/vB, dBA) and
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(t2 = (dBA + w/2)/vB, dBA) (see FIG. 3) is less than
a threshhold value δ, for example 0.1, then it is impos-
sible to recognize the boundary of the light cone and we
identify the smallest such dBA as the width of the recov-
ered light cone. Here w is the width of the boundary of
the light cone in the system without dissipation and vB
is the corresponding butterfly velocity.

0.05 0.06 0.07 0.08 0.09 0.1 0.12 0.14 0.16
Γ

9

11

13

15

17

19

21

23

d
(Γ
)/
a

Revealed by the corrected OTOC F(t, A, B)/F(t, I, B)

phase damping: d2(Γ)= 4. 89 ∗Γ−0. 45
phase damping: d2(Γ)= 5. 05 ∗Γ−0. 43
phase depolarizing: d3(Γ)= 4. 45 ∗Γ−0. 44
phase depolarizing: d3(Γ)= 4. 83 ∗Γ−0. 40

FIG. 5. The log-log plot of d(Γ) and Γ.

Our numerical simulation supports that d(Γ) obeys a
power law c/Γα. In FIG. (5), our fitting results are:
α2 ≈ 0.45, α3 ≈ 0.44 when 0.05 ≤ Γ ≤ 0.1, and
α2 ≈ 0.43, α3 ≈ 0.40 when 0.1 ≤ Γ ≤ 0.16, where the
subscripts 2, 3 represent the channels of phase damp-
ing and phase depolarizing respectively. If Γ is suffi-
ciently small, the power-law value c/Γα is expected to

be greater than or equal to the lower bound
√

ǫavLR/Γ.
This implies that α should be greater than or equal to
0.5. Here in our simulation, α2 and α3 are smaller than
0.5. The reason is that the dissipation rates in the range
of [0.05, 0.1] are not small enough. Theoretically, the
derivations in Appendix A give the condition of suffi-
ciently small Γ via comparing

√

ǫavLR/Γ with ξ. Γ is
sufficiently small if it is much less than ǫavLR/ξ

2. In this
chaotic Ising model, after selecting ǫ ∼ 0.1, and estimat-
ing the parameters vLR ∼ 2Ja, ξ ∼ a, then we obtain
that Γ ≪ 0.1 is sufficiently small. Therefore, our numer-
ical result does not contradict the lower bound proved in
Appendix A. Numerically, we see that α decreases when
the range of Γ increases.
Even though amplitude damping has different proper-

ties when compared with phase damping and phase depo-
larizing, we numerically verify that d(Γ) still scales as a
power law of the dissipation rate Γ. In the channel of am-

plitude damping, the corrected OTOC depends on V†b (t)
and Vf (t) which have different properties. The identity

is a fixed point of V†b (t) while Vf (t) is trace-preserving.

The proof in Appendix A does not apply to amplitude
damping, thus the lower bound

√

ǫavLR

Γ does not work
for the corrected OTOC in this channel. In the numer-
ical simulation, we confirm that the general expectation
of power-law decay is still correct. FIG. (6) shows that
d(Γ) scales as a power law of Γ with the power α1 ≈ 0.31
when 0.05 ≤ Γ ≤ 0.1, where the subscript 1 represents
the channel of amplitude damping.

0.05 0.06 0.07 0.08 0.09 0.1
Γ

11

13

15

17

19

21

d
(Γ
)/
a

Revealed by the corrected OTOC F(t, A, B)/F(t, I, B)

amplitude damping: d1(Γ)= 6. 59 ∗Γ−0. 31

FIG. 6. The log-log plot of d(Γ) and Γ.

V. LIEB-ROBINSON BOUND IN DISSIPATIVE

SYSTEMS

Now we would like to discuss the Lieb-Robinson bound
and its connections with OTOC in open quantum sys-
tems. Based on the observation of corrected OTOC, we
conjecture a tighter Lieb-Robinson bound for dissipative
systems.
The Lieb-Robinson inequality provides an upper

bound for the speed of information propagation in quan-
tum systems with local interactions. Let us briefly review
the Lieb-Robinson bound.
Two observers, Alice and Bob, have access to the quan-

tum system. The system is initially in the state ρ(0) and
its dynamics is governed by the dynamical map Vb(t) re-
lated to the Hamiltonian Hb = −Hs + He + Hint. The
sender Alice has the option to perform some local actions
in her region. After some time t, the receiver Bob per-
forms some measurements to detect the signal. No signal
is sent to Bob if Alice does nothing. In order to send a
signal, Alice performs a small local unitary perturbation
UA = e−iǫOA in her region, which maps the state ρs(0)

to ρ′s(0) = UAρs(0)U
†
A ≈ ρs(0)− iǫ[OA, ρs(0)], where OA

is a local Hermitian operator. At time t, Bob makes a
measurement described by the local Hermitian operator
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FIG. 7. The operator norm of the commutator ‖ [V†
b
(t) ·

σz

1 , σ
z

i ] ‖ in the chaotic Ising chain (5) with no dissipation
(upper left), amplitude damping (upper right), phase damp-
ing (lower left), and phase depolarizing (lower right). The
dissipation rate is Γ = 0.2 in these three dissipative channels.

OB. The difference of outcomes describing the capability
to detect the signal is

∣

∣

∣
tr
(

OBVb(t) ·
(

ρ′s(0)− ρs(0)
)

)∣

∣

∣

= ǫ| tr(ρs(0)[V
†
b (t) · OB, OA])|

≤ ǫ‖ [V†b (t) ·OB , OA] ‖, (16)

where the operator norm is defined by ‖O‖ =
sup|ψ〉 ‖O|ψ〉‖/‖|ψ〉‖. Following the Lieb-Robinson

bound in closed systems68–70, an inequality has been
proved in open quantum systems71–76

‖ [V†b (t) · OB, OA] ‖ ≤ c ‖OA‖ · ‖OB‖ e
−dBA−vLRt

ξ , (17)

where c, ξ are some constants, vLR is the Lieb-Robinson
velocity, and dBA is the distance between the local oper-
ators OA and OB . The Lieb-Robinson velocity vLR is an
upper bound for the speed of information propagation,
so it is greater than or equal to the butterfly velocity
vB at β = 0 in Eq. (4)16. Refs.17,18,26,27 provide more
discussions about the relationship between vB and vLR.
In dissipative systems, the left-hand side of Eq. (17)

decays to zero at late time, so Eq. (17) is not tight

enough. One reason is that the operator V†b (t) · OB in
the Heisenberg picture is overall decaying because of the
dissipation. Ref.73 has proved that the operator norm of

V†b (t) · OB is non-increasing because of the dissipation,

i.e. ‖V†b (t + dt) · OB‖ ≤ ‖V†b (t) · OB‖, where dt is an
infinitesimal time step. This means that the non-trivial
elements in the time-evolved operator are decaying dur-
ing the time evolution. Our numerical simulations (FIG.
7) show that the left-hand side of Eq. (17) decays to zero
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FIG. 8. The corrected operator norm of the commutator
‖ [V†

b
(t) · σz

1 , σ
z

i ] ‖/‖ V
†
b
(t) · σz

1 ‖ in the chaotic Ising chain (5)
with no dissipation (upper left), amplitude damping (upper
right), phase damping (lower left), and phase depolarizing
(lower right). The dissipation rate is Γ = 0.2 in these three
dissipative channels.

at late time, and the boundary of the light cone gradually
disappears when the distance dBA increases.
Inspired by the corrected OTOC, we conjecture a

tighter Lieb-Robinson bound in dissipative systems

‖ [V†b (t) ·OB , OA] ‖

‖OA‖ · ‖V
†
b (t) · OB‖

≤ c e−
dAB−vLRt

ξ , (18)

The above tighter bound has deep connections with
the corrected OTOC. In the channel of phase damping

or phase depolarizing, the adjoint dynamical map V†b (t)

is exactly equal to Vf (t). Then 2
(

1 − F (t,OA,OB)
F (t,I,OB)

)

=

‖ [V†

b (t)·OB ,OA] ‖2F
‖V†

b (t)·OB‖2F
holds when the observables are also uni-

tary, where ‖O‖F =
√

tr(OO†)/2N is the normalized
Frobenius norm of the operator O. We expect that the
normalized Frobenius and operator norms exhibit similar
behaviors during the time evolution. Based on this ex-
pectation, Eq. (18) is conjectured in dissipative systems
via changing the normalized Frobenius norm to the oper-
ator norm. Similar to the corrected OTOC, the left-hand
side of the above modified version of the Lieb-Robinson
bound is able to partially recover the destroyed light cone
in the chaotic Ising chain with dissipation (see FIG. 8).
In the above tighter Lieb-Robinson bound, the correct-

ing factor 1/‖V†b (t) ·OB‖ has different behaviors in differ-

ent dissipative channels. ‖V†b (t) · OB‖ decays to zero in
the channel of phase damping or phase depolarizing but
converges to a positive constant in the channel of ampli-
tude damping (see FIG. 9). In the channel of amplitude

damping, the adjoint dynamical map V†b (t) does not pre-
serve the trace of an operator, the identity operator I
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FIG. 9. The decay of the operator norm ‖V†
b
(t) · σz

1‖ in dif-
ferent dissipative channels (N = 12,Γ = 0.2).

appears in the decomposition of V†b (t) · OB in terms of
Pauli operators when OB is traceless. Therefore, the op-

erator norm of V†b (t) · OB converges to a constant. This
can also be observed in the upper right panel of FIG. (8)
which is distinct from the lower ones. The operator norm
of the commutator is decaying to zero while the denomi-
nator converges to a positive constant when t > 7/J . In
the channel of amplitude damping, the correcting factor

1/‖V†b (t) · OB‖ does not play an essential role to remove
the effect of overall decay due to the information leaking.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we study the effect of dissipation on in-
formation scrambling in open chaotic systems. By nu-
merically calculating the measured OTOC signal in a
chaotic spin chain in the presence of common types of
dissipation, we find that dissipation leads to the decay
of the signal not only due to information leaking, but
also information re-structuring. We define a corrected
OTOC to remove the effect of leaking and partially re-
cover the information light cone. However, due to the
re-structuring, the recovered light cone only persists to a
finite distance. Based on this understanding of how dis-
sipation affects information scrambling, we conjecture a
tighter version of the Lieb-Robinson bound in open sys-
tems, which we support with numerical simulation.
As our study focuses on the overall shape of the light

cone in OTOC and how it changes with dissipation, we
do not expect the result to depend on model parameters
either. The existence of a linear light cone shows up in
both integrable and non-integrable systems77. For ex-
ample, Ref.37 studied the OTOC in an integrable Ising
chain and found a linear shaped light cone just like in

the random circuit model case43,44. Some details of the
light cone might differ, for example, the broadening of the
wave front or the late time value of the OTOC. But if we
focus on the shape of the light cone, there is no intrinsic
difference between the integrable and the non-integrable
case.
Given the observation we made in this paper, several

open questions would be interesting to explore in future
work. First, we qualitatively discussed the information
re-structuring during scrambling. A more accurate es-
timation of the size of the light cone may be obtained
by carefully modeling the dynamics as dissipative quan-
tum walks. Secondly, although we were able to partially
recover the light cone numerically, this is not practical ex-
perimentally, as the normalization factor we divide out
in Eq. (13) decays exponentially in time and quickly
becomes too small to be accessible experimentally. Is
there a better way to see information scrambling in the
presence of dissipation? Are there quantities which are
also sensitive to information scrambling as OTOC but
more robust to the effect of dissipation? This is an im-
portant question to be addressed in future work. Fi-
nally, we conjectured the modified version of open system
Lieb-Robinson bound based on numerical observation. It
would be nice to see if this bound can be analytically
proved.
Note added. When we were finishing this manuscript,

we learned of the work by Swingle and Yunger Halpern78

which also studies the problem of extracting OTOCs’
early-time dynamics in the presence of error and deco-
herence.
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APPENDIX A: PROOF OF A LOWER BOUND

Here we prove a lower bound
√

ǫavLR/Γ for the width
d(Γ) of the partially recovered light cone revealed by
the corrected OTOC in the channel of phase damping
or phase depolarizing. The main ideas in the proof are
comparing the difference between the adjoint propaga-
tor in the dissipative channel and the unitary one with-
out dissipation, and employing the adjoint propagator of
spatially truncated adjoint Liouvillians.

Lemma 1. Suppose L†1(t) and L†0(t) are the adjoint Li-
ouvillian super-operators describing Markovian dynamics
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of the same open quantum system with ‖L†1(t)−L†0(t)‖ ≤
f(t), then the difference of adjoint propagators satisfies

‖V†1(t, 0)− V†0(t, 0)‖ ≤

∫ t

0

dτf(τ), (19)

where V†k(t, s) = T→e
∫ t
s
L†

k(τ)dτ (t ≥ s, k = 0, 1), and T→
or T← is the time-ordering operator which orders prod-
ucts of time-dependent operators such that their time ar-
guments increase in the direction indicated by the arrow.

Proof.

‖V†1(t, 0)− V†0(t, 0)‖ = ‖V†0(0, 0)V
†
1(t, 0)− V†0(t, 0)V

†
1(t, t)‖

=

∥

∥

∥

∥

∫ t

0

ds
∂

∂s

(

V†0(s, 0)V
†
1(t, s)

)

∥

∥

∥

∥

≤

∫ t

0

ds‖V†0(s, 0)(L
†
0(s)− L†1(s))V

†
1(t, s)‖

≤

∫ t

0

ds‖V†0(s, 0)‖ · ‖L
†
1(s)− L†0(s)‖ · ‖V

†
1(t, s)‖

≤

∫ t

0

ds‖L†1(s)− L†0(s)‖ ≤

∫ t

0

dsf(s)

In the derivation, one uses the fact that the adjoint prop-

agators V†k(t, s) are norm-nonincreasing61,71,73.

Here, we need to pay attentions to the difference be-

tween the propagator V(t, s) = T←e
∫

t
s
L(τ)dτ(t ≥ s) and

its adjoint V†(t, s) = T→e
∫

t
s
L†(τ)dτ (t ≥ s). V(t, s) acts on

the density matrix and is trace-preserving. V†(t, s) acts
on the observables and the identity is one of its fixed
points. For unitary evolution, V†(t, s) and V(t, s) are the
inverse of each other and both norm-preserving. When
dissipation exists, only V†(t, s) is norm-nonincreasing
for arbitrary observables, i.e. ‖V†(t, s) · O‖ ≤ ‖O‖
(∀O = O†).

Lemma 2. In a one-dimensional system, L†H =
∑

i L
†
Hi

is the sum of local adjoint Liouvillian super-operators,

and L†D = Γ
∑

k L
†
D,k is the sum of adjoint dissipative

super-operators acting on each site, where ‖L†D,k‖ ≤ 1
and Γ is the dissipation rate. During the evolution, the
operator difference between the dissipative and unitary
channels is upper bounded by

‖V†1(t, 0) · B − V†0(t, 0) · B‖ ≤ ΓO(t2) + δ (20)

in the limit of small Γ and large t, where

V†1(t, s) = T→e
∫ t
s
(L†

H(τ)+L†

D(τ))dτ(t ≥ s), V†0(t, s) =

T→e
∫ t
s
L†

H(τ)dτ(t ≥ s), B is a local observable at site 0,
and δ is an arbitrarily small constant.

Proof. For an open quantum system described by short-
range Liouvillians, the Lieb-Robinson bound

‖ [V†(t) · B,A] ‖ ≤ c ‖B‖ · ‖A‖ e−(dAB−vLRt)/ξ (21)

implies the existence of an upper limit to the speed of
quantum information propagation. The outside signal is
exponentially small in the distance from the boundary
of the effective light cone. Based on the Lieb-Robinson
bound, Ref.73 obtained the quasi-locality of Markovian
quantum dynamics: up to exponentially small error, the
evolution of a local observable can be approximately ob-
tained by applying the propagator of a spatially trun-
cated version of the adjoint Liouvillian, provided that
the range of the truncated propagator is larger than the
support of the time-evolved observable. The truncated
propagators we select are

Ṽ†0(t, 0) = T→e
∫ t
0
dτ

∑
i:Hi⊂Λ(τ) L

†

Hi
(τ)
, Ṽ†1(t, 0) =

T→e
∫

t
0
dτ
(∑

i:Hi⊂Λ(τ) L
†

Hi
(τ)+

∑d(τ)/a

k=−d(τ)/a
LD,k(τ)

)

,

where d(t) = vLRt + ξ log(c′′/δ) for some large constant
c′′, a is the distance between two nearest neighboring
sites, and Hi ⊂ Λ(t) means the local termHi is located in

the regime Λ(t) = (−d(t), d(t)). Let Bk(t) = V†k(t, 0) · B

and B̃k(t) = Ṽ†k(t, 0)·B. Applying the triangle inequality,
one obtains

‖B1(t)−B0(t)‖ ≤‖B̃1(t)− B̃0(t)‖+

‖B1(t)− B̃1(t)‖ + ‖B̃0(t)−B0(t)‖.

On the right-hand side, the first term is upper bounded

by ‖B‖
∫ t

0
dτΓ(ξ/a + vLRτ/a) = ‖B‖Γt(vLRt/2 + ξ)/a

(Lemma 1). The second and third terms both are less
than or equal to c′ ‖B‖ e(vLRt−d(t))/ξ = c′ ‖B‖ δ/c′′73.

Thus we get ‖V†1(t, 0)·B−V†0(t, 0)·B‖ ≤ ‖B‖(vLRΓt
2/2+

ξΓt+2c′δ/c′′)/a. Therefore ‖V†1(t, 0) ·B−V†0(t, 0) ·B‖ ≤
ΓO(t2) + δ in the limit of small Γ and large t.

Proposition 1. In the chaotic Ising chain with dissipa-
tions acting on each site, the light cone within the time

range t ≤
√

ǫa
vLRΓ can be revealed by ‖[V†1(t, 0) · B,A]‖,

‖[V†1(t, 0) · B,A]‖/‖V
†
1(t, 0) · B‖, ‖[V†1(t, 0) · B,A]‖F and

‖[V†1(t, 0) · B,A]‖F /‖V
†
1(t, 0) · B‖F , where vLR is the

Lieb-Robinson velocity, a is the distance between two
nearest neighboring sites, ǫ is a small number (for ex-
ample, ǫ ∼ 0.1), the dissipation rate Γ is sufficiently
small (Γ ≪ ǫavLR/ξ

2), ‖O‖ is the operator norm and

‖O‖F = limN→∞
√

tr(OO†)/2N is the normalized Frobe-
nius norm of operators in the thermodynamic limit. The
width of the light cone is at least

√

ǫavLR

Γ .

Proof. According to Lemma 2, the t2 term plays a dom-
inant role in the inequality for sufficiently small dissi-

pation rate Γ ≪ ǫavLR/ξ
2. If t ≤

√

ǫa
vLRΓ , then one

obtains ‖B1(t)−B0(t)‖ ≤ ǫ‖B‖ when comparing the op-

erators B1(t) = V†1(t, 0) ·B in the dissipative channel and

B0(t) = V†0(t, 0) ·B in the unitary channel. Applying the
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triangle inequality, one obtains

(1− ǫ)‖B‖ ≤ ‖B1(t)‖ ≤ (1 + ǫ)‖B‖,

‖[B0(t), A]‖ − ǫ‖CA‖‖B‖ ≤ ‖[B1(t), A]‖ ≤

‖[B0(t), A]‖ + ǫ‖CA‖‖B‖,

(1 + ǫ)−1
(‖[B0(t), A]‖

‖B‖
− ǫ‖CA‖

)

≤
‖[B1(t), A]‖

‖B1(t)‖
≤

(1− ǫ)−1
(‖[B0(t), A]‖

‖B‖
+ ǫ‖CA‖

)

,

where the super-operator CA is defined as CA ·O = [O,A].
The normalized Frobenius norm is less than or equal to
the operator norm, i.e. ‖O‖F ≤ ‖O‖, so we get

‖B1(t)−B0(t)‖F ≤ ‖B1(t)−B0(t)‖ ≤ ǫ‖B‖

‖[B0(t), A]‖F − ǫ‖CA‖‖B‖ ≤ ‖[B1(t), A]‖F ≤

‖[B0(t), A]‖F + ǫ‖CA‖‖B‖,

‖[B0(t), A]‖F − ǫ‖CA‖‖B‖

‖B‖F + ǫ‖B‖
≤

‖[B1(t), A]‖F
‖B1(t)‖F

≤

‖[B0(t), A]‖F + ǫ‖CA‖‖B‖

‖B‖F − ǫ‖B‖
.

In the unitary channel, ‖[B0(t), A]‖ and ‖[B0(t), A]‖F
both are able to detect the ballistic light cone. Because ǫ
is a small number, it is also small that the difference of the

corresponding quantities between the dissipative and uni-
tary channel. Thus, ‖[B1(t), A]‖, ‖[B1(t), A]‖/‖B1(t)‖,
‖[B1(t), A]‖F and ‖[B1(t), A]‖F /‖B1(t)‖F are both able

to detect the light cone in the time range t ≤
√

ǫa
vLRΓ .

The width of the light cone is at least
√

ǫavLR

Γ for suffi-

ciently small dissipation rate Γ ≪ ǫavLR/ξ
2.

Corollary 1. For sufficiently small dissipation rate Γ ≪
ǫavLR/ξ

2, the lower bound
√

ǫavLR

Γ works for the width
of the light cone revealed by the corrected OTOC in the
chaotic Ising chain with dissipation of phase damping or
phase depolarizing.

Proof. In the channel of phase damping or phase depo-

larizing, the adjoint propagator V†b (t) is exactly equal to
the propagator Vf(t), then

2
(

1−
F (t, A,B)

F (t, I, B)

)

=
‖ [V†b (t) · B,A] ‖

2
F

‖V†b (t) ·B‖2F
. (22)

Based onProposition 1, the lower bound
√

ǫavLR

Γ works
for the width of the light cone revealed by the corrected
OTOC in the channel of phase damping or phase depo-
larizing.
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