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Juvé1, Gwenaëlle Vaudel1, Ilya Razdolski1,4, Vassilios Kapaklis2, and Vasily Temnov1,∗
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Linear and nonlinear magneto-photonic properties of periodic arrays of nickel nanodimers are
governed by the interplay of the (local) optical response of individual nanoparticles and (non-local)
diffraction phenomena. The redistribution of light intensity between diffracted beams when a diffrac-
tion order onsets or disappears is known as Wood’s anomaly. Here, angular and magnetic-field de-
pendent near-infrared spectroscopic measurements, performed for different optical wavelengths and
grating constants, discriminate between the linear and nonlinear excitation mechanisms of Wood’s
anomalies. In the nonlinear regime, evidenced by the magnetic second harmonic generation, the
Wood’s anomaly is characterized by an order-of-magnitude larger effect in intensity redistribution
between the diffracted beams, as compared to the linear case. The nonlinear Wood’s anomaly man-
ifests itself also in the nonlinear magnetic contrast highlighting the prospects of nonlinear magneto-
photonics.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Combining functionalities of plasmonic materials [1]
with optical properties of diffraction gratings and pe-
riodic structures with a sub-wavelength periodicity, i.e.
optical meta-surfaces [2–7], represents a topical area in
nanophotonics. These systems are often discussed in
the context of plasmonics [8–10] and magneto-plasmonics
[11–15], if one of the ingredients displays magneto-optical
properties. Nonlinear-optical studies highlight the role of
propagating surface plasmon polaritons (SPPs) excited
on silver gratings [16], thin noble metal films [17, 18] or
noble metal-ferromagnet multilayer structures [19].

In plasmonics of more sophisticated periodic arrange-
ments of metallic nanostructures, spectrally narrow res-
onances, commonly referred to as surface lattice reso-
nances (SLRs) [3, 4, 20, 21], arise from an unusual in-
terplay between the localized surface plasmon resonance
(LSPR) and the emerging diffraction orders under the
condition of Wood’s anomaly. The latter describes the re-
distribution of light intensity between different diffracted
beams upon opening of a new diffraction order propagat-
ing along the grating surface [22].

In magneto-plasmonics, the excitation of Wood’s
anomalies in two-dimensional arrays of ferromagnetic
nanodisks results in the enhancement of the magneto-
optical Kerr effect (MOKE) [21, 23]. In these structures,
plasmonic effects are enabled either by a high relative
content of metal, resulting in the excitation of SPPs de-
spite the high optical losses in ferromagnetic transition
metals, or LSPRs in nanosized metallic objects.
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A conventional diffraction grating requires the grating
period Λ to be larger than a half of an optical wave-
length λ (Λ > λ/2) to ensure the presence of at least
one diffraction order. In contrast, optical meta-surfaces
are usually characterized by a much smaller periodicity
Λ ≪ λ [7, 24, 25]. Overcoming this frontier, an intrigu-
ing crossover regime can be explored within the realms
of nonlinear optics, where the wavelength λ of the fun-
damental radiation is converted to λ/n by means of a
nonlinear-optical process of the order n > 1. In this case,
the same periodic structure can serve as a meta-surface
for the fundamental wavelength λ, and as a regular grat-
ing for frequency-converted radiation at a shorter wave-
length λ/n. To the best of our knowledge, the nonlinear-
optical properties in this intriguing transition regime re-
main up to date unexplored.

In this work, we employ the nonlinear-optical tech-
nique of magneto-induced second harmonic (SH) genera-
tion to study the Wood’s anomaly, i.e. the intrinsic prop-
erty of an optical grating in the aforementioned nonlin-
ear transition regime. We perform angle-dependent SH
spectroscopy with a tunable femtosecond laser source on
a rectangular array of nickel dimers featuring a nanoscale
gap, similar to that studied in Ref. [3]. Taking ad-
vantage of different periods of the investigated array in
two orthogonal in-plane directions, we identify a novel
regime for the nonlinear Wood’s anomaly, i.e. when the
structure exhibits grating properties exclusively at the
SH wavelength λ/2 but not at the fundamental wave-
length λ. Our experiments represent the first step to un-
derstand the transition between optical diffraction grat-
ings and meta-surfaces, extending the concept of Wood’s
anomaly [26, 27] to the nonlinear regime. Our results
are inline with theoretical predictions [28] that nonlinear-
optical and magneto-optical effects can be utilized to
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characterize the efficiency of diffraction gratings in pe-
riodic arrays of magnetic nanostructures.

II. LINEAR AND NONLINEAR DIFFRACTION

ON OPTICAL GRATINGS

Diffraction on a grating in the linear and nonlinear-
optical regimes is illustrated in Fig. 1. Let us consider
the case of a regular grating with a periodicity Λ > λ/2
irradiated at an angle of incidence θ (Fig. 1a). The prop-
agation direction of a diffracted beam of an order m is
determined by the phase-matching condition, which is
conventionally written for in-plane (x-) projections of the
wavevectors:

koutx (ω) = kinx (ω) +mG, (1)

where kinx (ω) = k0 sin θ, k0 = 2π/λ and G = 2π/Λ is the
grating constant in the reciprocal space. Imagine that the
intensity of incident light is so high that the grating itself
converts the frequency of incident light in the nonlinear
optical process, for example it doubles the frequency by
SH generation at surfaces and interfaces. In the electric
dipole approximation, the generic second-order nonlinear
polarization P(2ω) acts as a source of radiation at the
double frequency 2ω:

Pi(2ω) = ε0χ
(2)
ijkEj(ω)Ek(ω) . (2)

Here ε0 is the vacuum permittivity, χ
(2)
ijk is the second-

order susceptibility tensor, Ej(ω) and Ek(ω) are the elec-
tric components at the fundamental frequency ω; indices
i, j, k denote the Cartesian coordinates. At magnetic
surfaces and interfaces the nonlinear susceptibility con-
tains non-magnetic (even) and magnetization-dependent
(odd) χ(2)-contributions [29] resulting in the dependence
of SH intensity on the magnetic field, see next sec-
tion for details. Both Ej(ω), Ek(ω) are proportional to
exp[ikinx (ω)x] resulting in Ej(ω)Ek(ω) ∝ exp[2ikinx (ω)x].
Therefore, the phase-matching condition for the nonlin-
ear SH diffraction reads [16]:

koutx (2ω) = 2kinx (ω) +mnlG , (3)

where we have introduced another integer mnl 6= m in-
dicating the nonlinear diffraction order. In what follows,
we shall use the symbols mlin ≡ m and mnl when talking
about the linear and nonlinear diffraction orders, respec-
tively. Phase-matching conditions for linear and nonlin-
ear diffraction can be visualized in the reciprocal space
(Fig. 1b). The number of nonlinear SH diffraction orders
is larger than in the linear case. Linear diffraction orders
are collinear with nonlinear diffraction orders. For exam-
ple, the first linear diffraction ordermlin = −1 is collinear
with the SH diffraction order mnl = 2mlin = −2. The
collinearity of linear and nonlinear diffraction orders sug-
gests that Wood’s anomaly in both regimes should occur
at the same angle of incidence.
The situation becomes different when the spatial pe-

riodicity is reduced to Λ < λ/2 (Fig. 1c). In this

case, linear diffraction with mlin 6= 0 is forbidden be-
cause of G > 2k0. At the same time, if Λ > λ/4, the
phase-matching condition can be fulfilled in the nonlin-
ear regime, resulting in the nonlinear diffraction of the
order mnl = −1. It is seen that the periodic structure
works as a meta-surface at the fundamental wavelength,
where diffraction is disabled, and as a regular grating at
the SH wavelength. By varying either the grating peri-
odicity or the optical wavelength, it is possible to cross
the boundary between these two cases.

The number of diffraction orders in Fig. 1 depends on
the angle of incidence θ. According to the definition,
the Wood’s anomaly is due to an ”uneven distribution of
light”[22] between different diffraction orders and mani-
fests itself in the modulation of the intensity of a particu-
lar diffraction order when a new diffraction order emerges
at θ = θW . The purpose of this study is to observe
the nonlinear Wood’s anomaly (Fig. 1f) and compare its
nonlinear-optical properties with the general case where
linear and nonlinear Wood’s anomalies coexist (Fig. 1e).

III. EXPERIMENT

The sample under investigation is an array of nickel
nanodimers deposited on a Si substrate, shown in Fig. 1d.
Good heat conductivity of Si ensures the sample damage
resilience at high peak optical fluences required for size-
able nonlinear-optical effects. The nickel film was DC
sputtered directly on a Si[100] substrate, and then the
structure was patterned using electron beam lithogra-
phy. Nanodisks with an average diameter of 145 nm and
height of 60 nm were grouped into dimer cells with the
air gap size systematically varying between 15 and 60 nm
(15,30,60,15,30,60 nm etc., with an average gap size of
35 nm). The two symmetry axes of our 2D-array are
denoted pL (longitudinal) and pT (transverse), as illus-
trated in Fig. 1 d. Along pL, the longitudinal dimer axis,
the distance between the dimers is ΛL = 445 nm. The
triple size of the actual unit cell, caused by the system-
atically varying size of the gap between the dimers, does
not seem to play any role in the present study. Along pT ,
the periodicity is ΛT = 265 nm.

The experiment was conducted on a goniometric plat-
form which allows measuring the reflected signals at dif-
ferent angles of incidence, as shown in Fig. 2. The fun-
damental radiation is produced by a mode-locked Ti:Sa
laser (Mai-Tai), tunable in the spectral range between
690 and 1040 nm, with ∼ 100 fs pulse duration and
80 mW average power at 80 MHz repetition rate. The
p-polarized (TM) fundamental radiation was focused on
the sample surface, yielding a spot of 80 µm in diame-
ter (FWHM in y-direction). The linear reflectivity R was
measured using a silicon photodiode. The SH output was
spectrally separated by a color BG-39 filter (Schott), col-
lected by a lens and recorded with a photomultiplier tube
(Hamamatsu) operating in the photon counting mode.
In the transverse MOKE configuration (magnetic field
By ≥ 100 mT perpendicular to the plane of incidence
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FIG. 1. (a) Linear (red) and nonlinear SH (blue) diffraction orders in reflection from a grating with a periodicity Λ > λ/2.
When the angle of incidence of the fundamental radiation Iinc

ω increases in the counter-clockwise direction, all diffraction orders
rotate clock-wise. (b-c) In the reciprocal space the in-plane wavevector components of linear and nonlinear diffraction orders
are shifted by a multiple of the grating wavevector G = 2π/Λ. (b) Grating regime. For G ≤ 2k0 or Λ ≥ λ/2 both linear
and nonlinear SH diffraction are allowed. (c) Transition regime. When 2k0 < G < 4k0 or λ/4 < Λ < λ/2 linear diffraction is
suppressed and only the SH nonlinear diffraction order mnl = −1 is allowed. (d) Scanning electron microscopy image of the
rectangular array of nickel nanodimers on silicon. (e-f) Excitation geometries for Wood’s anomalies. (e) Co-excitation of linear

and nonlinear Wood’s anomalies: for large periodicity ΛL = 445 nm, both linear I
(−1)
ω and nonlinear I

(−2)
2ω in-plane diffraction

orders are excited at θ = θW . (f) Purely nonlinear Wood’s anomaly: for small periodicity ΛT = 265 nm, only the non-linear

diffraction order I
(−1)
2ω emerges at θ = θW .

xz, see the reference frame in Fig. 2), the intensity of the
reflected SH is modified upon the magnetization reversal
in nickel nanodimers giving rise to the magnetization-
dependent SH intensity I2ω(±M) in the far field. Origi-
nating from the interference of odd and even SH sources,
variations in the SH intensity upon reversal of the in-
plane magnetization of nickel nanodimers are quantified
by the nonlinear magnetic contrast ρ:

ρ =
I2ω(+M)− I2ω(−M)

I2ω(+M) + I2ω(−M)
. (4)

To study the nonlinear Wood’s anomaly we investigated
the dependence of SH intensity I2ω(±M) and the associ-
ated magnetic contrast on the angle of incidence θ. The
linear diffraction anomaly was studied through the an-
gular dependence of reflectivity Rω at the fundamental
wavelength.
Measurements were performed for two orientations of

the sample: Ex ‖ pT and Ex ‖ pL. Fig. 1e-f illustrate
the excitation of nonlinear Wood’s anomalies for the two
orientations. When Ex ‖ pL ( Fig. 1e), both the linear

anomaly I
(−1)
ω and the SH anomaly I

(−2)
2ω can be excited

at the Wood’s angle since ΛL ≥ λ/2, corresponding to

FIG. 2. The goniometric setup for angular-dependent mag-
netic second harmonic measurements on ferromagnetic sam-
ples in reflection geometry. The sample and the detection unit
(filter, lens and photomultiplier tube) are mounted on two
coaxial rotation stages 1 and 2, respectively. The ∼ 100 mT
static magnetic field of a permanent magnet is applied along
the y-direction.
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the grating regime in Fig. 1b. In contrast, only the SH

anomaly I
(−1)
2ω is excited at the Wood’s angle θW in the

case of Ex ‖ pT (Fig. 1f), which features the transition
regime λ/4 < ΛT < λ/2 in Fig. 1c. In addition, it has
been shown in Ref. [30] that, for certain wavelengths,
the electric field of the plasmon strongly localized in the
dimer gap is excited for Ex ‖ pL. When Ex ‖ pT , the
excitation of this gap plasmon mode is suppressed.

IV. RESULTS

The specular (zero diffraction order m = 0) linear re-
flectivity Rω, the magnetization-dependent SH intensity
I2ω(±M), and the nonlinear magnetic contrast ρ were
measured as a function of angle of incidence θ. Fig. 3a
and Fig. 3b show the experimental data obtained at the
fundamental wavelength λ = 820 nm for two orientations
of the dimer array, Ex ‖ pT and Ex ‖ pL, respectively.
No significant drop of Rω has been observed in case

of Ex ‖ pT (Fig. 3a). reflectivity of silicon substrate.
It means that the linear Wood’s anomaly was not ob-
served in this configuration, consistent with the case illus-
trated in Fig. 1c, where ΛT < λ/2 and no linear diffrac-
tion is allowed except for the zero order. In contrast,
in the Ex ‖ pL geometry with the spatial periodicity
ΛL ≈ 445 nm (ΛL > λ/2), a small dip in Rω was
observed at 51◦ (Fig. 3b) as a fingerprint of the linear
Wood’s anomaly excitation around this angle.
In the nonlinear regime, the angular dependence of the

SH intensity displays a dip for both orientations: at 32◦

for Ex ‖ pT and 53◦ for Ex ‖ pL. As compared to the bare
silicon substrate, the SH yield from the samples is almost
an order of magnitude larger suggesting that the SH is
generated predominantly at the nickel-air interface. The
SHG magnetic contrast ρ also shows the sharp angular
features with a magnitude around 5 % (Fig. 3) for both
orientations of the sample at the same angles. Jumping
ahead with conclusions we state that the dips can be
interpreted within the framework of the nonlinear Wood’s
anomaly, to be justified in the following section.

V. DISCUSSION

Further insights in the physical nature and nonlin-
ear properties of the Wood’s anomalies can be ob-
tained from spectral measurements. We performed
angular measurements of the linear reflectivity and
magnetization-dependent SH output at various funda-
mental wavelengths. As a result, we observed a pro-
nounced wavelength-dependence of angular features in
the linear reflectivity, SH intensity and magnetic con-
trast. The data for two sample orientations are summa-
rized in Fig. 4.
In Fig. 4a-b we inspect the specular linear reflectiv-

ity Rω at different wavelengths. In these plots, the re-
flectivity curves at the bottom (R ≤ 0.4) are the raw
data, while those at the top (R > 0.8) are normalized
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FIG. 3. The angular dependence of the linear reflectivity Rω

(dashed black), the SH intensity I2ω(±M) for the two oppo-
site directions of magnetization (solid red and blue), and the
SHG magnetic contrast ρ (solid green) at the fundamental
wavelength of 820 nm, measured for the case of (a) Ex ‖ pT
and (b) Ex ‖ pL.

to the measured reflectivity of the bare silicon substrate.
The high values of the normalized Rω at angles beyond
60◦−70◦ are artifacts originating from the normalization
procedure.

In the Ex ‖ pT configuration (Fig. 4a), the reduced spa-
tial periodicity ΛT = 265 nm prohibits diffraction. In the
Ex ‖ pL configuration (Fig. 4b), within the wavelength
range of 800− 920 nm and angles of incidence 25◦ − 75◦,
diffraction is possible and the Wood’s anomaly manifests
itself in reflectivity minima shifting towards larger θ upon
the increase of the wavelength. The drop of reflectivity
is about 7% for all wavelengths.

A considerably richer picture can be recovered from
the SH angular spectra (Fig. 4c-d). The dependence of
SH output on the angle of incidence and wavelength in
the Ex ‖ pT geometry exhibits a strong SHG peak at
θ ≈ 61.5◦, independent on the wavelength. In contrast
to that, the small-angle SH peak shifts towards larger an-
gles of incidence for longer fundamental wavelengths. A
similar dispersive shift of the SH features is observed in
the other geometry (Ex ‖ pL), albeit at different angles.
As in the case of linear Wood’s anomaly we attribute this
SHG minimum to the appearance of the new diffraction
order. Apart from the resonant angle for the nonlinear
Wood’s anomaly the SHG intensity follows the empirical
background ∝ sin4 θ, see Fig. 4c-d. The normalization
to this background in Figs. 4e-f clearly demonstrates a
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FIG. 4. The top row (a, c, e) shows the analysis of the SHG for Ex ‖ pT . The bottom row (b, d, f) presents the data for the
case of Ex ‖ pL. (a, b) Angular dependence of the linear reflectivity at different wavelengths. (c, d) Angular dependence of
SHG intensity at different SHG wavelengths. The black dashed lines ∝ sin4 θ (two lines in panel (c) possess amplitudes with
the ratio of 0.38) represent an empirical approximation for the angular dependence of SHG for a nickel film without diffraction
anomalies. (e, f) The normalized SHG signals obtained by dividing SHG intensities in panels (c, d) by ∝ sin4 θ demonstrate a
65% drop of the specular m = 0 SH intensity upon emergence of new diffraction orders. Small arrows in Fig. 4b-d and crossing
points at the threshold 0.6 in Fig. 4e-f are used to extract the resonant angles θW for Wood’s anomalies.

pronounced decrease of the specular SHG intensity at
large angles of incidence for a multitude of fundamen-
tal wavelengths. The 65% drop of the SHG intensity
is almost the same for both the purely nonlinear regime
(Fig. 4e) and the mixed linear-nonlinear Wood’s anomaly
scenario (Fig. 4f). Furthermore, the percentage of the
energy pumped into the second-order mnl = −2 in the
configuration Ex ‖ pL is not consistent with the mere
7% drop of the reflectivity Rω measured for the linear
diffraction anomaly (see Fig. 4b). Based on these obser-
vations, we speculate that in the mixed case the nonlinear
Wood’s anomaly dominates. Moreover, in this geometry,
the LSPRs characterized by an enhancement of electric
field in the dimer gap, could be excited. However, the
absolute SHG yield in both parallel and longitudinal ex-
perimental configurations is almost identical suggesting
that possible contributions of LSPRs to SHG can be ne-
glected.

As such, for both experimental configurations, our re-
sults evidence the “uneven distribution of light” between
SH diffraction orders, extending the Wood’s picture into
the nonlinear-optical domain and demonstrating the im-
mense sensitivity of SH spectroscopy for these effects.

The spectral dependence of resonant angles θW is ex-
tracted from Fig. 4, with values marked by arrows in

Fig. 4b and empty dots in Fig. 4e,f. These resonant
angles can be grouped into three different sets: Fig. 5a
shows that sin θW scales linearly with the normalized fun-
damental wavelength λ/Λ. In agreement with an intu-
itive picture of Fig. 1e, linear and nonlinear diffraction
anomalies for Ex ‖ pL configuration occur at the same
angle. We did not introduce error bars for the linear
Wood’s anomaly as the only reasonable way to extract
its resonance angle θW was from the asymmetric minima
of the normalized linear reflectivity in Fig. 4b. For the
nonlinear case the error bars account for the finite an-
gular width of the threshold-like drop of the normalized
intensity from 1 to 0.3.
Quantitative analysis of linear fits and experimental

error bars appears to be quite instructive. The condition
for the linear Wood’s anomaly, i.e. the diffraction beam
of order mlin = −1 at the fundamental frequency propa-
gating along the surface, directly follows from Eq. (1):

neff(ω)k0 = −k0 sin θW −mlinG . (5)

Here neff(ω) is an effective index of the diffraction beam
accounting for the fact that light propagating along the
surface also interacts with nickel nanodisks. From the
data presented in Fig. 5a, one obtains mlin = −1 and
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neff(ω) = 1.07. The excitation condition for the nonlin-
ear Wood’s anomaly for the diffraction order mnl follows
from Eq. (3):

neff(2ω)2k0 = −2k0 sin θW −mnlG . (6)

Linear fitting for Ex ‖ pL configuration provide mnl =
−2 and neff(2ω) = 1.07. Taking into account the error
bars we obtain neff(2ω) = 1.07+0.07

−0.03. For the Ex ‖ pT
configuration the fit parameters are mnl = −1 and
neff(2ω)=1.05 (or neff(2ω) = 1.05+0.06

−0.03 from the analy-
sis of error bars).
Our experimental observation of neff > 1 is consis-

tent with the results by Lezec and Thio [9], who found
neff ≃ 1.1 for a variety of plasmonic and non-plasmonic
periodic structures. For our sample, the nickel content
(the filling fraction of the surface) is 29%, sufficiently low
so that conventional thin-film SPPs cannot be excited. In
contrast, signatures of propagating dipole-dipole coupled
modes have been observed on periodic arrays of gold nan-
odisks [31]. Excitation of LSPRs in the gap between the
nanodisks may also contribute to neff(ω) > 1. However,
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FIG. 6. The false-color images of the SHG magnetic contrast
for (a) Ex ‖ pT , where the white line shows the theoretical
dispersion for the second-harmonic anomaly mnl = −1, and
(b) Ex ‖ pL, where the white line marks the dispersion of
mnl = −2.

values of neff = 1.07 for Ex ‖ pL and neff = 1.05 for
Ex ‖ pT configurations fall within the error bars. As
such, it is impossible to speculate about possible con-
tributions of LSPRs and propagating dipole-dipole to
neff > 1. It is likely that the spatial localization of the
composite diffracted evanescent wave (CDEW), excited
at and propagating along the surface of periodic nanos-
tructures under conditions of Wood’s anomaly, would
provide the correct interpretation [9]. CDEW propa-
gates in the air and possesses the non-zero imaginary kz
responsible for an exponential decay in z-direction and
kx = neffk0 =

√

k20 + k2z > k0. Assuming neff = 1.05 and
λ=800 nm we obtain a reasonable estimation of 400 nm
for the localization length of CDEW electric field in z-
direction.

Fig. 5b-c represent the SHG data as false-color two-
dimensional maps together with the theoretical disper-
sion by Eq. (6). In both configurations, the mini-
mum of the specular SH output is well correlated with
the calculated dispersion of nonlinear Wood’s anomalies.
The magneto-optical fingerprint of the nonlinear Wood’s
anomaly is exemplified in similar false-color maps of SHG
magnetic contrast in Fig. 6: the drop of the magnetic con-
trast ρ (dark area, cf. Fig. 3) is again correlated with the
calculated dispersion of the nonlinear diffraction anoma-
lies. We conclude that nonlinear magneto-optics offers
an additional degree of freedom for experimental char-
acterization of the nonlinear Wood’s anomaly on peri-
odically nanostructured ferromagnetic samples. Interest-
ingly, this result is inherently consistent with our previous
findings in the case of nonlinear magneto-SPP excitation
in thin metal films [19, 32]. From the nonlinear-optical
point of view, the similarity between these seemingly dif-
ferent phenomena is related to strong variations of an
electric field at the double frequency 2ω, as opposed to
the fundamental field E(ω). The physical origin of this
similarity represents an interesting question in nonlinear
photonics and requires further investigation.
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VI. CONCLUSIONS

In this work, we have investigated the impact of
Wood’s anomalies on the SH output and nonlinear
MOKE on a two-dimensional arrays of nickel nanodimers.
We measured the angular spectra of the linear reflectiv-
ity and the magnetic SH intensity I2ω(±M) for a series
of fundamental wavelengths and two orientations of the
sample. A detailed comparison of these two data sets
highlighted the relevant linear and nonlinear excitation
mechanisms of Wood’s anomaly.

Our results suggest that the linear Wood’s anomaly
has little influence on the SH yield. The decrease of SHG

intensity I
(0)
2ω upon the emergence of the new mnl = −1

or mnl = −2 diffraction orders in the nonlinear regime
is 65%, i.e. an order of magnitude larger than 7% re-
flectivity variations in its linear counterpart. The SHG
magnetic contrast also shows a fingerprint of the non-
linear diffraction anomaly, which is the main factor con-
tributing to the ∼ 5% angular variation of the SHG mag-
netic contrast ρ around the Wood’s anomaly. Nonlinear
magneto-optical effects can thus be utilized as a measure
of the efficiency of diffraction gratings in periodic arrays
of magnetic nanoparticles. In the investigated array of
nickel nanodimers the large difference in the lattice pe-
riod between transversal and longitudinal configurations
determines the character of Wood’s anomalies. In future,
possible contributions of LSPRs in nanodimers resulting
in the excitation of SLRs upon interference with Wood’s
anomalies might be identified in similar experiments us-
ing structures with identical longitudinal and transverse
lattice periods and a series of different gap sizes. Fur-
thermore, an interplay between the nonlinear magneto-

optical Wood’s anomaly and the Peierls transition (when
a series of nanodimers collapses in an equidistant chain of
ferromagnetic nanodisks) seems to be nontrivial. Wood’s
anomaly is known to be enhanced on metallic gratings
supporting propagating SPP modes. It would be inter-
esting to perform similar measurements on periodic ar-
rays of sub-wavelength holes aiming at a complimentary
magneto-optical view on the phenomenon of extraordi-
nary optical transmission [1, 9] in the nonlinear-optical
regime.

ACKNOWLEDGMENTS

The dimer patterning was performed at the Center for
Functional Nanomaterials, Brookhaven National Labora-
tory, supported by the U.S. Department of Energy, Of-
fice of Basic Energy Sciences, under Contract No. DE-
SC0012704. The authors thank Rimantas Brucas, Henry
Stopfel and Tobias Warnatz for their help involving the
preparation and patterning of the sample, and Martin
Wolf for his support.
The authors acknowledge Deutsche Forschungsgemein-
schaft (AL2143/2-1), Agence Nationale de la Recherche
for financial support under grant ”PPMI-NANO” (ANR-
15-CE24-0032 and DFG SE2443/2), Stratégie interna-
tionale ”NNN-Telecom” de la Région Pays de La Loire,
the Knut and Alice Wallenberg Foundation project
’Harnessing light and spins through plasmons at the
nanoscale’ (2015.0060), the Swedish Research Council
and the Swedish Foundation for International Cooper-
ation in Research and Higher Education. This work is
part of a project which has received funding from the
European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 737093.

[1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and
P. A. Wolff, Nature 391, 667 (1998).
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