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We study the role of excited phonon populations in the relaxation rates of nonequilibrium electrons
using a nonequilibrium Green’s function formalism. The transient modifications in the phononic
properties are accounted for by self-consistently solving the Dyson equation for the electron and
phonon Green’s functions. The pump induced changes manifest in both the electronic and phononic
spectral functions. We find that the excited phonon populations suppress the decay rates of nonequi-
librium electrons due to enhanced phonon absorption. The increased phonon occupation also sets
the nonequilibrium decay rates and the equilibrium scattering rates apart. The decay rates are
found to be time-dependent, and this is illustrated in the experimentally observed population decay
of photoexcited Bi1.5Sb0.5Te1.7Se1.3.

I. INTRODUCTION

Driving matter far from equilibrium is a new fron-
tier in the control of quantum materials. Prominent re-
cent discoveries including Floquet insulators1 and Time
Crystals2,3 herald important opportunities to create new
phenomena and materials properties by purposefully
driving materials away from their well-known equilibrium
states. A decisive factor in the properties and stability of
driven, nonequilibrium matter is the relaxation of excited
degrees of freedom. We need to quantify the time scales
of thermalization and relaxation, and to identify the rate
limiting steps in thermalization and relaxation processes
as targets for characterization and control. This focus
on driven matter necessitates new experimental and the-
oretical tools capable of addressing the time-dependent
phenomena. On the theoretical side, the fundamental
challenge is that time translation symmetry is broken out
of thermal equilibrium and full quantum dynamics cal-
culations need to be performed for which methodology
is still in development4. On the experimental side, the
challenge is that the most relevant relaxation processes
in quantum matter occur on ultrafast time scales in the
range of femtoseconds to picoseconds5.

Of the quintessential techniques to study matter out of
equilibrium, time-resolved photoelectron spectroscopy is
rapidly becoming an established probe of quantum ma-
terials. With increasing resolution and breadth of ap-
plication, time- and angle-resolved photoemission spec-
troscopy (tr-ARPES) is used as a tool to study materi-
als such as high-Tc cuprates,6–9 graphene,10,11 and other
2D materials.12,13 In these experiments, one of the com-
mon measurements is that of population dynamics.14–16

A laser pump excites the electrons within the material,
which absorb energy and occupy states above the Fermi
level that were unoccupied in equilibrium. With time,
the electrons relax back to a new final state, which may
be the same as the pre-pump equilibrium state or a mod-
ified one. Recent work examining the return of excited
systems to equilibrium in tr-ARPES experiments17–19

demonstrated that a rate-limiting step in the energy
transfer from nonequilibrium electrons to the phonon
bath, may set the rate of relaxation even in the pres-
ence of other interactions such as impurity and Coulomb
scattering.4,20 This is also reflected in the fact that quasi-
particle lifetimes (as measured, e.g. through an ARPES
linewidth) and population decay rates (as measured us-
ing tr-ARPES) are often inequivalent.21

However, in these earlier works the phonon bath
was assumed to have infinite heat capacity i.e. the
phonon properties(e.g., frequency, linewidth, occupation)
remained unchanged. While this is a reasonable approx-
imation when the amount of absorbed energy is small, in
principle the phonon bath may absorb energy, and may
transfer energy back to the electrons. The recent simulta-
neous measurement of the electron and lattice dynamics
in optically excited systems has also demonstrated that
the mutual energy transfer between the electrons and the
phonons determine the relaxation dynamics.22 Further-
more, considering the modification of phonon proper-
ties out of their equilibrium state is critical, especially
when the phonons are driven directly. This possibil-
ity has been of interest within the field of light-induced
states of matter,23–25 and more specifically in reports
of light-enhanced electron-phonon coupling upon phonon
driving26. Within the context of tr-ARPES, one may ex-
pect electron population scattering rates to decrease as
the phonon occupation increases (zero at low tempera-
tures) because this causes increased phonon absorption
and thus may slow down the decay.

The theoretical study of relaxation dynamics has been
of interest since the advent of ultrafast spectroscopy.
Subsequent developments have been heavily influenced
by the so-called two-temperature model (TTM) sug-
gested by Allen27 which helped to understand the re-
laxation dynamics in simple metals after an ultrafast
excitation. The model assumes that the electrons and
the lattice are independently thermalized and are char-
acterized by electron and lattice temperatures; the dif-
ference in their respective temperatures drives the dy-
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FIG. 1. Pictorial depiction of (a) the functional, the con-
tour (b) electron and (c) phonon self-energies. A double-line
denotes the self-consistently renormalized Green’s function.

namics. As the time-resolution of the probe pulses
improved, thermalization and the relaxation processes
could no longer be decoupled, and they often over-
lap in time28. To account for this, the research focus
shifted from solving the semi-classical Boltzmann equa-
tion numerically29–31 and analytically32 to solving mi-
croscopic models using advanced numerical techniques
such as time-dependent exact diagonalization33, nonequi-
librium Greens’ function17,18, and time-dependent
DMFT34–36 methods. Using the latter method,
which is applicable for the systems of higher dimen-
sions/coordination number, Murakami et. al. have high-
lighted the importance of the phonon dynamics during
the relaxation toward equilibrium.37 When the phonon
dynamics are taken into account, they find a qualita-
tively different relaxation dynamics of quenched popula-
tions where there is a crossover from electron to phonon
dominated relaxation at different coupling regimes, ex-
plained in terms of the different dependence of the elec-
tron and phonon self-energies on the electron-phonon
coupling strength. However, the recent work4 demon-
strates numerous cases where the self-energy can no
longer fully dictate the population relaxation dynamics.

In this work, we investigate the effect of self-
consistently renormalizing the phonon properties on the
relaxation dynamics by considering a fully conserving ap-
proximation. As illustrated in Fig. 1, we use functionally-
derived self-energies for the electrons and phonons, con-
sistent with a conserving approximation. This allows the
mutual energy transfer between electrons and phonons.
We solve the equations of motion for the system using
a non-equilibrium Green’s function (NEGF) method in
the framework of Migdal-Eliashberg theory, as detailed
in Sect. II. This method corresponds to the Nonequilib-
rium DMFT34,35 with a low-order perturbation theory as
an impurity solver where both methods work with a local
self-energy.38

Comparison of the nonequilibrium electron properties
with those in equilibrium helps us to clarify the role of
the enhanced (excited) phonons in (out of) equilibrium.
Our results reveal several novel aspects of the population
dynamics that are otherwise absent in cases where the
phonon properties stays fixed. Due to the increase in
phonon population, the relaxation decay rate is slowed
down, and may even change sign within a phonon energy

of the Fermi level (termed the “phonon window”) as the
increasing phonon population pushes quasiparticles from
below the Fermi energy to above. We investigate these
effects as a function of excitation density and probe delay
time. We also show that the pump field can effectively
modify the signatures of interactions in both electron and
phonon spectra.

The paper is organized as follows. In Sec. II we dis-
cuss our model and method. In Sec. III A we present the
equilibrium electronic quantities followed by the analysis
of the simulated tr-ARPES spectra and the nonequilib-
rium sum rules in Sec. III B 1. Then in Sec. III B 3 we
obtain the decay rates from the tr-ARPES spectra, and
discuss their binding energy- and time-dependence. In
support of the latter, we show experimentally measured
time-dependent decay rates of the excited surface states
of Bi1.5Sb0.5Te1.7Se1.3. In Sec. III B 5 we illustrate the
effect on the phononic spectra. We conclude in Sec. IV.

II. MODEL AND METHOD

We study the dynamics of the electrons residing in a 2D
tight-binding band linearly coupled to a bath of optical
phonons of a frequency Ω0. The system is described by
the Holstein Hamiltonian39,40

H =
∑
kσ

εkc
†
k,σck,σ +

∑
q

Ω0b
†
qbq

+g
∑
kqσ

c†k+q,σck,σ(bq + b†−q), (1)

where ckσ (bq) and c†k,σ(b†q) are the electron (phonon) an-

nihilation and creation operators at the state k(q) and a
spin σ. The electron-phonon interaction vertex g is as-
sumed to be momentum-independent. The tight-binding
band dispersion is given by

εk = −2Vnn(cos kx + cos ky) + 4Vnnn cos kx cos ky − µ.
(2)

The electrons can hop between the (next) nearest neigh-
boring sites with the (Vnnn)Vnn amplitude, and the chem-
ical potential µ determines the band filling.

The electronic system is driven from the initial equi-
librium by a pump field described by the vector potential
A(t). We include the pump field via the Peierls’ substi-
tution k→ k−A(t),41 which is spatially uniform. This
method of including the external field allows to have both
the electron-phonon scattering processes and the ultra-
fast optical excitation to take place at the same time as
opposed to interaction quench methods37 or the numer-
ical integration of Boltzmann transport equations.29 In
our choice of units where kB = c = ~ = e = 1, and
working within the Hamiltonian gauge, the electric field
of the pump is given by E(t) = −∂tA(t) with zero scalar
potential.

We solve the equation of motion for the system using
a nonequilibrium Green’s function method whose main
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object is the double-time Green’s function living on the
Keldysh contour C. For an electron and phonon, the
Green’s functions are defined by42

GCk(t, t′) = −i〈TCck(t)c†k(t′)〉, (3)

DCq(t, t′) = −i〈TCXq(t)X†q(t′)〉, (4)

respectively, where TC is the time-ordering operator on
the contour C. The phonon displacement and cre-
ation(annihilation) operators are related via Xq = bq +

b†−q. Since we work with Einstein phonon modes, the
phonon Green’s function is manifestly local. The ther-
mal average is taken over the initial equilibrium distri-
bution at temperature T . The Green’s function GCk(t, t′)
evolves on the Keldysh contour according to the Dyson
integro-differential equation

[i∂t − εk(t)]GCk(t, t′) = δC(t, t′) +

∫
C

dzΣC(t, z)GCk(z, t′).

(5)

The electron self-energy ΣC accounts for the effect of
electron-phonon interactions.

The phonon Green’s function is obtained by solving its
Dyson equation

DC(t, t′) = DC0 (t, t′)

+

∫∫
C
dt1dt2D

C
0 (t, t1)ΠC(t1, t2)DC(t2, t

′). (6)

Here, ΠC(t1, t2) is the phonon self-energy. The noninter-
acting phonon Green’s function DC0 (t, t′) is given by42

DC0 (t, t′) = −i[(nB(Ω0) + 1− θC(t, t′))eiΩ0(t−t′)

+(nB(Ω0) + θC(t, t
′))e−iΩ0(t−t′)]. (7)

Here, nB(Ω0) = (eΩ0/T − 1)−1 is the Bose distribution
function, and θC is the Heaviside step function on the
Keldysh contour. The details of the method used to solve
the equations of motion are outlined elsewhere43.

In this work, we consider two cases. First, we work
with phonons where the phonon Green’s function is kept
fixed, i.e., DC ≡ DC0 . In this approximation, phonons
serve as an effective heat bath with infinite heat capac-
ity which will be denoted as “Infinite Bath” for brevity.
In the second case, we solve the Dyson equation for the
phonon Green’s function self-consistently as we move for-
ward in time which takes into account the transient mod-
ifications of the phonon properties as they interact with
electrons. Thus phonons in this case resemble a heat
bath with a finite heat capacity which will be denoted
as “Finite Bath”. To solve Eq. 5 and Eq. 6, we need
to chose an approximation scheme for the electron and
phonon self-energies. In the case of the Finite Bath, we
use a conserving approximation where the particle num-
ber, momentum, and the total energy of the system are
conserved. For an approximation to be conserving, the
self-energies Σ and Π have to be functional derivatives of

a Luttinger-Ward functional Φ[G,D]44. The functional
and the self-energy diagrams are depicted in Fig. 1. The
Hartree term in the electron-self energy is absorbed into
the chemical potential as it is momentum independent
and instantaneous. The corresponding expression for the
self-energy diagrams are

ΣC(t, t′) = ig2DC(t, t′)GCloc(t, t′), (8)

ΠC(t, t) = −ig2GCloc(t, t′)GCloc(t′, t), (9)

where the local electron Green’s function GCloc =

N−1
k

∑
kG
C
k. Here, we ignore the momentum dependence

of the phonon self-energy by summing over all electronic
momenta in the first Brillouin zone. Often, the optical
phonon bands are relatively dispersionless so this is a
good approximation. When the acoustical branches are
also considered, the momentum dependence becomes rel-
evant. However, for the relatively short time dynamics
we are interested in, the dominant relaxation channel is
provided by the high energy optical phonons.

Once we have chosen the appropriate self-energy ap-
proximation, we can solve Eqs. 5 and 6. By applying
the Langreth rules,45 one can separate the contour equa-
tion into the pieces residing in the different parts of the
Keldysh contour, i.e. Matsubara, real-time, and mixed
pieces,42 and standard numerical integration techniques
can be employed43.

The pump field centered at t0 and directed along the
zone diagonal in the 2D Brillouin zone has a profile given
by

A(t) = Fsin(ωpt)e
−(t−t0)2/2σ2

p(êx + êy), (10)

where F, ωp, and σp are the pump fluence, oscillation
frequency, and temporal width, respectively. Here ê is
a unit vector along the respective direction in reciprocal
space. We measure the tr-ARPES intensity of electrons
using a probe pulse of the Gaussian time profile of width
σpr via46

I(k, ω, t0) =
1√

2πσpr

Im

∫
dtdt′eiω(t−t′)G<k (t, t′)

× e−(t−t0)2/2σ2
pre−(t′−t0)2/2σ2

pr . (11)

As the measured tr-ARPES intensity must be gauge-
invariant, the momentum shift induced by the pump field
is corrected by a time-dependent shift.47

To obtain the energy- and time-dependence of various
observables, we perform a Wigner transformation of the
time coordinates {t, t′} → {tave = (t + t′)/2, trel = t −
t′}. Consequently, the energy dependence is acquired
by Fourier transforming with respect to the relative time
(trel). The average time (tave) is the measure of the probe
delay time with respect to the center of the pump pulse
(tdelay = tave − t0).

In equilibrium, the coupling strength between electrons
and phonons can be quantified by a dimensionless pa-
rameter λ = −∂Re[ΣR(ω)]/∂ω|ω=0. For a broad band
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FIG. 2. Equilibrium: Modifications of the equilibrium electronic properties due to temperature. a, b) Schematic of electrons
coupled to the Infinite Bath (a) and the Finite Bath (b) of phonons. The arrow indicates the possible directions for energy
transfer. c) ARPES spectra along the zone diagonal at different temperatures for both infinite and finite phonon baths. The
horizontal dashed lines indicate the bare phonon frequency. The equilibrium temperature increases from left to right.

(W >> Ω0), its value depends on the coupling vertex,
the density of states at the Fermi level, and the phonon
frequency as λ = 2g2N(0)/Ω0.

We choose the band parameters to be Vnn = 0.25 eV,
Vnnn = 0.075 eV , and µ = −0.255 eV corresponding
to a hole-doped band with 0.42 filling per spin. The
phonon frequency Ω0 = 0.1 eV and the coupling vertex
g =
√

0.02 eV−1 are chosen so that we stay in the weak
coupling limit (λ < 1). The choice of parameters are mo-
tivated by the numerical feasibility rather than modeling
a particular physical system in hand. To resolve the spec-
tral features in tr-ARPES, we set the initial temperature
of the system to T = 0.01 eV or about 116K.

The pump field has a width of σp ≈ 6.6 fs and fre-
quency ωp = 0.5 eV. To resolve the pump induced
changes in the electronic as well as phononic spectra,
we use a pump fluence of F = 1.0/a0 (a0 is the lat-
tice constant), and to compare the nonequilibrium decay
rates to their equilibrium counterpart, we employ weaker
pump fluences in the range of 0.50/a0 ≤ F ≤ 1.00/a0.
Henceforth, we set a0 = 1. For better energy resolution
of the spectral features, the probe width is taken to be
σpr ≈ 16.5 fs.

In this work, we present the results obtained on a
rectangular Brillouin zone grid discretized into 80 × 80
momentum points. The time propagation is performed
on a real time grid of 300 fs length, discretized into
∆t = 0.13 fs time intervals, long enough for the pop-
ulations to fully relax into their final states. We use
1200 imaginary time points along the vertical axis on
the Keldysh contour.
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FIG. 3. Changes in the imaginary part of the electron self-
energy due to increasing temperature for (a) the Infinite Bath
and (b) the Finite Bath. The phonon-window (demarcated by
the vertical dashed lines) is filled up with increased spectral
weight as the temperatures is increased.

III. RESULTS

To set the stage for the nonequilibrium results, we
present the properties of electrons at thermal equilib-
rium with the phonon bath at various system temper-
atures. Then, we focus on nonequilibrium to identify the
similarities and the key differences between the spectra
of electrons coupled to the Infinite Bath and the Finite
Bath both in and out of equilibrium.

A. Equilibrium

The equilibrium ARPES directly accesses the elec-
tronic states with a given energy resolution. To aid the
contrast between the spectra of electrons coupled to the
Infinite Bath and to the Finite Bath we include the car-
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FIG. 4. Changes in the electron density of states due to tem-
perature for (a) the Infinite Bath and (b) the Finite Bath.
Increased temperature causes noticeable decrease for the en-
ergies |ω| < Ω.

toons representing the two cases. The cartoons depict
the systems of electrons coupled to the Infinite Bath in
Fig. 2(a) and the Finite Bath in Fig. 2(b). The arrows
indicate the possible directions of energy flow between
the electronic and phononic subsystems.

Fig. 2(c) is the comparison of the ARPES spectra of
the electrons coupled to the Finite Bath and the Infinite
Bath in the vicinity of the characteristic kink at different
temperatures. The kink, traditionally, is regarded as a
measure of the strength of the electron-boson interaction
because its size and shape are determined by the electron
self-energy.48 The magnitude of the spectral-weight at
various quasi-particle energies and momenta is reflected
in the intensity of the spectra. We mark the bare phonon
frequency by horizontal dashed lines.

The equilibrium spectra at T = 0.01 eV for both cases
exhibit well defined kinks around the Fermi level corre-
sponding to an interacting electron-phonon system. At
this temperature, the phonon population is vanishingly
small. The spectra, in the case of the Finite Bath, display
a slightly shifted kink toward the Fermi level indicating a
renormalized phonon frequency due to interactions with
electrons. The subsequent panels show that increasing
the system temperature causes the spectra to acquire an
apparently weakened kink and diffuse spectra. These two
properties are connected to the real and the imaginary
part of the electron self-energy.42 The diffuseness of the
spectra or the magnitude of the spectral linewidth reflects
the changes in ImΣR as shown in Fig. 3 for various tem-
peratures for the Infinite Bath as well as the Finite Bath.
This quantity is responsible for the scattering rates of the
quasiparticles. Since the electrons are coupled to the op-
tical phonons of frequency Ω, there is a phase space con-
straint for an electron having a lower energy than Ω caus-
ing low scattering rates in this so-called phonon-window.
This is demonstrated by the black dashed curve in the
figure for T = 0.01 eV where the phonon-window effect
is most prominent due to reduced thermal smearing. As
we increase the system temperature the rates inside the
phonon-window increase as more phonons become avail-
able for scattering. By comparing the spectra of the
Finite Bath to those of the Infinite Bath, we conclude

that treating the phonon properties self-consistently af-
fects the single-particle spectra noticeably, but not sig-
nificantly. We see the expected broadening of the spectra
and the loss of the kink feature.

The equilibrium spectral-weight measured by the an-
gle integrated photoemission spectroscopy is the prod-
uct of the electron distribution function f(ω) and the
electronic density of states N(ω) obtained from the re-
tarded component of the electron Green’s function whose
poles and width are effected by ReΣR and ImΣR as
N(ω) = − 1

π Im GRloc(ω) . This quantity is shown in
Fig. 4 for various temperatures. Changing the temper-
ature modifies the density of states inside the phonon-
window and at the band edges though the total inte-
grated area enclosed by N(ω) does not change and is
equal to unity.49 The sharp feature in the vicinity of the
Fermi level (the van Hove singularity) at low tempera-
tures is flattened out as the system temperature is in-
creased. This indicates a decrease in the number of the
available states in the aforementioned region.

B. Nonequilibrium

1. tr-ARPES

In the nonequilibrium realm, we note that the phonon
population (set by the equilibrium lattice temperature)
stays fixed in the Infinite Bath, whereas it can be excited
in the Finite Bath. The latter is possible because of the
energy supplied by the pump is conserved and dynam-
ically transferred between the electrons and the Finite
Bath resulting in the increase of the phonon population.
In Fig. 5, we compare the tr-ARPES of the electrons in-
teracting with the Finite Bath to those interacting with
the Infinite Bath in equilibrium, just after, and a long
time after the excitation. We are interested in how the
modified phononic properties affect the single particle dy-
namics as well as the population dynamics of electrons.
Initially, the coupled system of electrons and phonons are
in thermal equilibrium. Before excitation, the electrons
mostly occupy states below the Fermi level except for a
small amount of spectral-weight because of the nonzero
initial temperature. Once the pump pulse excites a sig-
nificant portion of the spectral weight above the Fermi
level(tdelay = 0 fs), the spectra of electrons coupled to the
Infinite Bath show a disappearance of the kink resulting
from a rearrangement of spectral-weight by the pump
field in agreement with the previous results.18 Long after
the excitation (tdelay = 250 fs), the system returns to its
pre-pump equilibrium form.

On the other hand, the electrons interacting with the
Finite Bath respond to the ultrafast excitation differ-
ently. In addition to the disappearance of the kink, the
excited electrons also manifest a more diffuse spectra.
The long time form of the spectra also differ starkly from
those of the Infinite Bath. It does not return to its initial
equilibrium form, rather it settles to a different final state
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FIG. 5. Nonequilibrium: Temporal evolution of electronic properties. a,b) Schematic of electrons coupled to the Infinite Bath
(a) and the Finite Bath (b) of phonons. The arrow indicates the possible directions for energy transfer. c) tr-ARPES spectra
along the zone diagonal before(equilibrium), during, and a long time after the pump for both infinite and finite phonon baths.
The horizontal dashed lines indicate the bare phonon frequency. The initial equilibrium temperature is set to T = 0.01 eV, and
the pump fluence used to drive the system is F = 1.0/a0. In both cases, the excited populations relax into their corresponding
final states by 250 fs delay time (the rightmost panels).

FIG. 6. Comparison of the energy distribution curves (EDC) of (a) the Infinite Bath to those of (b) the Finite Bath. The
EDCs at various quasiparticle momenta are put side-by-side to highlight the changes in the electronic spectra due to the excited
phonons. The EDCs at the Fermi momentum long after the pump pulse compared to those in equilibrium for (c) the Infinite
Bath as well as (d) the Finite Bath.

where the kink is no longer visible and the linewidth is
broadened.

The difference in the corresponding spectra reflects
how the energy supplied by the pump is redistributed
between the electrons and the bath. Although the pump
field injects almost the same amount of energy into the
electrons in both cases, the amount of energy retained
in the system starkly differ. In the case of the Infinite

Bath, the excess energy of electrons is entirely dissipated
into the phonon bath as if it has an infinite heat capacity
(where its name comes from), so the total energy is not
conserved. Therefore, the excited electrons essentially re-
lax back to the prepump state. On the other hand, in
the case of the Finite Bath, the supplied energy is redis-
tributed between electrons and the phonon bath as the
total energy is conserved in the system. This necessitates
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the electrons to settle into a new higher-energy state be-
cause of the excess energy retained in the system.

To illustrate these long-time differences, we plot the
energy distribution curves (EDC) I(k, ω, t0) as defined
in Eq. 11 at various momenta along the zone diagonal
in Fig. 6(a/b) for the Infinite/Finite Bath at t0 = 250 fs
when the excited populations relax into almost their cor-
responding final steady states. Here, we observe clear
differences. The ones for the Finite Bath acquire a more
smeared form at all momenta. This is associated with
the increased phonon population during the electron re-
laxation because the spectral linewidth is directly related
to the electron self-energy (see Fig. 3), which becomes
more smeared as the phonon temperature is increased.
In the right figure, we compare EDC curves for the ini-
tial and final states for both cases. In the case of the
Infinite Bath, the EDC at kF essentially restores to its
pre-pump form, while the kink fades away in the case of
the Finite Bath.

Although the notion of temperature is not strictly de-
fined for the nonequilibrium electrons, to understand the
features in tr-ARPES we refer back to the equilibrium
spectra in Fig. 2 at different temperatures. At delay
times long enough for electrons and the phonons to reach
thermal equilibrium, the single particle spectra takes a
form analogous to the equilibrium spectra at an elevated
temperature for the Finite Bath and the initial temper-
ature for the Infinite Bath. However, in the case of the
Finite Bath, there is no way to know the final system
temperature a priori. We note that the transient states
can never be obtained from equilibrium calculations even
with the knowledge of the respective electron and phonon
temperatures (assuming that the population are thermal
which does not strictly hold)4,19 because those two tem-
peratures differ at a given delay time.

It was observed in earlier studies17,18,21,50 that the de-
cay of electron population inside the phonon-window de-
fined as W = [−Ω0,Ω0] is qualitatively different than
the decay outside. The phenomenon was associated with
phase space restrictions and was dubbed a “phonon win-
dow effect”. Here, to study the dynamics of populations
inside and outsideW, we plot the electron population ob-
tained by summing the spectral weight from tr-ARPES
over momenta and energies above EF as a function of
probe delay time in Fig. 7.

Outside of W, the electrons coupled to the Infinite
Bath relax back to the initial state, where the energy
injected by the pump has been completely transferred to
the Infinite Bath. On the other hand, the electrons cou-
pled to the Finite Bath (solid line) relax toward a new
steady state by retaining some of the energy supplied by
the pump.

Inside W, the populations behave more peculiarly.
Shortly after the pump field, electrons with energies
initially below Ω0 start to increase their population
(Fig. 7(b)). This is true for the Infinite Bath (dashed
line) as well as the Finite Bath (solid line) of phonons.

In the presence of interactions, the electron bare band
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FIG. 7. Population dynamics. (a) Changes in the population
above Ω0 and (b) inside W for the Infinite Bath(dashed lines)
and the Finite Bath(solid lines) for F = 1.0. The inset shows
the transient changes of the electronic states inside W. The
shaded grey region indicates the time during which the pump
is active.

is modified through the real part of self-energy, and thus
so is the density of states (DOS). These modifications
are strong primarily around ±Ω0 and at the band edges.
In equilibrium, we have seen that the DOS is effected by
the electron temperature (see Fig. 4). In nonequilibrium,
one can expect that the pump pulse also can effectively
alter the density of states. Since the density of states
determines the available states to be occupied, we plot
the change in the integrated density of states inside W
compared to that in equilibrium as

∆N(tdelay) =

∫ Ω0

0

dω[N(ω, tdelay)−N(ω,−∞)] (12)

where N(ω, tdelay) = − 1
π Im GRloc(ω, tdelay). We plot ∆N

for the Infinite Bath in the inset of Fig. 7. After the
pump field causes ∆N to decrease, it slowly restores its
equilibrium value resulting in the transiently expanding
phase space. Consequently, the number of quasiparticles
with |ω| < Ω also increases as a function of delay time.
Therefore, the transient changes in the density of states
are the cause of the population rise in W. In the case
of the Finite Bath, where this effect is more pronounced,
the situation is more complex. In addition to the tran-
sient changes in the DOS, the distribution functions at
energies lesser than Ω0 are found to rise (not shown) via
the filling from the states below the Fermi level due to
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FIG. 8. Energy dynamics for the finite bath of phonons. (a)
Temporal changes of the electron energy ∆Eel and the phonon
energy ∆Eph after the pump deposits ∆Etot = ∆Eel + Eph

energy into the system at F = 0.5. (b) The change in the
ratio of phonon absorption to emission during the population
relaxation is plotted in panel (b) for different pump fluences.

the increased phonon absorption. Therefore, we expect
that the combination of these two changes will cause the
population rise as is observed in the case of the Finite
Bath. This effect might be observed in the experimen-
tal studies of population relaxation as a slowing down of
relaxation rates for |ω| < Ω.

When electrons are coupled to the Finite Bath, a bidi-
rectional energy flow between electrons and phonons is
enabled. Figure 8(a) shows the energy dynamics of the
coupled electron-phonon system. Initially, the electrons
and phonons are in thermal equilibrium before being
driven out of equilibrium by the pump field. Then the
pump imparts some amount of energy to electrons. Once
the pump field shuts off, the electron-phonon system
evolves due to a mutual transfer of energy. In the figure,
we see the changes in electron energy ∆Eel, the phonon
energy ∆Eph, and the total energy of the system ∆Etot

as functions of the probe delay time.

Just after the pump, electrons rapidly relax by emit-
ting phonons causing the phonon number to increase. An
enhanced phonon occupation stimulates electrons to ab-
sorb more phonons and scatter upwards in energy which
may slow the relaxation process down. In nonequilib-
rium, we can obtain the phonon number in terms of the
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FIG. 9. Nonequilibrium sum rule for the zeroth moment of
the electron self-energy

lesser component of the phonon Green’s function D<:

nD(t, t) =
i

2

(
D<(t, t′) +

1

Ω2
0

∂2D<(t, t′)

∂t∂t′

) ∣∣∣∣
t=t′
− 1

2
,

(13)

were nD is the nonequilibrium phonon number, which is
equal to the Bose number nB in equilibrium. To quan-
tify the amount of phonons which can cause electrons to
upscatter, we plot the ratio of phonon absorption to emis-
sion for a given electronic state nD/(nD + 1) in Fig. 8(b)
for various pump fluences. We can see that a substan-
tial amount of absorption occurs, and this will affect the
population decay rates.

2. Sum Rules

The sum rules established for the retarded objects
in the Holstein model provide guidance in the analysis
of nonequilibrium results.49 Here, we demonstrate how
these rules apply to the nonequilibrium electron self-
energy.

In Fig. 9, we plot the zeroth moment of ImΣR. The
sum rule for the electron self-energy is given by49

CR0(tave) = − 1

π

∫
dωImΣR(tave, ω)

=g2[〈x(tave)2〉 − 〈x(tave)〉2], (14)

where x(t) is the phonon displacement operator. This
quantity has been suggested as the measure of the
electron-phonon interactions in and out of equilibrium
and has been shown to be independent of time for the
phonons with fixed properties, where it is equal to its
intial equilibrium value18

CR0(tave) = g2[2nB(Ω/T ) + 1]. (15)
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Using this formula for the parameters used in our cal-
culation we obtain 20 meV confirmed by the numerical re-
sult in Fig. 9. On the other hand, for the Finite Bath, one
can not obtain the sum rule analytically because the self-
energy is computed from the fully dressed Green’s func-
tions for electrons and phonons. Nonetheless, in general,
we expect that CR0, which is proportional to the phonon
field fluctuations, is modified due to the feedback of in-
teractions on the phonon bath. This can be seen even
more clearly in Fig 3 where the area under the curve
increases as the temperature of the system is increased
and in Fig 9(a) before the pump pulse is active. After
the pump pulse, this quantity becomes time-dependent.
The magnitude of the phonon field fluctuations increase
as a function of delay time (corresponding to the increase
in the phonon temperature and consequently the phonon
number) and exhibit oscillations with 2Ω frequency.

3. Decay Rates

In this section, we study the decay rates of the relax-
ing electron populations. Before doing so, we note that
for the excited population to relax, the system should
be connected to a dissipative bath, which can draw en-
ergy away from the system. In one case, the Infinite
Bath assumes this role by absorbing all the excess energy
from the nonequilibrium electrons. In the other case, the
energy infused by the pump is dynamically exchanged
between the electrons and the Finite Bath until some
steady state is reached. Comparison of the electron re-
laxation rates in two cases elucidates the role played by
the phonons with dynamically modified properties.

Usually, the decay rates are extracted by fitting the
time-dependent population curves to single or multiple
exponentials resulting in a constant decay rate. This
method ignores the time-dependence of the decay rates
and causes possibility of ambiguity in the definition of the
decay rates. The Kadanoff-Baym equation for the lesser
component of the electron Green’s function (population)
is causal in nature–its dynamics at time t depends on the
history of all interactions until time t causing the decay
rates to be time-dependent, so the information about the
final state can not be deduced from the initial state. An-
other issue which arises from fitting the relaxation curves
by an exponential with an offset is the ambiguity of the
decay rates. Doing so results in obtaining information
on how fast the final state is reached, not on how fast
a given state decays. To avoid this, we extract instan-
taneous decay rates by taking the logarithmic derivative
of the momentum integrated population curves at each
probe delay time for the reasons outlined in detail in Ap-
pendix A. We extract the decay rates for various pump
fluences to study the excitation density dependence of
the relaxation dynamics. The procedure starts approxi-
mately 4σp away from the pump center to avoid the direct
influence of pump pulse.

In Fig. 10, we compare the population decay rates

of the Finite Bath(right panel) to those of the Infinite
Bath(left panel). As shown previously, the pump field
can alter the decay rate by modifying the available phase
space in the case of the Infinite Bath.18 However, for
the Finite Bath, additionally, an enhanced phonon pop-
ulation(see Fig. 8(b)) affects the decay rates through an
increased absorption rate. Both the modification in the
phase space as well as in the phonon occupation depend
on the excitation density. To illustrate this, we have ob-
tained the decay rates for various pump fluences. The
rates are extracted at the probe delay time of approxi-
mately 40 fs.

The single-particle scattering rates are obtained from
the retarded electron self-energy in equilibrium through
τ−1
eq (ω) = −2ImΣR

eq(ω). Although its equality to the
nonequilibrium decay rates is often assumed, only some
limiting cases have been shown to hold17, and its valid-
ity has been challenged experimentally.21,51 Though the
presence of other types of interactions (e.g., impurity or
Coulomb) renders the equality incorrect, the fundamen-
tal difference stems from the fact that the self-energy
and the populations decay along different time direc-
tions: relative and average time.4 In other words, be-
cause the time translational symmetry is broken out of
equilibrium, electron populations acquire an average time
dependence. On the other hand, the self-energy (encod-
ing the many-body interactions) decay along the relative
time trel, which is related to the quasiparticle energy ω
via a Fourier transform.

Figure 10(a) shows that the rates are fluence-
dependent with contrasting trends between the energies
inside and outside W – the rates increase inside W and
decrease outside with increasing the pump fluence F.
This behavior confirms that the pump induced modifica-
tions of the available phase space alter the decay rates.18

At low excitation densities, the population decay rates
are described well by the equilibrium scattering rates (or
ImΣR) for the Infinite Bath. As the excitation density
is increased, they start to deviate from the equilibrium
rates. On the other hand, for the Finite Bath even at the
low fluence regime, the equilibrium rates overestimate the
nonequilibrium decay rates (right panel). Of course, for
very low fluence, the decay rates for both baths must ap-
proach the equilibrium decay rates. These fluences are
too high to see that effect.

From the comparison of the left and right panels of
Fig. 10, we observe that instantaneous decay rates are
suppressed for the Finite Bath relative to those of the
Infinite Bath at all energies. This indicates that the ex-
cited phonon populations cause the decay rates to de-
crease. This is contrary to what happens to the single-
particle decay rates i.e. ImΣR in equilibrium (see Fig. 3)
where the enhanced phonon population causes them to
increase. We also observe negative instantaneous decay
rates at lower energies which come from the population
rise observed in Fig. 7(b). (Note that we are obtaining
the rates from a logarithmic derivative as detailed in Ap-
pendix A.)
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FIG. 13. Schematic of how the excited phonons affect the
relaxation rates. The width of the yellow curve indicates
the density of the excited electrons at a given energy in the
band. When the amount of phonons is fixed and small (Infi-
nite Bath), the excited electrons relax mostly via emission of
phonons (blue arrows). Allowing the phonons to be excited
during the relaxation causes absorption of phonons (red ar-
rows) to increase forcing the electrons to upscatter in energy.
These processes, in turn, partially undo the relaxation process
itself by suppressing the decay rates.

As the instantaneous decay rates are affected by the
phonon populations which increases as the function of de-
lay time, one can expect the rates will be time-dependent.
This is seen in Fig. 11 where we show the rates as a func-
tion of time for the energies around Ω0 for both the In-
finite as well as the Finite Bath. This behavior of the
decay rates is in stark contrast to the traditional way
of obtaining them where they are assigned a constant
number through an exponential fit. We observe from the
figures that they decrease as functions of tdelay and ap-
proach zero as the final state is reached. Furthermore,
the decay rates decrease much faster for the Finite Bath
due to the transiently enhanced phonon absorption rate.
Because the amount of the phonons produced during the
relaxation process depends on the energy supplied by
the pump (Fig. 8(b)), we also show the time-dependent
instantaneous decay rates at different pump fluences in
Fig. 12. While the decrease in the rates for the Infinite
Bath is attributed to the phase space restrictions, the ad-
ditional decrease in the rates for the Finite Bath is due
to the enhanced absorption.

The trends observed in the decay rates due to the
excited phonon populations can be explained using the
schematic in Fig. 13. For the Infinite Bath (fixed low
phonon temperatures) decay of the excited electrons is
enabled mostly by the emptying and filling processes via
phonon emission at a given energy above the Fermi level.
For the Finite Bath because the number of phonons in-
creases as a function of the delay time, the phonon ab-
sorption processes become significant and partially re-
verse the relaxation itself leading to a slowed decay.

4. Measured Time-Dependent Decay Rates

Although we presented the time-dependence of the de-
cay rates for the excited electrons in a 2D tight-binding
band, the implication of our results is not limited to
the specifics of the chosen system. For example, a class
of topological insulators offer an illustrative platform to
study the relaxation dynamics of excited states in their
bulk bands as well as in their surface states.52–54 Here,
we present experimental results on how relaxation of the
excited states of Bi1.5Sb0.5Te1.7Se1.3 evolve as a function
of delay time. Because the scale of the decay rates is
set by the details of the phonon spectra coupled to the
electrons, here, we are just interested in the qualitative
dynamics of the excited state relaxation in this particular
system.

In order to experimentally observe the excited state
dynamics, we performed time- and angle-resolved pho-
toemission spectroscopy (tr-ARPES) on the doped topo-
logical insulator Bi1.5Sb0.5Te1.7Se1.3. Our measurements
were taken using the output of a regenerative amplifier
operating at 250 kHz and 800 nm (1.55 eV). The system
was first pumped with the fundamental pulse and then
probed with its fourth harmonic. The time resolution
was determined from the full width half max of the ris-
ing edge at high energies (> 0.5 eV above the Fermi level)
and is about 600 fs. Our measurements were performed
at room temperature with a Specs Phoibos 150 analyzer
and 2D-CCD detector under a base pressure of 4× 10−9

mbar. Figure 14(a) shows the 2 ps delay time snapshot of
the electronic spectra, where the excited electron popu-
lations occupying the bulk conduction band (demarcated
by the solid line) and the surface states (marked by the
dashed line) have made their partial return toward equi-
librium. In order to extract the decay rates as a function
of time, we monitored the log of the intensity as a func-
tion of delay time obtained from the tr-ARPES of the
excited states. Examples at various energies are shown
in Fig. 14(b). The rate at a particular delay time was
then determined from the slope of a linear fit 1.5 ps long.
Plotting the momentum-averaged decay rates as a func-
tion of delay time (Fig. 15), we observe the rates are
dynamic, i.e., are time-dependent. The decay rate at a
specific energy reaches its peak shortly after the excita-
tion and falls off toward zero as a function of the probe
delay time. Qualitatively, this behavior of the decay rates
is in agreement with our time-dependent calculations.

5. Transient modifications of phonon properties

In the electronic spectral function, we have seen the
signatures of the phononic properties through the size
and the shape of the kink. In our study, the phonon
properties are affected indirectly by the pump field. In
the case of the Finite Bath, the Einstein phonons ac-
quire a finite width and a renormalized frequency be-
cause of the interaction with the continuous electronic
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FIG. 14. Excited state dynamics of Bi1.5Sb0.5Te1.7Se1.3: (a) tr-ARPES of the topological surface state and the conduction band
at 2 ps probe delay time and (b) the semilog plot of the spectral intensities for the select excitation energies at the topological
surface states are shown. The solid and the dashed lines are guides to the eye for the bare surface state and the bare conduction
band.

FIG. 15. Measured instantaneous decay rates of the excited
surface state of Bi2Se3 as a function of probe delay time.

states. This is reflected in the fact that the position of
the kink was shifted upward indicating the softening of
the phonon frequency.

In Fig. 16(a), we observe the transient changes in the
atomic mean square displacements 〈XX〉 and its conju-
gate variable 〈PP 〉. The shaded region demarcates the
times when the pump field is on. In addition to the in-
crease in their values, both oscillate at twice the phonon
frequency but with a π phase shift. The inset shows these
oscillations on a larger scale. These oscillations at 2Ω fre-
quency have also been observed in an interaction quench
study of the Holstein model.37

The phonon spectral function is given by the imaginary
part of the phonon Green’s function

B(ω, tdelay) = − 1

π
Im DR(ω, tdelay). (16)

For the coupling strength used, DR decays on much
longer timescales that are not numerically feasible to
reach. Thus, we obtain the phonon spectral function

via the retarded phonon self-energy ΠR (see Eq. 9) af-
ter a Wigner rotation and Fourier transform along trel.
In Fig. 16(b), we plot the evolution of the spectral func-
tion before and after the pump pulse. To compare the
modification in its profile, we compare time snapshots
in equilibrium and after the excitation (Fig. 16(c)). The
vertical dashed line indicates the value of the bare phonon
frequency Ω0 without interactions taken into account.
In equilibrium(tdelay = −20 fs), the phonon frequency
is softened to Ω and acquires a finite lifetime Γ be-
cause of the interactions. After the optical excitation
(tdelay = 20 fs), the phonon frequency and the lifetime are
renormalized transiently which evolve toward the long
time steady values(tdelay = 200 fs). This shows that the
pump field can effectively weaken the changes caused by
the strong interactions between electrons and phonons.
Fig. 16(d/e) displays the pump induced changes in fre-
quency/linewidth extracted from the spectral function
at different pump fluences. Long after the excitation,
these quantities evolve toward modified values different
from the pre-pump values. These modifications are ac-
centuated when the pump fluence is increased. Recent
experimental studies have demonstrated the importance
of the pump-induced changes of phonon properties in un-
derstanding the nature of charge stripes in complex tran-
sition oxides.55

IV. CONCLUSIONS

In this work, we have studied the effect of excit-
ing phonon populations on the relaxation dynamics of
nonequilibriuim electrons after an ultrafast optical exci-
tation. The time-dependent suppression of the relaxation
rates caused by the excited phonons is the central result
of the paper.

We performed tr-ARPES of the nonequilibrium elec-
trons to investigate their spectral dynamics. Solving the
Dyson equation for the phonon properties enabled us to
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FIG. 16. Temporal evolution of phononic properties. (a) Variances of the lattice displacement X and momentum P as functions
of time delay. The inset is a magnified plot showing out-of-phase oscillations in 〈XX〉 and 〈PP 〉 at the 2Ω frequency. (b)
Time-dependent phonon spectral function B(ω, tdelay). (c) Phonon spectral function at marked time slices in (b): equilibrium,
just after, and long after the pump. (d) Renormalized phonon frequency and (e) linewidth are extracted from Lorentzian fits
to the phonon spectral function at different pump fluences.

account for excited phonon populations and to explain
how they affect the relaxation dynamics compared to
the case where the phonon properties are fixed. In equi-
librium, we do not find significant changes in the spec-
tra when the phonon properties are accounted for self-
consistently. In contrast, in nonequilibrium, electrons ex-
hibit starkly different single-particle dynamics as well as
population dynamics when the phonons are excited. Par-
ticularly, the nonequilibrium electrons interacting with
the self-consistently modified phonons reach a new final
state different from the pre-pumped equilibrium state.
Although the final state can be obtained using equilib-
rium ARPES at an elevated temperature, the transient
spectra and their dynamics are nonequilibrium in na-
ture, so they must be treated accordingly. The extracted
energy-dependent decay rates display strong suppression
when the phonons are excited. This is because the
phonons produced during the relaxation process cause
the absorption rates to go up and partially undo the
relaxation resulting in the suppressed decay rates. We
demonstrate that this effect becomes more prominent
with the increase of the pump fluence where more en-
ergy is pumped into the system causing more phonons to
be produced during the relaxation. Because the phonon
population increases as a function of the probe delay
time, the rates become strongly time-dependent. To sup-
port this, we measured the excited state decay rates in
the topological surface state of Bi1.5Sb0.5Te1.7Se1.3, and
we observed time-dependent decay rates in qualitative
agreement with our calculations.

Although in this work we consider phonons to be the
dissipative bath, we expect that the feedback mechanism
observed in the decay of populations to be a generic be-
haviour of bosons such as magnons, plasmons as long as
the dissipative bath is external to the excited popula-
tions, otherwise, no decay of populations occurs.4

The dynamic changes in the electronic properties due
to the excited phonon populations concomitantly affects
the phononic properties as well. This is observed in
the transiently stiffened phonon frequency and narrowed
linewidth after the pump pulse. Tailoring the crystal
lattice properties by laser pulses widens the possibilities
towards materials by design in ultrafast timescales.

The framework used in this work can be also applied
to the ordered states of matter such as superconductiv-
ity or the charge density waves in nonequilibrium, which
are often understood in the light of a phenomenological
Rothwarf-Taylor model, to clarify the role of the phonon
bottleneck effect in the dynamics of the quasiparticles
and the Cooper pairs. These will be subjects of future
studies.
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Appendix A: Exponential Fit vs. Logarithmic
Derivative

Typical pump-probe curves consist of a rapid rise in
some observable, followed by a slower decrease as the
system returns to some new steady state. One example
of this is the two-temperature model (TTM) for electrons
coupled to phonons, where a rapid increase in the elec-
tronic temperature Te is followed by a steady decay in Te
and a concomitant rise in the phonon temperature Tp,
which continues until the temperatures are equal. When
faced with a such typical pump-probe population relax-
ation curve, a common analysis method is to resort to
exponential fits of the form

∆y(t) = Ae−γt +B, (A1)

where A and B are constants representing some mea-
sure of the time-dependent part of ∆y(t) and a final-
state offset that represents some difference from the pre-
pump state, respectively, and γ is the corresponding
rate(inverse time constant τ−1) of this change. The fits
are typically good, and some note is made of the depen-
dence of the rate γ on experimental parameters.

It is worth taking a step back and considering the the-
oretical basis for such modeling. The exponential decay
arises from a differential equation

d∆y(t)

dt
= −γ ·∆y(t). (A2)

The solution is indeed an exponentially decaying func-
tion, although since it is a first order equation it only has
a single constant of integration, nominally A. The final-
state offset B is introduced because, quite commonly, the
final state is different from the pre-pump initial state.
However, as we will see, the inclusion of the offset B
complicates the analysis of the rates.

Formally, Eq. A2 cannot achieve a different final state
than the initial state — it must decay to 0 at long times.
A different final state arises because some other process
is playing a role. Physically, this is quite sensible; for ex-
ample in the TTM, Tp is rising, which leads to a different
final state. Within the differential equation, this may be
modeled through a time-dependent rate:

d∆y(t)

dt
= −γ(t) ·∆y(t). (A3)

At this point, we may already conclude that a simple ex-
ponential fit does not capture the correct dynamics since

the rate depends on time, although as a fit it often works
quite well. However, a more serious problem that arises
from exponential fitting with an offset is an ambiguity
in the definition of the rate — or to put this another
way, which question is being asked. To get an idea about
the underlying mechanism of the decay, one may ask the
question: “How quickly is the population changing at a
particular time?” By performing an exponential fit with
a final offset, this question becomes “How quickly does
the population reach its new final state?” The answers
to these questions may be vastly different, in particular
if the final offset B is close to the maximum change in
∆y(t). Which question is the important one depends on
the points one wishes to make. Instead, the decay ap-
pears to be faster because the final state is simply closer
by, and the exponential fit answers the second question,
“How quickly does the population reach its new final
state?” Ideally, we would like to know the population
decay rate independent of the final state, since this gives
a true measure of the interactions that cause the decay.
The first question, “How quickly is the population chang-
ing at a particular time” can be obtained by reverting to
the differential equation, and evaluating

γ(t) = − 1

∆y(t)

d∆y(t)

dt
= − d

dt
log [∆y(t)] . (A4)

By construction, this evaluation returns the expected in-
stantaneous decay rate γ(t) from Eq. A3. Analogously,
we obtain the decay rates at different quasiparticle ener-
gies ω via the expression

1

τ
(tave, ω) = − ∂

∂tave
log

[∑
k

δI(k, tave, ω)

]
. (A5)

Here, δI is the change of the tr-ARPES intensity with
respect to its equilibrium value.

We illustrate this point by comparing the extracted
decay rates using both methods for the sample tran-
sient population data in Fig. 17. Two curves plotted in
Fig. 17(a) represent the time traces of populations cou-
pled to the optical phonons of bare frequency Ω0 = 0.2 eV
at quasiparticle energy ω = 0.18 eV for the Infinite Bath
and the Finite Bath. The curves reach very different final
states long after the pump field. We extract the decay
rates of these populations around the time point shown
by the black circles using both methods. In Fig. 17(b),
we also show these for the energies around the phonon
frequency in a semilog scale, where the magnitude of the
decay rates corresponds to the slope of a curve. Here,
we observe that the rates for the Finite Bath are much
less at all probe delay times, and become independent of
time soon after the excitation.

The decay rates obtained for all energies using the log-
arithmic derivative method mirror the trend observed in
Fig. 17(b). Here, the decay rates of the populations cou-
pled to the Finite Bath are slower at all energies. On the
other hand, contrary to the latter, using the exponential
fits, we obtain faster decay rates for the Finite Bath than
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FIG. 17. Comparison of the decay rates extracted using (c) logarithmic derivative and (d) fits to exponentially decaying
functions. Transient population curves are given for the energies around the phonon frequency (a, b). The decay rates extracted
around the time points are indicated by the black circles.

those for the Infinite Bath at lower energies and similar
decay rates at higher energies. In conclusion, depend-
ing on the method used to extract the decay rates, one
can obtain different results. Because we are interested in

addressing the question “How quickly is the population
changing at a particular time at a particular energy“, we
use the method of logarithmic derivatives to determine
instantaneous decay rates in this work.
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