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We introduce a Maxwell-Bloch simulation approach which self-consistently combines a microscopic
description of the carrier and polarisation dynamics of a transition-metal-dichalcogenide (TMDC)
monolayer with a spatio-temporal full-wave time-domain simulation of Maxwell’s equations on the
basis of a finite-difference time-domain (FDTD) method beyond the slowly-varying amplitude or
paraxial approximations. This offers a platform to realistically model, in particular, the typical
ultrafast optical excitation experiments in micro- and nanocavities. Our simulations confirm that
the weak screening of the Coulomb interaction in TMDC monolayers yields pronounced exciton lines
in the linear spectrum and we uncover the second order nonlinearity represented in the semiconductor
Maxwell-Bloch equations by an intraband dipole moment. This allows us to calculate the spectral
shape of the exceptionally strong second harmonic generation around the exciton lines of TMDC
monolayers. We demonstrate that the second harmonic signal can remarkably be further enhanced
by several orders of magnitude through a suitably designed (one-dimensional) photonic microcavity.
Due to its self-consistency, flexibility, explicit spatio-temporal resolution on the nanoscale and the
ready access to light field and electron dynamics, our theory and computational approach is an
ideal platform to design and explore spatio-temporal nonlinear and quantum dynamics in complex
photonic or plasmonic micro- and nano-structures for opto-electronic, nanophotonic and quantum
applications of TMDC monolayers.

I. INTRODUCTION

When reduced to a single monolayer, transition-metal-
dichalcogenides (TMDCs) like MoS2, MoSe2 or WSe2
become direct band gap semiconductors1,2. Not sur-
prisingly, the prospect of optical control of a TMDC
monolayer together with its ultra-thin structure has lead
to numerous ideas for applications of TMDC mono-
layers3 ranging from photodetectors4–6 to single-photon
sources7–10. An important property of a TMDC mono-
layer is of course its linear and nonlinear optical response.
In the linear regime it shows two pronounced exciton lines
with the screening leading to exceptionally high exciton
binding energies compared to conventional semiconduc-
tors11–15. In the non-linear regime, TMDC monolayers
exhibit a strong second harmonic generation contribu-
tion16–21 because of the broken inversion symmetry. This
is different compared to centro-symmetric systems such
as graphene22 or TMDC bilayers21,23 where the second
harmonic generation is suppressed. Due to the weak van
der Waals forces between different layers of TMDCs, it
is easily possible to combine TMDC monolayers of differ-
ent materials to form van der Waals heterostructures24.
Hybrid structures of TMDC monolayers combined with
plasmonic structures25–27 or a photonic structure28–32

can lead to a strong enhancement of the optical proper-
ties or even strong coupling33. Clearly, the nano- and mi-
crostructured environment qualitatively alters the non-
linear optical response of the TMDC material, yet lit-
tle is known about the underlying processes and how to
meaningfully model this interplay. Indeed, one needs to

understand both the electronic and the optical properties
of the materials and the structure. The nonlinear op-
tical response of semiconductor nanostructures calls for
a microscopic treatment of the carrier dynamics, while
the simulation of the light field in photonic structures
requires an adequate description that accounts for the
different materials on the nanoscale. Here, we present
a practical method combining a microscopic description
of the TMDC semiconductor using the many-body semi-
conductor Bloch equations with a self-consistent spatio-
temporal full time-domain simulation of the optical fields
beyond the slowly-varying amplitude or paraxial approx-
imations on the basis of a finite difference time domain
(FDTD) method34–37 to calculate linear and non-linear
optical signals of a TMDC monolayer embedded in a
nanophotonic structure.

We discuss the absorption spectra of a TMDC mono-
layer exhibiting exciton peaks and relate them to the un-
derlying band structure. As an exemplary material of
a typical TMDC let us in the following focus on MoS2.
When the TMDC monolayer is put on a substrate the
optical properties can change significantly11,38,39 due to
a modification of the screening. We consider different
material substrates with different refractive indices and
discuss the resulting absorption spectra. Our method
is capable of calculating non-linear optical signals, e.g.,
third harmonic generation36. By introducing a perma-
nent dipole, we extend the Bloch equations to also being
able to describe the generation of even harmonics. We
focus on second harmonic generation, which is particu-
larly strong when the exciting frequency matches half the
exciton energy. We demonstrate that by integrating the
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FIG. 1. Sketch of the band structure of a TMDC monolayer.
The TMDC monolayer can be embedded into a photonic cav-
ity as indicated by the DBR mirrors at the sides.

monolayer in a nanophotonic cavity, the strength of the
second harmonic generation can be enhanced by several
orders of magnitude. Our method provides a versatile
tool to simulate possible optoelectronic applications us-
ing TMDC monolayers.

II. FULL-WAVE TMDC MAXWELL-BLOCH
FRAMEWORK

In our simulations, we model the light field dynam-
ics on the basis of the (spatio-temporal) full-wave time
domain Maxwell equations (avoiding the slowly-varying
amplitude or paraxial approximations) using a finite-
difference time-domain (FDTD) method, coupled self-
consistently with a microscopic semiconductor Bloch
model for the TMDC monolayer. The FDTD platform
is a well established method used to solve the Maxwell
equations for the electric field E(r, t) and the magnetiz-
ing field H(r, t) in matter via

∂tH(r, t) = −∇×E(r, t) , (1a)

∂tE(r, t) =
1

εb(r)
[∇×H(r, t)− ∂tP(r, t)] , (1b)

with ∂t = ∂/∂t the partial time derivative. The coupling
of the field to matter enters via the space-dependent di-
electric constant εb(r) and via the polarization P(r, t).
We assume a configuration where the TMDC monolayer
lies in the xy-plane located at zT and the light field prop-
agates perpendicular to the TMDC monolayer, i.e., in z-
direction. This simplifies the field dependencies to E(z, t)
and H(z, t). At the plane of the TMDC the polarization
is P(zT , t). Other (inactive) materials enter in the cal-
culation via their dielectric function εb(r), which for lay-
ered structures reduces to εb(z). This enables us to sim-
ulate photonic structures, e.g., photonic cavities, which
we then combine with the TMDC as indicated in Fig. 1.

To calculate the polarization P(zT , t) induced by the
TMDC monolayer, we apply a microscopic semiconduc-
tor model following Ref.40. At the K and K ′ valley we
take into account four bands each, two conduction and

two valence bands. As a consequence of the strong spin-
orbit interaction the valence (conduction) bands are spin-
split by ∆v (∆c) at the band edge. The two valleys differ
in the arrangement of the bands, e.g., while for the K
valley the spin up band is the uppermost valence band,
it is the other way around for the K ′ valley. We call the
bands A and B, adopting the notation of the two exci-
tons used later. A sketch of the band structure is given
in Fig. 1. The corresponding Hamiltonian describing the
band structure using the electron (hole) creation and an-

nihilation operators ĉ†n,k (d̂†n,k) and ĉn,k (d̂n,k) reads

Ĥ0 =
∑
n,k

εenĉ
†
n,kĉn,k + εhnd̂

†
n,kd̂n,k . (2)

The dependency of the state on the valleys (K and K ′)
and different bands (A and B) is summarized in the index
n ∈ {KA,KB,K ′A,K ′B}. The energies of the states

are ε
e/h
n = ~2k2/2m

e/h
n + E

e/h
n with m

e/h
n being the ef-

fective masses. E
e/h
n are the energies at the band edges

and k = (kx, ky, 0) is the two-dimensional wave vector.
The conduction bands and the valence bands are split by
∆c/v, respectively, and we define the energy difference be-
tween the A bands as EA = EeKA−EhKA = EeK′A−EhK′A
and EB analogously.

The coupling to the light field is treated in dipole ap-
proximation. Only the light field at the TMDC mono-
layer E(zT , t) acts on the semiconductor sheet via the
Hamiltonian

Ĥc−l =
∑
n,k

E(zT , t) ·
[
Mcv

n ĉ
†
n,kd̂

†
n,−k + Mcv∗

n d̂n,−kĉn,k

]
.(3)

The optical selection rules are described by the dipole
matrix element Mcv

n , which couples the valence band to
the conduction band within the same valley and the same
type of band (e.g. KA → KA) as marked in Fig. 1.
The transitions are circularly polarized with σ+ polar-
ized transitions in the K valley and σ− polarized transi-
tions in the K ′ valley40. To account for the polarization
dependent coupling, we use MKA = (Mx, iMy, 0) and
MK′A = (Mx,−iMy, 0) with real valued Mx/y (analo-
gously for the B transition) and approximate the k de-
pendence of the dipole matrix element by constants.

The resulting Hamiltonian can be used to describe a
generic electronic system with several parabolic valleys
and strong spin-orbit interaction, resulting in spin-split
bands. In particular, this provides a suitable platform
for studying several materials within the broad class of
TMDC monolayers as their band structures present the
same broad features. The parameters included in the
model can then be used to tune specific features of the
dynamics and thus the response of a specific TMDC can
be recovered. A more in depth discussion of the param-
eters of the model is provided in appendix A, together
with the values for a MoS2 monolayer.

On the basis of the Hamiltonians discussed above we
now proceed to set up the equations of motion for the

occupations of the electrons fen,k = 〈ĉ†n,kĉn,k〉 and of the
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holes fhn,k = 〈d̂†n,kd̂n,k〉. Although there are, in princi-
ple, possibilities for several coherences between different
bands, the optical transitions occur only between valence
and conduction band states with the same index n (cf.
Eq. (3)). Hence, on this stage it is sufficient to con-

sider the polarization pn,k = 〈d̂n,−kĉn,k〉 . Introducing

the Rabi frequency Ωn = Mcv
n ·E(zT , t)/~ we obtain the

TMDC Bloch equations41,42

∂tf
e
n,k = ∂tf

h
n,k = i

(
Ωnp

∗
n,k − Ω∗npn,k

)
, (4a)

∂tpn,k = − i
~
(
εen + εhn

)
pn,k − γnpn,k

−iΩn
(
fen,k + fhn,k − 1

)
. (4b)

For numerical reasons we have introduced a phenomeno-
logical dephasing rate γn, which leads to a broadening of
the spectral lines in the optical response.
From the microscopic polarization pn,k we can calculate
the macroscopic polarization via

P(zT , t) =
∑
n,k

(
p∗n,kM

cv
n + pn,kM

cv∗
n

)
. (5)

Note that the macroscopic polarization is a real valued
quantity, although the microscopic polarization and the
dipole moment are complex valued. This is an important
aspect, because the FDTD simulation is performed with
real valued fields E and H. The optical polarization now
acts back on the fields entering the FDTD simulation (cf.
Eq. (1b)) and opens up the possibility to calculate linear
and non-linear optical signals.

III. EXCITONS

To theoretically grasp and model excitonic effects on
the microscopic level, we have to include Coulomb inter-
actions in our model and simulation. Indeed, in TMDC
monolayers the weak screening of the Coulomb inter-
action results in extraordinarily high exciton binding
energies11–14. Using the standard Coulomb interaction
Hamiltonian

Hc−c =
1

2

∑
n,k,k′,q

[
Vqĉ
†
n,k+qĉ

†
n,k′−qĉn,k′ ĉn,k

+Vqd̂
†
n,k+qd̂

†
n,k′−qd̂n,k′ d̂n,k

−2 Vqĉ
†
n,k+qd̂

†
n,k′−qd̂n,k′ ĉn,k

]
(6)

we describe electron-electron, hole-hole and electron-hole
interactions. The Coulomb interactions lead to a cou-
pling of the different k states, which otherwise would
be just an ensemble of uncoupled two-level systems (cf.
Eq. (4))36. In the following, we shall focus on interac-
tions within the same band which dominate for small
densities and truncate the infinite hierarchy of equa-
tions on the mean field level. However, the extension
of our model to include intervalley Coulomb scattering is

straightforward to, e.g., study intervalley dynamics us-
ing two-pulse pump-probe experiments43,44 and we em-
phasize that other interaction mechanisms, e.g., electron-
phonon interaction, can likewise be included on the mi-
croscopic level.

For the TMDC monolayer we use the two-dimensional
Coulomb coupling matrix element Vq

40

Vq =
e2

ε0εsA

1

q (1 + r0q)
, (7)

where e is the elementary charge, ε0 the dielectric con-
stant and A the area. The screening length is given by
r0 = dε⊥/εs with the inplane dielectric constant ε⊥ and
the thickness d of the TMDC monolayer. The dielectric
constant εs accounts for screening from the environment

εs = εsuper + εsub , (8)

which is the sum of the dielectric constants of the sub-
strate εsub and the superstrate εsuper. Indeed, it was
found that the exciton binding energy depends sensitively
on the surrounding material11,38.

Now we calculate the linear optical response for a
MoS2 monolayer with the material parameters given in
appendix A. We send a weak pulse from one side onto
the structure, e.g., a freestanding TMDC monolayer or
a more sophisticated photonic structure with an embed-
ded TMDC monolayer. The light pulse then propagates
through the structure and interacts with the TMDC
monolayer. We record the reflected and transmitted
fields through the intensities Irefl and Itrans, respec-
tively36. The spectrum α is then calculated via

α = 1− Irefl + Itrans
Iinc

(9)

with Iinc the intensity of the incoming pulse. Without
loss of generality let us choose the polarization of the
incoming pulse to be right-handed circular polarization,
thereby addressing only the K-valley (the results are the
same for left-handed circular polarization, where only K ′

excitons would appear).
Before focusing on a more complex scenario and

regimes such as nonlinear processes, we first consider
the linear response of a freestanding TMDC monolayer
shown in Fig. 2a). The absorption spectrum exhibits two
pronounced peaks, which we attribute to the A and B ex-
citon at 1.90 eV and 2.05 eV. These excitons form due to
Coulomb interactions. We find binding energies of about
850 meV, due to the weak screening of the Coulomb in-
teraction in these materials. Our values are comparable
to theoretical calculations for MoS2 using density func-
tional theory (DFT) methods45–48. The energetic split-
ting between the A and B exciton with 0.15 meV reflects
mostly the valence band splitting with ∆v = 0.16 meV
(with ∆c = 0), while a small difference appears due to
the different effective masses of the two valence bands.
The difference in peak amplitude can be traced back to
different band gaps. Due to the high binding energy, we
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FIG. 2. Absorption spectrum of a) a freestanding MoS2

monolayer, b) a MoS2 monolayer on glass and c) a MoS2

monolayer sandwiched in glass.

also clearly see the first excited exciton states as smaller
peaks at energies of 2.41 eV and 2.56 eV, as well as the
second excited state. In our model the exciton binding
energies follow roughly the solution of the 2D Coulomb
potential. Studies of the exciton series in TMDC mono-
layers is still a very active research field, because strong
deviations from the Rydberg series were found20,47.

Due to its two-dimensionality, the screening of the
Coulomb interaction in a monolayer is strongly affected
by the surrounding material. The most common case is
a monolayer lying on top of a substrate. In Fig. 2b) we
show the absorption spectrum of a MoS2 monolayer on
glass (refractive index 1.50). Again, we see the A and
B exciton peaks, but now at 2.15 eV and 2.30 eV, re-
spectively, i.e., about 0.25 eV higher in energy than for
the freestanding layer. The energetic shift for both the A
and B exciton is the same and a consequence of screening
from the substrate. Another element that affects the ex-
citon energy is the renormalization (redshift) of the band
gap as reported from DFT calculations38,49,50 as well as
experiments51. It has further been shown that the com-
bined effect of binding energy and band gap renormaliza-
tion can be used to engineer the position of the excitonic
resonances51,52. This effect can be accounted for in our
simulation by setting the value of the band gap as a sub-
strate dependent parameter.

In a third scenario, we consider the TMDC monolayer
sandwiched in glass. The glass superstrate further en-
hances the screening of the Coulomb interaction and ac-
cordingly the binding energy of the states is again di-
minished, resulting in the A and B exciton lines lying
at A = 2.28 eV and B = 2.43 eV. By changing the en-
vironment of the TMDC monolayer one can thus tune
the energy of the exciton lines, which is important when
embedding a TMDC monolayer into heterostructures.

IV. SECOND HARMONIC GENERATION

Let us now focus on the non-linear optical response.
In a symmetric material we would a priori expect only
odd harmonics (like the third, fifth,. . . harmonics) to be
generically generated36. Yet second harmonic generation
was found to be strong in TMDC monolayers and this
has been associated with a broken inversion symmetry of
the TMDC monolayer lattice17–20,53 which we microscop-
ically model via the electric field coupling Hamiltonian:

Ĥpd = −E(zT , t) ·
∑
n,k

[
Mc

nĉ
†
n,kĉn,k −Mv

nd̂
†
n,kd̂n,k

]
.(10)

Here, Mc
i (Mv

i ) is the intraband dipole of the conduc-
tion (valence) band representing a permanent dipole mo-
ment which microscopically models the broken inversion
symmetry of the TMDC monolayer lattice. A similar
model extending Maxwell-Bloch equations with the in-
clusion of a permanent dipole has been used in the con-
text of two and four-level systems to describe the non-
linear response of polarized molecules54–56. As the op-
tical excitation takes place perpendicular to the plane
we shall in the following focus on the in-plane compo-
nents of the intraband dipole moment, which we de-

fine as M
c/v
n = (M

c/v
n,x ,M

c/v
n,y , 0). This is well justified

even for a hypothetical non-zero z-component, as this
component would not couple to the external field with
E(zT , t) = (Ex, Ey, 0). Indeed, already in the x−y-plane
the inversion symmetry is broken due to the 2-atomic ba-
sis in the hexagonal TMDC lattice, i.e., when the system
is inverted the metal atom is mirrored on the chalco-
genide atom and also the other way around. This is an
indication that the in-plane wave functions are also not
symmetric, which, in turn, results in an intraband dipole
moment. Incidentally, the latter was also shown for tilted
quantum wells57. Note that the in-plane symmetry can
be restored by adding a second TMDC layer, which leads
to the second harmonic being suppressed23,58. Further-
more, we note that the SHG is polarization dependent,
i.e., for a particular symmetry axis the second harmonic
is weak21,23 and for not perfectly aligned stacked TMDC
layers strong second harmonic signals can be found53,59.
While, for reasons of clarity, we shall in the following as-
sume a k-independent intraband dipole moment, effects
such as a polarisation dependent SHG, can in principle
be taken into account via a k-dependent matrix element.
In our model equations (cf. Eq. (4)) the intraband dipole
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interaction enters in the equation for the polarization pn,k
via

∂tpn,k|Hpd
= − i

~
E(zT , t) · (Mc

n −Mv
n) pn,k . (11)

Note that the model equations thus now provide the ba-
sis for the possibility of a second harmonic generation
and also higher even harmonics. However, as we con-
sider a dynamic electric field E(zT , t) the non-linear re-
sponse is obtained directly from the dynamical simula-
tion and consequently fundamental questions such as if
second harmonic generation is excited at all and with
which strength are not pre-determined but rather a re-
sult of the dynamical simulation.

Let us initially consider the non-linear optical re-
sponse of a simple freestanding MoS2 monolayer. For
the optical excitation we use a sech pulse of the form
E(t) = E0 cos(ωpt)sech(t/τ) with linear polarization.
The laser pulse excites the system at the energy εp = ~ωp
with a full width at half maximum FWHM of the pulse
2τ log(2 +

√
3) = 200 fs. The strength of the pulse is set

to E0 = 108 V/m. We first set the energy of the laser
pulse to half of the A-exciton energy with εp = 0.95 eV
and calculate the spectrum shown in Fig. 3a); note that
the spectrum is shown on a logarithmic scale. In the
spectrum the most pronounced peak occurs at the excit-
ing fundamental (FUN) frequency 0.95 eV being half of
the A-exciton energy. Due to higher harmonics genera-
tion, we clearly see peaks emerging at multiples of the
exciting frequency. The peak at E = 1.90 eV constitutes
the second harmonic generation (SHG) signal and coin-
cides with the energy of the A-exciton of a freestanding

monolayer. The field of the second harmonic is about 8
orders of magnitude below the intensity of the fundamen-
tal peak. We also see the appearance of the third har-
monic at E = 2.85 eV. Here, the field is about 13 orders
of magnitude lower than the fundamental signal, reflect-
ing the higher order of the process. This is nicely in line
with third harmonic generation having also been experi-
mentally observed in TMDC monolayers59–61. We should
emphasise that in our ’computational experiments’ the
higher harmonic generation is contained within a full dy-
namical many-body simulation framework and, in par-
ticular, without the explicit use of any terms such as a
nonlinear susceptibility. Indeed, in our computational
simulations it is the interaction of the light field with the
Coulomb-interacting carriers in the semiconductor which
leads to the generation of these non-linear optical signals.

Figure 3b) shows the dependence of the SHG strength
on the fundamental frequency, obtained by sweeping the
energy of the exciting laser pulse εp between the ener-
gies of 0.90 eV and 1.10 eV. Even though the exciton
energies are not an explicit input in our calculation, but
are rather a result of our computational experiments, we
find a strong dependence of the strength of the higher
harmonic generation on the exciton energy. We find that
at εp = 0.95 eV and εp = 1.03 eV the second harmonic
generation is particularly strong. These energies can be
identified with half of the energy of the A and B exciton
of the freestanding monolayer, respectively. We conclude,
that non-linear processes are much more efficient when a
final state for the higher harmonic is present.

To explore a possible enhancement of the non-linear
optical response of a TMDC monolayer, we now embed
the TMDC layer into a nano-structured photonic cavity.
An important example of such a nanostructured photonic
cavity consists of two parallel distributed Bragg mirrors.
For specificity we use a cavity composed of two Bragg
mirrors consisting of layers of glass (SiO2, refractive in-
dex 1.50) and silicon nitrite (SiNx, refractive index 2.23)
as shown in Fig. 4a). Each glass layer is 180 nm thick
and each silicon nitride layer is 120 nm thick. The cor-
responding refractive indices are indicated by the black
line in Fig. 4a). By the periodic arrangement of glass and
silicon nitride a band gap is formed at an energy around
1 eV. In the middle of the layered structure we thus gen-
erate a cavity with an effective length L, such that a
confined mode emerges with a quality factor Q ' 400.
An example of a confined mode is shown in Fig. 4a) (or-
ange color) and the reflectivity is shown in Fig. 4b). Due
to the confinement of the mode, we find a strong field
enhancement in the middle of the cavity. By changing
the length L of the cavity we can control the energy of
the cavity mode. Figure 5 shows the energy of the cavity
mode as function of the cavity length L (green curve).
When the cavity length is increased from L = 250 nm to
L = 450 nm, the mode energy decreases from 1.26 eV to
1.07 eV. Because all cavity modes lie well within the stop
band of the photonic structure, the change of the cavity
mode as function of the cavity length is approximately
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linear.

Now let us introduce the TMDC monolayer at the field
maximum of the cavity and consider the strength of the
second harmonic signal in this new configuration. We ad-
just the exciting frequency of the impinging laser pulse to
match the frequency of the cavity mode and the resulting
strength of the second harmonic generation is displayed
in Fig. 5 (black curve) as function of cavity length. We
find that for a cavity length of 300 nm and for 370 nm
a pronounced enhancement occurs. Remarkably, due to

the cavity structure the second harmonic signal is now
up to 3 orders of magnitude stronger than for the soli-
tary freestanding monolayer. The difference in strength
between the two peaks can be explained by the differ-
ent field strengths of the cavity modes, which directly
affects the efficiency of the higher harmonic generation.
The pronounced resonances at certain cavity lengths can
be traced back to the exciton frequencies of the TMDC
monolayer. Here, one has to be careful to use the shifted
exciton frequencies due to the modified screening by the
surrounding material as shown in Fig. 2c). Indeed, we
find the strongest amplification at the energies 1.14 eV
(at L = 370 nm) and 1.22 eV (at L = 300 nm) being half
of the A (2.28 eV) and B (2.43 eV) exciton energies of
the monolayer sandwiched in glass (cf. Fig. 2c)).

V. CONCLUSIONS

In this work, we have introduced a dynamic full-wave
theoretical framework to calculate linear and non-linear
optical signals of photoexcited semiconducting TMDC
monolayers embedded in a nano-structured photonic cav-
ity, combining a full-wave spatio-temporal representation
of Maxwell’s equations (beyond the slowly-varying en-
velope or paraxial approximations) solved on the basis
of a finite-difference time-domain (FDTD) method with
many-body semiconductor-Bloch equations for TMDC.
Combining a dynamic full-wave and spatially resolved
simulation of Maxwell’s equations with semiconductor
Bloch equations for TMDC materials allows us to track
the light field dynamics as well as the electron dynamics.
To achieve this description, the TMDC model takes into
account all spin and valley indices as well as polarization
dependent selection rules for the coupling to the vectorial
fields of the FDTD simulation. Because our method can
readily be expanded to include electron-phonon interac-
tion or electron-electron scattering processes, it can fur-
ther be used to monitor processes like valley-dependent
scattering.

Computational experiments performed within this
framework confirm that TMDC monolayers show very
pronounced excitonic effects (which are taken on board
by calculating the Coulomb interaction dynamically on a
Hartree-Fock level), as well as a very strong second har-
monic generation (modelled via consideration of a perma-
nent intraband dipole). The second order nonlinear re-
sponse is not an input parameter that we funnel into the
model but emerges dynamically from the inherent non-
linear structure of the semiconductor Bloch equations.
Furthermore, the self-consistent nature of the simulations
allows us to theoretically determine the spectral shape of
the second harmonic signal in a MoS2 monolayer, which
peaks very strongly at resonance with the excitons. This
is particularly interesting in TMDC materials, where the
peaks are separated by several hundreds of meV from
the band gap, in contrast to conventional semiconductor
quantum wells in which such strong binding energies are
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not possible.
Moreover, we have demonstrated that the second har-

monic signal of a photoexcited TMDC monolayer can
be significantly enhanced by an appropriately designed
cavity. Such an enhanced non-linear interaction can con-
ceivably eliminate the need for phase matching due to
the giant second harmonic generation in a single TMDC
monolayer compared to other previously available quasi-
two-dimensional structures such as asymmetric quan-
tum wells. In contrast to conventional semiconductor
QWs, which are always embedded into other semicon-
ductor materials, TMDCs can be readily combined with
other (isolating, semiconducting or metallic) materials
to enhance the light-matter interaction. While we here
chose as an example a SiO2 cavity with (sub-wavelength
structured) DBR mirrors, an extension to other materi-
als including, in particular, nanoplasmonic cavities and
waveguides, is readily possible in our approach thanks
to the sub-wavelength spatial resolution of our full-wave
(spatio-temporal) method. Therefore, our method can
be employed to calculate the interaction with arbitrary
plasmonic structures as well as with photonic crystals
in two or three dimensions. It is also possible to in-
clude one or more several separated TMDC monolayers.
Thus, our method constitutes an ideal platform to ex-
plore and design nanophotonic structures which employ
TMDC monolayers to achieve novel optical functionali-
ties.
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Appendix A: Material parameters

In this work we consider MoS2 as material with the cor-
responding parameters listed in Table I. Other TMDC
monolayers like WS2, WSe2 can be easily adopted by
changing the material parameters. We assume that the
conduction band splitting is negligible and only the va-
lence band is split. The band gap Egap is defined such

that it lies in the middle of the spin split bands, result-
ing in band gaps of EA = 2.76 eV and EB = 2.94 eV for
the A and B band, respectively. The band structure
parameters (effective masses, band energies and spin-
orbit splitting) are taken from Ref.40 and come from fit-
ting a tight-binding model to a set of DFT band struc-
tures. The resulting isotropic valleys provide a low exci-
tation energy approximation to the trigonal shaped val-
leys obtained from a priori calculations. The combina-
tion of conduction and valence band spin-orbit splitting,
∆c and ∆v, determines the energy difference between
the A and B exciton series. The A (B) exciton binding
energy, and thus its spectral position, comes from the ef-
fective electron and hole masses, mc and mv

A (mv
B), as

well as the specifics of the Coulomb interaction. In par-
ticular, the screening from the dielectric environment,
εs = εsuper + εsub, provides a scaling of the Coulomb ma-
trix elements, cf. Eq. 7, which results in the renormalisa-
tion observed in Fig. 2. Conversely, the screening length,
r0 = dε⊥/εs = 3.744 nm/εs, affects the excitonic series
beyond a simple scaling of the binding energies. This
produces the experimentally observed nonhydrogenic Ry-
dberg series11. The values for the monolayer thickness,
d, and the in-plane dielectric constant, ε⊥, can be ob-
tained via DFT simulations of the bulk material, see,
e.g., Refs.12,62. In the limiting case of d → 0 or εs → ∞
this reduces to a 2D hydrogenic Rydberg series, while for
d → ∞ it reproduces the 3D result. The dipole matrix
elements, Mcv, are calculated from the momentum ma-
trix elements in Ref.40 via Mcv

ν = ~pcvν / (iµνEν) with
the reduced mass, µν , the band gap energies, Eν , and
ν ∈ {A,B}. The intraband dipole, Mc−Mv, can be de-
termined via a comparison with experimental results of
SHG in the chosen material. Lastly, the dephasing rate
provides a phenomenological way to introduce broaden-
ing of the resonances.

TABLE I. Parameters of MoS2 with m0 being the free elec-
tron mass

effective mass electron me 0.480 m0

effective mass hole A mv
A 0.575 m0

effective mass hole B mv
B 0.660 m0

band gap Egap 2.84 eV
valence band splitting ∆v 160 meV
conduction band splitting ∆c 0 meV
dipole matrix element |Mcv|x = |Mcv|y 0.2 nm
intraband dipole |Mc −Mv|x,y 0.02 nm
layer thickness d 0.312 nm
in-plane dielectric constant ε⊥ 12
dephasing rate γ 1/30 fs−1
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