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In this work we use Floquet theory to theoretically study the influence of monochromatic circularly and
linearly polarized light on the Hofstadter butterfly—induced by a uniform perpendicular magnetic field–for
both the kagome and triangular lattices. In the absence of the laser light, the butterfly has fractal structure
with inversion symmetry about magnetic flux φ = 1/4, 3/4, and reflection symmetry about φ = 1/2. As the
system is exposed to an external laser, we find circularly polarized light deforms the butterfly by breaking the
mirror symmetry at flux φ = 1/2. By contrast, linearly polarized light deforms the original butterfly while
preserving the mirror symmetry at flux φ = 1/2. We find the inversion symmetry is always preserved for
both linear and circular polarized light. For linearly polarized light, the Hofstadter butterfly depends on the
polarization direction. Further, we study the effect of the laser on the Chern number of lowest band in the off-
resonance regime (laser frequency is larger than the bandwidth). For circularly polarized light, we find that low
laser intensity will not change the Chern number, but beyond a critical intensity the Chern number will change.
For linearly polarized light, the Chern number depends on the polarization direction. Our work highlights the
generic features expected for the periodically driven Hofstadter problem on different lattices.

I. INTRODUCTION

The Hofstadter butterfly–the energy spectrum of a two-
dimensional lattice model as a function of static magnetic flux
through the unit cell–exhibits a complex fractal structure re-
sembling a butterfly.1 The original butterfly was based on a
tight-binding model for the two-dimensional square lattice.
Subsequent work generalized the square lattice result to tri-
angular, honeycomb, and kagome lattices, in addition to bi-
layer graphene and twisted bilayer graphene.2–6 Even through
there exist some differences in detail, the fractal pattern is ob-
served for all of the above lattices. On the square or honey-
comb lattice with an isotropic hopping parameter, the system
exhibits particle-hole symmetry, which makes the Hofstadter
butterfly symmetric about the zero-energy axis. Further, a re-
flection symmetry about 1/2 flux (in units of the fundamental
flux quantum hc/ewhere h is Planck’s constant, c is the speed
of light, and e is the charger of the electron) is observed.

The number of plaquettes enclosed by a unit may influ-
ence the electronic properties. Compared to the square lat-
tice (where the smallest possible plaquette coincides with one
unit cell), there are two triangles in the triangular lattice, and
two triangles and a hexagon in the kagome lattice. More-
over, tight-binding models of electrons on two-dimensional
(2D) triangular and kagome lattice exhibit rich and interesting
phenonmenlogy even without an external magnetic field.7 A
triangular plaquette is often a basic building block of geomet-
rical frustration. The kagome lattice is composed of corner-
sharing triangles in a 2D plane. Flat bands appear in a nearest-
neighbor hopping model. In the presence of a magnetic field,
the phenomenology is even richer. The energy momentum
relation and the density of states on a triangular lattice with
a uniform magnetic field have been investigated in Ref. [8].
The kagome systems have a frustrated ground state9 and the
flat band is destroyed at finite magnetic flux.10. In both the
triangular and kagome lattices (the two lattice have isotropic
hopping terms), the particle-hole symmetry is broken, and the
reflection symmetry about the zero-energy axis disappears,

while the reflection about the 1/2 flux axis is preserved.5

Moreover, an additional central (inversion) symmetry about
the point with zero energy and 1/4 (or 3/4) flux is observed.5

The strength of magnetic field required to observe the Hof-
stadter butterfly depends on the spacing between atoms in the
lattice (i.e., the lattice constant).1 For conventional materials,
the magnitude of the magnetic field required to observe the
fractal pattern is on the order of 104 Tesla, well above the
field generated by the best magnets currently available (about
100 Tesla).

One way to circumvent this problem is to use artificial su-
perlattices, where the lattice spacing can be an order of mag-
nitude larger than in conventional materials. In 1998, the
Hofstadter butterfly was reproduced in experiments with mi-
crowaves transmitted through a waveguide equipped with an
array of scatterers.11 In 2013, several experimental groups
independently reported evidence of the Hofstadter butter-
fly spectrum in graphene devices fabricated on hexagonal
boron nitride substrates.12–14 In 2017, a simulation of two-
dimensional electrons in a magnetic field using interacting
photons in nine superconducting qubits exhibited a Hofstadter
butterfly.15

Recently, light-driven materials have attracted considerable
interest from the physics community. At the non-interacting
level, dramatic changes in the band structure can occur, in-
cluding a change from a non-topological band structure to
a topological one.16–29 Two commonly discussed physical
scenarios for periodically driven systems include periodic
changes in the laser fields that establish the optical lattice po-
tential for cold atom systems,30,31 and solid state systems that
are driven by a monochromatic laser field.32–39

The effect of light (a periodic drive in the Hamiltonian) on
the Hofstadter butterfly has not been studied extensively.40–48

The pioneering works are focused on the kicked-Harper
model or the double kicked rotor model.40–43 Prior work
based on the square lattice Hofstadter model found that peri-
odic driving leads to pairs of counter-propagating chiral edge
modes, which are protected by the chiral symmetry and ro-
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bust against static disorder.44,45 By irradiating a honeycomb
lattice (graphene) subjected to a uniform perpendicular mag-
netic field with a laser, the driven Hofstadter butterfly (Floquet
Hofstadter butterfly) exhibits an even richer structure than its
static counterpart.46–48 In Ref.[46], a transition from the half-
integer to the integer quantum Hall effect in graphene has been
theoretically proposed to occur with strong elliptical driving.
In Ref. [47], the driven Hofstadter butterfly on the honey-
comb lattice was numerically studied under the influence of
circularly and linearly polarized light, and the Chern number
of the “ground state” of the Floquet-Hofstadter spectrum was
studied for an off-resonant laser. Recently, the formation of
the Hofstadter butterfly at low magnetic fields by adding a
periodic driving was studied systematically.48 By decreasing
the laser frequency from the off-resonant to the on-resonant
regime, the authors48 found that the “top” two bands do not
hybridize with the bands of the “upper” Floquet copy. The
observed phenomena is well explained using an low energy
effective Hamiltonian.

As stated before, the equilibrium Hofstadter butterfly is
considerably different for the triangular or kagome lattices
when compared to that of the square or honeycomb lattices.
Previous out-of-equilibrium (periodically-driven) studies of
the Hofstadter butterfly have focused on the square lattice or
honeycomb lattice. In this work, we focus our attention on the
effect of circularly and linearly polarized light on the Hofs-
tadter butterfly–and the corresponding Chern numbers–for the
kagome and triangular lattices.

The organization of this paper is as follows. We study tight-
binding Hamiltonians on a the kagome and triangular lattices
exposed to a perpendicular magnetic field and monochromatic
laser. In Sec. II, we introduce the model Hamiltonian on these
two lattices. The effect of laser on the Hofstadter butterfly
is studied systematically in Sec. III, and the Chern number is
calculated in Sec. IV. The numerical results for the triangular
lattice are presented in Sec. V. Finally, in Sec. VI, we summa-
rize our main results and conclusions.

II. MODEL AND METHOD

The model Hamiltonian we study, defined on a two-
dimensional kagome or triangular lattice, is based on the
isotropic nearest-neighbor hopping model,

H = −th
∑
〈ij〉,σ

c†iσcjσ, (1)

where th is the isotropic hopping integral between nearest
neighbors, c†iσ (cjσ) creates (annihilates) an electron with spin
σ on site i (j) of the two-dimensional lattice, and 〈ij〉 limits
the summation to nearest neighbors.

A. Equilibrium Hamiltonian without magnetic field

The three-band kagome lattice model (three sites in one
unit cell) we study is based on the nearest-neighbor hop-
ping model, Eq.(1). The kagome lattice is two-dimensional
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FIG. 1. (Color online.) The kagome lattice with the three (for
the case of zero magnetic field) sites (A, B, C) in one unit cell
are labeled. Three nearest-neighbor unit vectors are ~δ1 = (1, 0)a,
~δ2 = (1/2,

√
3/2)a, and ~δ3 = ~δ2 − ~δ1 = (−1/2,

√
3/2)a with a

the nearest-neighbor distance in the kagome lattice. The translational
vectors are ~a1 = 2~δ1 and ~a2 = 2~δ2. The reciprocal lattice vectors
are ~b1 = (1,−1/

√
3)π/a and ~b2 = (0, 2/

√
3)π/a. When the sys-

tem is exposed to a perpendicular magnetic field, the magnetic unit
cell must be enlarged (to recover the translational symmetry) by an
amount that depends on the value of magnetic flux φ. For example,
the magnetic cell is the pink area (shaded parallelogram) for mag-
netic flux φ/φ0 = 1/8q with q = 2 (φ0 is defined as magnetic flux
quantum).

corner-sharing network of triangles shown in Fig.1. To make
the translational symmetry apparent, the Hamiltonian in real-
space can be rewritten (omitting the spin index for clarity),

Hkagome =
∑
m,n

c†m,nam,n + c†m,nam,n+1 + h.c.

+
∑
m,n

c†m,nbm,n + c†m,nbm−1,n+1 + h.c.

+
∑
m,n

b†m,nam,n + b†m,nam+1,n + h.c., (2)

where the first term in each line above denotes hopping terms
in one unit cell, the second term in each line denote hopping
term between neighbouring unit cells. We define the position
of an arbitrary unit cell as

R(m,n) = m~a1 + n~a2, (3)

with m,n are integers, am,n, bm,n, cm,n define annihilate op-
erators on the three basis sites A,B,C in one unit cell shown
in Fig.1. The nearest-neighbor vectors are ~δ1 = (1, 0)a,
~δ2 = (1/2,

√
3/2)a, and ~δ3 = ~δ2 − ~δ1 = (−1/2,

√
3/2)a

with a the nearest-neighbor distance. The translational lattice
vectors are ~a1 = 2~δ1 = (2, 0)a and ~a2 = 2~δ2 = (1,

√
3)a.

Fourier transforming the real space Hamiltonian Eq.(2)
to momentum space, the Hamiltonian becomes, H =



3∑
k ψ
†
kHkψk with ψk = (ak, bk, ck)T ,

Hk = −th

 0 1 + e−ik1 1 + e−ik2

1 + e+ik1 0 1 + e−ik3

1 + e+ik2 1 + e+ik3 0

 , (4)

where we used ki = k · ~ai.

B. Equilibrium Hamiltonian with static magnetic field

In the presence of a magnetic field, the hopping parameter
th gets modified by the Peierls phase,

th 7→ the
iθij , (5)

where the phase is the integral over the vector potential along
the hopping path.

θij = − e
~

∫ rj

ri

~A(~r) · d~r = −2π

φ0

∫ rj

ri

~A(~r) · d~r (6)

where φ0 ≡ h/e = 1 is the magnetic-flux quantum. We define
φ = BS as the magnetic flux through the smallest triangle
in one unit cell with S the area of the triangle. The Landau
gauge ~A(~r) = (0, Bx, 0) is adopted and the corresponding
magnetic unit cell (enlarged parallelogram) is shown in Fig.1.
The hopping phases are

θ1 = 8mφ× (2π), θ2 = φ× (2π),

θ3 = (8m− 1)φ× (2π), (7)

and θ = 0 for the hopping along other bonds. Here the
subindex 1 denotes the bond starting from site C in unit cell
R(m,n) to site A in unit cell R(m,n + 1), the subindex 2
denotes the bond starting from site B to site C in the same unit
cell R(m,n), subindex 3 denotes bond starting from site C in
unit cell R(m,n) to site B in unit cell R(m − 1, n + 1). The
3 bonds are shown in Fig.1 with labels 1,2,3 and arrow in the
middle of bonds. The calculation details can be found in Ref.
[5] where a topological equivalent lattice is used. To satisfy
the periodic boundary conditions, the uniform-flux strength
for the kagome lattice is given by

φ = p/(8q), (8)

where p, q are coprime integers and the magnetic unit cell will
be q times larger than the original unit cell without magnetic
field.

To recover the translational symmetry of the lattice, we en-
large the unit cell along the translational vector ~a1 of the orig-
inal unit cell by a factor of q and rewrite the position of each
unit cell as,

R̃(m,n) = m~a1 × q + n~a2. (9)

The relation between original, Eq.(3), and the enlarged,
Eq.(9), unit cell vectors is,

R(m,n) = R̃(m′, n) + (l − 1)~a1, (10)

with m′ = (m − 1)/q + 1 and l = mod(m − 1, q) + 1. The
Hamiltonian in Eq. (2) can be rewritten in the enlarged unit
cell as,

H = H(1) +H(2) +H(3). (11)

where

H(1) =− th
∑
mn

q∑
l=1

c†(m,n),la(m,n),l

− th
∑
mn

q∑
l=1

c†(m,n),la(m,n+1),l,

(12)

H(2) =− th
∑
mn

q∑
l=1

c†(m,n),lb(m,n),l

− th
∑
mn

1∑
l=1

c†(m,n),1b(m−1,n+1),q

− th
∑
mn

q∑
l=2

c†(m,n),lb(m,n+1),l−1,

(13)

H(3) =− th
∑
mn

q∑
l=1

b†(m,n),la(m,n),l

− th
∑
mn

q−1∑
l=1

b†(m,n),la(m,n),l+1

− th
∑
mn

q∑
l=q

b†(m,n),qa(m+1,n),1. (14)

Consider the magnetic phase (a gauge choice),

H(1) =− th
∑
mn

q∑
l=1

c†(m,n),la(m,n),l

− th
∑
mn

q∑
l=1

c†(m,n),la(m,n+1),le
−i2π(8l)φ,

(15)

H(2) =− th
∑
mn

q∑
l=1

c†(m,n),lb(m,n),le
+i2πφ

− th
∑
mn

1∑
l=1

c†(m,n),1b(m−1,n+1),qe
−i2π(8l−1)φ

− th
∑
mn

q∑
l=2

c†(m,n),lb(m,n+1),l−1e
−i2π(8l−1)φ,

(16)



4

FIG. 2. (Color online.) The Hofstader butterfly for the kagome lattice, deformed by circularly polarized light with frequency fixed at an off-
resonant regime Ω = 9.0. The representative laser laser intensity are chosen as (a) A0 = 0.0, (b) A0 = 1.0, (c) A0 = 2.0 and (d) A0 = 3.5.
The calculations are done with 5 Floquet copies. The magnetic flux is defined as φ = p/8q with p ranging from 1 to 8q − 1 and q = 199.

H(3) =− th
∑
mn

q∑
l=1

b†(m,n),la(m,n),l

− th
∑
mn

q−1∑
l=1

b†(m,n),la(m,n),l+1

− th
∑
mn

q∑
l=q

b†(m,n),qa(m+1,n),1. (17)

After Fourier transformation,

H(1) =− th
∑
k

q∑
l=1

c†k,lak,l

− th
∑
k

q∑
l=1

c†k,lak,le
+ik·R̃(0,1)e−i2π(8l)φ,

(18)

H(2) =− th
∑
k

q∑
l=1

c†k,lbk,le
+i2πφ

− th
∑
k

1∑
l=1

c†k,1bk,qe
+ik·R̃(−1,1)e−i2π(8l−1)φ

− th
∑
k

q∑
l=2

c†k,lbk,l−1e
+ik·R̃(0,1)e−i2π(8l−1)φ,

(19)

H(3) =− th
∑
k

q∑
l=1

b†k,lak,l

− th
∑
k

q−1∑
l=1

b†k,lak,l+1

− th
∑
k

q∑
l=q

b†k,qak,1e
+ik·R̃(1,0), (20)
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FIG. 3. (Color online) Hofstader’s butterfly for the Kagome lattice exposed to linearly polarized laser with vector potential A(t) =
A0 sin(Ωt)(cosα, sinα) where laser frequency is fixed at off-resonance region ω = 9.0. (a) A0 = 1.0, α = 0; (b) A0 = 1.0, α = π/2; (c)
A0 = 2.0, α = 0; (d) A0 = 2.0, α = π/2. (e) A0 = 2.0, α = π/12; (f) A0 = 2.0, α = π/3. The calculations are done with 5 Floquet
copies. The magnetic flux is defined as φ = p/8q with p ranging from 1 to 8q − 1 and q = 199.
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FIG. 4. (Color online.) The Hofstader butterfly for the kagome lattice exposed to circularly (a,c) and linearly (b,d) polarized lasers with the
laser frequency fixed at on-resonance value Ω = 4.0. (a) circularly polarized light A0 = 1.0. (b) linearly polarized light A0 = 1.0, α = 0. (c)
circularly polarized light A0 = 2.0. (d) linearly polarized light A0 = 2.0, α = 0. The red points are energy spectrum from upper and lower
Floquet copies. The calculations are done with 9 Floquet copies. The magnetic flux is defined as φ = p/8q with p ranging from 1 to 8q − 1
and q = 199.

where

R̃(+0, 1) = k · ~a2, (21)

R̃(−1, 1) = −k · q~a1 + k · ~a2, (22)

R̃(+1, 0) = k · q~a1. (23)

The energy spectrum is obtained by numerically diagonalizing
the 3q × 3q Hamiltonian matrix for each wave vector k.

C. Time-dependent Hamiltonian with laser and static
magnetic field

When the system is exposed to laser light, the Hamiltonian
for the kagome lattice is rewritten as,

H(1) =− th
∑
k

q∑
l=1

c†k,lak,le
iA(t)·δ2

− th
∑
mn

q∑
l=1

c†k,lak,le
+ik·R̃(0,1)e−i2π(8l)φe−iA(t)·δ2 ,

(24)
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FIG. 5. (Color online.) The ground state Chern number of the Floquet Hofstader butterfly spectrum for the kagome lattice. Laser frequency
is fixed at an off-resonance value of Ω = 9.0. (a) circularly polarized light with A0 = 0.0, 1.0, 2.0. (b) linearly polarized light along x
(α = 0.0), A0 = 0.0, 1.0, 2.0. (c) linearly polarized light along y (α = π/2), A0 = 0.0, 1.0, 2.0. (d) linearly polarized light A0 = 1.0 along
x and y as a comparison. The calculations are done with 9 Floquet copies. The magnetic flux is defined as φ = p/8q with p ranging from 1 to
8q − 1 and q ≤ 13.

H(2) =− th
∑
k

q∑
l=1

c†k,lbk,le
+i2πφeiA(t)·δ3

− th
∑
k

1∑
l=1

c†k,1bk,qe
+ik·R̃(−1,1)e−i2π(8l−1)φe−iA(t)·δ3

− th
∑
k

q∑
l=2

c†k,lbk,l−1e
+ik·R̃(0,1)e−i2π(8l−1)φe−iA(t)·δ3 ,

(25)

H(3) =− th
∑
k

q∑
l=1

b†k,lak,le
+iA(t)·δ1

− th
∑
k

q−1∑
l=1

b†k,lak,l+1e
−iA(t)·δ1

− th
∑
k

q∑
l=q

b†k,qak,1e
+ik·R̃(1,0)e−iA(t)·δ1 , (26)

where A(t) is the vector potential of laser. The ef-
fect of the laser is incorporated into the Hamiltonian
through Perils substitution. For a circularly polarized light
A(t) = A0(+ sin(Ωt), cos(Ωt)), the time reversal partner
is A(t) = A0(− sin(Ωt), cos(Ωt)) which will be polar-
ized in a different direction compared to the original one.
As a result, the circularly polarized light will break time-
reversal symmetry. For a linear polarized light A(t) =
A0 sin(Ωt)(cosα, sinα), its time reversal partner will be
A(t) = −A0 sin(Ωt)(cosα, sinα) where there exist a phase
shift comparing to the original one. As a result, linear polar-
ized light will preserve time reversal symmetry.

The time-dependent Hamiltonian can be solved numeri-
cally within the framework of Floquet theory. The standard
process for generating the time-independent Floquet Hamilto-
nian can be found in Ref. [17]. One sub-block of the Floquet
Hamiltonian is given by,

Hn,m =
1

T

∫ T

0

dt exp{i(n−m)Ωt}H(t), (27)
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where n,m are the Floquet replica numbers. We need to cal-
culate the expression with the general form,

fnm =
1

T

∫ T

0

dte−i(n−m)Ωt exp[−iA(t) · d]. (28)

Here we use d = Rj − Ri, and define dx/|d| = cos θ,
dy/|d| = sin θ. For nearest-neighbor hopping terms, |d| = 1,
θ = 0, 2π/3,−2π/3.

Substituting the vector potential of circular polarized light
A(t) = A0(sin(Ωt), cos(Ωt)) into the above equation,

1

T

∫ T

0

dte−i(n−m)Ωt exp[−iA0(dx sin Ωt+ dy cos Ωt)]

=Jm−n(A0|d|) exp[i(n−m)θ], (29)

where Jn(x) is a Bessel function of the first kind.
Substituting the vector potential for linearly polarized light

A(t) = A0 sin(Ωt)(cosα, sinα) into the above equation
gives,

1

T

∫ T

0

dte−i(n−m)Ωt exp[−iA0(dxcosα+ dy sinα) sin(Ωt)]

=Jm−n(A0|d| cos(θ − α)), (30)

which describes the renormalization of the hopping parame-
ters along the different directions at lowest order.

III. HOFSTADTER BUTTERFLY ON THE KAGOME
LATTICE

In the equilibrium case (without laser light), we calcu-
late the Hofstadter butterfly on the kagome lattice by setting
q = 199 [Eq.(8)] in Fig.2(a). The energy spectrum versus
static magnetic flux (the Hofstadter butterfly) is calculated by
diagonalizing the Hamiltonian, Eq.(20), at the Γ point (kx =
0, ky = 0) for varying flux φ = p/8q(p = 1, 2, · · · 8q). There
exist 3q magnetic mini-bands in one unit cell. Previous studies
on the square and honeycomb lattices with an isotropic hop-
ping integral describe rich symmetries in the Hofstadter but-
terfly. For example, a reflection symmetry about flux φ = 1/2
and a reflection symmetry about energy E = 0.

For the kagome lattice, we observe the reflection symme-
try about the energy axis E = 0 is lacking. This can be
easily understood, because the particle-hole symmetry is bro-
ken on the kagome lattice with isotropic hopping terms.5 The
reflection symmetry about the flux φ = 1/2 is observed
E(φ) = E(1 − φ), where we used E(φ) to denote the en-
ergy spectrum of Hamiltonian [Eq.(20)] with magnetic flux φ.
This reflection symmetry about φ = 1/2 can be understood as
follows. The time reversal partner of the Hamiltonian at flux
φ is the one with flux −φ, i.e., TH(φ)T−1 = H(−φ), where
T is the time-reversal operator, which is anti-unitary. Further,
one can see H(1 − φ) = H(−φ) from Eq.(20), which is due
to the periodicity in magnetic flux.49,50 So we have,

TH(φ)T−1 = H(−φ) = H(1− φ). (31)

Since the two operators which are time-reversal partners will
have the same eigenvalues, the symmetry about φ = 1/2 is
explained. We further observe the inversion symmetry about
φ = 1/4 and φ = 3/4, which is E(φ) = −E(1/2 − φ) and
E(1/2 + φ) = −E(1 − φ), repsectively. We do not have a
simple physical picture to explain this symmetry property in
the spectrum.

In equilibrium studies, Hofstadter’s butterfly is often plot-
ted over the flux region 0 < φ < 1/2, because the remaining
part, 1/2 < φ < 1, is just the mirror image of the previ-
ous part.5 In the driven system, by contrast, the external drive
can break the time reversal symmetry. For example, circularly
polarized light breaks time-reversal symmetry, while linearly
polarized light preserves it. We show the full Hofstadter but-
terfly in the magnetic flux region 0 < φ < 1.

The effects of off-resonant (~Ω = 9.0) circularly polarized
laser light are shown in Fig.2(b), (c), (d) for laser amplitudes
A0 = 1.0, 2.0, 3.5, respectively. As the laser intensity in-
creases, the bandwidth first decreases. Afterwards, the band-
width then increases, but the bands are inverted (there is a
sign change in the effective hopping parameter). This behav-
ior can be understood using the Floquet-Magnus expansion in
the high frequency regime,

Heff = H0 +
1

~Ω
[H1, H−1] + · · · (32)

where Hn = 1
T

∫ T
0
e−inΩtH(t)dt. In the theoretical infinite

frequency limit, the Floquet-Bloch band is the original one
scaled by a zeroth order Bessel function (zero-th order term in
the Floquet-Magnus expansion). The Floquet butterfly spec-
trum will have decreased bandwidth with increasing laser in-
tensity until A0 = 2.404, which is the first zero point of the
zeroth-order Bessel function. After that point, the band will
be inverted with increasing bandwidth up to A0 = 3.8. Our
Floquet butterfly is consistent with the high frequency analy-
sis, except some structural details are different. A systematic
analysis needs to include the higher-order terms in the Mag-
nus expansion.

Let us dive into the details of the effects of circularly polar-
ized light on the Hofstadter butterfly. The reflection symmetry
about flux φ = 1/2 is broken. This phenomenon is explained
qualitatively by,

TH(φ, ~AL(t))T−1 = H(−φ, ~AR(t)), (33)

where the time-reversal of left circularly polarized light is its
right polarized partner, as indicated by the subscript on the
vector potential, ~A. From the numerical data, one can see the
central symmetry about φ = 1/4 is preserved for circularly
polarized light.

In Fig.3, we plot the energy spectrum as a function of mag-
netic flux for light linearly polarized along the x Fig.3(a,c)
or y Fig.3(b,d) direction, and for laser intensity A0 = 1.0 or
A0 = 2.0. From the numerical data shown, we conclude the
energy spectrum is polarization direction dependent. Com-
pared to the energy spectrum with x-direction polarized light,
the y-direction polarized light has a much more evenly dis-
tributed set of energies. To further study the spectrum depen-
dence on the polarization direction, we compute the energy
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spectrum with the same laser intensity A0 = 2.0 but with
smaller polarization directions: α = π/12, π/3. From the nu-
merical data, we find the energy spectrum will have a higher
degeneracy if the polarization direction is along one of the
bonds. The α = π/3 data have the same energy spectrum as
α = 0. This can be understood from the C3 symmetry of the
original lattice (without electric field). The energy spectrum
will be the same if the polarization direction is at nπ/3 with
integer n.

In Fig.4, we plot the energy spectrum as a function of
magnetic flux for laser frequency in the on-resonance regime
(~Ω = 4.0). The data plotted with black dots are the spec-
trum of the central (in energy) Floquet copy. The data plotted
with red dots are the spectrum of the upper and lower Flo-
quet copies. In Fig.4 (a) and (c), the spectrum as a function of
magnetic flux for circularly polarized light is plotted for laser
intensity A0 = 1.0 and A0 = 2.0 respectively. The reflection
symmetry is broken about φ = 1/2 , while the inversion sym-
metry about φ = 1/4, 3/4 are preserved, as we have observed
in the off-resonance laser frequency region.

As a comparison, the spectrum as a function of magnetic
flux for linearly polarized light is plotted for laser intensity
A0 = 1.0 and A0 = 2.0 in Fig.4 (b) and (d), respectively. For
linearly polarized light, both the reflection symmetry about
φ = 1/2 and the inversion symmetry about φ = 1/4, 3/4 are
preserved.

IV. SPIN CHERN NUMBER FOR THE KAGOME LATTICE

The topological invariant can be calculated using the Streda
formula51,

σH = 2
e2

h

∂N

∂φ
, (34)

which relates the Hall conductivity σH to the density of states
N dependence on the flux φ, with e2/h the conductance quan-
tum. Identical results will be obtained from the calculation of
the Chern number.47,48,52 The resulting values of Chern num-
ber C is identical to the number of chiral edge states (in equi-
librium) in a ribbon-geometry calculation.48 As stated in Ref.
[17], the topological invariant of Floquet systems can be dif-
ferent from the static case. Here, in the high-frequency regime
(photon energy is larger than the bandwidth of static system),
the Streda formula will give the correct conductivity values
due to the fact a trivial gap opens between different copies of
the original spectrum.48

Following Ref.[53] and Ref.[47], we calculate the Chern
number of the ground state of the Hofstadter butterfly, where
the “ground state” in Floquet-Bloch band structure shall be
understood as the lowest energy band of the central Floquet
copy. The Chern number data are calculated using Fukui’s
method.52 To avoid the band crossing between different Flo-
quet copies, we fix the laser frequency to be in the off-
resonance region.

In Fig.5, we plot the Chern number for the “ground state”
of the Hofstadter butterfly with laser frequency fixed at ~Ω =
9.0. In these Chern number plots, we also plot the data with

vanishing laser intensity as a reference point. First, consider
the reference point at A0 = 0. Because H(φ) is the time-
reversal partner of H(1−φ), we have the symmetry structure
of the Chern numbers as C(φ) = −C(1− φ).

In Fig.5(a) the data is shown for circularly polarized light
with parameter A0 = 1.0 and A0 = 2.0. From the numer-
ical data, one sees the Chern numbers calculated with laser
intensity A0 = 1.0 are the same as those for vanishing laser
intensity, which means that while the band structure is de-
formed under the circularly polarized light, the Chern num-
bers still preserve the properties of “time-reversal symmetry”
about φ = 1/2 (as discussed earlier in the manuscript) for
low laser intensity. Further increasing the laser intensity to
A0 = 2.0 will show some difference; the Chern numbers dif-
fer somewhat from the reference points, especially at larger
magnetic fluxes.

We now consider the effect of linearly polarized light.
Fig.5(b) and (c) show the data for linearly polarized light with
parameter A0 = 1.0, 2.0, and polarization direction along the
x (b) and y (c) directions, respectively. In contrast to the circu-
larly polarized light, the linearly polarized light will preserve
time-reversal symmetry (in the absence of the static magnetic
flux on the lattice): we have C(φ) = −C(1 − φ). When the
polarization direction is along the x-axis, we find the Chern
numbers for different laser intensities are different. On the
other hand, if the polarization direction is along the y-axis,
the data for A0 = 1.0 appears numerically similar, while the
data for A0 = 2.0 differs around φ = 1/2. As pointed out
in Ref.[47], for circularly polarized light the “ground state”
is uniquely defined, whereas for linearly polarized light it
is not uniquely defined for all flux values. Here we find a
band crossing with the “ground state” occurs at magnetic flux
p/8q = 39/88, 45/104, 46/104, 49/104, 50/104. For clarity,
Fig.5(d) compares Chern numbers for linearly polarized light
along the x- and y-directions for fixed laser intensity.

Since the magnetic-translation symmetry is preserved as the
system is exposed to an external laser, the topological invari-
ant must satisfy the Diophantine equation,44,48,54

s =
1

q
+
p

q
C, (35)

for flux φ = p/8q, where C is the topological invariant and s
is an integer. We have verified that our calculated Chern num-
bers satisfy the Diophantine equation; a representative subset
is displayed in the graphs in Fig.6. Following the reference
[53], we connect all the points (φ = p/8q, |C|) that are as-
sociated with the same number |s| with a colored line. As
|s| increases, the color changes progressively from fuchsia to
teal.

V. HOFSTADTER BUTTERFLY ON THE TRIANGULAR
LATTICE

Because the triangular lattice has the same Bravais lattice
as the kagome lattice, and there is only one atom in each unit
cell (in the absence of a static magnetic field), the Hofstadter
butterfly on the triangular lattice can have features similar to
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FIG. 6. (Color online.) Chern number |C| as a function of the magnetic flux φ for the kagome lattice exposed to circularly (a) and linearly
(b,c) polarized lasers with the laser frequency fixed to be in the off-resonant regime, Ω = 9.0. (a) circularly polarized light A0 = 1.0. (b)
linearly polarized light A0 = 1.0, α = 0. (c) linearly polarized light A0 = 1.0, α = π/2. The calculations are done with 9 Floquet copies.
The magnetic flux is defined as φ = p/8q with p ranging from 1 to 8q − 1 and q ≤ 13.

the kagome lattice butterfly.5 Here we have studied the Flo-
quet Hofstadter butterfly on the triangular lattice, and the re-
sults are indeed qualitatively similar to those for the kagome
lattice.

In Fig.7, the triangular lattice and a magnetic unit cell
(shaded zone) are shown for magnetic flux φ = 1/(2 × 3).
In Fig.8, the Hofstadter butterfly deformed by off-resonance
circularly polarized light is plotted with laser intensitiesA0 =
0.0, 1.0, 2.0, 3.5. The laser frequency is fixed at ~Ω = 9.0.
In Fig.9, the Hofstadter butterfly deformed by off-resonance
linearly polarized light is plotted with laser intensity A0 =
1.0, 2.0. The laser frequency is fixed at ~Ω = 9.0. The di-
rection of polarization is also considered: we find x− (y−)
polarized light will have different effects on the spectrum.
The same study with different laser frequencies is given in
Fig.10,11. Finally, we study the Chern numbers for the Flo-
quet “ground state”.

VI. CONCLUSION

In this paper, we study the energy spectrum as a function of
magnetic flux on the kagome and triangular lattices subjected
to a uniform perpendicular magnetic field in the presence of
either circularly or linearly polarized light. We find circularly
polarized light deforms the Hofstadter butterfly by breaking
the reflection symmetry about magnetic flux φ = 1/2, while
linearly polarized light preserves that mirror symmetry. This
contrasting behavior is explained by the fact that circularly
polarized light breaks time-reversal symmetry (in the absence
of the static magnetic flux on the lattice), while linearly polar-
ized light preserves the symmetry (in the absence of the static
magnetic flux on the lattice). Further, the inversion symmetry
about φ = 1/4, 3/4 is always preserved for both circularly
and linearly polarized light. Focusing on linearly polarized
light, we find the energy spectrum depends on the polariza-
tion direction because the lattice is not isotropic in the x- and

12 1̄2̄ ¯̄1¯̄2

FIG. 7. (Color online.) In the case without magnetic field, the tri-
angular lattice with nearest neighbor vectors ~δ1 = (1, 0)a, ~δ2 =

(1/2,
√

3/2)a, ~δ3 = (−1/2,
√

3/2)a, where a the nearest neigh-
bor distance in triangular lattice, is plotted. The translational vec-
tors are ~a1 = ~δ1 and ~a2 = ~δ2. The reciprocal lattice vectors are
~b1 = (1,−1/

√
3)2π/a and ~b2 = (0, 2/

√
3)2π/a. When the sys-

tem is exposed to a perpendicular magnetic field, the magnetic unit
cell must be enlarged (to recover the translational symmetry) depend-
ing on the value of the magnetic flux, φ. For example, the mag-
netic cell is the blue area (shaded parallelogram) for magnetic flux
φ/φ0 = 1/2q, with q = 3 (φ0 is defined as magnetic flux quantum).

y-directions.
The ground state spin Chern number of the Hofstadter but-

terfly, where the “ground state” in Floquet-Bloch band struc-
ture shall be understood as the lowest energy band of the cen-
tral Floquet copy given a gauge choice, are studied. For cir-
cularly polarized light, we conclude that the Chern numbers
will coincide with a reference point of vanishing laser inten-
sity for low laser intensity. However, for high laser intensity,
the Chern numbers differ. For linearly polarized light, the po-
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FIG. 8. (Color online.) The Hofstader butterfly on the triangular lattice, deformed by circularly polarized laser light with frequency fixed to be
in the off-resonance regime Ω = 9.0. (a) laser intensity A0 = 0.0 (b) laser intensity A0 = 1.0 (c) A0 = 2.0 (d) A0 = 3.5. The calculation is
done with 9 Floquet copies. The flux is used as p/2q with N = 299 and p ranging from 1 to 2N − 1.

larization direction of the light will play a significant role in
determining the spin-Chern number. These behaviors hold for
the both the kagome and triangular lattices because the two
share the same underlying triangular Bravais lattice.
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FIG. 9. (Color online.) The Hofstader butterfly for the triangular lattice exposed to a linearly polarized laser with vector potential A(t) =
A0 sin(Ωt)(cosα, sinα) with laser frequency fixed to be in the off-resonance regime, Ω = 9.0. (a) A0 = 1.0, α = 0. (b) A0 = 1.0,
α = π/2. (c) A0 = 2.0, α = 0. (d) A0 = 2.0, α = π/2. The calculation is done with 9 Floquet copies. The flux is used as p/2q with
N = 299 and p ranging from 1 to 2q − 1.
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FIG. 10. (Color online.) The Hofstader butterfly for the triangular lattice exposed to circularly (a,c) and linearly (b,d) polarized laser with
laser frequency fixed to be in the on-resonance regime, Ω = 4.0. (a) circularly polarized light A0 = 1.0. (b) linear polarized light A0 = 1.0,
α = 0. (c) circularly polarized light A0 = 2.0. (d) linear polarized light A0 = 2.0, α = 0. The red points are data from upper and lower
Floquet copies. The calculation is done with 9 Floquet copies. The flux used is p/2q with q = 299 and p ranging from 1 to 2q − 1.
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FIG. 11. (Color online) Chern number of the Hofstader butterfly for the triangular lattice exposed to a circularly (a,c) and linearly (b,d)
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