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Abstract 

Using Landau-Ginzburg-Devonshire approach, we predict the intrinsic instability of the ferroelectric-

ferroelastic domain walls in the multiferroic BiFeO3 emerging from the interplay between the 

gradient terms of the antiferrodistortive and ferroelectric order parameters at the walls. These 

instabilities are the interface analogue of the structural instabilities in the vicinity of phase 

coexistence in the bulk; and so they do not steam from incomplete polarization screening in thin 

films or its spatial confinement, electrostrictive or flexoelectric coupling. The effect of BiFeO3 

material parameters on the 71o, 109o, and 180o walls is explored, and it is shown that the meandering 

instability appears at 109o, and 180o walls for small gradient energies, and the walls become straight 

and broaden for higher gradients. In contrast to the 180o and 109o domain walls, uncharged 71o walls 

are always straight, and their width increases with increasing the tilt gradient coefficient. The wall 

instability and associated intrinsic meandering provide a new insight into the behavior of 

morphotropic and relaxor materials, wall pinning, and mechanisms of interactions between order 

parameter fields and local microstructure.  

                                                            
* corresponding author, e-mail: sergei2@ornl.gov  
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I. INTRODUCTION  

Multiferroics, defined as materials with more than one ferroic long-range order [1, 2, 3], are 

ideal systems for fundamental studies of couplings among the order parameters of different nature, 

e.g. ferroelectric (FE) polarization, structural antiferrodistortion (AFD), ferromagnetic (FM) and 

antiferromagnetic (AFM) order parameters [4, 5, 6, 7, 8, 9, 10, 11]. The AFD, FE, FM, and AFM 

degrees of freedom in multiferroics are interlinked via different types of biquadratic couplings 

leading to versatile phase diagrams and complex domain structures [4-11]. In many cases, the 

interaction of the domain structures with underpinning frozen disorder gives rise to highly mobile 

structures and materials with giant functional responses. 

The biquadratic couplings between AFD and other long-range orders are universal for all 

multiferroics with rotational antiferrodistortive symmetry [12]. The most common is the 

Houchmandazeh-Laizerowicz-Salje coupling, that is the biquadratic coupling between the AFD order 

parameter and FE polarization [13, 14]. AFD-FE coupling can significantly influence the structure 

and local properties of domain walls in AFD multiferroics [15, 16]. Similarly, the biquadratic 

magnetoelectric coupling, that is the coupling between polarization and magnetization [4, 5], can 

influence phase diagrams, domain wall structure and morphology [17]. The bilinear flexoelectric 

coupling [18], that coupled the strain gradient with polarization and vise versa, can induce 

incommensurate spatially modulated phases in ferroics including antiferroelectric (AFE) and AFD 

ones [19, 20, 21, 22]. The flexo-antiferrodistortive coupling, inherent to all AFD systems, can lead to 

the formation of incommensurate, spatially-modulated AFD and AFE phases in multiferroics [23], 

which are indeed observed in e.g. BiySm1-yFeO3 [19], EuTiO3 [24, 25]. There are also a wide variety 

of spatially modulated domain structures observed experimentally at the morphotropic boundaries in 

(multi)ferroics [26, 27, 28, 29, 30] 

 The vectorial nature of the AFD order parameter can strongly influence the phase stability, 

domain structure, polar, dielectric and magnetoelectric properties of (multi)ferroic thin films [31, 32, 

33]. Sometimes phase diagrams of thin strained films are complicated by unusual low symmetry 

phases, which are absent in their bulk counterparts [34, 35, 36, 37]. Vortices and vertices composed 

by the closure of domain walls have been observed experimentally in nanoscale multiferroics [38, 

39], especially in BFO [40, 41]. Fractal domain structures have been observed in multiferroic thin 

films [42] and near the surface of ferroelectric relaxors close to relaxor-ferroelectric transition [43].  

 Unusual polar structures with domain walls of labyrinthine shape (shortly "labyrinthine 

domain structure") have been observed near the surface of relaxors with so-called "ergodic phases" 

[44, 45] [46]. The labyrinthine domain structure was calculated theoretically in thin films of 

incommensurate and bi-layered ferroelectrics [47, 48], being similar to those observed in ultrathin 

magnetic films [49]. Spherical nanoparticles of uniaxial ferroelectrics CuInP2S6 and Sn2P2S6 covered 
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by a layer of screening charge with finite screening length revealed the transformation from a regular 

stripe domain structure into a labyrinthine one when the polarization gradient energy decreases 

below the critical value [50, 51]. The transformation can be identified as a gradient-driven 

morphological transition, and appeared unrelated with flexoelectric or electrostrictive, or any other 

bilinear, or biquadratic coupling influence.  

 To the best of our knowledge the physical origin of complex morphology of domain 

structures and modulated phases in nanoscale ferroics is the imbalance between domain wall surface 

energy and electrostatic or magnetic (or possibly elastic) energy contributions. Specifically, a 

ferroelectric nanoparticle tends to minimize its electrostatic energy by creation of the complex or/and 

irregular features of domain structure near the free surfaces, but the structure cannot be too fine-scale 

due to the increasing energy of domain walls (see e.g. discussion in Refs.[50-51]). Much more 

complex situation, corresponding to the balance of labyrinthine domain structure in the bulk and 

vortices at the surface, are expected in multiaxial ferroelectrics with polarization rotation allowed, 

such as BaTiO3, (Pb,Zr)TiO3 and BiFeO3, and the fundamental question about the instability 

threshold of regular domain structure in nanoscale multiaxial multiferroics remains open. 

 The gap in the knowledge motivates this work that reveals a meandering zig-zag like 

instability of AFD-FE domain walls in thin BFO films. This unexpected result, obtained by finite 

element modeling (FEM), is explained within Landau-Ginzburg-Devonshire (LGD) theory 

framework.  

 The original part of the paper is structured as follows. LGD free energy is given in section 

II.A. The problem statement including the film geometry, brief form of the coupled Euler-Lagrange 

equations with boundary conditions are described in section II.B. The impact of biquadratic coupling 

on the stability of homogeneous phases is analyzed in section II.C. Simulation details with the 

special attention to the measures taken to establish the physical origin of the complex domain 

morphologies are described in section III.A. The appearance of low symmetry phases limited by 

180o or 109o zig-zag like meandering AFD-FE domains and their changes with increasing of the 

gradient energy are presented in section III.B and III.C, respectively. The gradient-driven 

broadening of AFD-FE 71o domain walls is discussed in section III.D. Section IV is a brief 

summary. Evident form of the free energy, boundary conditions and material parameters are given in 

Appendix A [52]. Supplementary figures are presented in Appendix B [52]. 

 

II. THEORETICAL FORMALISM 

 As a model system, we have chosen bismuth ferrite BiFeO3 (BFO) solid solutions. Pristine 

and rare-earth doped BFO is the unique multiferroic [53, 54] with a strong FE polarization, AFD 
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oxygen octahedron rotation, FM and AFM long-range orders coexisting up to room and elevated 

temperatures. Specifically bulk BFO exhibits AFD long-range order at temperatures below 1200 K; 

it is FE with a large spontaneous polarization below 1100 K and AFM below Neel temperature TN ≈ 

650 K [55]. Notably that the behavior of the AFD order parameter at the BFO domain walls 

determines their structure and energy [56]. Domain walls in BFO exhibit unusual electrophysical 

properties, such as conduction and magnetotransport enhancement [57, 58, 59, 60, 61, 62]. Recently, 

a complete phase diagram of BFO including the AFM, FE, and AFD phases was calculated within 

LGD theory [63].  

The pronounced multiferroic properties and unusual domain structure evolution maintain in 

BFO thin films and heterostructures [64, 65, 66, 67, 68, 69, 70, 71, 72]. In particular, atomic 

mapping of structural distortions in 109o domains revealed that the coexistence of rhombohedral and 

orthorhombic phases in ultrathin BFO films can be driven by interfacial oxygen octahedral coupling 

[73, 74]. The role of the rotomagnetic coupling, that is the biquadratic coupling between the AFD 

and AFM (or FM) orders [75], has been studied in BFO fine grained ceramics [76].  

 

A. Landau-Ginzburg-Devonshire free energy 

Thermodynamic LGD potential G that describes AFD, FE and AFM properties of BFO is:  

( ) ( )∫∫ Δ+Δ+Δ+Δ+Δ+Δ+Δ= σ
S

FEAFD
V

BQCAFMFEAFD dSGGdvGGGGGG .      (1) 

The AFD energy AFDGΔ , corresponding to R3c phase, is a six-order expansion on the oxygen tilt iΦ  

and its gradients,  
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Here iΦ  are components of the pseudo-vector determining the out-of-phase static rotations of the 

oxygen octahedral groups , and Einstein summation convention is employed. In accordance with the 

classical LGD theory, we assume that the coefficients ib  are temperature dependent in accordance 

with the Barrett law [77], ( ) ( )( )ΦΦΦΦ −= TTTTTbb qqqTi cothcoth , where ΦT  is the AFD transition 

temperature, ΦqT  is a Barrett temperature [78]. Other coefficients in Eqs.(2) are temperature 

independent. 

FE energy FEGΔ  is a six-order expansion on the polarization vector iP  and its gradients,  
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The coefficients ka  are temperature dependent, ( )( )CqPqPT
P

k TTTTa −α= coth)( , where CT  is a 

Curie temperature, qPT  is the characteristic Barrett temperature related with some "vibrational 

modes" [77]. Other coefficients in Eqs.(3) are temperature independent. iE  are the components of 

internal electric field related with electrostatic potential ϕ  in a standard way ii xE ∂ϕ∂−= . 

Universal dielectric constant is 0ε , bε  is the dielectric permittivity of background [18, 79]. 

 AFM energy AFMGΔ  is a fourth-order expansion in terms of the AFM order parameter vector 

iL  and its gradient, as follows from the fact that this phase transition in BFO is second order [63]. 

The details of AFMGΔ  is considered elsewhere [63]. 

The AFD-FE coupling energy BQCGΔ  is the biquadratic function of iP  and iΦ : 

lkjiijklBQC PPG ΦΦζ=Δ .                        (4) 

The temperature-independent coefficients ijklζ  are the components of AFD-FE biquadratic coupling 

tensor. 

The elastic, electrostriction, rotostriction and flexoelectric energy is 
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Here ijkls  are the components of elastic compliances tensor, ijklQ  are the components of 

electrostriction tensor, ijklR  are the components of rotostriction tensor, and ijklF  are the components 

of flexoelectric tensor.  

 The surface energy has the form: 

( ) ∫∫ ⎟⎟
⎠
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22
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Surface energy coefficients )(S
ib  and )(S

ia  have different nature and control the broadening of ADF 

and FE domain walls at the surface, respectively.  

 

B. Problem statement 

Let us consider a BFO film of thickness h placed in a perfect electric contact with conducting bottom 

electrode that mechanically clamps the film. The top surface of the film is mechanically free and can 

be in an ideal electric contact with the top electrode, or electrically open, or covered with the surface 

screening charge. The charge density ( )ϕσ , appearing due to surface states [80], or electro-
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chemically active ions [81, 82, 83, 84], depends on the electric potential ϕ  [see Fig. 1(a)]. Figures 

1(b)-(d) show three types of nominally uncharged 180o, 109o and 71o domain walls in BFO. 
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FIGURE. 1. (a) Considered system, consisting of electrically conducting bottom electrode, BFO film of 

thickness h with a domain structure, surface screening charge with density ( )ϕσ  and ambient media (from 

bottom to the top). Three types of nominally uncharged 180 o (b), 109 o (c) and 71 o (d) domain walls in BFO 

are shown in the bottom row. 

 

 Electrostatic potential inside the ferroelectric film satisfies the Poisson equation, 

0div0 =−ϕΔεε Pb

r
, and Laplace equation is valid in the dielectric gap, i.e. 00 =ϕΔεε e  ( eε  is the 

dielectric permittivity of external media). Electric boundary conditions are zero electric potential at 

the bottom of the film contacting the conducting substrate, 0
03

=ϕ
=x

, and the potential continuity, 

0
00 33

=ϕ−ϕ
+=−= hxhx

, at the interface between the ferroelectric film and the ambient medium. 

Another boundary condition at interface hx =3  is for the normal components of the electric 
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displacement, namely ( )
hxhxhx

DD
=−=+=

ϕσ=−
333 0303  where 

3
033 x

PD b ∂
ϕ∂εε−=  in the film, 

( hx << 30 ) and 
3

03 x
D e ∂

ϕ∂εε−=  in the dielectric gap ( 3xh < ). Here, we consider the special case of 

the surface screening charge with the density given by expression, ( ) Λϕε−=ϕσ 0 , where Λ  is the 

effective screening length [85, 86]. Typically the value of Λ  is smaller or even significantly smaller 

than 1 nm [87, 88]. The condition 0→Λ  corresponds to the perfect electric contact between the top 

conducting electrode and the film [89], and we consider the limit for comparison. The top electrode 

can be either biased ( U
hx

=ϕ
=3

) or grounded ( 0
3

=ϕ
=hx

), depending on the experimental situation 

corresponding to the SPM tip placed on the film surface.  

 Elastic problem formulation is based on the modified Hooke's law obtained using the 

thermodynamic relation 
kl

ELS
ij

G
u

δσ
δ

−= , where iju  are the components of elastic strain tensor. 

Mechanical equilibrium conditions are 0=∂σ∂ jij x  [90]. Note that the film-substrate interface was 

considered as unstrained one (misfit strain is zero) corresponding to the elastically matched substrate. 

 The system of coupled Euler-Lagrange equations allowing for Khalatnikov relaxation of the 

oxygen tilt and polarization components, iΦ  and iP , is:  

t
P

P
G i

P
i ∂

∂Γ−=
δ
δ  and 

t
G i

i ∂
Φ∂Γ−=

Φδ
δ

Φ .                   (7a) 

These equations are supplemented by the boundary conditions of zero generalized fluxes at the film 

boundaries,  

0)( =
∂
Φ∂

+Φ
S

l
k

j
ijkli

S n
x

vb ,  0)( =
∂
∂

+
S

l
k

j
ijkli

S n
x
P

gPa  (i=1, 2, 3).            (7b) 

The so-called "natural boundary conditions" for the tilt, 0=
∂
Φ∂

S
l

k

j
ijkl n

x
v , correspond to 0)( =Sb ; 

and the natural boundary conditions for polarization, 0=
∂
∂

S
l

k

j
ijkl n

x
P

g , corresponds to 0)( =Sa  in 

Eq.(7b). The natural conditions, which will be used hereinafter, correspond to the absence of surface 

energy (6) [91]. The explicit form of the free energy (1)-(6), Euler-Lagrange equations (7a) with 

boundary conditions (7b) are listed in Appendix A [52]. 
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C. The impact of biquadratic coupling on the stability of homogeneous R3c phase 

Experimentally, bulk BFO should be in a rhombohedral R3c phase at temperatures below CT . Since 

the biquadratic coupling and gradient energy coefficients in the free energy (1)-(5) are poorly known, 

one should be very careful with the choice of their numerical values in order to prevent the 

appearance of so-called nonphysical "extra" phases [63], which do not exist in reality and should be 

eliminated from the theoretical analysis of the domain structure configuration. Therefore, priory to 

study the effect of the gradient energy on domain structure, let us analyze whether any extra phase 

can be (meta)stable below CT  for a chosen free energy functional form (1)-(5) with parameters taken 

from Refs. [63, 76] and listed in Table I. For this purpose let us perform the following analytical and 

numerical calculations.  

 Without biquadratic coupling contribution, i.e. for 0=Δ BQCG , and neglecting the 6-th powers 

of the polarizations and tilts, and their gradients, the energies of oxygen tilts and polarization are 

decoupled, and, using the idea of Dzyaloshinsky substitution [92], one can introduce the new 

variables 
3
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2
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=Φ , 
2

2
1

2
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=Ψ  and 
6

2 2
3

2
1

2
22 Φ−Φ−Φ

=Ω , which diagonalize the 

AFD contribution to the free energy. Similar substitution for polarization components, 

3

2
3

2
2

2
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P
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2

2
1

2
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Q
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6
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3

2
1

2
22 PPP

R
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= , diagonalizes the FE energy. 

Namely: 
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Expressions (8) have the four global equivalent minimums in the AFD-FE phase, which are stable at 

01 <b , 0
2
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11 >−
b

b , 01 <a , 0
2
12

11 >−
a

a . The coordinates of the minimums in the six dimensional 

(6D) phase space are 
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.Each of the minimums correspond to the conventional R3c phase of BFO, in which 
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 Nonzero biquadratic coupling energy lkjiijkl PPΦΦζ  given by Eq.(4), as well as 6-th order 

powers 6
iΦ  and 6

iP  included in Eqs.(2)-(3), make the diagonalization (8) impossible. The minimums 

can be shifted, and, moreover, some of them can become metastable or even disappear due to the 

biquadratic coupling and 6-th order terms contribution. Specifically, in coordinates 

{ }RQP ,,,,, ΩΨΦ  the "isotropic" part of biquadratic energy 11
BQCGΔ  can be identically rewritten as: 

( ) ( )222222
11

2
3

2
3

2
2

2
2

2
1

2
111

11 RQPPPPGBQC Ω+Ψ+Φζ≡Φ+Φ+Φζ=Δ             (10) 

 The oversimplified free energy (7)-(8) including the isotropic biquadratic coupling energy 

(10) has the form 

( ) ( )

( ) ( ) ( )⎥⎥
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⎠
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⎜
⎝
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The energy (11) has four energetically equivalent minimums with coordinates 

{ } ( )[ ]
( )( )

( )[ ]
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⎪
⎬
⎫

⎪⎩
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These minimums correspond to R3c phase in a bulk AFD-FE multiferroic with isotropic biquadratic 

coupling. Unfortunately, we could not find any analytical expressions for the minimum coordinates if 

the anisotropic biquadratic coupling (4) is included in the free energy (1). 

 Calculations were performed for the 2-4-6 coupled free AFD-FE energy (1)-(5) with BFO 

parameters from Table I. Cross-sections of the free energy surface have been calculated without 

[ 0=ζ ijkl , Fig.2(a)] and with [ 0≠ζ ijkl , Fig.2(b)] biquadratic coupling energy (4). The differences 

between Fig.2(a) and 2(b) are caused by sotropic terms ( )2
3

2
3

2
2

2
2

2
1

2
111 PPP Φ+Φ+Φζ  in Eq.(10) and 

anisotropic terms ( )31313232212144 PPPPPP ΦΦ+ΦΦ+ΦΦζ  in Eq.(4). Four equivalent deepest 

minimums with nonzero coordinates 0321 ≠Φ=Φ=Φ  and 0321 ≠== PPP , and zero coordinates 

0===Ω=Ψ RQ  are seen in Fig.2(a)-2(b) [see also Eq.(9)]. The minimums are separated by a 

local maximum at the coordinate origin and four saddle points. The case 2
3

2
2

2
1 Φ=Φ=Φ , 

2
3

2
2

2
1 PPP ==  and 0===Ω=Ψ RQ  corresponds to the stable R3c phase. 

 The free energy dependence on polarization at fixed tilt components 

=Φ=Φ=Φ=Φ 321i 22 pm, and the dependence of the energy on the tilt at fixed polarization 
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components ==== 321 PPPPi 0.48 C/m2 are shown in Figs.2(c) and 2(d), respectively. The influence 

of the coupling makes the minimums deeper, but does not shift or eliminate them [compare solid and 

dashed curves in Fig.2 (c) and 2(d)]. 
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FIGURE. 2. Free energy dependence on the tilt and polarization components, 321 Φ=Φ=Φ=Φi  and 

321 PPPPi === . Contour maps were calculated at room temperature without (a) and with (b) biquadratic 

coupling contribution. The free energy dependence on iΦ  at fixed =iP 0.48 C/m2 (c); and its dependence on 

iP  at fixed =Φ i 22 pm (d). Dashed and solid curves in plots (c, d) show the cases without ( 0=ζ ijkl ) and 

with ( 0≠ζijkl ) biquadratic coupling contribution, respectively. Corresponding cross-sections are shown by 

dotted lines in plots (a) and (b). BFO parameters are listed in Table I, T=300 K. 

 
 We checked numerically, that any other local (or global) minima corresponding to nonzero 

coordinates { }RQP ,,,,, ΩΨΦ  is absent for the BFO parameters listed in Table I. Hence among all 

homogeneous phases, only R3c phase is absolutely stable below TC in a bulk BFO without 

polarization or tilt gradient energy. The result is expected and confirms the appropriate choice of the 

free energy form given by Eqs.(1)-(5) and numerical parameters in Table I. That is why we can 
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conclude that any other metastable or stable phases or/and domain configurations, different from 

R3c, which will be revealed and analyzed in the next sections, cannot originate from the "extra" local 

minima of the free energy (1)-(5). 

 

Table I. BFO parameters used in LGD calculations (taken from Refs. [63, 76]) 

Parameter Designation Numerical value for BFO 

background permittivity εb 7 

dielectric stiffness αT (×105C-2·Jm/K) 9 

Curie temperature for P TC  (K) 1300 

Barrett temperature for P TqP  (K) 800 

4th order coefficients in the 
polarization expansion 

aij  (×108C-4·m5J) a11= −13.5, a12= 5 

6th order coefficients in the 
polarization expansion 

aijk  (×109C-6·m9J) a111= 11.2, a112= -3, a123= −6 

electrostriction Qij (C-2·m4) Q11=0.03, Q12= −0.01, Q44=0.01 

rotostriction Rij (×1018 m-2) R11= −1.32, R12= −0.43, R44=8.45 

compliances sij  (×10-12 Pa-1) s11=8.3, s12= −2.7, s44=9.25 

polarization gradient 
coefficients 

gij  (×10-10C-2m3J) g11=5, g12= −0.5, g44=0.5 

AFD-FE coupling ×1029 C-2·m-2 J/K 11ξ = −0.5, 12ξ =0.5, 44ξ = −2.6 

2nd order coefficients in the 
tilt expansion 

bT (×1026·J/(m5K)) 4 

Curie temperature for Φ TΦ  (K) 1440 

Barrett temperature for Φ TqΦ  (K) 400 

4th order coefficients in the 
tilt expansion 

bij (×1048J/(m7)) b11= −24+4.5 ( ) ( )( )143coth300coth −T  

b12= 45−4.5 ( ) ( )( )41coth300coth −T  

6th order coefficients in the 
tilt expansion 

bijk (×1070 J/(m9)) b111= 4.5−3.4 ( ) ( )( )72coth400coth −T  

b112= 3.6−0.04 ( ) ( )( )1301coth10coth −T  

b123= 41−43.2 ( ) ( )( )1112coth1200coth −T  

tilt gradient coefficients νij  (×1011 J/ m3) ν11=0.25,  ν44=(0.25 – 25) 

polarization extrapolation 
length  

( ) )(
3

S
i

P
i

P
i ag≡λ  (nm) Varied from zero to high h values > 100 nm 

tilt extrapolation length ( ) )(
3

S
iii bv ΦΦ ≡λ  (nm) Varied from zero to high h values > 100 nm 

effective screening length Λ (nm) Varied from zero to 0.1 nm. Λ=0 in Figs.3 – 12. 
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The values of the flexoelectric tensor components ijklF  are not listed in Table I due to their small impact on 

the studies phenomena. We vary them within typical range ≤≤ ijklF0 1011 m3/C. 

 

III. SIMULATION RESULTS AND DISCUSSION 

A. Simulation details 

We used FEM to simulate the oxygen tilt and polarization distributions in thin free-standing BFO 

films covered by conducting electrodes. The film thickness h varied from 5 nm to 500 nm, and the 

typical picture of domain morphology was observed at h>15 nm; so we use the thicknesses (16 – 

20) nm for illustration. BFO parameters used in the FEM calculations to generate figures are listed in 

Table I.  

 The values of )(Sa and )(Sb  in the boundary conditions (7b) significantly affect on the 

"critical thickness" of the film [91]. The critical thickness is the thickness below which the size-

induced phase transition to a parent (e.g. paraelectric) phase without long-range order occurs (see 

e.g. Refs.[91, 93]). As it follows from the analytical expressions derived in Refs.[47, 91] the critical 

thickness of FE (or AFD) transition decreases with )(Sa  (or )(Sb ) increase. So that the application of 

the natural boundary conditions ( 0)()( == SS ba ) leads to the minimal critical thickness of the film 

(see e.g. [47, 91]).  

 To minimize the influence of the surface on obtained results, we put 0)()( == SS ba  in the 

boundary conditions (7b). For comparison we performed simulations for zero polarization and tilt 

components at the film surfaces, 0
,03

=
= hxiP  and 0

,03
=Φ

= hxi , which corresponds to the maximal 

influence of the surface. These conditions lead to the maximal critical thickness of the film [47, 91].  

 It appeared that curved walls arise as a result of the relaxation process of a random domain 

distribution, named "random seeding" (see Fig. 3). Also the random seeding can be superimposed on 

the ideal nominally uncharged 180o, 109o and 71o domain wall structure in R3c phase. Initial and 

final domain states are shown in Fig.4 and Fig.S2 in Appendix B [52].  

 From Figs.3, 4 and S2 the "curved", "meandering" and "zig-zag" like features appeared at the 

180o and 109o AFD walls, but not at the 71o walls. Schematic images of the straight, curved, 

meandering and zig-zag like domain wall profiles are shown in Fig.S1 in Appendix B [52]. 

 The energy density excess ΔG corresponding to the relaxation of the initial random domain 

distribution (RD), poly-domain distribution (PD) with straight 180o, 109o and 71o domain walls; and 

poly-domain distribution disturbed by a random seeding (PD + RD) have been compared. It 
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appeared that the energies are surprisingly close, namely ΔG= −19.926 J/m2 for the curved domain 

walls obtained from the relaxation of RD (see Fig. 3), ΔG= −19.853 J/m2 for the 180o domain walls 

obtained from the relaxation of PD+RD [see Fig. 4(a)-(d)], and ΔG= −19.865 J/m2 for the 180o 

domain walls obtained from the relaxation of PD [see Fig. 4(e)-(f)]. The final distributions of the 

polarization and tilt shown in Figs. 3-4, which have high negative and approximately equal energies 

ΔG ≈−19.9 J/m2, are long-living metastable states of the curved domain walls in BFO [94]. 

 
 

(a) initial 
state at t=0 

Tilt Φ (pm) Polarization P (C/m2) 

(b) initial state 
at t=0 

(c) final state at t→∞ 
ΔG= − 19.926 J/m2 

(d) final state at t→∞ 
ΔG= − 19.926 J/m2 

 

Curved wall

 

FIGURE 3. Initial random seeding and final distributions of the tilt (a, c) and polarization (b,d) calculated 

in a 16-nm BFO film. Gradient coefficient ν44=0.25×1011 J/ m3, T=300 K, other parameters are listed in Table 

I. 
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 Tilt Φ (pm)   Polarization P (C/m2) 

(a) initial 
state at t=0

(c) t→∞, ΔG= − 19.853 J/m2 (d) 

Tilt Φ (pm)   Polarization P (C/m2)  

(b) initial 
state at t=0

(g) t→∞, ΔG= − 19.853 J/m2 (h) 

(e) initial 
state at t=0

(f) initial 
state at t=0

 

Zig-zag like 
meanders

 

Zig-zag like 
meander

 

 

FIGURE 4. Initial and final distributions of the tilt (a, c) and polarization (b,d) calculated in a 16-nm BFO 

film. The 180o domains were imposed on random seeding. Gradient coefficient ν44=0.25×1011 J/m3, T=300 K, 

other parameters are listed in Table I. 

 

From the analysis of the free energy relief presented in section II.C we cannot establish the 

origin of the curved, meandering and zig-zag like AFD-FE walls shown in Fig.3(c,d) and Fig.4(c,g). 

So, what is the physical origin of the meandering and zig-zag like 180o and 109o domain boundaries? 

Why the effect does not exist for at 71o domain walls? To establish the origin, we performed the 

following numerical experiments.  
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(a) The unusual meandering AFD-FE domain structures exist and become insensitive to the 

screening length values at <<Λ 0.1 nm. We observed the stable meandering domains in the limiting 

case 0→Λ  corresponding to perfect screening and minimal depolarization electric field. Hence the 

origin of the meandering walls is not the incomplete screening of ferroelectric polarization by the 

imperfect electrodes or surface charge. At that the low symmetry domains limited by the meandering 

walls is quite possible. 

(b) We explored whether the meandering walls originate from the spatial confinement of polarization 

components at the film surfaces. Namely we compared the changes of the AFD-FE domain 

morphology when the polarization extrapolation lengths 
( )

)(
3
S

i

P
iP

i a
g

≡λ  vary from 0 (corresponding to 

zero polarization at the film surfaces, 0
,03

=
= hxiP ) to infinity (corresponding to 0)( =S

ia  and 

0
,03

3

=
∂
∂

= hx

i

x
P

). For 0=λP
i  we see the appearance of FE domain wall broadening at the surface and 

its gradual decrease with P
iλ  increasing , as anticipated. However no significant changes of the 

meandering walls occur in the film with P
iλ  changing. 

(c) We further compared the changes of the AFD-FE domain structure when the tilt extrapolation 

lengths 
( )

)(
3
S

i

i
i b

v Φ
Φ ≡λ  vary from 0 (corresponding to zero polarization at the film surfaces, 0

,03
=Φ

= hxi ) 

to the infinity (corresponding to 0)( =S
ib  and 0

,03
3

=
∂
Φ∂

= hx

i

x
). For 0=λΦ

i  we see the appearance of 

AFD domain wall broadening at the surface and its gradual decrease with Φλ i  increasing. However, 

no significant changes of the domain morphology occur with Φλ i  changing. Further we can assume 

that the spatial confinement delineates the appropriate boundary conditions for the oxygen tilt and 

polarization components at the film surfaces. 

(d) We rotate the film surface cut to find the angle for which both AFD and FE walls are straight 

without inclusion of any other phases. We made sure that the angle does not exist. Also, we checked 

whether the meandering walls originate from the spatial confinement effect delineated by the 

appropriate boundary conditions for the oxygen tilt at the film surfaces. We increase the film 

thickness up to 500 nm and see that no significant changes in the morphology of meandering 

domains occur.  

(e) Finally, we varied the components of the electrostrictive and flexoelectric couplings tensors in a 

typical range ( ≤≤ ijklF0 1011 m3/C, ≤≤ ijklQ0 0.1 m4/C2), and lead to the conclusion that the 
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appearance of observed effects do not steam from the couplings, because the meandering AFD walls 

weakly react on the changes of ijklF  and ijklQ  values.  

(f) It appeared that the change of the tilt gradient coefficients ijklv  significantly affects on the 

curvature and meandering of domain walls, including the monoclinic phase appearance at the curved 

walls. It is important to underline that the monoclinic phase can be stable in a ferroic with one 

vectorial long-range order parameter, e.g. in a "normal" ferroelectric with a polarization vector P, if 

the higher-order powers of P (from 8th to 12th) are included into the LGD free energy [95]. As a 

matter of fact, we consider two vectors, P and Φ, as the long-range order parameters, using 2-4-6 

LGD expansion for each of them in numerical modeling [see Eqs.(2)-(3) and Table I], and simplified 

2-4 expansion in analytical calculations [see Eqs.(8)]. Hence the effective order of the nonlinearity in 

the coupled Euler-Lagrange equations for P and Φ is 12 for numerical calculations and 8 for 

analytical calculations, making the appearance of monoclinic phases quite possible. Earlier we have 

found that the monoclinic phase can be stabilized without 8th powers of polarization, if the coupling 

between P and Φ is included [34]. 

(e) The impact of the polarization gradient coefficients ijklg  is much less pronounced, because the FE 

walls do not bend in order to remain uncharged. The charging of FE wall by the polarization bound 

charge will immediately lead to the appearance of strong depolarization electric field d
iE  

( PdivEdiv d
rr

−~ ) that's energy excess 2i
d
i PE−  is positive at the region of the curved wall and 

relatively high. Thus, the polarization sub-system behaves in such a way to prevent the charging. 

 From the analysis of (a)-(e) we concluded that the origin of meandering AFD-FE domain 

walls is the coupling between the tilts and polarization gradient coefficients. This conclusion is 

consistent with the results of Conti et al. [96] for multiferroics with symmetric free energy and two 

order parameters. Conti et al. used a simple phenomenological model and have shown that the 

maximum and minimum near the antiphase domain walls appear on the profile of one of the order 

parameters depending on the anisotropy gradient energy, in the mixed phase when both order 

parameters are nonzero. Despite the fact that we consider a much more complex system with six 

order parameters, the extremums observed near the domain walls are qualitatively similar to the ones 

predicted by Conti et al. Thus, the appearance of maxima and minima on the profiles of the order 

parameters near the domain walls can be associated with the features (such as anisotropy) of the 

gradient energy.  

 To quantify the statement, one can introduce the tilt correlation length vLC ~Φ  that is 

defined from the correlation function of the tilt vector fluctuations. The correlation length of 

polarization fluctuations gLP
C ~  can be introduced in a conventional way (see e.g. Ref.[18]). Note, 
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that correlation lengths Φ
CL  and P

CL  determine the width of the AFD and FE domain walls [18]. Since 

the correlation function depends both on the wave vector of fluctuations and their orientation in r-

space, it is anisotropic. In other words, the correlation function of tilt (or polarization) fluctuation is 

the second rank tensor. Table II lists the analytical expressions and numerical values of correlation 

lengths for the tilt and polarization vector components. It is seen that Φ
CL  varies significantly at the 

180o domain wall for the different tilts (from 3.72 Å for 1Φ  to 0.78 Å 3Φ ), and P
CL  varies from 6.20 

Å for 1P  to 2.38 Å to 2P  components. The tilt and polarization changes at 109o domain wall behave 

as in the hypothetic "isotropic" ferroic, namely =Φ
CL 1.75 Å for both tilt components and =P

CL 1.75 Å 

for both polarizations. Contrary, only the components 3Φ  and 3P  vary across the 71o domain wall, at 

that =Φ
CL 1.75 Å for 3Φ  and =P

CL 2.38 Å for 3P . 

 

Table II. AFD and FE order parameter correlation lengths Φ
CL  and P

CL  in BFO 

Order 
parame
ter 

Type of the uncharged domain wall 

180o 109o 71o 

1Φ  

1

441211

4
2

b
LC −

ν+ν+ν=Φ =3.72 Å 
Non applicable, since 

const≈Φ1  
Non applicable, since 

const≈Φ1  

2Φ  

1

44

2b
LC −

ν=Φ =1.75 Å 
1

44

2b
LC −

ν=Φ =1.75 Å 
Non applicable, since 

const≈Φ2  

3Φ  

1

1211

4b
LC −

ν−ν=Φ =0.78 Å 
1

44

2b
LC −

ν=Φ =1.75 Å 
1

44

2b
LC −

ν=Φ =1.75 Å 

1P  

1

441211

4
2

a
gggLP

C −
++= =6.20 Å 

Non applicable, since 
constP ≈1  

Non applicable, since 
constP ≈1  

2P  

1

44

2a
gLP

C −
= =2.38 Å 

1

44

2a
gLP

C −
= =2.38 Å 

Non applicable, since 
constP ≈2  

3P  

1

1211

4a
ggLP

C −
−= =4.87 Å 

1

44

2a
gLP

C −
= =2.38 Å 

1

44

2a
gLP

C −
= =2.38 Å 

 

B. Meandering 180-degree AFD-FE domain walls 

 Using FEM of the AFD and FE properties of strain-free thin BFO films, we further observe 

that the conventional 180° domains of bulk rhombohedral AFD-FE phase [see Fig.1(a)] are 
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separated by the zig-zag like meandering domain walls, which in fact contain thin AFD-FE domain 

regions of lower monoclinic symmetry and different parity [see Fig. 5].  

  
 

 

Enhanced tilt
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(b) Tilt  Φ2 (pm) 

(c) Tilt  Φ3 (pm) 

(d) Polarization  P1 (C/m2) 

(e) Polarization  P2 (C/m2) 

(f) Polarization  P3 (C/m2) 

 

FIGURE 5. Distribution of the tilt Φi (a)-(c) and polarization Pi (d)-(f) components calculated for the case of 

180°-domains in a 16-nm BFO film. . Gradient coefficient ν44=2.5×1010 J/ m3, T=300 K, other parameters are 

listed in Table I. 

 

The contrast of the monoclinic domains is determined by the magnitude of the tilt components iΦ ; 

and it is higher in the vicinity of the meandering walls in comparison with the contrast in the centre 

of the 180° domain [see dark-red and dark-blue regions near meandering boundaries in Fig. 5(a)-(c)]. 

Surprisingly, neither curvature nor enhanced contrast is inherent to the FE component of the 180° 
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domain boundaries [see straight incline domain boundaries with gradually changing color from red to 

blue in Fig. 5(d)-(f)]. Actually, the contrast enhancement in the meandering regions [marked by the 

ellipse in Fig. 5(b)] does not correspond to the bulk rhombohedral phase and represents itself the 

domains of lower monoclinic symmetry with 321 Φ≠Φ≠Φ  imposed on the 180° AFD-FE domains 

in the rhombohedral phase. 

 The influence of the tilt gradient coefficient 44v  on the domain structure could be seen from 

Figs. 6-7. Meandering AFD domain walls broaden significantly and decrease their curvature with an 

increase of 44v  by a factor of 10. In addition to significant broadening, a visible asymmetry of the 

wall profile appears with an increase of 44v  by a factor of 100. As one could see from the figures, the 

maximal deviation of the tilt from bulk value is dependent on ν44, but polarization profiles are almost 

independent on this parameter. Thus, we conclude that the appearance of meandering walls and low 

symmetry phases is conditioned by the decrease of the tilts gradient energy. If 44v  is sufficiently 

small, the energy increase associated with the AFD wall bending is less than the energy decrease 

associated with the terms proportional to 22
jiijb ΦΦ . 
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Coordinate x1 (nm) 

(c) Tilt  Φ2 (pm), v44=2.5 

(e) Tilt  Φ2 (pm), v44=25 

(b) Tilt  Φ3 (pm), v44=0.25 

(d) Tilt  Φ3 (pm), v44=2.5 

(f) Tilt  Φ3 (pm), v44=25 

180o domains

 

FIGURE 6. Distribution of the tilt components Φ2 (a, c, e) and Φ3 (b, d, f) calculated for the case of 180°-

domains in a thin BFO film. The gradient coefficient ν44=2.5×1010 J/m3 (a, b), 2.5×1011 J/m3 (c, d), and 

2.5×1012 J/m3 (e, f). T=300 K, other parameters are listed in Table I. 
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FIGURE 7. Profiles of the tilt components Φi (a, b, c), and polarization P2 (d) calculated for the case of 180°-

domains in the middle of 16-nm BFO film ( 23 hx = ) at room temperature. The gradient coefficient 

ν44=0.25×1011 J/m3 (black curves), 2.5×1011 J/m3 (blue curves) and 25×1011 J/m3 (red curves); T=300 K, other 

parameters are listed in Table I. 

 

C. Meandering 109-degree AFD-FE domain walls 

Rhombohedral 109o domains correspond to the case when two components of vectorial order 

parameter changes its sign when crossing the wall plane [see Fig. 1(b)]. These are the components 

Φ2, Φ3 and P2, P3, respectively for the 109o domains in BFO. These domains are separated by the 

AFD meandering domain walls, which in fact contain thin domains of lower symmetry [see Figs. 

8(b,c)]. Enhanced contrast is also inherent to the FE component at the domain boundaries [see the 

boundaries with gradually changing color from red to blue in Figs. 8(a)-(c)]. Actually, the contrast 

enhancement in the meandering regions does not correspond to the bulk rhombohedral R3c phase. 
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There are the domains of lower symmetry with 321 Φ≠Φ≠Φ  and 321 PPP ≠≠  imposed on the 

twin boundaries in the rhombohedral phase. 
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FIGURE 8. Distribution of the AFD order parameter Φi (a)-(c) and polarization Pi (d)-(f) calculated for the 

case of 109°-domains in a thin BFO film. T=300 K, BFO parameters are listed in Table I. 

 

 Similarly to the case of the low symmetry phases appearing the vicinity of the meandering 

180o AFD-FE domain walls (considered in section III.B) we made sure that the appearance of low 

symmetry domains at 109o domain walls does not steam from the spatial confinement or imperfect 



 23

screening of spontaneous polarization, electrostrictive or flexoelectric couplings, but rather from the 

interplay between the gradient of the oxygen tilt and polarization components at the domain walls. 

Indeed, the influence on the tilt gradient coefficient value is shown in Fig. 9. Distributions of order 

parameters in the central part of the film, corresponding to Fig. 9, are shown in Fig. 10. 
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FIGURE 9. Distributions of the tilt components Φ2 (a)-(c) and Φ3 (d)-(f) calculated for the case of 109°-

domains in a thin BFO film. The gradient coefficient ν44=0.25×1011 J/m3 (a, e), 0.5×1011 J/m3 (b, f), 

1×1011 J/m3 (c, g) and 2×1011 J/m3 (d, h). T=300 K, BFO parameters are listed in Table I.  

 One could see two tendencies with increase of 44ν . The first tendency is an obvious increase 

of domain wall width (proportionally to 44ν ) and the second one is the decrease of the meandering 

walls density and curvature, which separate monoclinic regions. As one could see from Fig. 10, the 
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amplitude of the tilt deviation from the bulk value is independent on the gradient coefficient ν44. 

However the low symmetry region occupies the central part of BFO film for the high values of ν44. 

The regions are characterized by the different amplitudes of the tilt components near and far from the 

109o domain walls.  
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FIGURE 10. Profiles of the tilt Φ2 (a, b, c), and polarization P2 (d) calculated for the case of 109°-domains in 

a 16-nm BFO film at room temperature. The gradient coefficient ν44=0.25×1011 J/m3 (black), 2.5×1011 J/m3 

(blue) and 25×1011 J/m3 (red); 23 hx = ; T=300 K, BFO parameters are listed in Table I. 

 

D. 71-degree AFD-FE domain walls 

Bulk 71o domains correspond to the case when only one component of the tilt and polarization 

changes its sign when crossing the wall plane [see Fig.1(c)]. It is Φ2 and P2 in the considered R3c 

phase of BFO. The results of calculations are presented in Figs. 11-12. AFD-FE 71o domain walls 

are almost straight except for the slight bending at the surface (see Fig. 11). The profiles of tilt and 

polarization components broaden with increase of the tilt gradient coefficient 44ν  (compare black, 
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blue and red curves in Figs. 12). The tilt amplitude remains the same and polarization amplitude 

decreases with 44ν  increase. 

 Slight bending of the FE domain wall at the surface is determined by internal electric field 

that has nonzero out-of-plane component near the surface (see Fig. S.3b). The in-plane component of 

the field is maximal at the domain walls far from the surface (see Fig. S.3a). The effect is caused by 

the variation of in-plane component of polarization P1 perpendicular to the wall due to the coupling 

with other components of polarization and tilt (see Figs. 11d). However, at the surface the electric 

field should be perpendicular to it, hence the component E1 tends to zero here (see Fig. S.3a) and the 

domain wall - surface junction acts as a source of a stray electric field, causing the wall bending and 

broadening in this region. 
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FIGURE 11. Distributions of the tilt Φi (a)-(c) and polarization Pi (d)-(f) components calculated for the case 

of 71°-domains in a 16-nm BFO film. Gradient coefficient ν44=0.25×1011 J/m3, T=300 K, BFO parameters are 

listed in Table I. Initial distribution corresponds to 71° domains with [100] walls. 
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FIGURE 12. Profiles of tilts Φ1 (a), Φ3 (b), Φ2 (c), and polarization component P3 (d) at the surface of thin 

BFO film. The gradient coefficient ν44=0.25×1011 J/m3 (black curves), 2.5×1011 J/m3 (blue curves) and 

25×1011 J/m3 (red curves). T=300 K, BFO parameters are listed in Table I. 

 

IV. CONCLUSIONS 

Using LGD-approach we revealzig-zag like meandering AFD-FE domain walls in BFO. These walls 

typically separate the regions with unusually low monoclinic symmetry. It appeared that the origin of 

the meandering AFD-FE is conditioned by the decrease of the tilts gradient energy.  

 Moreover, the origin of the meandering walls does not steam from incomplete polarization 

screening in thin BFO films, electrostrictive or flexoelectric coupling. The spatial confinement 
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delineates the appropriate boundary conditions for the oxygen tilt and polarization components at the 

film surfaces, but its existence is not critical for the meandering walls appearance and their zig-zag 

like instability. The values of the gradient energy coefficients for the oxygen tilt appeared critical to 

initiate the morphological changes of the 180o and 109o uncharged domain walls towards zig-zag 

meandering. Zig-zag instability appears for small gradient energies, while the walls become straight 

and broaden at higher gradients. Uncharged 71o walls are always straight and their width increases 

with increasing of the tilt gradient coefficient.  

 Hence we predicted previously unexplored type of the gradient-driven morphological phase 

transition taking place at the AFD-FE domain walls in multiferroics. 
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