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A violation of the Wiedemann-Franz law in a metal can quantified by comparing the Lorentz ratio,
L = κρ/T , where κ is the thermal conductivity and ρ is the electrical resistivity, with the universal
Sommerfeld constant, L0 = (π2/3)(kB/e)

2. We obtain the Lorentz ratio of a clean compensated
metal with intercarrier interaction as the dominant scattering mechanism by solving exactly the
system of coupled integral Boltzmann equations. The Lorentz ratio is shown to assume a particular
simple form in the forward-scattering limit: L/L0 = Θ2/2, where Θ is the scattering angle. In this
limit, L/L0 can be arbitrarily small. We also show how the same result can be obtained without the
benefit of an exact solution. We discuss how a strong downward violation of the Wiedemann-Franz
law in a type-II Weyl semimetal WP2 can be explained within our model.

I. INTRODUCTION

According to the Wiedemann-Franz law (WFL),1–3 the
Lorentz ratio L(T ) = κρ/T , where κ is the thermal con-
ductivity and ρ is the electrical resistivity of a metal, is
given by a universal Sommerfeld constant

L0 = (π2/3)(kB/e)
2. (1.1)

The WFL holds if electron scattering is elastic,1,3 such
that the relaxation times of the charge current, τρ, and
of the thermal current, τκ, are the same. The WFL holds
both at very low temperatures, when electrons are scat-
tered mostly by disorder, and at temperatures above the
Debye one, when scattering of electrons by phonons be-
comes quasielastic.4 At intermediate temperatures, scat-
tering is inelastic, the two relaxation times differ from
each other, and the WFL is violated.

In the case of inelastic electron-phonon scattering, the
difference between τρ and τκ is due to the fact that elec-
trons are scattered by acoustic phonons with group ve-
locity s and typical momenta q ∼ T/s, the latter being
much smaller than the Fermi momentum, pF . There-
fore, τρ is longer than the single-particle relaxation time,
τ ∝ T−3, due to the 1 − cos Θ factor, which filters out
small-angle scattering events, and ρ ∝ τ−1

ρ ∝ T 5. On
the other hand, since every collision is effective in energy
relaxation, we have τκ ∼ τ , and the thermal resistivity
w ≡ T/κ scales as τ−1 ∝ T 3. As a result, one obtains a
downward violation of the WFL, i.e., L(T ) < L0, which
is often observed in elemental metals.5–7

Downward deviations from the WFL are also observed
in cases when the electron-electron interaction is known
(or suspected) to be the dominant scattering mechanism.
For example, the values of L(T ) < L0 were measured
in the normal state of the cuprate superconductors,6

in heavy-fermion metals,8–12 near a magnetic-field-tuned
quantum critical end point,13 and in a candidate type-II
Weyl semimetal WP2 (Refs. 14 and 15).16 The interpre-
tation of such experiments is complicated by the fact the
charge current can be degraded only by umklapp or in-
terband scattering, whereas the thermal current can de-
graded already by intraband normal scattering, but is af-

fected by umklapp and interband scattering as well. Con-
sequently, the Lorentz ratio depends on the ratio of the
umklapp and normal scattering rates which, in its turn, is
very sensitive to the geometry and topology of the Fermi
surface (FS) and thus highly non-universal. However, if
umklapp scattering is excluded because, e.g., the FS is
too small2 or the interaction is of a long range,17–19 the
situation is somewhat simplified because normal scatter-
ing in a metal with anisotropic FS affects both electri-
cal and thermal currents. In general, however, one still
needs to introduce momentum-relaxing scattering, e.g.,
by impurities or phonons, which ultimately renders the
electrical conductivity finite.

There is one but very important exception to this
rule, namely a compensated metal (CM) with equal
numbers of electrons and holes. The electrical con-
ductivity of a CM is rendered finite already by nor-
mal scattering between electrons and holes (the Baber
mechanism20), while its thermal conductivity contains
contributions from both intra- and interband scattering
processes. At high enough temperatures, the electron-
hole and electron-electron interactions control both elec-
trical and thermal transport without the help of addi-
tional momentum-relaxing processes, and one can make
certain statements about the magnitude of the Lorentz
ratio within a tractable model.

In this paper, we calculate the Lorentz ratio of a CM,
assuming that the intercarrier interaction is the domi-
nant scattering mechanism. Our particular goal is to
understand recent observation of an abnormally small
(≈ 0.2L0) Lorentz ratio in bulk WP2 (Ref. 15). We will
argue that this can be attributed to weak screening in
this material. In a broader context, the family of CMs
is quite large:21 it includes many metals and semimet-
als with even number of electrons per unit cell, e.g., Mg,
Zn, Cd, Bi, graphite, etc. A relatively recent addition to
the family are iron-based superconductors in their parent
states,22 most of which have compensated electron and
hole pockets. Finally, the most recently discovered mem-
bers of the family are type-II Weyl semimetals (Ref. 23),
e.g., WP2 (Ref. 24 and 25). The interest to electron
transport in CMs has been rekindled by recent observa-
tions of extremely large magnetoresistance26,27 and pos-
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sible realization of the hydrodynamic (Gurzhi28) flow
regime14,15,29 in these materials. Having even a simple
model for electrical and thermal transport in CMs would
be useful for understanding the unique properties of CMs.

In what follows, the electron band (1) and hole band
(2) will be assumed to have parabolic dispersions,

ε1,p =
(p− p0/2)

2

2m1
, ε2,p = − (p + p0/2)

2

2m2
+ ∆,(1.2)

where ∆ is the energy offset, and m1(2) is the electron
(hole) effective mass. In a CM, the electron and hole
density are equal, n1 = n2 = n, hence the Fermi mo-
mentum and Fermi energy are given by pF = (3π2n)1/3

and εF = ∆m2/(m1 + m2), correspondingly. We will
be only interested in the degenerate regime of T � εF .
(Throughout the paper we take ~ = kB = 1, unless spec-
ified otherwise.) The separation between the electron
and hole bands (p0) is assumed to be much larger than
the (inverse) radius of the interaction, so that interband
transfer of carriers is not allowed.

The rest of the paper is organized as follows. In Sec. II
we briefly introduce the Boltzmann equation (BE). In
Sec. III we show that a system of BEs allows for a simple
solution for the case of forward scattering and obtain the
corresponding results for the electrical and thermal con-
ductivities. In Sec. IV we find the exact results for the
electrical and thermal conductivities, using the method
of Refs. 30–33 for an arbitrary interaction potential, and
compare these results to the approximate ones obtained
in Sec. III. In Sec. V we discuss the Lorentz ratio for a
number of model and make a connection to an experi-
ment on WP2 (Ref. 15). Our conclusions are given in
Sec. VI.

II. LINEARIZED BOLTZMANN EQUATION

To set the stage, we briefly introduce the BE for a sin-
gle band case. The generalization to a two band case is
straightforward. The semiclassical BE for the distribu-
tion function fp(r, t) is written as

∂fp
∂t

+
∂εp
∂p
· ∂fp
∂r
− ∂εp

∂r
· ∂fp
∂p

= −I[fp], (2.1)

where I is the collision integral which accounts for scat-
tering processes.

If Eq. (2.1) refers to a Fermi liquid (FL), εp on its
left-hand side is to be understood as the non-equilibrium
quasi-particle energy, which is related to fp via the self-
consistent equation of the Fermi-liquid theory.34 As a re-
sult, the left-hand side of linearized Eq. (2.1) contains two
corrections to the equilibrium distribution function.3,35

The “bare” one, δnp, is defined by writing fp as fp =

np +δnp, where np ≡ nF
(
ε

(0)
p

)
is the equilibrium Fermi

function and ε
(0)
p is the equilibrium quasiparticle energy.

The time derivative on the left-hand side of linearized

Eq. (2.1) contains δnp. The “renormalized” one, δn̄p, is
related to the bare one via

δn̄p = δnp −
∂np
∂εp

∫
p′
F s(p,p′)δnp′ , (2.2)

where
∫
p

is a shorthand for
∫
dDp/(2π)D and F s(p,p′)

is the spin-symmetric part of the Landau interaction
function. On the other hand, the gradient term in lin-
earized Eq. (2.1) and the macroscopic observables con-
tain δn̄p. For example the charge current is given by
j = e

∫
p
vpδn̄p. However, the collision integral can also

be expressed via δn̄p (Refs. 3 and 35). Therefore, if the
time dependence can be ignored, δnp does not appear
in the theory, while δn̄p plays the role of a proper dis-
tribution function. As we will be interested only in dc
transport, δnp in the remainder of the paper is to be un-
derstood as δn̄p, with bar suppressed for brevity. In this
way, the kinetic equation for a FL coincides with that for
the Fermi gas, the only difference being that vp = ∂pεp
in this equation is to be understood as the renormalized
Fermi velocity.

The collision integral describing electron-electron in-
teraction in a single-band metal can be written as

I[fp] =

∫
k

∫
p′

∫
k′
Wpk→p′k′δ(εp + εk − εp′ − εk′)

×δ(p + k− p′ − k′)
[
fpfk(1− fp′)(1− fk′)

−fp′fk′(1− fp)(1− fk)
]
, (2.3)

where Wpk→p′k′ is the scattering probability of intercar-
rier scattering. The collision integral can be linearized
by defining

δnp ≡ −T
∂np
∂εp

gp = np(1− np)gp, (2.4)

which yields2

I[gp] =

∫
k

∫
p′

∫
k′
Wpk→p′k′

×npnk(1− np′)(1− nk′)(gp + gk − gp′ − gk′)

×δ(εp + εk − εp′ − εk′)δ(p + k− p′ − k′). (2.5)

III. TRANSPORT COEFFICIENTS IN THE
FORWARD-SCATTERING LIMIT

In this section we examine the forward-scattering limit
which is relevant, e.g., for the case of a weakly screened
Coulomb interaction, or to scattering by ferromagnetic
or nematic fluctuations near a corresponding quantum
phase transition.17

A. Electrical conductivity

In the presence of an external electric field, the two
coupled BEs for the electron and hole bands can be read-
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ily obtained as a generalization of Eq. (2.1),

−eE · v1,p
∂nF
∂ε1,p

= −I12[g1, g2], (3.1a)

−eE · v2,k
∂nF
∂ε2,k

= −I21[g1, g2], (3.1b)

where vj,l is the group velocity of the jth band and g1,2

are defined as in Eq. (2.4) for each of the two bands. The
collision integrals I12 and I21 describe the Baber-type20

interband scattering between electron and holes:

I12[g1, g2] =

∫
k

∫
p′

∫
k′
W 12

pk→p′k′n1,pn2,k(1− n1,p′)(1− n2,k′) [g1,p + g2,k − g1,p′ − g2,k′ ] δ(ε1,p + ε2,k − ε1,p′ − ε2,k′)

×δ(p + k− p′ − k′), (3.2)

and I21 is obtained from I12 by interchanging the band
indices. In our model parabolic bands [cf. Eq. (1.2)],
intraband scattering does not affect the electrical con-
ductivity, and the corresponding collision integrals have
been dropped.

It is convenient to introduce the momentum transfer q
and energy exchange ω, such that p′ = p−q, k′ = k+q,
εj,p′ = εj,p − ω, and εj,k′ = εj,k + ω, where j = 1, 2. In
the FL regime, the scattering probability can be taken
as independent of ω. If electrons interact via a potential
V (q), the symmetrized scattering probability for a carrier

with spin α is given by

W 12
pk→p′k′ = W 21

pk→p′k′

= 2π
∑
βγδ

|V (q)δαγδβδ − V (p− k− q)δαδδβγ |2 .(3.3)

For a long-range interaction, the second (exchange) term
under | . . . | in the equation above can be neglected, in
which case W 12 depends only on momentum transfer q
but not on the initial momenta p and k. In addition, if
the system is isotropic, V (q) = V (q) and

W 12
pk→p′k′ = W 21

pk→p′k′ ≡W (q) = 4π|V (q)|2. (3.4)

After these steps, the collision integral can be rewritten
as

I12[g1, g2] =

∫
k

∫
q

∫
dωW 12(q)n1,pn2,k(1− n1,p−q)(1− n2,k+q) (g1,p + g2,k − g1,p−q − g2,k+q)

×δ(ε1,p − ε1,p−q)δ(ε2,k − ε2,k+q), (3.5)

where it is understood that nj,l±q = nF (εj,l ± ω). In
the equation above, we have also neglected ω in the ar-
guments of the δ-functions which ensure energy conser-
vation. The reason is that the scaling dimensions of the
two energy integrals (over εk and ω) already give the ex-
pected T 2 scaling of the collision integral; keeping ω in
other places would give only subleading terms.

The nonequilibrium part of the distribution function
can be parameterized as

gj,l = − e
T

(vj,l ·E)ϕj

(
ξj,l
T

)
, (3.6)

where j = 1, 2, ξj,l ≡ εj,l− εF and ϕj(x) is an even func-
tion of its argument. In general, one needs to solve the
system of integral equations for ϕj(x), which is what we
will do in Sec. IV. In the forward-scattering limit, how-
ever, the procedure can be simplified because in this case
the energy relaxation is much faster than the momentum
one: a thermally excited carrier first descends to the FS

and then diffuses around the FS via small-angle scatter-
ing events. As a result, the nonequilibrium part of the
distribution function depends primarily on the direction
of the momentum, while the dependence on its magni-
tude (energy) is much weaker and can to be taken into
account only to leading order that ensures the symme-
try requirements. The simplest choice for ϕj(x) is just a
constant:

ϕj (x) = const ≡ aj . (3.7)

(The same argument was used in Refs. 17 and 18 to find
the conductivity of an uncompensated two-band system.)

Substituting gj in Eqs. (3.1a) and (3.1b), we obtain a
single equation relating a1 and a2:

a1

m1
+
a2

m2
=

48π2~6p3
F

m2
1m

2
2T

2

1∫
dqq2W 12(q)

. (3.8)

Although Eq. (3.8) does not allow one to find a1 and a2

independently, it suffices to determine the total electric
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current density, which is proportional to the same com-
bination a1/m1 + a2/m2:

j = 2
∑
j

∫
d3pj
(2π)3

(−e)vj(−Tn′jgj),

= ne2

(
a1

m1
+
a2

m2

)
E. (3.9)

Using Eqs. (3.8) and (3.9), we obtain the electrical resis-
tivity as

ρ =
1

ne2

m2
1m

2
2T

2

48π2p3
F

∫
dqq2W (q). (3.10)

A factor of q2 in the integrand is the familiar “transport
factor” that filters out small-angle scattering events. In
Sec. IV we will show that the exact result for ρ is indeed
reduced to Eq. (3.10) in the forward-scattering limit.

A screened Coulomb interaction is described by the
potential

V (q) =
4πe2

ε∞

1

q2 + κ2
, (3.11)

where κ is the inverse screening length and ε∞ is the
dielectric constant at frequencies higher than the topmost
phonon mode. In this case,

ρ =
π2

3

1

ne2

T 2m2
1m

2
2e

4

ε2∞p
3
Fκ

. (3.12)

The forward-scattering approximation is justified for
κ � pF , which is also a condition for writing V (q) as
in Eq. (3.11). Note that if m1 6= m2 the resistivity can-
not be cast into a Drude form, i.e., ρ = m/ne2τ , because
m and τ cannot be defined uniquely.

In 2D, the corresponding average of the scattering
probability ∫

dqq
W (q)

1− (q/2pF )2
(3.13)

diverges logarithmically at q = 2pF . The denominator in
Eq. (3.13) is obtained as a result of the angular integra-
tion of the two delta-functions in Eq. (3.5),∫

dΩpqδ(ε1,p − ε1,p−q)

∫
dΩkqδ(ε2,k − ε2,k+q)

∼ 1

q2

1

1− (q/2pF )2
. (3.14)

Cutting off the divergence at |q−2pF | ∼ T/vF , we obtain
ρ ∝ T 2 lnT . However, the logarithmic factor is just the
first term in the series for the Cooper scattering ampli-
tude in the backscattering channel with (p,−p→ −p,p)
(Ref. 36 and 37). Resumming this series, one obtains

ρ ∝ T 2

ln2 T
. (3.15)

This result is the same as for the (inverse) shear vis-
cosity of a single-band 2D FL.38 Strictly speaking, the
forward-scattering approximation is not valid for large
momentum transfers (q ≈ 2pF ), but the scaling form in
Eq. (3.15) remains correct even beyond this approxima-
tion.

Note that the 2pF singularity in Eq. (3.13) comes
about as a product of two square-root singularities:
1/
√

1− (q/2pF,1)2 and 1/
√

1− (q/2pF,2)2 with pF,1 =
pF,2 = pF . If a metal is not compensated, i.e., pF,1 6=
pF,2, each of the square-root singularities is integrable on
its own and there is no logarithmic factor in the result. In
this case, however, one needs to introduce a momentum-
relaxing process, e.g., impurity scattering, to render the
resistivity finite. As a result, the resistivity increases with
temperature from its residual value at the lowest temper-
atures towards another impurity-controlled limiting value
at the highest temperatures.17,18 If the band masses differ
substantially, so do the low- and high-temperature limits
of the resistivity, and there is a well-defined intermediate
region in which ρ scales just as T 2 even in 2D, with-
out an extra logarithmic factor. Also, if a 2D metal is
compensated but has an unequal number of electron and
hole pockets (as it is the case, e.g., for the parent state
of iron-based superconductors22), the Fermi momenta of
electrons and holes are different and, as result, the resis-
tivity also scales just as T 2, without an extra logarithmic
factor.

B. Thermal Conductivity

The driving term for thermal transport is

− ∂n

∂εp
vp ·∇T

ξp
T
, ξp = εp − εF . (3.16)

The relevant scattering processes in a two-band system
include both intra- and interband scattering. Conse-
quently, the linearized BEs for the two-band system read

−∂n1,p

∂ξ1,p
v1,p ·∇T

ξ1,p
T

= −I11[g1]− I12[g1, g2],

(3.17a)

−∂n2,k

∂ξ2,k
v2,k ·∇T

ξ2,k
T

= −I22[g2]− I21[g1, g2],

(3.17b)

where the intraband collision integrals are given by
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Iii[gj ] =

∫
k

∫
p′

∫
k′
W jj

pk→p′knj,pnjk(1− njp′)(1− njk′) [gjp + gjk − gjp′ − gjk′ ] δ(εjp + εjk − εjp′ − εjk′)

×δ(p + k− p′ − k′), j = 1, 2; (3.18)

and W jj
pk→p′k′ is the probability of intraband scattering.

In the forward-scattering limit, the intraband probabil-
ity is equal to the interband one (and also depends only
on q). However, we will keep W 11

pk→p′k′ = W 11(q) and

W 22
pk→p′k′ = W 22(q) to be different from each other and

also from the interband scattering probability W (q) for
the sake of generality. The interband collision integrals
I12 and I21 are given by Eq. (3.2) (with a corresponding
permutation of the band indices for I21).

The solutions for gj,l may be sought in the following
form

gj,l = − 1

T
(vj,l ·∇T )ψj

(
ξj,l
T

)
, (3.19)

where ψj is an odd function of its argument.39

In the forward-scattering approximation, ψj(x) is as-
sumed to be a slowly varying function of its argument.
Since ψj(x) is odd, the minimal Ansatz consistent with
this requirement is a linear form

ψj(x) = bjx, (3.20)

where bj are the constants to be determined. Substitut-
ing the corresponding expressions gj,l’s into Eqs. (3.17a)
and (3.17b), multiplying Eq. (3.17a) [Eq. (3.17b)] by
ξ1pv1,p ·∇T [ξ2,kv2,k ·∇T ], and integrating over p (k),
we arrive at a 2× 2 system for b1,2, whose solution is

b1 =
20π2/m1T

2

m2
1

∫
dqW 11(q) +m2

2

∫
dqW (q)

, (3.21a)

b2 =
20π2/m2T

2

m2
2

∫
dqW 22(q) +m2

1

∫
dqW (q)

. (3.21b)

Once the non-equilibrium distribution functions are
obtained, the thermal current can be found as

jq = 2
∑
j=1,2

∫
d3pj
(2π)3

vj,pξj(−Tn′jgj,p),

=
π2nT

3

(
b1
m1

+
b2
m2

)
∇T. (3.22)

Substituting Eqs. (3.21a) and (3.21b) into Eq. (3.22), we
obtain the thermal conductivity

κ = C
npF
T

[ 1

m4
1

∫
dqW 11(q) +m2

1m
2
2

∫
dqW (q)

+
1

m4
2

∫
dqW 22(q) +m2

1m
2
2

∫
dqW (q)

]
(3.23)

with C = 20π4/3.
However, one can check that the higher-order terms in

the Taylor series for ψj(x) modify the result in Eq. (3.23)

in a non-perturbative manner. For example, taking into
account the cubic term in the series modifies the numer-
ical prefactor to C = (20π4/3)

[
1 + 7/17π2

]
. Higher-

order terms will bring additional corrections. Therefore,
in contrast to the case of the electrical conductivity con-
sidered in Sec. III A, the forward-scattering approxima-
tion does not produce an asymptotically exact result for
the thermal conductivity. However, the higher-order cor-
rections happen to be numerically small: For example,
the cubic term changes the prefactor only by 4%. We
thus see that approximating ψ(x) by a linear function is
still a satisfactory albeit not controllable approximation.
In Sec. IV we will see why the exact solutions for the elec-
trical and thermal conductivities differ in the forward-
scattering limit.

For the screened Coulomb interaction with κ � pF ,
W 11(q) = W 22(q) = W (q) with W (q) given by Eqs. (3.4)
and (3.11), and Eq. (3.23) is reduced to

κ = C1
npFκ3ε2∞
Tm2

1m
2
2e

4
, (3.24)

with C1 = 5/12.
In 2D, the corresponding average of the scattering

probability ∫
dq

q

1

1− (q/2pF )2
W (q), (3.25)

which follows from a derivation similar to Eq. (3.13), is
logarithmically divergent both at q = 0 and q = 2pF .
However, the corresponding logarithmic factors come
with W (0) and W (2pF ), respectively. Since W (0) �
W (2pF ) for the case of forward scattering, the q =
2pF singularity, even after resumming the series for the
Cooper channel, is subleading compared to the q = 0 sin-
gularity. Therefore, the 2pF singularity can be ignored,
and the asymptotic form of κ coincides with that found
in Ref. 40:

κ ∝ 1

T lnT
. (3.26)

IV. EXACT RESULTS FOR THE TRANSPORT
COEFFICIENTS

A. General case

In this section we obtain exact results for the ther-
mal and electrical conductivities by solving a system of
coupled BEs for an arbitrary interaction potential. (The
word “exact” here means that the solutions are valid for
an arbitrary scattering probability but still only in the
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limit T � εF .) We follow the method of solving the in-
tegral BE for a single-band FL developed by Abrikosov
and Khalatnikov,30 Sykes and Brooker,31,33 and Smith,
Jensen and Wilkins.32 The same formalism was employed
by Maldague and Kukkonen,41 who found the electrical
resistivity of a CM by via a variational solution of the
coupled BEs. To the best of our knowledge, however,
the thermal conductivity has not been calculated, and
thus the Lorentz ratio has not been determined. In what
follows, we obtain exact results both for the electrical
and thermal conductivities, and thus for the Lorentz ra-
tio. Following Refs. 30–33, we rewrite the intra- and

p

k

p’

k’

FIG. 1. Schematics of a collision process with incoming mo-
menta p,k and outgoing momenta p′,k′.

interband collision integrals as

Ijj [gj ] =
m3
j

8π4

∫
dεk

∫
dωnF (εp)nF (εk) [1− nF (εp − ω)] [1− nF (εk + ω)]

×
∫
dΩ

4π

∫ 2π

0

dφk
2π

W jj(θ, φ)

cos(θ/2)
(gj,p + gj,k − gj,p′ − gj,k′) , j = 1, 2; (4.1a)

I12[g1, g2] =
m1m

2
2

8π4

∫
dεk

∫
dωnF (εp)nF (εk)(1− nF (εp − ω))(1− nF (εk + ω))

×
∫
dΩ

4π

∫ 2π

0

dφk
2π

W (θ, φ)

cos(θ/2)
[g1,p + g2,k − g1,p′ − g2,k′ ] , (4.1b)

where the angles are defined as follows (see Fig. 1): θ
is the angle between the initial state momenta p and
k, φ is the angle between by the planes formed by p
and k, and the final state momenta, p′ and k′, respec-
tively, φk is the azimuthal angle of k relative to p, and
dΩ = dθ sin θdφ. As before, W jj(θ, φ) with j = 1, 2 and
W (θ, φ) are the intra- and interband scattering proba-
bilities, respectively, while I21[g1, g2] is obtained from
I21[g1, g2] by interchanging indices 1 and 2.

We again seek gj,l in the forms of Eqs. (3.6) and
(3.19) for the electrical and thermal conductivities, re-
spectively. This leads to a system of integral equations
for the unknown energy-dependent functions ϕj(x) and
ψj(x), which can be solved by converting the integral
equations into a system of second-order differential equa-
tions for Fourier transforms of the distribution functions.
For brevity, we provide here only the final results dele-
gating the computational details to Appendix A. First,

we introduce some definitions

τ−1
ρ1 =

m1m
2
2T

2

8π4

〈W (θ, φ)

cos(θ/2)

〉
, (4.2a)

λρ =
〈W (θ, φ) cos Θ

cos(θ/2)

〉/〈W (θ, φ)

cos(θ/2)

〉
, (4.2b)

τ−1
κ1 =

m1T
2

8π4

[
m2

1

〈W 11(θ, φ)

cos(θ/2)

〉
+m2

2

〈W (θ, φ)

cos(θ/2)

〉]
,

(4.2c)

λκ1 =
m2

1

〈
W 11(θ,φ)(1+2 cos θ)

cos(θ/2)

〉
+m2

2

〈
W (θ,φ) cos Θ

cos(θ/2)

〉
m2

1

〈
W 11(θ,φ)
cos(θ/2)

〉
+m2

2

〈
W (θ,φ)
cos(θ/2)

〉 ,

(4.2d)

βκ1 =
m1m2

〈
W (θ,φ)(1+2 cos θ−cos Θ)

cos(θ/2)

〉
m2

1

〈
W 11(θ,φ)
cos(θ/2)

〉
+m2

2

〈
W (θ,φ)
cos(θ/2)

〉 , (4.2e)

where Θ is the scattering angle related to the angles θ
and φ via sin(Θ/2) = sin(θ/2) sin(φ/2) and 〈· · · 〉 denotes∫
dΩ
4π · · · . The quantities with index 2, e.g., τρ2, τκ2, etc.,

are obtained from τρ1, τκ1, etc. by interchanging indices
1 and 2. Note that τρj and τκj can be interpreted as the
relaxation times of the electrical and thermal currents in
the jth band, respectively, while λρ is an average cosine
of the scattering angle.

Let the energy-dependent part of the distribution func-
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tion in the presence of an electric field be

ϕj(x) = τρj cosh
(x

2

)
Φj(x), j = 1, 2. (4.3)

To find the electrical current, one needs to know only
the sum Φ(x) ≡ Φ1(x) + Φ2(x), whose Fourier transform

Φ̃(k) =
∫
dxeikxΦ(x) is given by

Φ̃(k) = − 2

π

∞∑
l=0

4l + 3

(l + 1)(2l + 1)

P 1
2l+1(tanhπk)

(l + 1)(2l + 1)− 2λρ + 1
,

(4.4)

where Pml (x) are the associated Legendre polynomials.
Using Eqs. (3.6), (4.3) and (4.4), we find the electrical

resistivity as

ρ =
m2

1m
2
2T

2

8π2e2n

〈W (θ, φ)

cos(θ/2)

〉
P (2(1− λρ)) , (4.5)

where

1

P(x)
=

∞∑
l=0

4l + 3

(l + 1)(2l + 1)

1

(l + 1)(2l + 1)− 1 + x

=
1

2(x− 1)

[
γ + ln 2 +

1

2
DΓ

(
3

4
+

1

4

√
9− 8x

)
+

1

2
DΓ

(
3

4
− 1

4

√
9− 8x

)]
, (4.6)

γ ≈ 0.58 is the Euler constant and DΓ(x) ≡ d ln Γ(x)/dx
is the digamma function. Note that the zero of the de-
nominator at x = 1 in P(x) is compensated by the van-
ishing of the numerator. Also, P(x) remains real for
x > 9/8, when the arguments of the square roots become
negative.

Likewise, let the energy-dependent part of the distri-
bution function in the presence of a thermal gradient be

ψj(x) = τκj cosh(x/2)Ψj(x). (4.7)

To find the thermal current, we need to know Ψ1(x) and
Ψ2(x) individually. Their Fourier transforms are given
by

Ψ̃1(k) = −i
∞∑
l=0

(l + 1)(2l + 3)− λκ2 − βκ1τκ2/τκ1

[(l + 1)(2l + 3)− λκ1] [(l + 1)(2l + 3)− λκ2]− βκ1βκ2

4l + 5

(l + 1)(2l + 3)
P 1

2l+2(tanhπk), (4.8a)

Ψ̃2(k) = −i
∞∑
l=0

(l + 1)(2l + 3)− λκ1 − βκ2τκ1/τκ2

[(l + 1)(2l + 3)− λκ1] [(l + 1)(2l + 3)− λκ2]− βκ1βκ2

4l + 5

(l + 1)(2l + 3)
P 1

2l+2(tanhπk). (4.8b)

The thermal conductivity is also given by an infinite
series:

κ =
4π4n/m2

1T

m2
1

〈
W 11(θ, φ)/ cos θ2

〉
+m2

2

〈
W (θ, φ)/ cos θ2

〉
×
∞∑
l=0

4l + 5

(l + 1)(2l + 3)
×

(l + 1)(2l + 3)− λκ2 − βκ1τκ2/τκ1

[(l + 1)(2l + 3)− λκ1] [(l + 1)(2l + 3)− λκ2]− βκ1βκ2

+(m1 → m2). (4.9)

In contrast to the electrical resistivity, the series for κ
cannot be reduced to a more compact form in terms of
the digamma function.

If the interband scattering probability, W (θ, φ), is set
to zero and the band masses are taken to be the same,
Eq. (4.9) is reduced to (twice) the thermal conductivity
of a single-band FL, obtained in Refs. 31 and 32 in the
context of 3He. In this case, βκ1 and βκ2 vanish, while

λκ1 and λκ2 become identical to λK of Ref. 31 and to
α/2 of Ref. 32.

B. Limiting cases

Equations (4.5) and (4.9) are valid for arbitrary forms
of the scattering probabilities W 11(θ, φ), W 22(θ, φ), and
W (θ, φ). It is instructive, however, to analyze the limit-
ing cases of forward and isotropic scattering, which are
considered in this section.

1. Forward scattering

In the forward-scattering limit, the parameter λρ in
Eq. (4.2b) can be written as

λρ = 1− Θ2

2
, (4.10)
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where

Θ2 ≡
〈W (θ, φ)Θ2

cos(θ/2)

〉/〈W (θ, φ)

cos(θ/2)

〉
� 1 (4.11)

is the average square of the scattering angle. The l = 0
term in the series for Φ̃(k) in Eq. (4.4) is singular in the
limit of λρ → 1, while the rest of the terms are regular.
Keeping only the l = 0 term, we find

Φ̃(k) = − 6

πΘ2
P 1

1 (tanhπk) =
6

πΘ2

1

coshπk
(4.12)

and thus

Φ(x) =

∫ ∞
−∞

dk

2π
Φ̃(k) =

3

π2Θ2

1

cosh x
2

. (4.13)

Recalling relation (4.3), we see that ϕ(x) = ϕ1(x)+ϕ2(x)
is independent of x:

ϕ(x) = (τρ1 + τρ2)
3

π2Θ2
. (4.14)

This means that the non-equilibrium part of the distri-
bution function in Eq. (3.6) is indeed almost indepen-
dent of energy, in agreement with the argument given
in Sec. III A. The energy dependence of the distribu-
tion function results from the remainder of the series in
Eq. (4.4) with l ≥ 1. In all terms in this remainder one
can safely set λρ = 1. The result is some function of k,
which is parametrically smaller than the l = 0 term by
Θ2 � 1. As result, a correction to Eq. (4.14) is some
(even) function of x, which is O(1) for x ∼ 1.

Substituting λρ into Eq. (4.5), we find the electrical
resistivity as

ρ =
m2

1m
2
2T

2

24π2e2n

〈W (θ, φ)

cos(θ/2)
Θ2
〉
, (4.15)

where we have used that P(x) ≈ x/3 for x � 1. For a
generic value of the angle θ between the initial momenta
k and p, a small value of Θ can only be achieved if the
angle φ between the planes formed by the initial and final
momenta is small. Then Θ ≈ sin(θ/2)φ. If W depends
only on Θ or, which is the same, on the momentum trans-
fer q = 2pF sin Θ/2 ≈ pFΘ, the average in Eq. (4.15) can
be written as〈W (θ, φ)Θ2

cos(θ/2)

〉
=

1

2p3
F

∫
dqq2W (q). (4.16)

Substituting the last result into Eq. (4.15), we see that
it indeed coincides with Eq. (3.10) for ρ obtained in
Sec. III A.

We now turn to the thermal conductivity. In
the forward-scattering limit, W 11(θ, φ), W 22(θ, φ) and
W (θ, φ) are equal because the exchange term can be ne-
glected. Then the parameters entering Eqs. (4.8a) and
(4.8b) can be simplified as

λκ1 ≈ 1 +
2m2

1

m2
1 +m2

2

cos θ, λκ2 ≈ 1 +
2m2

2

m2
1 +m2

2

cos θ,

βκ1 = βκ2 ≈
2m1m2

m2
1 +m2

2

cos θ,
τκ2

τκ1
≈ m1

m2
, (4.17)

where

cos θ ≡
〈W (θ, φ) cos θ

cos(θ/2)

〉/〈W (θ, φ)

cos(θ/2)

〉
. (4.18)

However, because generic values of these parameters are
of order one, the series in Eqs. (4.8a) and (4.8b) cannot
be simplified any further. This implies that the energy-
dependent part of the distribution functions in the pres-
ence of a thermal gradient, ψj(x), are some odd functions
of x which, generally speaking, cannot be approximated
by a linear form of Eq. (3.20).

However, substituting Eq. (4.17) into the series for the
thermal conductivity in Eq. (4.9), we find that all phys-
ical parameters drop out, and the series is reduced to a
simple number:

∞∑
l=0

4l + 5

(l + 1)(2l + 3)

1

(l + 1)(2l + 3)− 1
= 1. (4.19)

Hence the thermal conductivity in the forward-scattering
limit is given by

κ =
4π4n

m2
1m

2
2T

1〈
W (θ, φ)/ cos(θ/2)

〉 . (4.20)

With
〈
W (θ, φ)/ cos(θ/2)

〉
= (1/2pF )

∫
dqW (q), the last

result can be rewritten as

κ =
8π4npF
m2

1m
2
2T

1∫
dqW (q)

. (4.21)

For W 11(q) = W 22(q) = W (q), the approximate result
for κ in Eq. (3.23) is reduced to the same form as is in
Eq. (4.21) but with a numerical prefactor C = 20π4/3,
which differs from the exact prefactor of 8π4 in Eq. (4.21)
by 17%. Keeping the cubic term in ψ1,2(x) reduces the
disagreement to 13%, etc. Therefore, an approximate
method of Sec. III B gives a reasonably accurate albeit
not asymptotically exact result for κ.

In case of the screened Coulomb interaction, the result
for ρ remains the same as in Eq. (3.12), while κ is given
by

κ =
npFκ3ε2∞

2Tm2
1m

2
2e

4
. (4.22)

2. Isotropic scattering

Another limiting case is isotropic scattering, which
corresponds to a short-range (Hubbard-like) interaction.
In this case, the intra- and interband scattering proba-
bilities reduce to three constants: W 11, W 22, and W ,
respectively. The angular averages of the scattering
probability can then be readily performed, and we find
βκ1 = βκ2 = 0, λκ1 = λκ2 = λρ = 1/3. Substituting the
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above parameters into Eqs. (4.5) and (4.9), we find

ρ = 0.0050
m2

1m
2
2T

2

e2n
W, (4.23a)

κ = 303.9
n

Tm2
1m

2
2W

 1
m2

1

m2
2

W 11

W + 1
+

1
m2

2

m2
1

W 22

W + 1

 .

(4.23b)

(The odd-looking numerical prefactors in these equations
result from numerical summation of the corresponding
series.) If W 11 = W 22 = W , the result for κ is re-
duced to κ = 303.9n/Tm2

1m
2
2W . If W � W 11, W 22, κ

is reduced to the sum of two single-band conductivities:
κ ≈ (303.9n/T )

∑
j=1,2 1/(m4

jW
jj).

V. LORENTZ RATIO

1. Forward scattering

For clarity, we again assume that W 11(θ, φ) =
W 22(θ, φ) = W (θ, φ). Using Eqs. (4.15) and (4.20), we
find a simple result for the Lorentz ratio

L

L0
=

Θ2

2
, (5.1)

where L0 is the Sommerfeld constant given by Eq. (1.1).
Note that this result does not depend on the mass ra-
tio. By assumption of forward scattering, Θ2 � 1 and
hence L/L0, in principle, can be arbitrarily small. For
the screened Coulomb potential in Eq. (3.11), Eq. (5.1)
is reduced to

L

L0
=

κ2

2p2
F

. (5.2)

2. Isotropic scattering

Using Eqs. (4.23a) and (4.23b), we find the Lorentz
ratio for the isotropic-scattering case

L

L0
= 0.46

 1
m2

1

m2
2

W11

W + 1
+

1
m2

2

m2
1

W22

W + 1

 . (5.3)

If W 11 = W 22 = W , the Lorentz ratio assumes a uni-
versal value of L/L0 = 0.46, which does not depend on
the mass ratio. If W � W 11,W 22, the Lorentz ratio
is reduced in proportion to the ratios of the inter- and
intraband scattering probabilities:

L

L0
= 0.46

(
W

W 11

m2
2

m2
1

+
W

W 22

m2
1

m2
2

)
� 1. (5.4)

3. Exact result

One can also calculate the Lorentz ratio without as-
suming either forward or isotropic scattering for a given
interaction potential. To be specific, we use again the
screened Coulomb potential in Eq. (3.11), but now as-
sume that κ/pF can be arbitrary. Although Eq. (3.11)
is not, strictly speaking, valid for κ & pF , one can still
view this equation as a model with an adjustable param-
eter (κ/pF ), which allows one to interpolate between the
limits of forward and isotropic scattering. For a generic
interaction potential, one needs to restore the exchange
term in the scattering amplitude, as given by Eq. (3.3).
To minimize the number of free parameters, however, we
assume that the distance between the centers of the elec-
tron and hole FSs [p0 in Eq. (1.2)] is much larger than
κ, so that the exchange term in the interband scattering
amplitude can still be neglected, but take into account
the exchange term in the intraband amplitude. We then
calculate the parameters in Eqs. (4.2a-4.2e) and use the
exact results for ρ and κ, Eqs. (4.5) and (4.9), respec-
tively.

The result of this calculation is shown in the top panel
of Fig. 2 for 0 ≤ κ/pF ≤ 1 and in the bottom panel
for 0 ≤ κ/pF ≤ 4. The dashed and dashed-and-dotted
lines in both panels correspond to exact solutions for
m1/m2 = 1/2 and m1/m2 = 1, respectively. The solid
line in the top panel depicts the forward-scattering limit
given by Eq. (5.2). We see that the exact result matches
the approximate one for κ/pF . 0.2 but goes below the
approximate one for larger κ/pF . The dependence of
the exact result on the mass ratio, which is absent in
the forward-scattering limit, remains very weak for ar-
bitrary κ/pF . For larger values of κ/pF , the Lorentz
ratio shows a clear tendency to saturation This agrees
with the analytic result in the isotropic-scattering limit
[cf. Eq. (5.3)] because our current model corresponds to
W 11 = W 22 = W . The value at saturation is also quite
close to the analytic result of L/L0 = 0.46.

A. Lorentz ratio of WP2

The Lorentz ratio measures the relative rates of relax-
ation of electrical and thermal currents, with L = L0

indicating that the two rates are same. Recent experi-
ments on a compensated metal WP2

15 found a very low
Lorentz ratio (L/L0 ≈ 0.2), which indicates that the elec-
trical current is relaxed much slower than the thermal
one. This low Lorentz ratio was observed in the temper-
ature range where both ρ and T/κ scale as T 2, which
suggests the dominant scattering mechanism is electron-
electron interaction. According to the discussion in the
previous two sections, a low Lorentz ratio can occur if
either the interaction of a long-range type, or if the in-
teraction is of a short-range type but intraband scattering
is much stronger than interband one.

In the first scenario, the Lorentz ratio is parameter-
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FIG. 2. The Lorentz ratio in units of the Sommerfeld con-
stant as a function of κ/pF , where κ is the inverse screening
length defined by Eq. (3.11).

ized by the average square of the scattering angle [See
Eq. (5.1)] which, for the screened Coulomb potential
translates into Eq. (5.2). In a multiband system

κ2 =
4e2

πε0

∑
j

mjpF,j , (5.5)

where mj and pF,j are the effective mass and Fermi mo-
mentum of the jth band, respectively. WP2 has two
electron pockets with masses mγ = 0.87m0 and mδ =
0.99m0, and two hole pockets with masses mα = 1.67m0

and mβ = 0.89m0 (Ref. 14).42 The total number density
of electrons (equal to that of holes) is n ≈ 2.5×1021cm−3.
According to the exact solution of the BEs (dashed and
dashed-and-dotted lines in Fig. 2), the Lorentz ratio
reaches the observed value of 0.2 already at κ/pF ≈
1. With material parameters indicated above, we have
κ/pF ≈

√
30.8/ε∞, and the forward-scattering scenario

can explain the experiment only if ε∞ is quite large:
ε∞ & 30. Interestingly, this may be the case for WP2. In-
deed, although we are not aware of optical measurements
on this material, an anomalously large value of ε∞ (from
75 to 91, depending on orientation) have recently been
reported for a cousin material WTe2 (Ref. 43), which is
also a type-II Weyl Semimetal. Alternatively, a small
Lorentz ratio can result from strong intraband scattering
with short-range interaction. With comparable masses of
electron and hole bands, the observed value of L/L0 can
be already achieved if W/W 11 = W/W 22 ≈ 0.4, which
is not unrealistic. Optical data for ε∞ in WP2 are ob-
viously needed to discriminate between the forward- and

isotropic-scattering scenarios.
VI. CONCLUSIONS

In this paper, we calculated electrical and thermal con-
ductivities of a clean compensated two-band metal with
intercarrier interaction as the dominant scattering mech-
anism. From the theoretical standpoint, it is an attrac-
tive toy model which allows one to study both electrical
and thermal transport properties, without invoking ad-
ditional mechanisms of momentum relaxation. However,
this model is also relevant to a large class of materials,
i.e., metals and semimetals with even number of electrons
per unit cell, which include many elemental metals, group
V semimetals, graphite, parent states of iron-based su-
perconductors, type-II Weyl Semimetals, etc. To find the
electrical and thermal conductivities, we solved exactly
the system of coupled Boltzmann Equations, describing
both inter- and intraband scattering, and analyzed the
limiting cases of forward and isotropic scattering. We
showed that the forward-scattering limit of the electrical
conductivity can be obtained without knowing the exact
solution: By assuming from the very beginning that the
non-equilibrium part of the distribution function depends
primarily on the directions of carriers’ momenta but not
on their energies. For the thermal conductivity, the same
procedure leads to a reasonable albeit not asymptotically
exact approximation. We obtained the exact result for
the Lorentz ratio and showed that it takes a particu-
larly simple form, parameterized by the average square
of the scattering angle, in the forward-scattering limit
[cf. Eq. (5.1)]. We analyzed the Lorentz ratio of a type-II
Weyl Semimetal WP2 and showed that a strong down-
ward violation of the Wiedemann-Franz Law observed
in this material15 can be explained within the forward-
scattering model, provided that the high-frequency value
of the dielectric constant in this material is sufficiently
large.
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Appendix A: Exact solution of the coupled
Boltzmann equations
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In the appendix we provide detailed derivations of the exact results for the electric resistivity and the thermal
conductivity. To reiterate, “exact” here means that the results are valid for an arbitrary scattering probability but
only for T � εF .

1. Electrical resistivity

To find the exact electrical resistivity of a two-band compensated metal, we start with the system of coupled Boltz-
mann equations, Eqs. (3.1a) and (3.1b). The non-equilibrium parts of the distribution functions are parameterized by
Eq. (3.6). Defining dimensionless variables xj = ξj/T and y = ω/T , where ω is the energy transfer in the scattering
processes, we rewrite Eqs. (3.1a) and (3.1b) in the notations of Ref. 30 as

1

m1
nF (x1) [1− nF (x1)] =

m1m
2
2T

2

8π4

∫
dΩ

4π

W (θ, φ)

cos(θ/2)

∫
dx2 dyQ(x1, x2, y)

×
[
ϕ1(x1)

m1
− ϕ2(x2)

m2
cos θ − ϕ1(x1 − y)

m1
cos Θ +

ϕ2(x2 + y)

m3
cos θk′p

]
, (A1a)

1

m2
nF (x2) [1− nF (x2)] =

m2m
2
1T

2

8π4

∫
dΩ

4π

W (θ, φ)

cos(θ/2)

∫
dx1 dyQ(x1, x2, y)

×
[
ϕ2(x2)

m2
− ϕ1(x1)

m1
cos θ − ϕ2(x2 + y)

m2
cos Θ +

ϕ1(x1 − y)

m1
cos θp′k

]
. (A1b)

As in the main text, θ is the angle between the initial state momenta, p and k, Θ is the scattering angle, φ is the angle
between the planes formed by the initial and final momenta, respectively, W (θ, φ) is the scattering probability, and
cos θk′p = cos θp′k = 1 + cos θ − cos Θ, where θmn is the angle between vectors n and m. Furthermore, Q represents
the product of Fermi functions

Q(x1, x2, y) = nF (x1)nF (x2) [1− nF (x1 − y)] [1− nF (x2 + y)] , nF (x) = 1/ (ex + 1) . (A2)

Equations (A1a) and (A1b) can be further reduced to two coupled integral equations

1 = τ−1
ρ1

π2 + x2
1

2
ϕ1(x1)− λρτ−1

ρ1

∫
duF(x1, u)ϕ1(u) + (1− λρ)τ−1

ρ2

∫
duF(x1, u)ϕ2(u), (A3a)

1 = τ−1
ρ2

π2 + x2

2
ϕ2(x2)− λρτ−1

ρ2

∫
duF(x2, u)ϕ2(u) + (1− λρ)τ−1

ρ1

∫
duF(x2, u)ϕ1(u), (A3b)

where τρ1,2 are given by Eq. (4.2a) and its analog with 1 ↔ 2, λρ is defined by Eq. (4.2b), and the kernel in the
integrand reads

F(x, u) =
cosh(x/2)

cosh(u/2)
G(x− u), (A4a)

G(x) =
x

2 sinh(x/2)
. (A4b)

To derive Eq. (A3a) and (A3b), we have used that∫
dx2

∫
dyQ(x1, x2, y)ϕj(x2) = −nF (x1) [1− nF (x1)]

∫
duF(x1, u)ϕj(u) (A5a)∫

dx2

∫
dyQ(x1, x2, y)ϕj(x1 − y) = nF (x1) [1− nF (x1)]

∫
duF(x1, u)ϕj(u), (A5b)∫

dx2

∫
dyQ(x1, x2, y)ϕj(x2 + y) = nF (x1) [1− nF (x1)]

∫
duF(x1, u)ϕj(u), (A5c)

with j = 1, 2. Defining Φj(x) = ϕj(x)/(τρ,j cosh x
2 ), we arrive at

2

cosh(x1/2)
= (π2 + x2

1)Φ1(x1)− 2

∫
duG(x1 − u) [λρΦ1(u)− (1− λρ)Φ2(u)] , (A6a)

2

cosh(x2/2)
= (π2 + x2

2)Φ2(x2)− 2

∫
duG(x2 − u) [λρΦ2(u)− (1− λρ)Φ1(u)] . (A6b)
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The integral equations can be reduced to the differential ones for Fourier transforms Φ̃j(k) =
∫
dxΦj(x)eikx:

d2Φ̃1(k)

dk2
+ π2

[
2λρ

cosh2(πk)
− 1

]
Φ̃1(k)− π2 2(1− λρ)

cosh2(πk)
Φ̃2(k) = − 4π

cosh(πk)
, (A7a)

d2Φ̃2(k)

dk2
+ π2

[
2λρ

cosh2(πk)
− 1

]
Φ̃2(k)− π2 2(1− λρ)

cosh2(πk)
Φ̃1(k) = − 4π

cosh(πk)
. (A7b)

Adding up the two equations above and introducing a variable ζ = tanh(πk), we obtain an equation for Φ̃(k) =

Φ̃1(k) + Φ̃2(k)

LΦ̃(ζ) + 2(2λρ − 1)Φ̃(ζ) = − 8

π
√

1− ζ2
, (A8)

where the linear differential operator L is given by

L =
d

dζ

[
(1− ζ2)

d

dζ

]
− 1

1− ζ2
. (A9)

The eigenfunctions of L are associated Legendre polynomials, P 1
l (ζ): LP 1

l (ζ) = −l(l + 1)P 1
l (ζ), l = 1, 2, 3 . . . Ex-

panding Φ̃(ζ) in series over P 1
l (ζ)

Φ̃(ζ) =
∑
l

clP
1
l (ζ), (A10)

and using the orthogonality relation

∫ 1

−1

dζP 1
l (ζ)P 1

m(ζ) =
2l(l + 1)

2l + 1
δlm (A11)

and an identity

∫ 1

−1

dζ
P 1
l (ζ)√
1− ζ2

=
{ −2, if l is odd;

0, if l is even,
(A12)

we obtain Eq. (4.4) of the main text.

The electrical resistivity is

ρ =
1

ne2

∑
j=1,2

τρ,j
mj

∫
dx

Φj(x)

4 cosh(x/2)

−1

=
1

ne2

∑
j=1,2

τρ,j
mj

∫
dk

Φ̃j(k)

4 cosh(πk)

−1

=
1

ne2

m2
1m

2
2T

2

2π4

〈W (θ, φ)

cos(θ/2)

〉[∫
dk

Φ̃(k)

cosh(πk)

]−1

=
1

ne2

m2
1m

2
2T

2

2π4

〈W (θ, φ)

cos(θ/2)

〉[ 1

π

∫ 1

−1

dζ
Φ̃(ζ)√
1− ζ2

]−1

=
1

ne2

m2
1m

2
2T

2

8π2

〈W (θ, φ)

cos(θ/2)

〉[ ∞∑
l=0

4l + 3

(l + 1)(2l + 1)

1

(l + 1)(2l + 1)− (2λρ − 1)

]−1

, (A13)

which reproduces the result in Eq. (4.5).
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2. Thermal conductivity

In the same parameterization as in the previous section, the Boltzmann equations (3.17a) and (3.17b) in the presence
of a thermal gradient read

1

m1
x1 nF (x1) [1− nF (x1)] =

m3
1T

2

8π4

∫
dΩ

4π

W 11(θ, φ)

cos(θ/2)

∫
dx2 dyQ(x1, x2, y)

× 1

m1
[ψ1(x1) + ψ1(x2) cos θ − ψ1(x1 − y) cos Θ− ψ1(x2 + y) cos θk′p]

+
m1m

2
2T

2

8π4

∫
dΩ

4π

W (θ, φ)

cos(θ/2)

∫
dx2 dyQ(x1, x2, y)

×
[
ψ1(x1)

m1
− ψ2(x2)

m2
cos θ − ψ1(x1 − y)

m1
cos Θ +

ψ2(x2 + y)

m2
cos θk′p

]
, (A14a)

1

m2
x2 nF (x2) [1− nF (x2)] =

m3
2T

2

16π4

∫
dΩ

4π

W 22(θ, φ)

cos(θ/2)

∫
dx1 dyQ(x1, x2, y)

× 1

m2
[ψ2(x2) + ψ2(x1) cos θ − ψ2(x2 + y) cos Θ− ψ2(x1 − y) cos θp′k]

+
m2m

2
1T

2

16π4

∫
dΩ

4π

W (θ, φ)

cos(θ/2)

∫
dx1 dyQ(x1, x2, y)

×
[
ψ2(x2)

m2
− ψ1(x1)

m1
cos θ − ψ2(x2 + y)

m2
cos Θ +

ψ1(x1 − y)

m1
cos θp′k

]
. (A14b)

Eqs. (A14a) and (A14b) can be further reduced to two coupled integral equations,

τκ1 x1 =
π2 + x2

1

2
ψ1(x1)− λκ1

∫
duF(x1, u)ψ1(u) + βκ1

∫
duF(x1, u)ψ2(u), (A15a)

τκ2 x2 =
π2 + x2

2
ψ2(x2)− λκ2

∫
duF(x2, u)ψ2(u) + βκ2

∫
duF(x2, u)ψ1(u), (A15b)

where parameters τκ1,2, λκ1,2, and βκ1,2 are given by Eqs. (4.2c), (4.2d) and (4.2e), respectively, and their analogs
with 1 ↔ 2, and kernels F(x, u) and G(x) are defined by Eqs. (A4a) and (A4b), respectively. Defining Ψj(x) =
ψj(x)/(τκ,j cosh x

2 ), we arrive at

2x1

cosh(x1/2)
= (π2 + x2

1)Ψ1(x1)− 2

∫
duG(x1 − u)

[
λκ1Ψ1(u)− βκ1τκ2

τκ1
Ψ2(u)

]
, (A16a)

2x2

cosh(x2/2)
= (π2 + x2

2)Ψ2(x2)− 2

∫
duG(x2 − u)

[
λκ2Ψ2(u)− βκ2τκ1

τκ2
Ψ1(u)

]
. (A16b)

After a Fourier transformation, Ψ̃j(k) =
∫
dxΨj(x)eikx, Eqs. (A16a) and (A16b) become

LΨ̃1(ζ) + 2λκ1Ψ̃1(ζ)− 2π2 βκ1τκ2

τκ1
Ψ̃2(ζ) = −i 4ζ√

1− ζ2
, (A17a)

LΨ̃2(ζ) + 2λκ2Ψ̃2(ζ)− 2π2 βκ2τκ1

τκ2
Ψ̃1(ζ) = −i 4ζ√

1− ζ2
. (A17b)

Expanding Ψ̃κ1(ζ) and Ψ̃κ2(ζ) in series of the associated Legendre polynomial P 1
l (ζ),

Ψ̃1(ζ) = i
∑
n

alP
1
l (ζ), Ψ̃2(ζ) = i

∑
l

blP
1
l (ζ), (A18)

we then obtain

[l(l + 1)− 2λκ1] al +
2βκ1τκ2

τκ1
bl =

2(2l + 1)

l(l + 1)

∫ 1

−1

dζ
ζP 1

l (ζ)√
1− ζ2

, (A19a)

2βκ2τκ1

τκ2
al + [l(l + 1)− 2λκ2] bl =

2(2l + 1)

l(l + 1)

∫ 1

−1

dζ
ζP 1

l (ζ)√
1− ζ2

. (A19b)
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Solving for al and bl, we find

al = − l(l + 1)− 2λκ2 − 2βκ1τκ2/τκ1

[l(l + 1)− 2λκ1] [l(l + 1)− 2λκ2]− 4βκ1βκ2

4(2l + 1)

l(l + 1)
, (A20a)

bl = − l(l + 1)− 2λκ1 − 2βκ2τκ1/τκ2

[l(l + 1)− 2λκ1] [l(l + 1)− 2λκ2]− 4βκ1βκ2

4(2l + 1)

l(l + 1)
, (A20b)

where we have again used Eq. (A11) and another identity∫ 1

−1

dζ
ζP 1

l (ζ)√
1− ζ2

=
{ −2, if l is even;

0, if l is odd.
(A21)

Substituting al and bl into Eq. (A18), we reproduce Eqs. (4.8a) and (4.8b) of the main text.
The thermal conductivity is found as

κ = nT

∑
j=1,2

τκ,j
mj

∫
dx

x

4 cosh(x/2)
Ψj(x)

 = −iπnT

∑
j=1,2

τκ,j
mj

∫
dk

sinh(πk)

4 cosh2(πk)
Ψ̃j(k)


= −inT

4

∑
j=1,2

τκ,j
mj

∫ 1

−1

dζ
ζΨ̃j(ζ)√

1− ζ2


=

4π4n

m2
1T

1

m2
1

〈
W 11(θ, φ)/ cos θ2

〉
+m2

2

〈
W (θ, φ)/ cos θ2

〉 ×
∞∑
l=0

4l + 5

(l + 1)(2l + 3)

(l + 1)(2l + 3)− λκ2 − βκ1τκ2/τκ1

[(l + 1)(2l + 3)− λκ1] [(l + 1)(2l + 3)− λκ2]− βκ1βκ2

+
4π4n

m2
2T

1

m2
2

〈
W 22(θ, φ)/ cos θ2

〉
+m2

1

〈
W (θ, φ)/ cos θ2

〉 ×
∞∑
l=0

4l + 5

(l + 1)(2l + 3)

(l + 1)(2l + 3)− λκ1 − βκ2τκ1/τκ2

[(l + 1)(2l + 3)− λκ1] [(l + 1)(2l + 3)− λκ2]− βκ1βκ2
, (A22)

which reproduces Eq. (4.9) in the main text.
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