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The matrix product representation provides a useful formalism to study not only entangled states,
but also entangled operators in one dimension. In this paper, we focus on unitary transformations
and show that matrix product operators that are unitary provides a necessary and sufficient rep-
resentation of 1D unitaries that preserve locality. That is, we show that matrix product operators
that are unitary are guaranteed to preserve locality by mapping local operators to local operators
while at the same time all locality preserving unitaries can be represented in a matrix product way.
Moreover, we show that the matrix product representation gives a straight-forward way to extract
the GNVW index defined in [Gross et.al., Comm. in Math. Phys. 310, 419 (2012)] for classifying
1D locality preserving unitaries. The key to our discussion is a set of ‘fixed point’ conditions which
characterize the form of the matrix product unitary operators after blocking sites. Finally, we show
that if the unitary condition is only required for certain system sizes, the matrix product formalism
allows more possibilities. In particular, we give an example of a simple matrix product operator
which is unitary only for odd system sizes, does not preserve locality and carries a ‘fractional’ index.

I. INTRODUCTION

The matrix product formalism2,3 has played a signifi-
cant role in the study of one dimensional systems. In par-
ticular, the matrix product representation of 1D quantum
states underlies successful numerical algorithms like the
Density Matrix Renormalization Group algorithm4 and
the Time-Evolving Block Decimation algorithm5. More-
over, the matrix product representation provides a deep
insight into the structure of the ground states in 1D3

which enables rigorous proofs of the efficiency of 1D vari-
ational algorithms in search for the ground states6,7 and
also a complete classification of 1D gapped phases8–11.

Operators can also be represented in a matrix product
form12–14, which provides a useful tool in the simulation
of one dimensional mixed states and real / imaginary
time evolutions (see for example Ref. 15 and 16). In par-
ticular, matrix product operators which are unitary play
an important role in not only the simulation of dynam-
ical processes in 1D , but also the understanding and
classification of (symmetry protected) topological phases
in 2D17–21.

How well does the matrix product formalism represent
unitary operators in 1D? Of particular interest are uni-
taries that preserve the locality structure of the system.
That is, unitaries that map local operators to local opera-
tors. We want to understand: Can all locality preserving
1D unitaries be represented in the matrix product form?
On the other hand, of course not all matrix product op-
ereators are unitary. But among those that are, what
conditions do they have to satisfy to preserve locality?
Moreover, it has been shown1 that locality preserving
1D unitaries can be classified according to how much in-
formation they are transmitting across any cut in the 1D
chain and each class can be uniquely characterized by a
positive rational index, which we refer to below as the
GNVW index. We want to know if there is a simple way
to extract this GNVW index from the matrix product

representation if such a representation exists.
In this paper, we address the above questions and show

that

• Unitary matrix product operators provide a nec-
essary and sufficient representation of locality pre-
serving unitaries in 1D.

That is, matrix product operators that are unitary are
guaranteed to preserve locality by mapping local opera-
tors to local operators while at the same time all locality
preserving unitaries can be represented in a matrix prod-
uct way. Moreover, we find that

• The GNVW index can be extracted in a simple way
as the square root of IRR, the ‘Rank-Ratio index’,
which is the ratio between the rank of the left and
right singular value decompositions of the tensor
representing the operator:

IRR = rank

( )/
rank

( )
,

IGNVW =
√
IRR.

(1)

The exact meaning and a more rigorous version of this
formula is given in section IV.

To show this result, we start from the basic require-
ments for a matrix product operator to be unitary in
section II. Based on these basic requirements, we prove
in the section III that after sufficient blocking, the ‘fixed
point’ matrix product operator satisfies a set of nice fixed
point properties. Using this set of fixed point conditions,
we can show the correspondence between matrix prod-
uct unitary operators and locality preserving 1D uni-
taries. Moreover, these conditions enable us to prove
in section IV that Eq. 1 provides a well-defined index for
each equivalence class of 1D locality preserving unitaries
and it exactly matches (the square of) the GNVW in-
dex. In section V, we compute the index according to
Eq. 1 numerically for some random locality preserving
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unitaries and demonstrate how it approaches to the ex-
pected value as we take larger and larger blocks of the
tensor. In section VI, we show that the matrix product
formalism also provides interesting ways to go beyond
the GNVW framework. In particular, we give an exam-
ple of a simple matrix product operator with ‘fractional’
index as compared to the locality preserving ones. This
example does not contradict with our discussions in the
previous sections because it is unitary only in systems of
special sizes and does not preserve locality.

The structure of the paper is illustrated in Fig. 1.

Section	II:	Basic	Requirements

Section	III:	Fixed	point	
conditions

Section	III:	Locality	
preserving

Section	IV:	Index	
from	SVD

Section	VI:	Beyond	locality	preserving

Section II

Section	V:	Numerics on	index

FIG. 1. Structure and logic of this paper.

II. MATRIX PRODUCT UNITARY: BASIC
REQUIREMENTS

A. Implication of the unitary condition

Let’s first set up the stage and discuss the basic require-
ment a matrix product operator (MPO) has to satisfy to
represent a unitary operator. Consider an MPO O acting
on N sites where each site has a d-dimensional degree of
freedom, i.e., O acts on (Cd)⊗N . In principle, N is very
large, ideally goes to infinity. In this paper we focus on
translation invariant MPO with periodic boundary con-
dition. The matrix product form of O is given by

Oj1j2...jNi1i2...iN
= Tr

(
M j1i1M j2i2 ...M jN iN

)
(2)

where each M jkik , with fixed ik and jk, is a D×D matrix.
i1i2...iN label the input physical legs and j1j2...jN label
the output physical legs. We are going to call the left
and right legs of the M jkik matrices the virtual legs and
think of M as a four leg tensor.

Pictorially, the local tensor M in the MPO is given by

M j
i =

i

j

, (3)

while the total MPO is given by

O =
i1 i2 iN

j1 j2 jN

, (4)

where periodic boundary conditions are imposed. Note
that, we study the MPUOs obtained by contracting local
tensors with periodic boundary conditions, namely the
very left virtual degree of freedom is always identified
with the very right one. In order for O to be unitary, it
has to satisfy the condition that O†O = I. We consider
the case where this is true for any finite system size, not
just in the thermal dynamic limit. We call such operators
Matrix Product Unitary Operators (MPUO).

Definition 1 (Matrix Product Unitary Operator). Con-
sider a matrix product operator O represented with tensor
M of finite bond-dimension. O is called a matrix product
unitary operator if it is a unitary for all system sizes.

Note that we emphasize ‘for all system sizes’ for a good
reason. In section VI we are going to see that there are
matrix product operators which are unitary only for cer-
tain system sizes, and hence do not fit into this definition.

If we define a new tensor M† as

M†
ji

=
(
M ij

)∗
(5)

Then the MPUO condition is given graphically as

O†O =
𝑀

𝑀"

=

I I I I I

(6)

where we use a straight line to represent the identity
matrix. This condition imposes very strong constraints
on M . The constraint can be most easily identified on
the composite of M and M† which we define as

T ij =
∑
k

M†
ik ⊗Mkj =

M

M†

i

j

. (7)

The unitarity condition (6) tells us that the matrix prod-
uct operator with tensor T ij is equivalent to a tensor
product of identity operators I on each degree of free-
dom. If we combine the input and output physical legs
of T ij , we can think of it as representing a matrix prod-
uct state, which would be a tensor product of maximally
entangled pairs, |11〉+ |22〉+ ...|dd〉.

Based on this observation, we can derive a general form
for the T ij tensors. Let’s give this as a lemma:
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Lemma 1. Let O be a Matrix Product Unitary Operator
(MPUO) described by local tensor M , then the tensor
T ij, which is composed of M and M† as in Eq. 7, has to
take the following form:

(8)

where n is a constant, which denotes the number of steps
in the process of finding the canonical form of the as-
sociated MPS. v1, . . . , vn denotes vectors in the double
virtual Hilbert space V = CD ⊗ CD. Namely, each
vi ∈ Vi, v

⊥
i ∈ V ⊥i is an orthonormal basis vector in

V = Vn⊕V ⊥n ⊕V ⊥n−1⊕V ⊥n−2⊕. . .⊕V ⊥1 and Vi = Vi+1⊕V ⊥i+1

for all 0 ≤ i ≤ n − 1. Each W jk(i) denotes a block on
V ⊥i which is of similar form of T jk except they are all
trivial blocks, i.e., ∀s ∈ Z+,Tr[(Wi)

s] = 0.

Proof. This form of the tensor T follows directly from
the definition of the canonical form given in Ref.3 and
the requirement that O is an MPO which is a unitary for
all system sizes. We define an MPS form for the operator
O†O which is described by local tensor Ajk obtained by
combining the input and output legs, j and k, of T jk as
the physical legs, i.e.,

. (9)

Following the procedure of finding the canonical form
given in Ref.3, we step by step decompose the left and
the right virtual vector space of the tensors Ajk into
orthogonal subspaces. The procedure does this alter-
natively, first Ajk gets updated to (PV1

+ PV ⊥1 )Ajk,

where PV1
and PV ⊥1 are projectors onto V1 and V ⊥1 re-

spectively, and PV1 + PV ⊥1 = PV0 is the projector on

the whole virtual space. As proved in Ref.3 the term
PV1

AjkPV ⊥1 vanishes. Now we update the MPS tensor

Ajk to PV1A
jkPV1 + PV ⊥1 A

jkPV1 + PV ⊥1 A
jkPV ⊥1 . The

proof of this statement follows from the property that∑
ij Āij ⊗ Aij is a CP-map, and can be found in more

detail in the second paragraph of the proof of Theorem
4 in Ref3.

Repeating this procedure alternatively for decompos-
ing left and right virtual vector spaces, implies that we
will always have PV2i−1

APV ⊥2i−1
= 0 = PV ⊥2iAPV2i

where

the subspaces are split as V = V0 = Vn ⊕ V ⊥n ⊕ V ⊥n−1 ⊕
. . . ⊕ V ⊥1 , and Vi−1 = Vi ⊕ V ⊥i for all 1 ≤ i ≤ n and
V0 = V = CD ⊗ CD. Hence we obtain the following
general form of the tensor T jk:

.
(10)

Now we impose the requirement that the MPO O rep-
resented by the local tensor M is unitary for all system
sizes. Since the operator O is obtained with periodic
boundary conditions as seen in Eq. (2), we must inves-
tigate the associated MPS represented by local tensors
Aij with periodic boundary conditions. This means that,
only the operators of the form Ow,w′ with w,w′ ∈ V ⊥i or
w,w′ ∈ Vn appear in the expression of O†O. Since we
know that O†O = I⊗N for all system sizes, each of the
operators Oww′ must be individually equal to I. We can
immediately see that only one block of these operators
can have diagonal terms, since otherwise it would im-
ply that O†O is only proportional to I⊗N and there is
no way to make it exactly equal to I⊗N by normaliza-
tion. Let this block be the nth block that maps Vn to
Vn from right to left virtual legs. This implies that in
the general form of the MPS the blocks that map V ⊥i
to V ⊥i should be trivial, they can be decomposed further
with the same procedure but all the resulted new diag-
onal blocks should be trivial, which means the trace of
each block’s self multiplication to any order is zero. We
denote these terms in the sum as W jk(i) for each block of
V ⊥i . Furthermore, the fact that MPS is a product state
means that dimVn = 1. Hence, Eq. (10) and the fact
that O is an MPUO as defined in Def. 1 imply that T jk

is of the following form:
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(11)

Note that n ≤ D2 − 1 which simply follows from di-
mension considerations. An important remark is that, we
are not ending up with the canonical form since we con-
tinue to keep the off diagonal terms, such as PV ⊥1 A

jkPV1
,

that does not vanish at each step. In the canonical form,
these off-diagonal blocks are simply set to zero, since they
don’t contribute to the global MPS because of the peri-
odic boundary conditions. For the sake of the following
results, we have to keep the off-diagonal terms, because
whenever we consider the product of two MPUOs, even
though we start from canonical form representations, the
resulting MPUO is not in the canonical form. Further-
more, it also shows that our results are generally true for
MPUOs constructed by local tensors M , even beyond the
canonical form of the implied MPS, A.

B. 1D locality preserving unitaries as MPUO

In this section, we are going to show that all locality
preserving 1D unitaries can be represented as MPUO.

Let’s look at a few examples first and see how their
representation fits the form in Lemma 1.

• Example 1: Tensor product of unitary operators

This is a trivial case where the dimension of the
virtual legs is 1. Graphically, we denote it as

Mproduct =

U U U

(12)

where a line with a dot in the middle represents a
nontrivial matrix, a unitary U in this case. The T
tensor as defined in Eq. (7) is automatically iden-
tity.

• Example 2: Controlled-phase between nearest
neighbor spin-1/2s.

Let’s consider a simple entangled unitary in 1D∏N
k=1 CPk,k+1, where each CPk,k+1 is a two body

unitary of the form

CP =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (13)

This unitary can be represented with

MCP = (14)

where 0+1 (0−1) means linear superposition with
plus (minus) sign of two tensor elements, one with
index 0 and another with index 1, in the computa-
tional basis. We can check that MCP satisfies the
condition in Lemma 1. We can calculate TCP to be

TCP = 0 0+1

0

0

+
0 0+1

1 0-1

1

1

1 0-1

=

00
+
11

I

00
+
11

00
-
11

I

01
+
10

1

2 + 1

2

00
+
11

01
+
10

00
-
11

00
+
11

1

2 + 1

2+
�z �z

(15)

• Example 3: Translation

Translation, which is a locality preserving unitary
that cannot be written as a finite depth circuit, can
also be represented as a MPUO in a simple way.
Consider the translation to the right by one step in
a spin-1/2 chain. The operator can be represented
with

Mr = (16)

where the curved lines again represent the identity
matrix between the left and up legs, and the right
and down legs. When connected into a chain, it is
straight forward to see that it represents transla-
tion:

. (17)

Similarly, translation to the left by one step can be
represented with

Ml = . (18)
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Mr and Ml also satisfy the condition in Lemma 1.
In particular,

Tr = =

00
+ 
11 

I

00
+ 

11 

00
+ 
11 

01
+ 

10 

1

2 + 1

2

00
+ 
11 

01
- 

10 

00
+ 
11 

00
- 

11 

1

2 + 1

2+ 
�z�x i�y

(19)

And a similar expansion holds for Tl.

In fact, all locality preserving unitaries in 1D can be
represented as MPUO satisfying Lemma 1.

Theorem 1 (Locality preserving 1D unitaries as
MPUO). Let O be a locality preserving 1D unitary. It
is possible to represent it as a Matrix Product Unitary
Operator, as defined in Definition 1.

Proof. We prove this statement in the following steps:
1. Translation operator by one step can be represented

with an MPO as shown with Example 3 above, such that
the MPO is unitary for any system size.

2. One layer of non-overlapping unitaries can be rep-
resented with an MPO. WLOG, consider a layer of non-
overlapping two-body unitaries, which can be represented
with a tensor

Mtb = (20)

when connected together into a chain, this tensor gives
the two-body unitaries.

(21)

Such an MPO is unitary for all system sizes.
3. According to Ref.1, all 1D locality preserving uni-

taries can be decomposed into a finite number of layers of
translation and finite depth local unitary circuits which
can be further decomposed into a finite number of lay-
ers of non-overlapping few-body unitaries. The MPO
representation of such a composite can be obtained by
stacking the MPO representation for each component.
As each component satisfies the MPUO condition that
the MPO is unitary for all system sizes, the same is true
for the composite MPO. Therefore, all 1D locality pre-
serving unitaries can be represented as a MPUO, with
tensors satisfying Lemma 1.

III. CHARACTERIZATION OF MATRIX
PRODUCT UNITARY OPERATORS

In this section we prove fixed-point properties of
MPUOs. Suppose that O is an MPUO described by ten-
sor M . We show that when the individual tensors are

blocked, they satisfy equations that we call fixed-point
equations. These equations give a characterization of
finite-bond dimension MPUOs. More importantly they
imply that MPUOs are locality-preserving.

In order to obtain these results, we use basic facts
about MPS3. So, let us first review these starting from
the transfer matrix. Define the transfer matrix EM of M
as

EM =
∑
ij

M ij ⊗M ij∗ = =
∑
i

T ii, (22)

and denote the right eigenvector of EM with largest eigen-
value as r and the left eigenvector with largest eigenvalue
as l, such that 〈l|r〉 = 1. Assuming the spectral radius of
E is 1, we have

(23)

Based on Lemma 1, we can see that if M describes an
MPUO, the transfer matrix EM is of the following form:

EM = |vn〉〈vn|+
n/2∑
i=1

 ∑
v2i,v⊥2i

tr(Ov2i,v⊥2i)|v2i〉〈v⊥2i|

+
∑

v2i−1,v⊥2i−1

tr(Ov⊥2i−1,v2i−1
)|v⊥2i−1〉〈v2i−1|


+

n∑
i=1

d∑
j=1

W jj(i).

(24)
Above we do not know the values of the trace of the

operators, but we do know that the left and right eigen-
vectors of EM have to take the following form:

〈l| = 〈vn|+
n/2∑
i=1

c2i〈v⊥2i|,

|r〉 = |vn〉+

n/2∑
i=1

c2i−1|v⊥2i−1〉
(25)

where cis are complex coefficients.
The left and right eigenvectors, when seen as ma-

trices r =
∑
αβ rαβ |α〉〈β| with elements rαβ and l =∑

γδ lγδ|γ〉〈δ| with elements lγδ, are positive matrices.

〈l|r〉 = 1 since 〈vn|vn〉 = 1 and 〈v⊥2i|v⊥2j−1〉 = 0 for all
i, j.
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Now we are ready to state the results. We define
M̃JI = M j1i1M j2i2 . . .M jnin , where I = i1i2...in, J =
j1j2...jn, as the tensor obtained by blocking the individ-
ual tensor M . The blocked tensor M̃ satisfies the follow-
ing fixed-point equations:

1. Fixed-point equation 1 - Separation:

. (26)

2. Fixed-point equation 2 - Isometry:

(27)

where l and r denote the left and right eigenvectors of
the transfer matrix EM as given in Eq. (25). Eq. (26)
(separation) and Eq. (27) (isometry) imply the follow-
ing equations called pulling through conditions, that we
frequently make use of in the paper:

(28)

Before proving the above claims, we first give a lemma
that explicitly shows the form of the tensor T̃ IJ which is
obtained by blocking the tensor T ij D2-times, i.e., T̃ IJ =
T i1j1T i2j2 . . . T iD2 jD2 .

Lemma 2. Let the general form of the tensor T be as
in Eq. (8) in Lemma 1. Then, the blocked tensor T̃ IJ =
T i1j1T i2j2 . . . T iD2 jD2 , where D2 is the bond dimension

of the tensor T , is of the following form

(29)

Proof. By Lemma 1, the general form of the tensor T can
be taken as

T = |vn〉I〈vn|+
n/2∑
i=1

 ∑
v2i,v⊥2i

|v2i〉Ov2i,v⊥2i〈v
⊥
2i|

+
∑

v2i−1,v⊥2i−1

|v⊥2i−1〉Ov⊥2i−1,v2i−1
〈v2i−1|

+
∑
i

W (i)

(30)
where |vi〉 ∈ Vi, |v⊥i 〉 ∈ V ⊥i , and V = Vn ⊕ V ⊥n ⊕ V ⊥n−1 ⊕
. . . ⊕ V ⊥1 . Now, imagine that we block D2 of these ten-

sors and obtain the tensor T̃ IJ = T i1j1T i2j2 . . . T iD2 jD2 .
Using the fact that 〈v⊥i |v⊥j 〉 = 0 for all i and j, and

〈vi|v⊥j 〉 = 0 for all j ≤ i, after carefully keeping track
of those vectors, we can see that only the terms with
|vn〉〈vn|, |v⊥2i−1〉〈v⊥2j |, |vn〉〈v⊥2i| and |v⊥2i−1〉〈vn| appear in

the expression of the tensor T̃ IJ . In fact, during block-
ing, the odd indices of those virtual vector spaces will
keep increasing while even indices decreasing, from left
to right, and all vanish after maximally D2 steps. Also,
note that the W (i) denotes the operator components
within the block V ⊥i is actually a nilpotent matrix, since
Tr[W (i)s] = 0 for any positive integer s. Suppose the
W (i) is of dimension Di ×Di, then we know W (i)p = 0
for some p ≤ Di. When blocked k times, each trivial
block W (i) can appear at most with matrix coefficient
W (2k− 1)(D2k−1−1) or W (2k′)(D2k′−1) in the description
of the MPUO respectively. Since

∑
iDi = D2, after

blocking D2 times these nilpotent blocks disappear in
the expression of the blocked MPUO.

Now, we prove that the blocked tensor M̃ that de-
scribes the MPUO satisfies the separation and isome-
try fixed-point equations given above in Eq. (26) and
Eq. (27).

Theorem 2 (MPUO implies fixed-point equations). Let
O be an MPUO described by the tensor M . Then the
blocked tensor M̃ , which is obtained by blocking D2 of the
tensor M , satisfies the fixed point equations, i.e., Eq. (26)
and Eq. (27).
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Proof. By Lemma 1 and Lemma 2, we know that an
MPUO implies the general form for T̃ as in Eq. (29).
By direct calculation the LHS of Eq. (26) is given as

|vn〉I ⊗ I〈vn| +

n/2∑
i,j

∑
v⊥2i−1,v

⊥
2j

|v⊥2i−1〉Õv⊥2i−1,vn
⊗ Õvn,v⊥2j 〈v

⊥
2j |

+

n/2∑
i

∑
v⊥2i

|vn〉I ⊗ Õvn,v⊥2i〈v
⊥
2i|

+
∑
v⊥2i−1

|v⊥2i−1〉Õv⊥2i−1,vn
⊗ I〈vn|


(31)

which is also equal to the RHS of the same equation, con-
sidering the fact that 〈vn|r〉 = 〈l|vn〉 = 1 and 〈v⊥2i|r〉 =
〈l|v⊥2i−1〉 = 0 for all i, which are easily seen from the form
of the left and right eigenvectors derived in Eq. (25). This
concludes the proof of the separation equation. Using the
same facts, it is straightforward to prove the isometry
condition given in Eq. (27). It is the following equation
that follows immediately from the above facts

〈l|T̃ |r〉 = I. (32)

This completes the proof. As a side remark it’s also
straightforward to see that the isometry equation (27)
is true even before blocking, i.e., 〈l|T |r〉 = I.

Theorem 2 gives a characterization of MPUOs O by
tensors M̃ that satisfies the fixed-point equations, i.e.,
Eqs.(26) and (27).

Another consequence of the fixed-point equations is
what we call the pulling through equations, which is given
as a corollary as follows.

Corollary 1. The fixed point equations, i.e., Eq. (26)
and Eq. (27), imply the pulling through equations, i.e.,
Eq. (28).

Proof. We start with the LHS of the pulling through
equation, i.e., Eq. (28). We apply the fixed-point equa-
tions, namely separation, i.e., Eq. (26) and then apply
the isometry, i.e., Eq. (27), respectively. Pictorially, it
follows as below.

(33)

The other pulling through equation from right to left fol-
lows from separation and isometry fixed-point equations
in the same way.

Finally we close this section by showing that all
finite-bond dimension MPUOs are locality-preserving. It
means that, it maps any geometrically k-local operator
to a geometrically (k + c)-local operator, where c is a
constant independent of the system size. This is proven
in the following corollary.

Corollary 2 (MPUOs are locality-preserving). Every
MPUO is locality preserving, namely they map geomet-
rically k-local operators to geometrically at most (k+ c)-
local operators where c is a constant independent of the
system size.

Proof. An MPUO O acts on an operator Ok as O : Ok →
O†OkO.Pictorially it is shown as

. (34)

Using fixed-point equations, it is straightforward to see
that

(35)

is a (k + 2)-local operator. Hence after blocking sites,
MPUOs map k-local operators to at most (k + 2)-local
operators. This means that before blocking, a k-local
operator is mapped to at most a (k+2D2)-local operator,
since we are guaranteed to reach the fixed point after
blocking D2 sites.

IV. EXTRACTING GNVW INDEX FROM
MPUO REPRESENTATION

A. Review of GNVW index

In Ref.1, Gross, Nesme, Vogts and Werner proved that
1D locality preserving unitaries (called cellular automata
in that paper) can be classified according to how much
information is flowing across a cut in the chain. For ex-
ample, finite depth local unitary circuits – a finite num-
ber of layers of local unitaries where unitaries within each
layer do not overlap with each other – all belong to one
class and there is zero information flow. On the other
hand, translation by one step in a spin-1/2 chain belongs
to another class and there is a flow of a single spin-1/2
across any cut.

More specifically, Ref.1 defined two 1D locality pre-
serving untiaries to be equivalent to each other if and only
if they differ from each other by a finite depth local uni-
tary circuit and showed that every 1D locality preserving
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unitary is then equivalent to some translation operation.
Each equivalence class is characterized by an index (the
GNVW index) which measures how much translation is
taking place: if there is a translation of p dimensional
Hilbert space by m steps to the right, the index is pm; if
there is a translation of q dimensional Hilbert space by n
steps to the left, the index is 1/qn; if there is translation
in both directions, the index is pm/qn. Such an index is
consistent with the equivalence class structure of local-
ity preserving unitaries because it was shown that when
two locality preserving operators multiply, their GNVW
index also multiply:

IGNVW(O1O2) = IGNVW(O1)IGNVW(O2). (36)

For 1D locality preserving unitaries, the index is always
a positive rational number and can be calculated as

IGNVW(O) :=
η(OALO†,AR)

η(AL, OARO†)
(37)

where AL is the set of operators within distance l0 on
the left hand side of a cut and AR is the set of oper-
ators within distance l0 on the right hand side of the
cut. η(A,B) measures the overlap between the two sets
of operators and is defined as

η(A,B) :=

√
papb

pΛ

√√√√ pa∑
i,j=1

pb∑
l,m=1

∣∣∣TrΛ

(
êa†ij ê

b
lm

)∣∣∣2 (38)

where êaij is the set of basis operators in A and there are

p2
a of them; êblm is the set of basis operators in B and

there are p2
b of them, since they are actiong on pa and pb

dimensional Hilbert spaces, respectively; Λ is a segment
in the chain containing both a and b. The GNVW in-
dex defined in this way converges to the positive rational
number characterizing information flow when l0 becomes
large.

B. Rank-ratio index = (GNVW index)2

How to extract the GNVW index from the matrix
product representation of locality preserving unitary op-
erators? In this section, we show that it can be extracted
as the square root of the Rank-Ratio index, which is de-
fined as the ratio between the rank of the left and right
SVD decompositions of the tensor M in the representa-
tion.

Definition 2 (Rank-Ratio Index). Let M be the tensor
in the matrix product representation of a unitary opera-
tor with physical legs in the up and down directions and
virtual legs in the left and right directions. The Rank-
Ratio Index is defined as the ratio between the rank of
the SVD decomposition between left,down–right,up legs
and the rank of the SVD decomposition between left,up–
right,down legs. Graphically, the Rank-Ratio Index is

given by

IRR(M) = rank

( )/
rank

( )
. (39)

To demonstrate the connection between the Rank-
Ratio index defined above and the GNVW index in
Ref. 1, we need the following two lemmas.

Lemma 3. Consider an MPO represented by a tensor
M . Then

λ

 𝑀
i

j

↵ �

p
r

 = λ1/2

 𝑀

𝑀"

i

k

�

𝑟
↵

 (40)

λ

 𝑀
i

j
p

l
↵ �

 = λ1/2

 𝑀

𝑀"

𝑙

i

�

k

�

 (41)

where the dashed lines denote SVD decompositions across
the cut, λ denotes the set of singular values of the decom-
position and the square root on λ is taken element-wise.
l and r are the left and right eigenvectors of the transfer
matrix EM as defined in Eq. (23). l and r are denoted
with black dots and their square roots are denoted with
grey dots.

Similarly, we have

λ

 𝑀
i

j

↵ �

p
l⇤

 = λ1/2


𝑀

𝑀"

�

k

�

l⇤

j  (42)

λ

 𝑀
i

j

↵ �

p
r⇤

 = λ1/2


𝑀

𝑀"

k

�

↵

r⇤

j  (43)

where l∗ is the complex conjugation of l and r∗ is the
complex conjugation of r.

Note that as singular values are non-negative, so there
is no ambiguity in taking the square root.

Proof. We are going to prove Eq. (40) and then the proof
of Eq. (41), (42), (43) is going to follow in a similar way.

Consider the SVD decomposition on the left hand side
of Eq. (40) and suppose it takes the form∑

β′

Miα,jβ′
√
rβ′,β =

∑
s

Uiα,sλsVs,jβ (44)
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Then the tensor on the right hand side of Eq. (40) be-
comes ∑

β′,δ′,jMiα,jβ′rβ′,δ′M
†
jδ′,kγ

=
∑
j,s,s′ Uiα,sλsVs,jβV

†
s′,jβλs′U

†
kγ,s′

=
∑
s Uiα,sλ

2
sU
†
kγ,s

(45)

Therefore, the singular value for the tensor on the right
hand side is the square of the singular value on the left
hand side. Hence we get Eq. (40).

Lemma 4. Let M be a local tensor that satisfies sepa-
ration (26) and isometry (27) conditions. Then the fol-
lowing relations hold true:

rank

( )
= rank

( )
, (46)

rank

( )
= rank

( )
. (47)

Similarly

rank

( )
= rank

( )
, (48)

rank

( )
= rank

( )
. (49)

Proof. We will prove Eq. (46), and the proof of the other
equations in the lemma go through in the same way. The
RHS of Eq. (46) is:

rank

( )
= rank




= rank




= rank


× d

(50)

Now we calculate the rank of the LHS of Eq. (46),

rank

( )
= rank




= rank




= rank


 rank


 ,

(51)

where l is the left eigenvector of EM and I is the identity
operator on virtual index. The second equality follows
from separation (26). Notice that:

rank


 ≥ rank


 = d

⇒ rank


 = d. (52)

The final equality follows from the fact that the rank
cannot possibly be greater than d. In order to see why
the first inequality is true, notice that

rank


 = rank




≥ rank




= rank


 (53)

where the inequality in the second line follows from
the fact that

√
r is a non-negative matrix, and for any

matrix A and a non-negative matrix B, rank(A) ≥
rank(AB). (Diagonlize B, which can always be done
since its Hermitian, B = UΛU†, where Λ is diago-
nal matrix. Now keeping in mind that multiplication
with a diagonal matrix can only possibly reduce the
rank, we have rank(A) = rank(AU) ≥ rank(AUΛ) =
rank(AUΛU†) = rank(AB). ) The first and final equal-
ities are simply the expression rank(A) = rank(AA†) for
any matrix A. So we see that the Eq. (52) is true. Sub-
stituting relation (52) back in Eq. (51) we get the desired
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result

rank

( )
= rank


× d

= rank

( )
. (54)

It is straightforward to see we can prove relations
(47), (48), (49) in a similar manner. This completes
the proof.

Now we are ready to show that the Rank-Ratio Index is
directly related to the GNVW index. Below, M̃ denotes
the blocked tensor which satisfies both the fixed point
conditions (Eqs. (26), (27), (28)) and Lemma 4.

Theorem 3 (Rank-Ratio index = (GNVW index)2 for
MPUO). Consider an MPUO O represented with ten-
sor M . Take a sufficiently long but finite block so that
the blocked tensor M̃ satisfies the separation (26), isom-
etry (27) and pulling-through (28) and Lemma 4. Then

IRR(M̃) = (IGNVW(O))2. (55)

We are going to prove theorem 3 in the following steps:

1. For the MPUO representation of non-overlapping
two-body unitaries,

IRR(M̃) = 1 = I2
GNVW(O). (56)

2. For the MPUO representation of translation (to the
right) by one step,

IRR(M̃) = d2 = I2
GNVW(O). (57)

where d is the dimension of the local physical
Hilbert space.

3. If we stack two MPUOs as M12 = , then

IRR(M̃12) = IRR(M̃1)IRR(M̃2). (58)

According to Ref.1, any locality preserving uni-
tary can be obtained by stacking translation and
layers of non-overlapping few body unitaries and
their GNVW index multiply when stacked. There-
fore, using the above equations we can show that
the Rank-Ratio index of the stacked tensor is the
square of the GNVW index.

4. Of course, not all MPUO representations are ob-
tained by stacking. We further show that the Rank-
Ratio index of any MPUO representation of an op-
erator O is equal to the square of its GNVW index.

5. Finally, we show that the Rank Ratio index is sta-
ble under blocking, i.e., the Rank-Ratio index does
not change if we keep blocking M̃ .

Proof. Let’s follow the procedure listed above.
1. Consider the tensor given in Eq. (20) to represent

non-overlapping two-body unitaries.

Mtb =
Nl Nr

(59)

where we have labeled the left and right part of the tensor
Nl and Nr respectively.

According to the isometry condition in Eq. (27), which
is true even before blocking, we have

Nl Nr

N†
rN†

l

l r (60)

and similarly

Nl Nr

N†
rN†

l

l⇤ r⇤ (61)

Each of these two equations actually contains two parts:
the left halves on the two sides are equal to each other
and right halves on the two sides are equal to each other.
Both halves have to be satisfied simultaneously. Then
using Eq. (40), we have

λ


 = λ1/2


 = λ1/2



(62)

As
√
l∗ is a non-negative matrix, applying it either does

not change or decrease the rank of the SVD decomposi-
tion. Eq. (62) implies that it does not change the rank,
hence we have

rank

( )
= rank

( )
= dl (63)

where dl is the dimension of the physical index in Nl.
Similarly, we have

rank

( )
= dl,

rank

( )
= rank

( )
= dr.

(64)

where dr is the dimension of the physical index in Nr.
Now if we calculate the Rank-Ratio index for Mtb, we
find that

IRR(Mtb)

= rank

( )/
rank

( )
= (dldr)/(dldr) = 1 = I2

GNVW(Otb)

(65)
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Moreover, since the tensor Mtb already satisfies the sepa-
ration, isometry, pulling-through conditions in Eq. (26),
(27) and (28), we have

IRR(M̃tb) = 1 = I2
GNVW(Otb). (66)

2. For translation operator, the relation between the
Rank-Ratio index and the GNVW index can be found
through direct calculation. Consider translation by one
step to the right represented by Mr in Eq. (16).

IRR(Mr)

= rank

( )/
rank

( )
= d2/1 = d2 = I2

GNVW(Or)

(67)

Since the tensor Mr already satisfies the fixed point con-
ditions, we have

IRR(M̃r) = d2 = I2
GNVW(Or). (68)

3. Now let us stack two layers of MPUOs:

M12 = . (69)

We will show that the Rank-Ratio index of the above
stacked MPUO, is the square of the GNVW index of the
corresponding unitary operator.

Let’s assume thatM1 andM2 are already at fixed point
form satisfying the separation (26), isometry (27), pulling
through conditions (28). M12 is in general not in a fixed
point form, but by blocking sites we can take it to a fixed
point form. Suppose that the fixed point for M12 can be
achieved by blocking two sites. (Our proof below also
works if we take larger blocks.) Now we are going to
use Eq. (40) through (43) in Lemma 3 and Lemma 4 to
prove that

IRR(M̃12) = IRR(M̃1)IRR(M̃2) (70)

where M̃ is the blocked MPUO such that it satisfies the
fixed point conditions and is blocked additionally such
that it satisfies the equations in Lemma 4. Lemma 3
implies that

λ

  = λ1/2


 = λ1/2




= λ

  = λ1/2


 = λ1/2




= λ

 
(71)

where we have used simplified notation 1, 2, 1†, 2† to

refer to M1, M2, M†1 and M†2 . The black dots represent
the left and right eigenvectors of the transfer matrices of

M1, M2, M†1 and M†2 while the grey dots are the square
root of the black dots. Eq. (71) combined with Lemma 4
implies that

rank

  = rank

( )
rank

( )
(72)

after blocking the fixed point tensor one more time, such
that Lemma 4 applies. Remark that we can turn Eq. (71),
which is a statement about the spectrum of the SVDs,
into Eq. (72) which is a statement about the rank of
the SVDs, by using Lemma 4 both for LHS and RHS in
Eq. (71).(Lemma 4 applies immediately to RHS, and a
straightforward variant of it applies to LHS in Lemma 4,
hence implies Eq. (72).) Similarly, we have

rank

  = rank

( )
rank

( )
. (73)

Dividing these two equations, we get

IRR(M̃12) = IRR(M̃1)IRR(M̃2). (74)

As any locality preserving unitary can be obtained by
stacking translation and layers of non-overlapping few
body unitaries and their GNVW index multiply when
stacked, Eq. (74) shows that for at least one representa-
tion of the unitary, the Rank-Ratio index is equal to the
GNVW index.

4. Of course, not all MPUO representations are ob-
tained by stacking. In the following, we are going to
show that for any MPUO representation M̃ , IRR(M̃) =
(IGNVW (O))2.

This result can be obtained by combining Eq. (66),
Eq. (68), Eq. (74) as follows. Since MPUOs are locality
preserving unitaries, we can decompose any given MPUO
O as a composition of translations and finite depth local
unitaries1. Hence for every given MPUO O expressed
in terms of local tensor M , we can have a local tensor
N obtained from the composition of translations and fi-
nite depth local unitaries that describes the MPUO O†.
From Eqs. (66), (68), (74), we know that IRR(Ñ) =
(IGNVW (O†))2. We also know that by definition the lo-

cal tensor M̃Ñ describes the MPUO OO† = I⊗N . Note
that the local tensor M̃Ñ is a highly inefficient represen-
tation of the identity operator. This representation can
be reduced to the injective representation of the identity
MPUO by applying the grey dots without changing the
ranks as proven in Lemma 4, after doubling the block-
ing. Hence IRR(M̃Ñ) = (IGNVW (I⊗N ))2 = 1. Using

Eq. (74), we find that IRR(M̃) = (IRR(Ñ))−1. As it’s

been shown above IRR(Ñ) = (IGNVW (O†))2. Using the
fact that IGNVW (O†) = (IGNVW (O))−1, we find that

IRR(M̃) = (IGNVW (O))2. (75)
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5. Finally, we need to show that our definition of Rank-
Ratio index is stable. That is, it does not change if we
keep blocking the tensor M once it has reached the fixed
point form.

Suppose that M is at the fixed point form satisfying
the separation, isometry, pulling through conditions in
Eq. (26), (27), (28). Then we have

λ

  = λ1/2




= λ1/2


 = λ

 
(76)

Therefore, we have

rank

  = rank

( )
× d. (77)

Similarly we have

rank

  = rank

( )
× d. (78)

Dividing these two equations we find that the Rank-Ratio
index does not change if we block tensors at the fixed
point.

With these steps, we complete the proof of Theorem 3.
Note that, as our proof relies on Lemma 3 which is about
the spectrum of the SVD decomposition, so in principle
we can define our index as the ratio of the exponential
of the entropy of the left and right SVD decompositions.
The only tricky part is that we need to add the grey
dots, the square root of the left and right eigenvectors of
the transfer matrices, to the virtual legs for the index to
work. This is doable but procedural-wise complicated.
Therefore, we choose to define the index using the rank,
instead of the entropy, of the SVD decomposition.

V. NUMERICAL CALCULATION OF INDEX
FOR RANDOM MPUO

In this section we are going to calculate the rank-ratio
index of some examples of random MPUO. The examples
of random MPUO considered are drawn in Fig. 2, and the
corresponding numerical results are given in Tables I, II
and III respectively.

To generate random k-body unitaries we use the QR-
decomposition of random matrices. The algorithm is as
follows:

1. Generate dk dimensional random matrix Mdk×dk .
d is the dimension of the physical Hilbert space at
each site.

FIG. 2. Some examples of random MPUOs. Local physi-
cal Hilbert space has dimension d = 2 in all cases. (a) We
combine a single right-translation operator with random finite
depth local unitary operators. U1, U2, U3, U4 are all random
2-local unitaries, (b) we combine layers of random local uni-
taries with layers of right-translation. First layer is made of
2-local random unitary U1, second layer is right-translation,
third layer is 3-local random unitary and fourth layer is again
a right translation operator. (c) Finally as an example of the
most general case we combine random local unitary opera-
tors with left and right translational operators. First layer
is right-translation, second layer is random 2-local unitaries,
third layer is left-translation, fourth layer is random 3-local
untaries and final layer is right-translation again. Numerical
calculation of RR indices of MPUOs in (a),(b) and (c) are
given in tables I, II and III respectively.

2. Perform a QR-decomposition: M = QR. Q is a dk

dimensional unitary while R is an upper triangular
matrix.

3. The Q and R are not unique since for any dk

dimensional unitary diagonal matrix Λ, QR =
(QΛ)(Λ−1R). To fix this, we demand that R has
positive diagonal entries. This fixes Λ to be iden-
tity. If R =

∑
ij rij |i〉〈j|, create a diagonal matrix

Λ′ =
∑
i
rii
|rii| |i〉〈i|, and Q′ = QΛ′. Now for every

random matrix M , Q′ is a unique dk dimensional
unitary.

From these examples, we can see that

• The Rank-Ratio index fluctuates for small block
sizes but saturates to a fixed value for large enough
block sizes;

• The saturated value is equal to the square of the
GNVW index and only depends on the equivalence
class of the MPUO which is invariant under stack-
ing with any finite depth local unitary operation.
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Length of
blocked MPO

rank of
left SVD

rank of
right SVD RR index

1 64 16 4
2 8 8 1
3 16 4 4
4 32 8 4
5 64 16 4
6 128 32 4
7 256 64 4

TABLE I. Numerical calculation of RR index of MPUO shown
in Fig. 2(a). We start with site labeled 1 and block sites one
by one to the right. We see that after blocking 3 sites index
stabilizes to value 4, which is expected since this MPUO is,
by construction, equivalent (up to finite depth local untiaries)
to a pure right-translation and hence has index IRR(Mr) =
22 = 4.

Length of
blocked MPO

rank of
left SVD

rank of
right SVD RR index

1 8 8 1
2 16 4 4
3 32 2 16
4 64 4 16
5 128 8 16
6 256 16 16
7 512 32 16

TABLE II. Numerical calculation of RR index of MPUO
shown in Fig. 2(b). We start with site labeled 1 and block
sites one by one to the right. We see that after blocking 3
sites index stabilizes to value 16, which is expected since this
MPUO is, by construction, equivalent (up to finite depth lo-
cal untiaries) to the combination of two pure right-translation
and hence has total index IRR(Mr)2 = 42 = 16.

VI. MPO WITH FRACTIONAL INDEX

In the previous section, we have discussed how ma-
trix product operators satisfying a simple unitary condi-
tion (Definition 1 and Eq. (6)) provides a necessary and
sufficient representation of locality preserving unitaries
classified by the GNVW index. On the other hand, if
we relax the condition in Eq. (6), we can obtain matrix
product operators, which are unitary in a more general
sense, with index beyond the GNVW framework. In this
section, we are going to give one example of such matrix
product operators. We are going to show that this op-
erator is unitary in systems of odd size and non-unitary
in systems of even size. It does not preserve locality and
can have a ‘fractional’ index!

Consider the MPO Of represented with local tensor

Mf = +
a, b, c = 1, 2, 3

a

a

a

aa

a

b

c

a 6= b, b 6= c, c 6= a

(79)

This is a special MPO in that it represents a unitary
operator when system size is odd and a non-unitary op-
erator when system size is even. For example, when the

Length of
blocked MPO

rank of
left SVD

rank of
right SVD RR index

1 16 4 4
2 32 8 4
3 64 4 16
4 32 8 4
5 64 16 4
6 128 32 4
7 512 128 4

TABLE III. Numerical calculation of RR index of MPUO
shown in Fig. 2(c). We start with site labeled 1 and block
sites one by one to the right. We see that after block-
ing 3 sites index stabilizes to value 4, which is expected
since this MPUO is, by construction, equivalent (up to fi-
nite depth local untiaries) to the combination of two pure
right-translation and one left-translation, and hence has total
index IRR(Mr)IRR(Ml)IRR(Mr) = 4. 1

4
.4 = 4.

system size is two, the operator maps both input states
|01〉 and |10〉 to |22〉. Similar non-unitary mappings exist
whenever the system size is even. This is different from
all the other examples we discussed in this paper, which
are unitary and satisfy Eq. (6) for all system sizes. (And
this operator does not satisfy Eq. (6) even after block-
ing.) Therefore, it does not belong to the set of MPUO
as defined in Definition 1.

To understand the property of this MPO, we can con-
struct Tf according to Eq. (7) and, from its general form,

identify the operator O†fOf . The general form of Tf ,
which we calculate using the procedure in Ref.3, contains
two blocks. The first block is what we would expect if O
is a unitary for all system sizes

00
+ 
11 
+ 
22 

I

1

3

00
+ 
11 
+ 
22 

(80)

Different from a usual unitary MPO, there is a second
block, which represents the superposition of two trans-
lation symmetry breaking operators. The two operators
each have period 2 and they map into each other under
a single step of translation. Therefore, this part of the
MPO is zero when the system size is odd, leaving the
MPO Of to be unitary. When the system size is even,
the second block gives rise to a nontrivial operator, which
breaks the unitarity of Of .

When the system size is odd (2n+ 1), Of is a unitary
operator, but it is a highly non-locality preserving. To see
this, consider the operator Pn = |0〉〈1|+ |1〉〈2|+ |2〉〈0| on
the nth qutrit and the conjugation of Pn by Of . Apply

O†fPnOf on an initial state |00...0...00〉, we find that the
state is mapped to

|00...0...00〉 Of−−→ |00...0...00〉
Pn−−→ |00...2...00〉

O†f−−→ |21...a...21〉
(81)
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where a = 2 if n is odd and a = 0 if n is even. As the
final state |21...a...21〉 is globally different from the initial

state |00...0...00〉, O†fPnOf has to be a nonlocal operator
even tough Pn is local. Therefore, Of is a non-locality-
preserving unitary when system size is odd.

Interestingly, if we calculate the index of Mf according
to Eq. (39), we find that

IRR(Of ) = rank

( )/
rank

( )
= 3(82)

and this number stays invariant if we take blocks of Mf .If
we were to convert it to the GNVW index, we would find
it to be

√
3 which is not a rational number and hence not

allowed as a GNVW index. This is of course expected
because Of is not a locality preserving unitary and this
example illustrates that it is possible to represent some
non-locality-preserving unitaries with drastically differ-
ent properties from the locality-preserving ones using the
matrix product operator formalism.

VII. CONCLUSION

In this paper we study the representation of one di-
mensional locality preserving unitaries using the matrix
product operator (MPO) formalism. We show that ma-
trix product operators which are unitary (for all system
sizes) are guaranteed to preserve locality and all local-
ity preserving unitaries can be represented in a matrix
product way. Moreover, we show that the GNVW index1

classifying locality preserving unitaries in 1D can be ex-
tracted in a simple way as in Eq. (39) from local tensors
after blocking sufficiently(but finitely) many times. Note
that our result does not depend on the MPO representa-
tion being ‘injective’ or in a ‘canonical form’. It applies
to any MPO representation of the unitary.

On the other hand, matrix product operators satisfy-
ing a more general unitarity condition – unitary only for
systems of certain sizes – can have very different prop-
erties. In particular, we present one example of MPO
which is unitary for odd size systems but not for even
size systems and find that it does not preserve locality
and has a fractional index as compared to the locality
preserving ones.

Many interesting questions remain open regarding the
matrix product representation of unitaries. First of all,
Lemma 1 provides a complete characterization of MPOs
which are unitary for any system size. However, this
characterization is in terms of T rather than M . In par-
ticular, if one wants to simulate a unitary evolution pro-
cess using finite bond dimension MPO, it is not clear

which parameter space one should choose from such that
the MPO is guaranteed to be unitary. If such a parame-
ter space can be identified, we can generate 1D unitaries
without having to check the condition on the T tensor.
With the matrix product representation of states, we do
not need to worry about this problem because any ten-
sor generates a legitimate quantum state. This is essen-
tial for variational algorithms based on matrix product
states. If we want to have similar simulation algorithms
for unitary dynamics with matrix product operator, this
problem needs to be addressed.

Secondly, adding symmetry requirement to the 1D uni-
tary operators can result in more detailed classifications.
This has been discussed in terms of (dynamical) interact-
ing Floquet phases with symmetry where a classification
in 1D has been proposed in Ref.22–26. Similar to the
case of 1D gapped (nondynamical) phases, adding sym-
metry can result in symmetry-protected Floquet phases.
It would be interesting to see how to distinguish different
symmetry protected Floquet phases based on the MPO
representation of their Floquet operator.

Finally, the example we discussed in section VI shows
that if we relax the definition of unitarity, MPO can rep-
resent non-locality-preserving unitaries with fractional
index. What is the full power of MPO in representing 1D
unitaries in this more general sense? For matrix product
state, we know that with a translation invariant finite
bond dimension representation, the state represented is
either gapped or a superposition of several gapped states.
Can we obtain a similar understanding of the MPO rep-
resentation of 1D unitaries? This is a question we plan
to study in the future.
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