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The recent observation of superconductivity in proximity to an insulating phase in twisted bi-
layer graphene (TBG) at small “magic” twist angles has been linked to the existence of nearly-flat
bands, which make TBG a fresh playground to investigate the interplay between correlations and
superconductivity. The low-energy narrow bands were shown to be well-described by an effective
tight-binding model on the honeycomb lattice (the dual of the triangular Moiré superlattice) with
a local orbital degree of freedom. In this paper, we perform a strong-coupling analysis of the pro-
posed (px, py) two-orbital extended Hubbard model on the honeycomb lattice. By decomposing
the interacting terms in the particle-particle and particle-hole channels, we classify the different
possible superconducting, magnetic, and charge instabilities of the system. In the pairing case,
we pay particular attention to the two-component (d-wave) pairing channels, which admit vestigial
phases with nematic or chiral orders, and study their phenomenology. Furthermore, we explore the
strong-regime by obtaining a simplified spin-orbital exchange model which may describe a putative
Mott-like insulating state at quarter-filling. Our mean-field solution reveals a rich intertwinement
between ferro- and antiferro-magnetic orders with different types of nematic and magnetic orbital
orders. Overall, our work provides a solid framework for further investigations of the phase diagram
of the two-orbital extended Hubbard model in both strong- and weak-coupling regimes.

I. INTRODUCTION

The experimental discovery of superconductivity in
twisted bilayer graphene (TBG)1–3 has attracted much
attention and has triggered a considerable theoretical ef-
fort to address this unexpected observation4–48. In par-
ticular, a renewed interest in the low-energy electronic
properties of TBG structures has surfaced, geared to-
wards incorporating correlations on the electronic struc-
ture via controlled approaches. From a more general per-
spective, the discovery of superconductivity on TBG has
brought back into focus long-standing and much-debated
questions concerning the interplay of electronic correla-
tions and superconductivity49–52.

Twisted bilayer graphene belongs to the class mul-
tilayer graphene systems generated by stacking sheets
of monolayers. Given the large set of distinct stack-
ing prescriptions, multilayer graphene systems offer a
high degree of tunability of the resulting electronic
structure53,54. By stacking two graphene sheets to form
a bilayer and rotating (“twisting”) one layer with respect
to the other by an angle θ, one obtains a triangular Moiré
superlattice structure (shown in Fig. 2)55,56.

Based on an experimental study of TBG with small
twist angles θ ∼ 1◦, Cao et al. reported a metal-to-
insulator transition at T ≈ 4 K for carrier densities
corresponding to ±2e per Moiré supercell (with respect
to charge neutrality)1. The conductance in the insu-
lating state displays activated behavior with an activa-
tion energy ∆ ≈ 0.3 meV, comparable to the metal-
to-insulator transition temperature. Remarkably, upon
doping slightly away from ±2e per supercell, either by
adding holes or electrons, a superconducting state with

a maximum transition temperature of Tc ≈ 1.7 K was
observed2. In fact, even the half-filled system was found
to superconduct at low temperatures in the absence of a
magnetic field for certain values of θ. The existence of
superconductivity near an insulating state was also re-
ported in Ref. 57, where pressure was used to tune the
ground state of TBG with larger twist angles.

These observations raise important questions about
the nature of the insulating and superconducting states,
as well as the interplay between them. The fact that
the insulating state appears at densities where single-
particle considerations would predict metallic behavior,
hints at the importance of electronic correlations. Indeed,
for twist angles θ ∼ 1◦ numerical calculations had pre-
viously predicted the existence of Moiré minibands with
almost flat dispersion near the Fermi level58–61. Some
works reported a set of four narrow-bandwidth mini-
bands (eight including spin degeneracy) separated from
the other bands above and below62,63, which appears to
agree with the experimental findings. The small band-
width W ∼ 10 meV of this set of low-energy bands sug-
gests that correlations are likely to provide the dominant
energy scale and drive the system into a Mott-like state
at quarter filling.

On the other hand, the fact that the insulating trans-
port behavior only onsets at relatively low-temperatures
comparable to Tc, combined with the small magnetic
fields needed to kill the insulating state (of the or-
der of 4 Tesla), can be viewed as a challenge to
the Mott-like scenario10,12,23. As a result, alterna-
tive explanations for the insulating state have been put
forward12,16,17,20,28,31,39. Regardless of the microscopic
origin of the insulating state, the onset of a relatively
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FIG. 1. Orbital and spin ordering. Schematic picture
of the intertwined spin and orbital orderings appearing in
the Mott insulating state at quarter-filling, as discussed in
Sec. V. Solid and dashed orbitals refer to the different py and
px orbitals. (A) Antiferromagnetic ferro-orbital order; (B)
Ferromagnetic antiferro-orbital order; (C) Antiferromagnetic
ferro-orbital-magnetic order with complex orbitals.

high Tc state at its vicinity and at such low densities hint
at the possibility of unconventional electronically-driven
pairing.

To answer these questions, appropriate models to de-
scribe the electronic structure are needed. Studies of
TBG structures predating the recent experimental re-
ports have addressed the electronic properties of TBG
primarily within the framework of a low-energy contin-
uum model, which starts from the Dirac electrons of
the individual graphene layers64–69. This has proven to
provide an excellent description for the low-energy elec-
tronic structure, in particular the appearance of nearly
flat bands at charge neutrality, manifested by a vanish-
ing of the Fermi velocity at special (“magic”) twist an-
gles. Since the manifold of nearly-flat low-energy bands
at charge neutrality is well-separated from other bands,
a description which accurately captures these bands may
be sufficient.

Therefore, more recent works5,6,14,18,19,21,34,40,43,44,48

have set out to formulate an effective tight-binding lat-
tice model akin to (multi-orbital) Hubbard models. The
construction of an effective tight-binding model for the
nearly-flat bands, which relies on extracting localized
Wannier states from the miniband structure, was shown
to be contingent on the (exact and approximate) symme-
tries that are imposed on the model95. What is perhaps
most important, however, is that any consistent formula-
tion of a tight-binding model in terms of Wannier states
was shown to require a honeycomb lattice structure5,6.
Whereas the triangular Moiré lattice can be defined by
regions of AA stacking, the dual honeycomb lattice is
defined by regions of AB and BA stacking (see Fig. 2).

In this paper, we start from the extended two-orbital
Hubbard model proposed in Refs.5,18,21 and explore the
effect of correlations on the low-energy flat bands. In this
model, the orbitals have (px, py) symmetry and one of
our main goals is to assess the role of the (px, py) orbital
degrees of freedom on the superconducting, charge, and
magnetic instabilities of the model. Here, we first decom-
pose the interacting part of the Hubbard model, which
involves both onsite and longer-range interactions, in the

FIG. 2. Twisted bilayer graphene. Figure of two twisted
graphene sheets, shown as black and red honeycomb nets,
with commensurate Moiré superlattice periodicity. In this
commensurate realization of twisted bilayer graphene, the
twist angle is θ = 6.01◦ and the twist center is a pair of
registered carbon atoms which defines the origin. The trian-
gular superlattice vectors connecting regions of AA stacking
are shown by dashed arrows. The black and red dots indicate
the sites of the dual honeycomb (super)lattice and correspond
to regions of AB and BA stacking, respectively.

particle-particle and particle-hole channels. In this way,
we obtain a general symmetry classification of pairing
and particle-hole instabilities, which allows us to deter-
mine the effective interaction in each irreducible channel.
The latter reveals which channels are most attractive (or
least repulsive). In the case of pairing, we pay particu-
lar attention to the two-component (d-wave) supercon-
ductivity, which supports vestigial non-superconducting
states with either chiral or nematic order. We argue that
TBG is an ideal candidate to realize such vestigial states,
given the reduced dimensionality of the system.

Having decomposed the interactions into irreducible
channels, one can include the contributions from the ki-
netic term by either treating the kinetic part perturba-
tively (strong-coupling) or the interaction terms pertur-
batively (weak-coupling). In this paper, motivated by
the small bandwidth of the low-energy flat bands, we ex-
plore the former regime, but we emphasize that the same
formalism can also be used for weak-coupling analyses.
Here we focus on the putative Mott state at quarter-
filling and consider an (anisotropic) spin-orbital exchange
model, analogous to the Kugel-Khomskii-type Hamilto-
nians70,71 commonly employed to describe strongly cor-
related multi-orbital systems72–75. As a first step to-
wards understanding the implications of such spin-orbital
Hamiltonian, we perform a mean-field analysis in the case
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where only onsite interaction terms are kept. Depending
of the ratio between the Hund’s coupling J and the Hub-
bard U , we find antiferromagnetic order coupled either
to a ferro-orbital nematic order or to a ferro-orbital mag-
netic order, or ferromagnetic order coupled to an SU(2)
antiferro-orbital order. A schematic representation of
these results is shown in Fig. 1.

As mentioned before, the Mott scenario should and will
be subject to critical discourse. Insofar as the derivation
and analysis of a spin-orbital exchange Hamiltonian is
concerned, two important qualifying remarks are worth
making. First, we note that in the derivation of such
Hamiltonian only onsite repulsion is considered. In the
context of TBG this is a rather restrictive assumption,
since the structure of the orbital Wannier states suggests
that farther neighbor repulsion is non-negligible21,23,28.
Second, the assumption of a small bandwidth W as com-
pared to the (onsite) interaction energy scale U , i.e.,
W/U � 1, seems questionable given the small value of
the activation transport gap ∆ and the low temperature
at which the metal-to-insulator transition takes place.
Nevertheless, a careful examination of strong-coupling
approaches to TBG are expected to offer interesting and
important insight into the correlated physics of TBG.

The paper is organized as follows: Sec. II introduces
and discusses the extended two-orbital Hubbard model
with an emphasis on its symmetries. This section is
largely a review of the studies which have proposed and
constructed the two-orbital honeycomb lattice model,
but we believe a thorough discussion may benefit the
reader. In Secs. III and IV the pairing instabilities and
particle-hole instabilities are considered, respectively, by
decomposing the interacting part of the Hamiltonian into
irreducible superconducting and particle-hole channels.
In Sec. V, the kinetic part is included perturbatively,
and the resulting spin-orbital exchange model is derived
and analyzed within a mean-field approach. Sec. VI is
devoted to concluding remarks. A number of Appendices,
Appendix A–F, collect additional details of the calcula-
tions presented in the main text.

II. LOW-ENERGY TWO-ORBITAL HUBBARD
MODEL FOR TWISTED BILAYER GRAPHENE

A. General considerations

Our starting point is the effective extended Hubbard
model for the low-energy flat bands of TBG developed
in a series of recent works5,6,18,21,34. The effective tight-
binding model for the flat-band manifold takes the form
of a honeycomb lattice model with two Wannier orbitals
per honeycomb lattice site, which was demonstrated
based on a symmetry analysis5 and an explicit calcu-
lation of maximally localized Wannier orbital wavefunc-
tions18,21. The Bravais lattice vectors of the honeycomb
lattice correspond to the lattice vectors of the triangular
Moiré superlattice generated by the twist. The sites of

the triangular Moiré superlattice can be identified with
regions of local AA stacking, whereas the sublattices of
the honeycomb lattice, which is the dual of the triangular
lattice, mark the centers of local AB and BA stacking,
respectively. This is shown in Fig. 2. Note that the
structure of the honeycomb lattice implies four orbitals
in the superlattice unit cell, i.e., two Wannier states per
sublattice, which is consistent with the number of nearly-
flat bands forming the low-energy manifold. Importantly,
in such a superlattice model the two Wannier orbitals
transform in a specific way under spatial symmetries of
TBG and these symmetry properties dictate the form of
the hopping and interaction terms of the effective tight-
binding model. For instance, in some cases the Wannier
states were shown to transform as p-wave partners under
rotations5,18,21.

The construction of the honeycomb superlattice tight-
binding model, and in particular the derivation of the
localized Wannier functions, is predicated on two im-
portant assumptions, which are useful to state explic-
itly. The first assumption is the existence of exact lat-
tice translation and point group symmetries of TBG. The
presence of exact translational symmetry of the twisted
structure implies a commensurability condition on the
Moiré supercell, which in turn implies a constraint on
the twist angle θ. Note that for small but commensurate
twist angles the unit cell of the Moiré superlattice unit
cell can become very large.

In addition to translational symmetry, the construc-
tion of the tight-binding model also assumes the exis-
tence of an exact point group symmetry. Indeed, the
aforementioned statement that the Wannier orbitals (in
some cases) have p-wave symmetry can only have mean-
ing when rotational symmetry is present. Commensu-
rate TBG structures can belong to one of two possible
dihedral point groups: D3 or D6. The difference in ro-
tational symmetry depends on the center of twist rota-
tion, as illustrated in Fig. 3. To understand this dif-
ference, consider starting from two AA stacked graphene
sheets and rotating the top (bottom) layer by an angle
θ/2 (−θ/2) about an axis coincident with two registered
carbon atoms, with θ defined with respect to the y axis.
This results in a structure with three-fold rotation sym-
metry C3z along the z axis and two-fold rotation sym-
metry C2y along the y axis, as shown in the left panel of
Fig. 3. Together these two symmetries generate D3. The
TBG structure shown in Fig. 2 is an example of the lat-
ter. Alternatively, if the twist rotation axis is coincident
with the center of graphene hexagons, shown in the right
panel of Fig. 3, the resulting TBG structure retains the
six-fold C6z rotation symmetry; in combination with C2y

this generates D6 (which includes the twofold rotation
C2x).

A second important assumption of the Wannier orbital
construction is the existence of an energy gap between
the four flat bands and the other bands. The existence
of such an energy gap has been predicted by theory62,63

and appears to be consistent with experiment1.
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FIG. 3. Symmetry of TBG. (Left panel) Example of TBG
structure with D3 point group symmetry. The twist rotation
axis is coincident with a pair of registered carbon atoms. The
structure has a two-fold rotational symmetry C2y about the y
axis, and C3z three-fold rotational symmetry about the z axis.
(Right) For comparison, we show a TBG structure where the
twist rotation axis is coincident with the center of a hexagon,
resulting in D6 point group symmetry. This implies an ad-
ditional two-fold rotational symmetry C2x, and a C6z six-
fold rotational symmetry about the z axis. Both structures,
left and right, have the same twist angle (and Moiré period),
which was chosen large for illustrative purposes. Importantly,
the twist center is also the center for the C3z rotations, both
for the D3 and D6 structures.

Following these considerations, we now introduce the
honeycomb (super)lattice tight-binding model on which
our study is based. The honeycomb lattice model we fo-
cus on in this work is meant to describe commensurate
TBG structures with D3 symmetry, shown in Fig. 3 on
the left. It was shown that for this case the two Wannier
orbitals at each superlattice site transform as two p-wave
states5,18,21. This is a particularity of the D3 symmet-
ric structures, for which the center of the C3z rotation
is defined by registered carbon atoms6,34. In the case of
commensurate structures with D6 symmetry, the symme-
try quantum numbers of the Wannier states were found
to be different6, resulting in a different tight-binding de-
scription of the low-energy flat bands. More generally,
the construction of Wannier states depends on the exact
and approximate symmetries of TBG which are imposed
on the construction. Unless some (approximate) symme-
tries are ignored, the construction of localized symmetric
Wannier states is obstructed6,34. Here we do not give a
full account of the subtleties and caveats related to con-
struction of Wannier orbitals, in particular to the (exact
or emergent) symmetries which are imposed, but instead
refer the reader to the relevant Refs. 5, 6, 18, 21, 34, and
40, in particular Ref. 6.

B. Two-orbital extended Hubbard model

Given the symmetry of the Wannier states we denote
the orbitals at each site i as px,y and define the cor-
responding electron annihilation (creation) operators as

ciασ (c†iασ) with α = x, y and σ =↑, ↓ for spin. The kinetic
part of the Hamiltonian describes the hopping processes
and can be expressed as

HK =
∑
ij

c†i T̂ (rij)cj + h.c., (1)

where T̂ (rij) are hopping matrices and rij = ri − rj is
the distance between sites i and j. Spin-orbit coupling
is neglected, giving rise to full SU(2) spin rotational in-
variance.

For each set of bonds with fixed rij (i.e. nearest neigh-
bors, next-nearest neighbors, etc.) the form of the hop-
ping matrices is constrained by the transformation prop-
erties of the px,y orbitals states under the D3 point group
symmetry. Time-reversal symmetry imposes an addi-
tional constraint on the hopping matrices. A derivation
of the symmetry constraints on the hopping matrices was
presented in Ref. 18; here, we review this briefly using a
different formalism, with details given in Appendix B. To
exploit rotational symmetry, we introduce a set of unit
vectors corresponding to the bond directions; first, we
define a general rotated frame

êϕ = cosϕêx + sinϕêy, ê⊥ϕ = − sinϕêx + cosϕêy, (2)

where ϕ is an arbitrary angle and êϕ × ê⊥ϕ = êz. The
three nearest neighbor unit vectors are then specified by
ϕn = 2π(n − 1)/3. We define the nearest neighbor unit
vectors as ên=1,2,3, see Fig. 4, and denote the correspond-

ing hopping matrices as T̂
(1)
n=1,2,3. Since the three hopping

matrices are related by threefold rotations only one needs

to be specified. Focusing on T̂
(1)
1 , we find:

T̂
(1)
1 = t1 + t′1τ

z. (3)

Here the Pauli matrices τx,y,z act on the orbital degrees
of freedom, i.e., τz = ±1 corresponds to px,y. Note that
the hopping matrix along the nearest neighbor bond di-
rection ên=1 is diagonal in orbital space. By analogy with
atomic p-orbitals, we may introduce σ- and π-hopping

processes as tσ,π = t1 ± t′1. The computation of T̂
(1)
n=2,3

follows from (3) by appropriate rotations, as outlined in
Appendices A and B.

Importantly, to reproduce details of the band struc-
ture of TBG longer ranged hopping processes must be
included5,18,21, in particular intra-sublattice hopping ma-
trices, i.e., hopping matrices connecting two sites on the
same triangular sublattice. The most important hop-
ping processes of this kind are second-nearest and fifth-
nearest neighbor hopping. Viewed as bonds on the trian-
gular sublattice these are first-nearest and second-nearest
neighbor hoppings. We introduce the hopping matrices
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FIG. 4. Honeycomb superlattice model. (Left) Sketch
of the effective honeycomb lattice extracted from twisted bi-
layer graphene with commensurate twist angle (see Fig. 2).
The triangular Moiré superlattice, defined by the regions of
AA stacking, is shown by solid lines. Red and black solid
dots represent the sites of the honeycomb lattice (indicated
by dashed lines), with different colors corresponding to the tri-
angular sublattices of the honeycomb lattice. The sublattice
sites coincide with regions of AB and BA stacking. (Right)
Definition of lattice vectors. Here a1,2,3 are lattice vectors of
the (triangular) Moiré superlattice and ê1,2,3 are unit vectors
corresponding to the directions of nearest-neighbor bonds.

T̂
(2)
n=1,2,3 and T̂

(5)
n=1,2,3, with T̂

(2)
1 in the direction of êy and

T̂
(5)
1 in the direction of êx. (Note that the three second-

nearest neighbor bonds correspond to a1,2,3, as shown in
Fig. 4.) Examining the constraints from symmetry, we
arrive at (see Appendix B)

T̂
(2)
1 = t2 + t2zτ

z ± t2xτx ± it2yτy, (4)

T̂
(5)
1 = t5 + t5zτ

z ± t5xτx + it5yτ
y, (5)

where + (−) applies to the honeycomb sublattice A (B).
As before, all other hopping matrices are obtained from
rotation.

In principle, a symmetry analysis of this kind can be
applied to any hopping process of arbitrary range, result-
ing in the most general form of Eq (1) consistent with
symmetry.

The relation of this two-orbital honeycomb lattice
model to the underlying degrees of freedom of the in-
dividual graphene sheets (e.g., layer, sublattice, valley)
deserves further discussion. We mentioned that the two
sublattices of the Moiré honeycomb lattice, distinguished
by black and red sites in Fig. 4, may be identified with
regions of AB and BA stacking of the graphene layers,
where A and B refer to the sublattice degree of freedom
of each graphene sheet. There are thus two distinct no-
tions of a sublattice degree of freedom, which should not
be confused. Unless otherwise specified, in what follows
the sublattice degree of freedom will be understood to
refer to the emergent honeycomb superlattice.

More importantly, even though the two Wannier states
have p-wave symmetry, which warrants the notation px,y,
they should be clearly distinguished from physical atomic
px,y-orbitals. This is evidenced by the fact that the hop-

ping parameters of Eqs. (3)–(5), in particular the over-
lap integrals tσ,π = t1 ± t′1 of Eq. (3), are not deter-
mined by the Slater-Koster rules77. Indeed, application
of the Slater-Koster rules would imply Hermitian hop-
ping matrices. The hopping parameters can be directly
calculated from the Wannier states, which were shown to
have maxima at located at the AA stacking regions that
form the triangular Moiré superlattice18,21. In particu-
lar, Ref. 21 demonstrated that: (i) the Wannier states
have spectral weight on both layers and both sublattices
of each graphene layer; and (ii) the Wannier states can
be associated with the valley degree of freedom of the
constituent graphene layers76. This correspondence can
be stated more precisely by forming the complex Wannier
orbitals p± = px ± ipy and noting that, within the ap-
proach followed by Ref. 21, p+ and p− derive from valleys
K and K ′ = −K, respectively. Furthermore, since the
complex orbitals are eigenstates of τy, it is straightfor-
ward to see that if the hopping matrices of Eq. (1) [and
in particular those of Eqs. (3)–(5)] only have nonzero
terms proportional to the identity and τy, a larger inter-
nal U(1) symmetry in orbital space emerges, generated
by τy.

By calculating the overlap between Wannier orbitals,
both Ref. 18 and 21 found that this larger U(1) symme-
try is a good approximate symmetry of the tight-binding
model, although not exact. For Eq. (3), for instance,
this implies tσ ≈ tπ (i.e. t′1 � t1). In addition, the
importance of further neighbor hopping terms was es-
tablished, which can be traced back to the real space
extension of the Wannier states. We thus conclude that
TBG with exact D3 symmetry is well-described by a ki-
netic tight-binding Hamiltonian (1) with longer ranged
hoppings and an approximate U(1) symmetry, which can
be associated with the valley quantum number. We note
in passing that for a rather different set of parameter, i.e.
only nearest neighbor σ-hopping (t′1 = t1), the physics of
the honeycomb lattice p-orbital model was shown to give
rise to interesting physics, albeit most likely not relevant
to TBG78,79.

Next, we consider the interacting part of the Hamilto-
nian, HI . The interacting Hamiltonian may be viewed as
a sum of two types of terms: density-density interaction
terms and exchange terms. In its most general form, HI

is given by

HI =
1

2

∑
ij

V αβij niαnjβ +
1

2

∑
ij,αβ

Jαβ1,ijc
†
iασc

†
jβσ′ciβσ′cjασ

+
1

2

∑
ij,α 6=β

Jαβ2,ijc
†
iασc

†
jβσ′ciασ′cjβσ

+
1

2

∑
ij,α 6=β

Jαβ3,ijc
†
iασc

†
jασ′ciβσ′cjβσ, (6)

where the first term describes density-density interac-
tions and the remaining three terms describe exchange
interactions. The four sets of interaction parameters are
not fully independent, but must satisfy the constraint
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of invariance under rotations in orbital space (for a for-
mulation of this constraint see Appendix C). For each
set of the interaction parameters we furthermore assume
V xyij = V yxij and V xxij = V yyij , and similarly for J1,2,3.
Finally, we note that the interaction parameters are in-

variant under translations: V αβij ≡ V αβ(ri − rj), and
similarly for the exchange terms.

An extended Hubbard model of the form of Eq. (6) was
proposed in Ref. 21, where the interaction parameters
were estimated using the Coulomb interaction and the
explicit wave-functions of the Wannier states. Such es-
timates showed that farther neighbor interactions, while
smaller than onsite interactions, are non-negligible. In
addition, in the context of the model used in Ref. 21 the
exchange interactions J2,3 were found to be considerably
smaller than J1. In Secs. III and IV, where we study the
pairing and particle-hole instabilities, we consider HI in
its general form of Eq. (6). The main physical motiva-
tion to do so is that, because (6) is meant to describe
the effective interactions within the manifold of the low-
energy flat bands, they are expected to get renormalized
by integrating out higher energy degrees of freedom (see,
for instance, Ref. 80).

In Sec. V, where we focus on the strong-coupling
regime, we study a particular limiting case of HI and
only consider the onsite interactions. Despite the fact
that farther neighbor interactions may not be too much
smaller than the onsite terms, this approximation is use-
ful as it allows for the derivation of a spin-orbital ex-
change Hamiltonian. Keeping onsite interactions only

(i = j) in Eq. (6), the parameters Jαβ1,ii are equivalent

to V αβii , and the former may thus be set to zero. The
remaining interaction parameters can specified in terms
of two interaction energy scales: a Hubbard interaction
U and a Hund’s rule coupling J5. In terms of these two
parameters, the non-zero onsite interaction coefficients
of Eq. (6) are V xx = V yy = U , V xy = V yx = U − 2J ,
and Jxy2,3 = Jyx2,3 = J . As a result, the Hamiltonian HI

acquires the standard Hubbard-Kanamori form81

H
(onsite)
I = U

∑
i,α

niα↑niα↓ + (U − 2J)
∑
i

nixniy+

J
∑
i,σ,σ′

c†ixσc
†
iyσ′cixσ′ciyσ + J

∑
i,α6=β

c†iα↑c
†
iα↓ciβ↓ciβ↑ (7)

Having derived the full interacting model, in the next
sections we discuss and classify the different instabilities
of the model. By directly decomposing the interacting
term HI into different irreducible channels, we obtain the
effective interactions corresponding to the possible insta-
bilities in the particle-particle (i.e. superconducting) and
particle-hole channels in Secs. III and IV, respectively.
In Sec. V, we go one step beyond and, in the spirit of
the strong-coupling approach, include perturbatively the
kinetic Hamiltonian HK , deriving the low-energy spin-
orbital exchange model.

III. SUPERCONDUCTING INSTABILITIES
AND THEIR VESTIGIAL ORDERS

In this section we focus attention on the interacting
Hamiltonian HI of Eq. (6) and address the question of
superconductivity. In particular, we analyze the pairing
instabilities of HI by decomposing the interaction into
irreducible pairing channels. The symmetry group of the
normal state allows for a two-component d-wave pairing
channel, which gives rise to the interesting possibility of
chiral or nematic d-wave superconductivity. This possi-
bility is studied in more detail in Sec. III B.

A. Decomposition of the interaction

To decompose the interaction into irreducible pairing
vertices, we first identify the symmetry of the Cooper
pairs. The full symmetry group of the normal state, in-
cluding spin rotational symmetry, is G = D3 ⊗ SO(3)
(note that here we restrict to the exact point group sym-
metries of TBG). This implies that the pairing chan-
nels are labeled by the spin angular momentum S of the
Cooper pair, which can take the values S = 0, 1, and
the representations Γ of D3, which can take the values
E⊗E = A1⊕A2⊕E associated with the product of two
orbitals. The decomposition of the representation prod-
uct describes the possible orbital structure of the Cooper
pair.

To proceed, we define the pair creation operator

Π†iασ,jβσ′

Π†iασ,jβσ′ = c†iασc
†
jβσ′ , (8)

A general pairing operator of this form can be decom-
posed into irreducible pairing operators defined by the
symmetry quantum numbers (Γ, S,M). Here Γ denotes
the point group representation and S = 0, 1 distinguishes
spin-singlet and spin-triplet pairing; M = −S, . . . , S.
This decomposition is given by

Π†iασ,jβσ′ =
∑

Γ

∑
S,M

XΓ
αβC

SM
σσ′ Π†ij,Γ,SM , (9)

where CSMσσ′ are the appropriate Clebsch-Gordan coef-
ficients and XΓ

αβ are the analogues of Clebsch-Gordan
coefficients for the orbital sector. The expressions for
the latter are provided in Appendix C. Note that here
the sum over Γ includes a sum over the individual com-
ponents of multi-dimensional representations, which we
leave implicit for the benefit of a more compact notation
(the latter is important and the reader is cautioned to
keep this is mind).

To see how this leads to a decomposition into irre-
ducible pairing terms, consider the first term of HI , Eq.

(6), with interaction parameters V αβij . Substituting Eq.

(9) and taking sums we arrive at

HI =
1

2

∑
ij

∑
SM

∑
Γ

V Γ
ijΠ†ij,Γ,SMΠij,Γ,SM , (10)
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with interaction parameters V Γ
ij given by

V Γ
ij =

∑
αβ

XΓ
αβV

αβ
ij XΓ

αβ . (11)

The Hamiltonian of Eq. (10) is diagonal in the space de-
fined by the spin and orbital quantum numbers (S,M)
and Γ. It should be noted, however, that the interac-
tion parameters V Γ

ij need not be the same for different
components of the same (multi-dimensional) representa-
tion (recall that the sum over Γ implies a sum over its
components). This is not inconsistent with the notion
of irreducible coupling constants since these can only be
defined for the full Hamiltonian HI . The latter includes
the interaction terms J1,2,3; substituting the decomposi-
tion of Eq. (9) into these remaining terms of HI leads to
similar expressions as Eq. (10) , which can be combined
to yield (details are presented in Appendix C)

HI =
1

2

∑
ij

∑
SM

∑
Γ

UΓ
ijΠ
†
ij,Γ,SMΠij,Γ,SM . (12)

The matrix elements UΓ
ij are given by the appropriate

sums of V and J1,2,3, and define the irreducible coupling
constants associated with the representation Γ.

Fermi statistics put restrictions on the allowed com-
binations of Γ and S. This is apparent when i = j, in
which case spin-singlet pairing (S = 0) can only occur for
the even representations A1 and E, whereas spin-triplet
pairing (S = 1) can only have A2 symmetry. In general,

the combination of Γ and S determines whether Π†ij,Γ,SM
is even or odd under the exchange i↔ j.

To illustrate the application of Eq. (12), consider the
case in which the interaction terms of Eq. (6) are only
onsite, giving rise to Eq. (7). We can express the result-
ing onsite pair creation operators in the following more
familiar form:

Π†Γ = c†iασ

[
∆̂Γ (isy)

]σσ′

αβ
c†iβσ′ , ∆̂Γ = (∆Γ)abτ

asb,

(13)

where ∆̂Γ is a matrix in orbital and spin space, which
is expanded in two sets of Pauli matrices τa and sb

(a, b = 0, x, y, z). Here τ0 and s0 are defined as the iden-
tity. As before, τz = ±1 labels the orbital degree of
freedom and sz = ±1 corresponds to spin-↑, ↓. Note that
we included explicitly the anti-symmetric tensor in spin
space (isy)αβ = εαβ . As mentioned, due to Fermi statis-

tics, which can be expressed as sy∆̂T
Γs

y = ∆̂Γ, there are
three distinct onsite pairing channels, which are uniquely
labeled by the three representations A1, A2, and E.

The onsite pair operators with A1 and E2 symmetry
are spin-singlet orbital-triplet states and represented by
the matrices

∆̂A1
= 1 (14)

∆̂E = (τz, τx) (15)

UΓ Γ = A1 Γ = A2 Γ = E2

Singlet U + J − U − J
Triplet − U − 3J −

TABLE I. Effective interactions for the three different types
of onsite particle-particle (superconducting) orders.

Here the second equality expresses the fact that E2 is
two-component representation. The pair operators with
A2 symmetry form a (orbital-singlet) spin-triplet state
transforming as SO(3) under rotations in spin space and
are expressed as

∆̂A2 = τy(sx, sy, sz). (16)

Written in this form the pairing operators are not nor-
malized. To normalize them we multiply all matrices ∆̂Γ

as written in Eqs. (14) and (16) by a factor 1/2
√

284.
The coupling constants UΓ = UΓ

ii of the onsite pairing
vertices, defined in Eq. (12), can then be obtained in
a straightforward way. For onsite interactions, Eq. 7,
one finds the effective interactions UΓ of the three onsite
pairings described above as (see also Table I):

UA1 = U + J, UA2 = U − 3J, UE = U − J. (17)

Note that the factor 1/2 in (12) was absorbed in the
normalization of the onsite pairing operators (see84). Al-
though a full analysis of the leading superconducting in-
stabilities is beyond the scope of this work, it is interest-
ing to note that the “Hund’s rule” coupling J favors the
A2 and E states.

To proceed with the general analysis of Eq. (12), it is
convenient to go to momentum space by Fourier trans-
forming the pair creation operators. Specifically, we de-
fine

Π†ij =
1

N

∑
k

Π†kνiνje
ik·(ri−rj), (18)

where Π†kνiνj = c†kνic
†
−kνj and νi,j = A,B refers to the

sublattice degree of freedom of the honeycomb superlat-
tice, andN is the system size. In Eq. (18) spin and orbital
indices have been suppressed for simplicity. Substituting
the Fourier transform into (12), one finds (suppressing
the spin label S)

HI =
1

N

∑
kk′

∑
Γ

∑
νν′

UΓ
νν′(k′ − k)Π†kνν′,ΓΠk′νν′,Γ, (19)

where the momentum-dependent effective interaction
UΓ
νν′(k) is given by

UΓ
νν′(k) =

∑
rij

UΓ
ije
−ik·rij . (20)
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This effective interaction may be compared to those of
more familiar single-band models, or of an isotropic con-
tinuum model for a Fermi surface. Such effective inter-
actions typically originate from (some form of) density-
density interaction. Here, apart from an additional label
Γ associated with the orbital degree of freedom, the effec-
tive interaction has a similar structure. In particular, as
is clear from Eq (20), it is the Fourier transform of (short-
ranged) interactions between first-, second-, and further
nearest neighbor pairs, each with their own interaction
parameter.

The standard next step is to decompose UΓ
νν′(k′ − k)

into a sum over harmonics, in this case (honeycomb) lat-
tice harmonics, which are labeled by the symmetry quan-
tum numbers of the lattice, i.e., the point group represen-
tations. Such decomposition is based on the fact that a
general function g(k) which has the symmetry of the lat-

tice can be expanded as g(k′ − k) =
∑

Γ′ fΓ′∗(k′)fΓ′
(k),

where fΓ′
(k) are the lattice harmonics which transform

irreducibly.96 Lattice harmonics are the lattice equiva-
lents of spherical harmonics in isotropic systems; the lat-
ter are labeled by angular momentum quantum numbers.
An important difference with respect to isotropic systems
is the finite set of lattice symmetry quantum numbers,
which implies that distinct harmonics fall into the same
channel. Once the effective interaction (20) is decom-
posed into lattice harmonics, the harmonics labeled by
Γ′ are combined with the corresponding pairing opera-
tors labeled by Γ (referring to the orbitals) to form the
products Γ′ ⊗ Γ, which are reducible. Decomposition of
the product representation then yields pairing operators
fully symmetrized with respect to the symmetry group of
the system. Here we do not work this out in detail, but
refer the reader to Appendix D for a more detailed dis-
cussion of decomposing (20), as well as Ref. 85. Instead,
we briefly showcase the trivial case of onsite pairing in
the context of Eqs. (19) and (20).

The onsite component of UΓ
νν′(k) is simply given by

UΓ
AA,0 = UΓ

BB,0 ≡ UΓ
0 . What remains to be done is

to symmetrize the pairing operators with respect to the
honeycomb sublattice degree of freedom. To this end, we
define the even and odd linear combinations

Π†kAA,Γ + Π†kBB,Γ =
∑
νν′

δνν′Π†kνν′,Γ (21)

Π†kAA,Γ −Π†kBB,Γ =
∑
νν′

σzνν′Π
†
kνν′,Γ (22)

where σz = ±1 is an A,B sublattice label. The former
is fully symmetric, whereas the latter is odd under C2y.

At this stage it is useful to briefly connect to the re-
cent theoretical work on superconductivity in TBG. A
number of works have addressed the question of pair-
ing in TBG4,7,8,13,15,16,20,22,24–26,29,30,35–38,47, using dif-
ferent methods (numerical and analytical) as well as dif-
ferent models. For the sake of simplicity, some authors
have considered a (two-orbital) triangular lattice model

or have considered the SU(4) symmetric limit of the hon-
eycomb lattice model. Approaches have also differed in
the type of interactions included. Furthermore, while
most works focused on superconductivity from repulsive
interactions, others have explored phonon-mediated sce-
narios in more detail22,37.

Here we have presented a full symmetry-based decom-
position of the extended Hubbard interaction (6) into
pairing channels and have obtained the corresponding
coupling constants. Our starting point is the two-orbital
honeycomb lattice model, for which we do not assume
artificial higher symmetry. Notably, we make no a priori
assumptions on the range of the included interaction; the
interacting Hamiltonian (19) is fully general. As a result,
(19) provides the basis for studying the pairing instabil-
ities using various schemes. For instance, the renormal-
ization of the interactions by particle-hole fluctuations,
treated within RPA, can be straightforwardly included16.
To this end, we derive the corresponding decomposition
in particle-hole channels in Sec. IV.

B. Two-component pairing and vestigial ordering

The existence of a two-component pairing channel,
which is guaranteed when the normal state has D3 sym-
metry, merits a more detailed discussion of the conse-
quences of two-component superconductivity in TBG.
Since superconductors described by a two-component or-
der parameter break additional symmetries of the sys-
tem, such as time-reversal or rotational symmetry, they
exhibit distinct signatures in experimental probes which
may be used to establish the pairing symmetry. With
this in mind we focus attention on the two-component
superconducting channel with symmetry label E (here-
after denoted E-pairing) and consider its phenomenology
in the context of TBG. It is natural to refer to this two-
component pairing channel as d-wave pairing; supercon-
ductivity with this pairing symmetry has been the focus
of a number of recent studies addressing superconductiv-
ity in TBG4,8,13,16,20,29,30,36,47

To describe an E-pairing state it is necessary to intro-
duce a two-component complex order parameter (η1, η2)
which transforms as the E representation of the D3

group. The possible superconducting ground states can
be obtained by analyzing the Ginzburg-Landau expan-
sion of the free energy in terms of the superconducting
order parameter82:

F = r(|η1|2 + |η2|2) + u(|η1|2 + |η2|2)2

+ v|η∗1η2 − η∗2η1|2. (23)

Here r ∝ T −Tc, where Tc is the transition temperature,
and u, v are fourth order expansion coefficients. The state
realized below Tc (r < 0) is determined by the fourth
order interaction v. When v < 0, the superconduct-
ing ground state is chiral, i.e., time-reversal symmetry-
breaking (TRSB), and given by (η1, η2) = η0(1,±i).
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Here, η0 is a complex number. A number of recent
theoretical studies have argued that this chiral d-wave
state is favored in TBG8,13,16,20,29,30,47. On the other
hand, when v < 0, the superconducting ground state is
given by (η1, η2) = η0(cosφ, sinφ). Since it preserves
time-reversal symmetry but lowers the point group sym-
metry, in particular threefold rotations, it is a nematic
superconductor90,91. Importantly, the values of φ are re-
stricted due to the crystal symmetries. This can be seen
by considering the following sixth order term in the free
energy expansion:

F (6) =
λ

2

[
(η1 − iη2)

3
(η∗1 − iη∗2)

3
+ c.c.

]
(24)

For the TRSB superconducting state, this term vanishes.
For the nematic superconducting state, however, this
term becomes λ |η0|6 cos 6φ, which is minimized either
by φ = nπ/3 (for λ < 0) or φ =

(
n+ 1

2

)
π/3 (for λ > 0),

with integer n.
The existence of a multi-component superconducting

order parameter opens the possibility of vestigial order
— i.e. the condensation of bilinear combinations of ηi
that break certain symmetries of the lattice while pre-
serving the U(1) superconducting gauge symmetry (for a
review, see86 and87). Importantly, these bilinear combi-
nations may condense even in the non-superconducting
state, giving rise to an ordered state that precedes the on-
set of superconducting order. In the case of TBG, since
it is a two-dimensional system, superconducting phase
fluctuations are very strong and melt long-range super-
conducting order completely. However, the phase with
composite bilinear order is not affected by these strong
fluctuations, since it is associated with a discrete symme-
try, and thus remains as a vestige of the superconducting
state.

Following Ref. 86 and the analysis of the nematic p-
wave superconductor of Ref. 88, we identify two possible
vestigial orders, associated with the TRSB and nematic
superconducting states. In the case of a TRSB supercon-
ductor, the composite order parameter with chiral sym-
metry is given by

ψ = i (η1η
∗
2 − η2η

∗
1) ≡ η†σyη (25)

where η = (η1, η2)T and σy is a Pauli matrix. It is clear
that ψ is a Z2 Ising-like order parameter, whose conden-
sation implies TRSB (chiral order). Therefore, the ves-
tigial state with 〈ψ〉 6= 0 but 〈η〉 = 0, which is expected
to take place at finite temperatures in two dimensions,
is a non-superconducting state that breaks time-reversal
symmetry.

In the case of the nematic superconductor, the com-
posite order parameter describing nematic order has two
components, which transform as partners of the two-
dimensional irreducible representation E:

(Ψ1,Ψ2) = (|η1|2 − |η2|2, η∗1η2 + η∗2η1)

Ψ ≡
(
η†σzη, η†σxη

)
(26)

Since Ψ is a composite order parameter and Ψ ∝
(cos 2φ, sin 2φ) for (η1, η2) = η0(cosφ, sinφ), it is natu-
ral to think of it as a q = 0 particle-hole order parameter
with d-wave symmetry, whose two components transform
as dx2−y2 and dxy, It should be kept in mind, however,
that the symmetries of D3 do not distinguish p and d
waves. Importantly, the condensation of Ψ implies that
the system is no longer invariant under an in-plane C3z

rotation and in this sense the ordered state can be called
nematic. As a result, the vestigial phase with 〈Ψ〉 6= 0
but 〈η〉 = 0 defines a nematic phase.

At first sight, one might be tempted to identify Ψ with
an XY nematic order parameter, which would not order
at finite temperatures in two dimensions due to Mermin-
Wagner theorem. However, due to crystal anisotropy Ψ
is actually a Z3 order parameter and falls in the same
universality class as the 3-state Potts model88,89. Note
that this distinguishes it from a Z2 Ising nematic order
parameter. Indeed, writing down the Landau free energy
expansion for Ψ reveals the existence of a cubic term:

FΨ = r′(Ψ2
1 + Ψ2

2) + λ′(Ψ3
+ + Ψ3

−) + u′(Ψ2
1 + Ψ2

2)2, (27)

where Ψ± = Ψ1± iΨ2. Note that the existence of a cubic
term is implied by the presence of the sixth order term
(24); in particular, substituting (26) into the cubic term
of (27) gives (24).

Writing Ψ+ = |Ψ|eiθ and expressing the cubic term
in terms of the phase θ gives 2λ′|Ψ|3 cos 3θ. For λ′ < 0
the set of degenerate minima is given by θ = 2nπ/3 with
n integer; for λ′ > 0, it is given by θ = (2n + 1)π/3.
Thus, because θ can assume three different values, Ψ is
a discrete Z3 order parameter, which can condense at
finite temperatures in two dimensions. As a result, a
vestigial nematic order is possible to be realized in TBG.
Note that the presence of the cubic order term makes the
nematic transition

first-order within mean-field theory88. However, in two
dimensions, which is the case relevant for TBG, fluctua-
tions drive the Z3 transition second-order, with a small
critical exponent β for the order parameter, β = 1/989.
The small value of β indicates a steep onset of the ne-
matic order parameter, which may in some experiments
be similar to a jump. Furthermore, the allowed θ val-
ues correspond to the ±dx2−y2 nematic state (θ = 0
and θ = π, respectively), or to the symmetry-equivalent
states related to ±dx2−y2 by three-fold rotations. As a re-
sult, the dxy nematic state (θ = ±π/2) is never realized,
as it is never a minimum of the free energy.

IV. PARTICLE-HOLE INSTABILITIES

In Sec. III A, for the purpose of studying superconduc-
tivity, we decomposed the interactions into irreducible
pairing (particle-particle) channels. A similar approach
can be taken to study instabilities towards particle-hole
order, such as magnetic, charge, or orbital order. There-
fore, in this section we present a decomposition of Eq.
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Onsite ŨΓa Γ = A1 Γ = A2 Γ = E

Singlet (3U − 5J)/8 (J − U)/8 (5J − U)/8

Triplet −(U + J)/8 (J − U)/8 (J − U)/8

TABLE II. Effective interactions for onsite particle-hole order,
defined by Eq. (32), in terms of the interaction parameters
U and J defined in Eq. (7). Six different channels can be
distinguished based on the spin (i.e., singlet or triplet) and
orbital structure of the particle-hole channel.

(6) into irreducible particle-hole channels. We begin by
defining the general particle-hole operators Λiασ,jβσ′ as

Λiασ,jβσ′ = c†iασcjβσ′ , (28)

which are the analogues of Eq. (8). In a manner similar
to Eq. (9) we decompose these operators into irreducible
particle-hole operators Λij,Γa as

Λiασ,jβσ′ =
∑

Γ

∑
a

Y Γ
αβC̃

a
σσ′Λij,Γa, (29)

where a = 0, x, y, z is an index for spin-singlet (a = 0)
and spin-triplet (a = x, y, z) particle-hole condensates.
Here, the singlet and triplet operators are defined as

Λij,a =
∑
σσ′ c

†
iσs

a
σσ′cjσ′ , where sx,y,z are the spin Pauli

matrices and s0 is the identity. The irreducible orbital
operators Λij,Γ are defined similarly; the expansion coef-

ficients Y Γ
αβ and C̃aσσ′ , which can be related to Clebsch-

Gordon coefficients, are provided in Appendix E. Note

that the relation Λ†ij,Γa = Λji,Γa holds.

Equation (29) is the equivalent of (9). As a first step
towards decomposing the interaction into particle-hole
channels, we thus proceed similarly by substituting (29)
into HI . As in the case of the pairing channels, Eq.
(10), we initially illustrate this procedure by using the
density-density terms with interaction parameters V . In
the present case, contrary to the pairing decomposition,
we expect to obtain two terms, as there are two ways to
form particle-hole bilinears. We find for the interaction
HV

HV =
1

2

∑
ij

∑
Γ

Ṽ Γ
1,ijΛi,Γ0Λj,Γ0

+
1

2

∑
ij

∑
Γ,a

Ṽ Γ
2,ijΛij,ΓaΛji,Γa, (30)

where the new interaction parameters Ṽ Γ
1,ij and Ṽ Γ

2,ij are
given by

Ṽ Γ
1,ij =

∑
αβ

Y Γ
ααV

αβ
ij Y Γ

ββ , Ṽ Γ
2,ij = −1

2

∑
αβ

Y Γ
αβV

αβ
ij Y Γ

βα,

(31)

and Λi,Γa ≡ Λii,Γa = Λ†i,Γa. The first term is an inter-
action of pure spin-singlet onsite bilinears, whereas the

Neighbors ŨΓa
1,2,ij Γ = A1 Γ = A2 Γ = E

ŨΓa
1,ij Singlet (4Vij − J1,ij)/8 −J1,ij/8 −J1,ij/8

Triplet −J1,ij/8 −J1,ij/8 −J1,ij/8

ŨΓa
2,ij Singlet (4J1,ij − Vij)/8 −Vij/8 −Vij/8

Triplet −Vij/8 −Vij/8 −Vij/8

TABLE III. Effective interactions for bond particle-hole order
involving a pair of sites (ij). Six different channels can be
distinguished based on the spin (i.e., singlet or triplet) and
orbital structure of the particle-hole channel. Here we have
assumed V αβij = Vij , J

αβ
1,ij = J1,ij , and J2 = J3 = 0, which

corresponds to parameter values considered in Ref. 21.

second term corresponds to the interaction of particle-
hole bilinear on bonds or sites.

The same approach applies to the exchange interaction
terms J1,2,3, as we describe in detail in Appendix E. This
leads to a form of HI given by

HI =
1

2

∑
ij

∑
Γ,a

ŨΓa
1,ijΛi,ΓaΛj,Γa

+
1

2

∑
ij

∑
Γ,a

ŨΓa
2,ijΛij,ΓaΛji,Γa, (32)

with effective particle-hole interactions ŨΓa
1,ij and ŨΓa

2,ij .
Before proceeding to a more general analysis of (32),

we examine its structure in the limit where only onsite
interactions are considered, such that the interactions are
parametrized by the coefficients U and J , see Eq. (7). As
is clear from (32), in this case the interaction parameters

can be grouped into ŨΓa = ŨΓa
1,ii+Ũ

Γa
2,ii, which then define

the irreducible bare particle-hole coupling constants. The
expressions for ŨΓa in terms of U and J are given in Ta-
ble II. The particle-hole channels corresponding to these
couplings describe distinct types of particle-hole order,
in the same way that different pairing channels describe
distinct types of pairing. Spin-singlet channels may also
be viewed as charge channels, since spin-rotation invari-
ance is preserved. For instance, spin-singlet order with
A2 symmetry corresponds to an ordered state with or-
bital magnetism, whereas singlet order with E symme-
try corresponds to nematic orbital order, which breaks
(three-fold) rotational symmetry.

In a similar manner, we can explicitly express the ef-
fective interactions ŨΓa

1,ij and ŨΓa
2,ij for a bond connect-

ing a pair of distinct sites i and j in terms of V and

J1,2,3 defined in Eq. (6). For the special case V αβij = Vij ,

Jαβ1,ij = J1,ij , and J2 = J3 = 0 the result is presented in
Table III. This particular choice of interaction parame-
ters corresponds to the extended Hubbard model consid-
ered in Ref. 21.

We then return to a more general analysis of (32).
As in the case of pairing, it is convenient to make use
of translational invariance and transform to momentum
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space. The Fourier transform of the particle-hole opera-
tors Λij,Γa is given by

Λij,Γa =
1

N

∑
q,k

Λkνiνj ,Γa(q)eiq·Rij+ik·rij (33)

where rij = ri−rj as before, and Rij = (ri+rj)/2 is the
center of mass position. As in Eq. (18) the Fourier trans-
form introduces sublattice indices νi, νj = A,B. The
Fourier transform of the onsite operators Λi,Γa further
simplifies and is defined as Λν,Γa(q) =

∑
k Λkνν,Γa(q).

Substituting (33) into Eq. 32 and performing the sums
over site indices the interaction Hamiltonian takes the
form

HI =
1

2N

∑
q

∑
Γ,a

ŨΓa
1 (q)Λ†Γa(q)ΛΓa(q)

+
1

2N

∑
q,kk′

∑
Γ,a

ŨΓa
2 (k− k′)Λ†k′,Γa(q)Λk,Γa(q), (34)

where we have suppressed sublattice indices ν, ν′ to avoid
cumbersome expressions. The Fourier transform of the
interaction parameters ŨΓa

1,ij is given by (reinstating sub-
lattice indices)

ŨΓa
1,νν′(q) =

∑
rij

ŨΓa
1,ije

−iq·rij , (35)

and similarly for ŨΓa
1,ij . As may be seen from (34), the first

term is now diagonal. As far as the second term is con-
cerned, we can follow a similar approach as in the pairing
case, see Eq. (19), and write ŨΓa

2,νν′(k−k′) as a sum over
lattice harmonics. The lattice harmonics are then asso-
ciated with the particle-hole operators Λkνν′,Γa(q) and

Λ†k′νν′,Γa(q) to form fully symmetrized particle-hole op-
erators.

The Hamiltonian of Eq. (34) describes the effective in-
teractions of the particle-hole instabilities and provides
a natural framework for further analyze them. To deter-
mine which instability is strongest within RPA, for in-
stance, the next step is to calculate the particle-hole bub-
bles in each of the irreducible channels. This is greatly
simplified by the fully symmetrized form of the interac-
tion.

We conclude this section by noting that an analysis
of the particle-hole instabilities in “higher angular mo-
mentum” channels, that is to say, instabilities in chan-
nels corresponding to lattice harmonics and governed by
ŨΓa

2 (k−k′), is particularly relevant in TBG. As pointed
out in Ref. 31, a natural candidate for the ordered in-
sulating state at quarter-filling is a magnetic state for
which the magnetic moments reside on the honeycomb
bonds. As a result, this is a bond-spin ordered state
which occurs in a particle-hole channel corresponding to
nontrivial lattice harmonics.

V. SPIN-ORBITAL EXCHANGE MODEL AT
QUARTER FILLING

The analysis of the previous sections focused entirely
on the interacting part of the Hamiltonian HI , classi-
fying the irreducible particle-particle and particle-hole
channels. To obtain a phase diagram, it is necessary
to include also the kinetic term HK . This can be done
in a controlled way in two different regimes: weak-
coupling, where HI is treated perturbatively, or strong-
coupling, where HK is treated perturbatively. The small
bandwidth (W ∼ 10 meV) of the nearly flat bands in
TBG does not immediately suggest the weak-coupling
approach as a natural starting point to address electronic
correlations in TBG. Indeed, estimates for the onsite
Coulomb repulsion U indicate that U &W 1, placing the
system in a moderately correlated regime. To assess this
regime, in this section we opt to start from the strong-
coupling limit in which the onsite interaction U is much
larger then the bandwidth.

In this case, the extended Hubbard model discussed
in Sec. II can be studied by considering the interactions
first and then treating the kinetic part as a perturbation
in ∼ t/U . This amounts to integrating out the charge de-
gree of freedom and results in an effective model for the
spin and orbital variables. Spin-orbital exchange models
of this Kugel-Khomskii type70,71 have proven rather suc-
cessful in describing a large class of strongly correlated
multi-orbital systems72–75. The key difference between
the latter and TBG is the microscopic nature of the or-
bital degree of freedom, which does not correspond to an
atomic orbital in TBG. Instead, the localized Wannier
states of the flat bands are associated with the Moiré
superlattice. As a result, the aim of this section is to
explore to what extent standard approaches from corre-
lated multi-orbital systems can be applied to TBG.

A. Derivation of the effective Hamiltonian

To proceed, we consider the interacting Hamiltonian
given by (7), which only includes the onsite interactions.
Restricting the interaction to onsite terms only is an over-
simplification for TBG, but necessary for the purpose of
deriving a spin-orbital model. The onsite Coulomb re-
pulsion of (7) reorganizes the Hilbert space based on the
number of electrons per site, assigning an energy cost
to multiple occupancy. Since the insulating behavior of
TBG was observed for one electron per site (or two elec-
trons per Moiré supercell), we focus on this case and
define the low-energy subspace by all configurations for
which each site is singly occupied.

To obtain the effective Hamiltonian H we follow the
standard approach and consider virtual superexchange
processes via excited states with two electrons per site.
This amounts to diagonalizing the interacting Hamilto-
nian HI and treating the kinetic Hamiltonian HK as a
perturbation. In Sec. III we diagonalized (7) in the two-
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particle sector and obtained the energies of the intermedi-
ate excited states given in Table I. The effective Hamil-
tonian can then be viewed as an expansion in ∼ t/U .
Considering all hopping processes into the higher energy
sector and back, H can be expressed in the general form:

H = PH†K
1

ε0 −HI
HKP, (36)

where P are projectors onto the low-energy subspace.
As is usual, the effective Hamiltonian is governed by the
superexchange energy scale ∼ t2/U . Since the virtual su-
perexchange processes occur on one particular bond (ij),
it suffices to derive the Hamiltonian Hij for one such
bond; the full Hamiltonian H is given by a sum over all
bonds. In principle, a superexchange coupling of spin
and orbital variables can be obtained for any pair of sites
(ij) connected by HK . In what follows, we focus at-
tention on the simplest case, which only includes nearest
neighbor hopping. Farther neighbor terms can be derived
and analyzed analogously. In this situation, the hopping
along each bond can be parametrized by tσ = t1 + t′1 and
tπ = t1 − t′1 in an appropriate basis, see Eq. (3) and
Appendices A and B.

Since the microscopic Hamiltonian H = HK + HI

is SU(2) spin-rotationally invariant, the effective low-
energy Hamiltonian must also be SU(2) invariant, which
implies that the effective Hamiltonian Hij for a bond (ij)
is constructed from the projectors PS=0

ij and PS=1
ij onto

total spin states S = 0 and S = 1 of the electrons con-
nected by the bond. The projectors onto the singlet and
triplet states are given by

PS=0
ij =

1

4
− Si · Sj , PS=1

ij =
3

4
+ Si · Sj (37)

where Si describes the spin of site i.

In addition to the spin variables, the superexchange
Hamiltonian acts on the orbital variables. This action
can be described by the orbital Pauli matrices τi =
(τzi , τ

x
i , τ

y
i ), where τzi = ±1 corresponds to occupancy

of the px, py orbital on site i. Note the particular order-

ing of the Pauli matrices in the definition of τi. To cap-
ture the action of the superexchange Hamiltonian on the
orbital variables it convenient to introduce orbital pro-
jection operators, by analogy with (37). We introduce

the projection operators Pαβij given by

Pxxij = (1 + êij · τi)(1 + êij · τj)/4, (38)

Pxyij = (1 + êij · τi)(1− êij · τj)/4, (39)

where êij is a unit vector in the direction of the bond
(ij). Therefore, êij can take the values ên=1,2,3, which
are shown in Fig. 4. The projection operator Pxxij , for
instance, projects on states for which the p′x = (pxêx +
pyêy) · êij orbital is occupied on both sites i and j. Note
that this is the px orbital in a basis defined by the bond
directions (êij , ê

⊥
ij) rather than (êx, êy)79, see Appendix

F for details. In the case êij = ê1 = (1, 0)T the projector
Pxxij takes the form (1 + τzi )(1 + τzj )/4. The projector
Pxyij projects on states for which the p′x = (pxêx+pyêy) ·
êij orbital is occupied on site i and the p′y = (pxêx +

pyêy) · ê⊥ij orbital is occupied on site j (both in a bond-

dependent basis). The projection operators Pyyij and Pyxij
are obtained from (38) and (39) by inverting the signs.

To describe all superexchange processes one must also
account for the possibility that orbital flavors are flipped
or exchanged. For this purpose we introduce operators
that flip the orbital occupation of the sites i and j; these
operators are given by

Qij = (τ+
i τ

+
j + τ−i τ

−
j )/2, (40)

Q̄ij = (τ+
i τ
−
j + τ−i τ

+
j )/2, (41)

where τ±i and τ±i flip the orbital occupation on site i and
j in a basis defined by the bond directions (êij , ê

⊥
ij), as

before. For a bond along êij = ê1 the operator τ±i takes
the form τ±i = τxi ± iτ

y
i (see Appendix F). Clearly, the

Qij matrix elements are non-zero only in the subspace
of equal occupation, whereas Q̄ij only acts within the
subspace of opposite orbital occupation.

Making use of these operators and carefully examining
all superexchange processes to obtain the correct coef-
ficients, we find that the nearest neighbor spin-orbital
superexchange Hamiltonian H is given by

H =
∑
〈ij〉

{
1

U − 3J
PS=1
ij

[
tσtπQ̄ij − (t2σ + t2π)(Pxyij + Pyxij )

]
− 1

U + J
PS=0
ij

(
tσtπQij + 2t2σPxxij + 2t2πP

yy
ij

)
+

1

U − J
PS=0
ij

[
tσtπ(Qij − Q̄ij)− 2t2σPxxij − 2t2πP

yy
ij − (t2σ + t2π)(Pxyij + Pyxij )

]}
. (42)

Here the sum is over honeycomb nearest neighbor sites
〈ij〉. In its most general form given by (42) the Hamil-
tonian describes a rather complicated coupling between

spin and orbital variables, parametrized by the two hop-
ping integrals tσ,π and the interaction terms U, J . This
Hamiltonian can be compared to similar spin-orbital
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Hamiltonians obtained in the context of correlated multi-
orbital models for transition-metal oxides92,93.

In the present case, while (42) includes nearest neigh-
bor couplings only, the superexchange Hamiltonian can
be systematically extended to include farther neighbor
spin-orbital superexchange couplings. This will generate
superexchange terms of a similar type as in Eq. (42),
but for bonds (ij) corresponding to second- and farther
nearest neighbor sites. Using the machinery developed in
our work it is in principle straightforward to obtain these
additional terms by including hopping processes such as
Eqs. (4) and (5) in HK of (36), but is expected to intro-
duce frustration. A detailed study of the resulting phase
diagram is beyond the scope of this work.

A natural first step to study (42) is to consider a mean-
field theory and replace the spin and orbital operators by
classical variables. This is the approach we take there.

B. Mean-field solution in the isotropic limit

While a full phase diagram for arbitrary values of tσ
and tπ can in principle be obtained by, for instance,
Monte Carlo simulations, this is beyond the scope of our
work. Rather, we develop a mean-field theory based on
an assumption which directly derives from the reported
properties of TBG. Both first-principles as well as tight-
binding calculations show that the low-energy bands of
TBG are well-described by the approximation tσ ≈ tπ21.
Therefore, here we focus on the isotropic case tσ = tπ ≡ t,
for which the spin-orbital Hamiltonian (42) simplifies and
reads as

H =
∑
〈ij〉

{
t2

(U − 3J)

(
3

4
+ Si · Sj

)
(τi · τj − 1)

− t2

U + J

(
1

4
− Si · Sj

)(
1 + τi · τj − 2τyi τ

y
j

)
− 2t2

U − J

(
1

4
− Si · Sj

)(
τyi τ

y
j + 1

)}
. (43)

This Hamiltonian clearly reflects the higher U(1) orbital
symmetry that results from the neglecting the hopping
anisotropy. In this form, the Hamiltonian bears resem-
blance to an SU(4) symmetric spin-orbital model on the
hyperhoneycomb lattice94.

Before proceeding, let us briefly review the meaning of
the different degrees of freedom appearing in this Hamil-
tonian. A finite expectation value 〈Si〉 simply implies
long-range magnetic order, since Si is simply the spin
at site i, whose magnitude is here set to 1/2. A finite
expectation value 〈τi〉 implies some form of orbital or-
der, which depends on the direction of τi (its magnitude
here is set to 1). A finite 〈τzi 〉 implies that the occupa-
tion of the px and py orbitals are not the same in site
i. This breaks rotational symmetry and is therefore an
orbital-nematic order. The same is true for 〈τxi 〉, but
with the difference that px + py and px − py orbitals are

split in energy. Therefore, it is convenient to construct

the two-dimensional vector
〈
τ
‖
i

〉
= 〈τxi 〉 x̂+〈τzi 〉 ẑ, which

behaves as an XY nematic order parameter. In contrast

to
〈
τ
‖
i

〉
, a finite 〈τyi 〉 does not break rotational symme-

try but instead breaks time-reversal symmetry by select-
ing one of the two orbital angular momentum eigenstates
px ± ipy. Consequently, a finite 〈τyi 〉 implies long-range
orbital-magnetic order.

Because the honeycomb superlattice is bipartite, we
can find the mean-field classical ground state by com-
puting the classical energy of a single bond, Ebond. Since
the Hamiltonian (43) is SU(2) invariant in spin-space,
there are only two possible classical spin ground states,
ferromagnetic (FM) or antiferromagnetic (AFM). We can
thus find the orbital ground states in these two cases and
compare their energies to find the minimum.

Let us start with the AFM case. Defining ∆ = t2/U ,
the bond energy is given by:

E
(AFM)
bond

∆
= E

(AFM)
0 +K‖τ

‖
i · τ

‖
j +Kyτ

y
i τ

y
j (44)

where we defined:

E
(AFM)
0 =

2U
(
J2 + 2JU − U2

)
(U2 − J2) (U − 3J)

K‖ =
2JU (U − J)

(U2 − J2) (U − 3J)

Ky =
4J2U

(U2 − J2) (U − 3J)
(45)

Before we proceed, we first need to discuss the range
of J/U values that is reasonable. Since U ′ = U − 2J , in
order to have U ′ > 0, we must have J/U < 1/2. Here,
we allow J to be negative as well, which would imply
violation of Hund’s first rule. This was also proposed
in the context of TBG in Ref.12. Consequenly, in what
follows, we consider the range −1/2 < J/U < 1/2.

The orbital ground state can be obtained by analyz-
ing the orbital exchange constants K‖ and Ky as func-

tion of J . It follows that
∣∣K‖∣∣ ≥ |Ky| for −1/2 <

J/U < 1/3. Thus, in this range, the energy is mini-
mized by an orbital-nematic configuration. Since K‖ < 0
for J < 0, this gives ferro-orbital (FO) nematic order.
On the other hand, because K‖ > 0 for J > 0, we ob-
tain antiferro-orbital (AFO) nematic order. Similarly,
because

∣∣K‖∣∣ < |Ky| for 1/3 < J/U < 1/2, the configura-
tion that minimizes the bond energy is orbital-magnetic
order. As Ky < 0 in this range, we obtain a ferro-orbital
magnetic order.

Now let us consider the FM case. The bond energy is:

E
(FM)
bond

∆
= E

(FM)
0 +Kτi · τj (46)

with:
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FIG. 5. Phase diagram of the classical mean-field solu-
tion of the spin-orbital exchange model in the isotropic case
(tσ = tπ), obtained by minimizing the bond energy Ebond

(here plotted in units of ∆ = t2/U) as function of the ra-
tio J/U . AFM refers to antiferromagnetic order, FM to
ferromagnetic order, FO to ferro-orbital order, and AFO to
antiferro-orbital order. For J < 0, the orbital order lowers
the point group symmetry of the honeycomb lattice, and is
thus nematic (panel A in Fig. 1). For 0 < J < U/3, there
is an enlarged SU(2) symmetry in the orbital degrees of free-
dom, and the orbital order can be either nematic or magnetic
(panel B in Fig. 1 illustrates the nematic case). For J > U/3,
the system has orbital-magnetic order (panel C in Fig. 1).

E
(FM)
0 = − U

U − 3J

K =
U

U − 3J
(47)

Note that the FM bond energy is invariant under
SU(2) rotations in orbital space. This “accidental” sym-
metry stems from the approximations we employed to de-
rive the effective Hamiltonian, and will likely be removed
if farther-neighbor hoppings are included. In any case,
there is a degeneracy in this situation between orbital-
nematic and orbital-magnetic orders. For this reason,
herefater we will refer to this configuration as SU(2) or-
bital order.

Minimization of the bond energy (46) is straightfor-
ward: for J/U < 1/3, the orbital-exchange coefficient
K > 0 and we obtain anti-ferro SU(2) orbital order. On
the other hand, for J/U > 1/3, we find SU(2) ferro-
orbital order, since K < 0.

Having minimized the bond energies of the AFM and
FM spin configurations, we compare them to find the
global bond-energy minimum. The result is shown in Fig.
(5), and comprises three regimes: for −1/2 < J/U < 0,
the configuration that minimizes Ebond is an antiferro-
magnetic (AFM) and ferro-orbital (FO) nematic order.
For 0 < J/U < 1/3, the bond energy is minimized by
a ferromagnetic (FM) and anti-ferro (AFO) SU(2) or-
bital order. Finally, for 1/3 < J/U < 1/2, the system’s

configuration corresponds to AFM and ferro-orbital (FO)
magnetic order. Note that in all cases translational sym-
metry is broken.

We note that our strong-coupling expansion is formally
not valid in the vicinity of J/U = 1/3, since in this case
one of the denominators of the effective Hamiltonian (42)
diverges. Note also that, for J = 0, the system has addi-
tional symmetries, signaled here by the fact that different
configurations minimize the bond energy.

VI. CONCLUDING REMARKS

In this paper, we analyzed the possible electronic
orders arising from the two-orbital extended Hubbard
model on the honeycomb lattice, which has been pro-
posed to describe the nearly-flat bands of TBG. First,
we presented a general framework to decompose the sev-
eral interaction terms into different irreducible particle-
particle and particle-hole channels. Although such a
framework is suitable for both weak-coupling and strong-
coupling calculations, here we focused on the latter. As a
result, we derived a spin-orbital exchange model for the
quarter-filling Mott insulating state. Its mean-field solu-
tion in the isotropic limit unveils a rich intertwinement
between orbital and spin degrees of freedom, analogous
to the physics of certain correlated multi-orbital transi-
tion metal oxides. We also discussed the possibility of
vestigial superconducting phases, which are likely to be
realized in TBG if the ground state is d-wave or p-wave,
given the two-dimensional character of TBG. While fur-
ther experiments are needed to shed light on the types
of electronic order realized in TBG, the general frame-
work established here provides a solid starting point to
assess the impact of correlations on the spin, charge, and
orbital degrees of freedom of this system.
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Appendix A: Rotations in Wannier orbital space

The Wannier orbital states of the TBG honeycomb su-
perlattice model proposed in Refs. 5, 18, and 21 have
p-wave symmetry and transform as partners of the E
representation of D3. The operators c†x,y create electrons
in the px,y Wannier states, which are defined with respect
to the x and y axes, i.e., a basis defined by êx, êy. We are
free to choose a different basis corresponding to the ro-
tated vectors êϕ, ê

⊥
ϕ defined in (2). The rotated orbitals



15

p′x,y can be expressed as p′x = (pxêx + pyêy) · êϕ and

p′y = (pxêx + pyêy) · ê⊥ϕ . This defines a rotation matrix

Uϕ ≡ e−iϕτ
y

, corresponding to a rotation by an angle ϕ
about the z axis: (

p′x
p′y

)
= U†ϕ

(
px

py

)
. (A1)

The operators creating (annihilating) electrons in the
rotated orbitals p′x,y are then given by c†Uϕ (U†ϕc). The
matrix Uϕ is a representation of rotations Cϕz about the
z axis generated by τy. Recall that Uϕ is not a symmetry
for general ϕ, but only for ϕn = 2πn/3 in the case of the
D3 point group.

The rotations of the orbitals given in Eq. (A1) imply a
rotation of the Pauli matrices τ . Consider first the pair of
Pauli matrices (τz, τx). Under rotations in orbital space
the Pauli matrices transform as

Uϕτ
zU†ϕ = cos 2ϕ τz + sin 2ϕ τx, (A2)

Uϕτ
xU†ϕ = − sin 2ϕ τz + cos 2ϕ τx. (A3)

This shows that the two Pauli matrices transform as part-
ners under rotations and that they have d-wave symme-
try:

Cϕz :

(
τz

τx

)
→ U†2ϕ

(
τz

τx

)
. (A4)

We can also define the matrices Ux = τz and Uy = −τz
that represent the two-fold rotations about the x axis
(C2x) and y axis (C2y), respectively. Under either of
these transformations, (τz, τx)→ (τz,−τx). Meanwhile,
the Pauli matrix τy is invariant under Cϕz rotations but
odd under C2y and C2x rotations. This implies that
(τz, τx) have E symmetry under D3 and τy has A2 sym-
metry.

The form of the rotation matrix Uϕ ≡ e−iϕτ
y

im-
plies that it is diagonal in a basis in which τy is di-
agonal. This basis is defined by the orbitals complex
orbitals p± = px ± ipy, which are eigenvectors of the
angular momentum projections Lz = ±1. If we define
c± as the operators corresponding to p±, then one has
Cϕz : c± → e±iϕc±. This implies that if the terms in
the kinetic Hamiltonian, Eq. (1), do not couple c+ and
c−, which is only true for a specific set of (fine-tuned)
hopping parameters, the kinetic Hamiltonian HK has a
larger U(1) symmetry given by Cϕz. Since the orbitals
p± can be related to the valley degrees of freedom of the
constituent graphene layers21 this larger symmetry can
be associated with a U(1) valley symmetry.

Appendix B: Hopping matrix symmetry constraints
for D3 model

In this Appendix, we review the symmetry constraints
on the hopping matrices discussed in Ref. 18 using a dif-
ferent formalism.

The kinetic Hamiltonian of Eq. (1) defines the hop-

ping matrices T̂ (rij), where rij is the distance between
sites forming the bond (ij). It is natural to group the
set of hopping matrices into subsets defined by fixed dis-
tance rij , which is a grouping based on nearest neighbors,
and we introduce the index γ to denote the γ-th nearest
neighbor bonds. That is, γ = 1, 2, 3 denotes the first,
second, and third nearest neighbors. We then rewrite

the set of hopping matrices as T̂
(γ)
n , where n = 1, . . . , Nγ

is an index for all the γ-th nearest neighbors, of which
there are Nγ .

For given γ one may then obtain symmetry constraints

for T̂
(γ)
n , from which the number of independent hopping

parameters can be determined. As an example, consider
the first-nearest neighbor (γ = 1) hopping matrix for
n = 1. Due to time-reversal symmetry there exists a

gauge in which all matrix elements of T̂
(1)
1 are real and the

hopping matrix can be expanded in orbital Pauli matrices
as

T̂
(1)
1 = t10 + t1zτ

z + t1xτ
x + it1yτ

y, (B1)

where (t10, t1x, t1y, t1z) are four real parameters. The
two-fold rotation C2y gives rise to constraints on these

parameters. Abbreviating T̂
(1)
n=1 as T̂ for simplicity, the

constraints can be stated as

C2y → τzT̂ τz = T̂ †. (B2)

The appearance of T̂ † on the right hand side of the con-
straint (B2) is due to the fact that C2y exchanges the
sites connected by the bond. The constraint (B2) forces
t1x = 0, which would lead to three independent hopping
parameters. As noted in Ref. 18, however, with a re-
definition of the basis of the two Wannier states one of
these can be absorbed. It is natural to choose t1y and
this leads to Eq. (3) with (t10, t1z) ≡ (t1, t

′
1). Since we

have now fixed the basis of the Wannier states no fur-
ther symmetry-allowed hopping parameters (of further
neighbor bonds) can be absorbed by redefinition.

The two remaining first-nearest neighbor hopping ma-

trices T
(1)
2,3 follow directly from T

(1)
1 by performing three-

fold rotations:

T̂
(1)
2 = Uϕ2

T̂
(1)
1 U†ϕ2

, T̂
(1)
3 = Uϕ3

T̂
(1)
1 U†ϕ3

, (B3)

where ϕn = 2π(n − 1)/3 are the angles of the nearest
neighbor unit vectors (see Sec. II).

The same analysis can be applied to any of the other
inter-sublattice hoppings matrices, i.e., those matrices
corresponding to bonds connecting sites on different sub-
lattices. We take the third-nearest neighbor hopping (i.e.,
across a hexagon) as an example and expand

T̂
(3)
1 = t30 + t3zτ

z + t3xτ
x + it3yτ

y, (B4)

where (t30, t3x, t3y, t3z) are again four real parameters.

Now abbreviating T̂
(3)
n=1 as T̂ we find the constraint from

C2y as

C2y → τzT̂ τz = T̂ †. (B5)
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This is the same constraint as (B2) and we conclude that

t3x = 0. As a result, T̂
(3)
1 has three real parameters and

is given by T̂
(3)
1 = t3 +t′3τ

z+it′′3τ
y. The remaining third-

nearest neighbor hopping matrices are found by rotation
as in Eq. (B3).

Next, consider intra-sublattice hoppings associated
with bonds connecting sites on the same sublattice. The
simplest example is second-nearest neighbor (γ = 2) hop-
ping. (This is first-nearest neighbor hopping on the tri-
angular sublattice.) Again, we start from n = 1, i.e.,

T̂
(2)
1 , which corresponds to the second-nearest neighbor

bond along the direction of a1 in Fig. 4. As before we
expand

T̂
(2)
1 = t20 + t2zτ

z + t2xτ
x + it2yτ

y, (B6)

with real coefficients. To determine the symmetry con-
straints on the coefficients we must account for the two
sublattices A and B. We abbreviate T̂

(2)
1 on the A (B)

sublattice as T̂A (T̂B) and find that the constraints from
the twofold rotation C2y is given by

C2y → τzT̂Aτ
z = T̂B . (B7)

This equation does not give rise to constraints on the
hopping parameters on one sublattice, but instead re-
lates the hopping parameters on the two sublattices. In
particular, (t20, t2z) are identical on the two sublattices,
whereas (t2x, t2y) have opposite sign.

As a second example of intra-sublattice hopping, con-
sider fifth-nearest neighbor hopping. Fifth-nearest neigh-
bor hopping, which is second-nearest neighbor on the
triangular sublattices, has played an important role in
previous work5,21. In particular, it was identified as be-
ing responsible for the splitting of bands along Γ–M in
models with an additional U(1) symmetry. Consider the
bond defined by the lattice vector a3 − a2; we define the

corresponding hopping matrix T̂
(5)
1 and expand it as be-

fore as

T̂
(5)
1 = t50 + t5zτ

z + t5xτ
x + it5yτ

y, (B8)

For simplicity, we once more abbreviate T̂
(5)
1 on the A (B)

sublattice as T̂A (T̂B). The constraints from the twofold
rotation C2y now reads as

C2y → τzT̂Aτ
z = T̂ †B . (B9)

Comparison with Eq. (B7) shows that (B9) leads to a dif-
ferent relation between t5y on the two sublattices. Specif-
ically, one finds that (t50, t5z, t5y) are identical on the two
sublattices, whereas only t5x has opposite sign. It is pre-
cisely this property of t5y which is responsible for the
splitting of bands along Γ–M .

Appendix C: Decomposition into irreducible pairing
channels

The pair creation operator Π†iασ,jβσ′ is defined as

Π†iασ,jβσ′ = c†iασc
†
jβσ′ , (C1)

such that a two-particle state |iασ; jβσ′〉 is given by

|iασ; jβσ′〉 = Π†iασ,jβσ′ |0〉. Note that this definition im-
plies Πiασ,jβσ′ = cjβσ′ciασ. A general pairing opera-
tor can be decomposed into irreducible pairing operators
with symmetry quantum numbers (Γ, S,M) as

Π†iασ,jβσ′ =
∑

Γ

∑
S,M

XΓ
αβC

SM
σσ′ Π†ij,Γ,SM , (C2)

where CSMσσ′ = CSM1
2σ

1
2σ

′ = 〈 12
1
2 ;SM | 12σ; 1

2σ
′〉 are Clebsch-

Gordan coefficients. Here S = 0 corresponds to spin-
singlet pairing and S = 1 corresponds to spin-triplet
pairing, in which case M takes values M = −1, 0, 1.

Similar to singlet and triplet pairing operators, the op-

erators Π†ij,Γ (suppressing spin for simplicity) are sym-
metrized in orbital space and are thus labeled by point
group representations Γ ∈ {A1, A2, E}. Note that E is a
two-dimensional d-wave channel. The irreducible pairing

operators Π†ij,Γ are given by

Π†ij,A1
=
∑
αβ

δαβ√
2
c†iαc

†
jβ , Π†ij,A2

=
∑
αβ

εαβ√
2
c†iαc

†
jβ , (C3)

(Π†ij,E1
,Π†ij,E2

) =
1√
2

∑
αβ

(τzαβ , τ
x
αβ)c†iαc

†
jβ . (C4)

The coefficients XΓ
αβ in Eq. (C2) are the analogs of

Clebsch-Gordon coefficients for the orbital sector; they
are given by

XA1

αβ =
1√
2
δαβ , XA2

αβ =
1√
2
εαβ , (C5)

(XE1

αβ , X
E2

αβ ) =
1√
2

(τzαβ , τ
x
αβ). (C6)

Fermi statistics imposes constraints on the decompo-
sition of Eq. (C2), in particular on the set of quantum
numbers (Γ, S,M). Spin-singlet and spin-triplet states
are anti-symmetric and symmetric with respect to parti-
cle exchange, respectively; similarly, states with A2 sym-
metry are anti-symmetric and states with A1 or E sym-
metry are symmetric. As a result, when i = j spin-singlet
states can only have A1 or E symmetry, whereas spin-
triplet states must have A2 symmetry. In general, one
has the relation

Π†ij,Γ,SM = (−1)pΓ+pS+1Π†ji,Γ,SM , (C7)

where pS is the parity of the spin state (i.e., p0 = 1 and
p1 = 0) and pΓ is the parity of the orbital state (i.e.,
pA2

= 1 and zero otherwise).
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Substituting Eq. (C2) into HI of Eq. (6) we arrive at
the form

HI =
∑
ij

∑
SM

∑
Γ

UΓ
ijΠ
†
ij,Γ,SMΠij,Γ′,SM , (C8)

where matrix elements UΓ
ij are defined as

UΓ
ij = V Γ

ij + JΓ
1,ij + JΓ

2,ij + JΓ
3,ij . (C9)

The matrix elements V Γ
ij are given by Eq. (11); the ex-

pressions for the remaining matrix elements are

JΓ
1,ij = (−1)pΓ+pS+1

∑
αβ

XΓ
αβ(J1)αβij X

Γ
αβ , (C10)

JΓ
2,ij = (−1)pΓ+pS+1

∑
αβ

XΓ
αβ(J2)αβij X

Γ
βα, (C11)

JΓ
3,ij = (−1)pΓ+pS+1

∑
αβ

XΓ
αα(J3)αβij X

Γ
ββ . (C12)

At this point, it is important to recall that the sum over
Γ in Eq. (C8) [and, obviously, in Eq. (12)] includes an
implicit sum over the components of multidimensional
representations; in the present case only E is multidi-
mensional. The irreducible coupling constants UΓ

ij given
by Eq. (C9) are a property of the pairing channel and
therefore of the representation. As a result, they must
be the same for all components of a representation and
are appropriately labeled by Γ. Importantly, however,
each of the interaction parameters on the right hand side
of (C9) need not be the same for all components of a
representation, only their sum. In particular, the expres-
sions of Eqs. (C10)–(C12) should be evaluated for each
component of a representation Γ. This fact is obscured
by adopting a more compact notation, but the reader is
cautioned to keep this in mind.

The requirement that UΓ
ij defines the coupling constant

of a representation Γ gives rise to a constraint on the in-
teraction parameters V and J1,2,3, since their sum must
be proportional to the identity within each representa-
tion. The consequences of such constraint are exemplified
by the onsite Hamiltonian of Eq. (7), which is specified
in terms of only two interaction energy scales.

Appendix D: Further decomposition of Eq. (20)

The decomposition of UΓ
νν′(k′ − k) follows the stan-

dard scheme for identifying the irreducible pairing chan-
nels in a system with symmetry group G. As explained in
Sec. III, the vertex function UΓ

νν′(k) is the Fourier trans-
form of the interactions between pairs, which in practice
will be short-ranged and thus limited to the first few
nearest neighbors. Using the notation of Appendix B,
the interaction parameters can be denoted UΓ

γ , where
γ = 1, 2, 3 corresponds to first, second, and third nearest
neighbors; UΓ

0 defines the onsite interactions. As an ex-
ample, the term in UΓ

νν′(k) corresponding to first-nearest

neighbor interactions takes the form

UΓ
AB,1(k) = UΓ∗

BA,1(k) = UΓ
1

∑
n

exp(ik · dn), (D1)

where dn=1,2,3 denote the nearest neighbor vectors in
the direction ên, see Fig. 4. Similarly, the second-nearest
neighbor interactions are given by

UΓ
AA,2(k) = UΓ

BB,2(k) = UΓ
2

∑
n

cos k · an, (D2)

where an=1,2,3 are the three primitive lattice vectors
shown in Fig. 4.

For each γ, the next step is to decompose UΓ
νν′(k) into

lattice harmonics fΓ′
(k) as

UΓ
γ (k′ − k) = UΓ

γ

∑
Γ′

fΓ′∗(k′)fΓ′
(k), (D3)

where we have suppressed the sublattice νν′ for simplic-
ity. The sum over Γ′ should be understood as a sum
over all distinct symmetry quantum numbers, which in
particular includes a sum over the components of multi-
dimensional representations. To showcase (D3), consider
the second nearest neighbor interactions given by (D2).
In this case UΓ

2 (k′ − k) is decomposed into a sum over
six lattice harmonics given by

fA1,+(k) =
∑
n

cos k · an, (D4)

fE1,+(k) = Re
∑
n

ei4π(n−1)/3 cos k · an, (D5)

fE2,+(k) = Im
∑
n

ei4π(n−1)/3 cos k · an, (D6)

as well as fA1,−(k) and fE,−(k) obtained from
(D4)–(D6) by replacing cos k · an with sin k · an. Note
that the functions f±(k) have the property f±(−k) =
±f±(k). The parity under k → −k is important, since
Fermi statistics implies

Π†kΓ,SM = (−1)pΓ+pS+1Π†−kΓ,SM . (D7)

The final step is to form irreducible momentum space
pairing operators by coupling the lattice harmonics to
the orbital degree of freedom. This amounts to taking
the product Γ′ ⊗ Γ, where the first refers to the lattice
and second to the orbital degree of freedom, and decom-
posing it into irreducible terms. This exactly analogous
to forming total angular pairing operators in spin-orbit
coupled systems, in which spin is locked to the lattice.
Here, instead, the orbital degree of freedom is (intrinsi-
cally) locked to the lattice.

Appendix E: Decomposition into irreducible
particle-hole channels

The particle-hole pair operators Λiασ,jβσ′ are defined
in (28) and their decomposition in terms of orbital and
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spin symmetrized pair operators is given by Eq. (29). The
spin-singlet/triplet and the coefficients Caσσ′ are given by
(suppressing orbital indices)

Λij,a =
∑
σσ′

c†iσs
a
σσ′cjσ′ , C̃aσσ′ =

1

2
saσ′σ. (E1)

Here sx,y,z are a set of Pauli matrices acting on the elec-
tron spin and s0 is the identity; recall that a = 0, x, y, z.
The symmetrized orbital operators are defined as (sup-
pressing spin indices)

Λij,A1 =
∑
αβ

δαβc
†
iαcjβ , Λij,A2 =

∑
αβ

c†iατ
y
αβcjβ , (E2)

(Λij,E1 ,Λij,E2) =
∑
αβ

(τzαβ , τ
x
αβ)c†iαcjβ , (E3)

and the orbital expansion coefficients Y Γ
αβ are given by

Y A1

αβ =
1

2
δαβ , Y A2

αβ =
1

2
τyβα, (E4)

(Y E1

αβ , Y
E2

αβ ) =
1

2
(τzαβ , τ

x
αβ). (E5)

With these definitions one has Λji,Γa = Λ†ij,Γa, which
implies that

Λji,ΓaΛij,Γa = Λ†ij,ΓaΛij,Γa = |Λij,Γa|2 . (E6)

Using the expansions coefficients and Eq. (29) the in-

teraction parameters ŨΓa
1,ij and ŨΓa

2,ij of Eq. (32) can be
determined. In contrast to the pairing case, here the
interaction parameters depend on the spin structure of
the symmetrized particle-hole operators. We must distin-
guish singlet interactions (a = 0) and singlet interactions

(a = x, y, z). For the case ŨΓa
1,ij we find

ŨΓ,0
1,ij = Ṽ Γ

1,ij + J̃Γ
11,ij + J̃Γ

21,ij + J̃Γ
31,ij , (E7)

ŨΓx,y,z
1,ij = J̃Γ

11,ij + J̃Γ
21,ij + J̃Γ

31,ij , (E8)

whereas for the parameters ŨΓa
2,ij we find

ŨΓ0
2,ij = Ṽ Γ

2,ij + J̃Γ
12,ij + J̃Γ

22,ij + J̃Γ
32,ij , (E9)

ŨΓx,y,z
2,ij = Ṽ Γ

2,ij . (E10)

The parameters on the right hand side are given by

J̃Γ
11,ij = −1

2

∑
αβ

Y Γ
αβ(J1)αβij Y

Γ
βα, (E11)

J̃Γ
12,ij =

∑
αβ

Y Γ
αα(J1)αβij Y

Γ
ββ , (E12)

for the J1 exchange interaction,

J̃Γ
21,ij = −1

2

∑
αβ

Y Γ
αα(J2)αβij Y

Γ
ββ , (E13)

J̃Γ
22,ij =

∑
αβ

Y Γ
αβ(J2)αβij Y

Γ
βα, (E14)

for the J2 exchange interaction, and

J̃Γ
31,ij = −1

2

∑
αβ

Y Γ
αβ(J3)αβij Y

Γ
βα, (E15)

J̃Γ
32,ij =

∑
αβ

Y Γ
αβ(J3)αβij Y

Γ
αβ , (E16)

for the J3 exchange interaction.

Appendix F: Orbital τ variables in the chiral basis

It is convenient to rearrange the orbital Pauli matrices
τi = (τxi , τ

y
i , τ

z
i ) in a way which exploits their transfor-

mation properties under rotations in orbital space (see
also Appendix A). To make this explicit we can relabel
the Pauli matrices as

τi → (τ1
i , τ

2
i , τ

3
i ) ≡ (τzi , τ

x
i , τ

y
i ). (F1)

In this way τ3 generates rotations about the z axis and
(τ1
i , τ

2
i ) transform as a nematic director under such ro-

tations. To make see this clearly, recall Eqs. (A2) and
(A3), which show how τi transforms under rotations of
the orbitals. In terms of the redefined τi variables of (F1)
the rotation of τi can be expressed on the simple form

Uϕτ
1
i U
†
ϕ = ê2ϕ · τi, Uϕτ

2U†ϕ = ê⊥2ϕ · τi, (F2)

where the use of the dot product now has a natural in-
terpretation. Since the orbitals pix,y are eigenstates of
τ1
i , the rotated orbitals p′ix,y of Eq. (A1) are eigenstates

of ê2ϕ · τi.
As mentioned, the redefinition of (F1) is designed so

that τ3 generates rotations about the z axis. Rotations
by π about the x axis are represented by τ1 and ro-
tations by π about the bisector of the x and y axes
are represented by τ2. This implies that under rota-
tions by π about the x axis the τ variables change as
τ1 → τ1, τ2,3 → −τ2,3. Therefore, if we rotate the or-
bitals by 180◦ about the x axis, which changes (px, py) to
(px,−py), the Pauli matrices τ1 and τ2 transform under
rotations by ϕ as: τ1 → ê−2ϕ · τ and τ2 → ê⊥−2ϕ · τ 79.
This is very useful since ϕ = −2ϕ for ϕ = 0, 2π/3, 4π/3,
which are precisely the angles corresponding to the three
nearest neighbor bond directions ên=1,2,3 of the honey-
comb lattice (see Fig. 4). As a result, the eigenstates of
ên · τ are precisely the p′x and −p′y orbitals along bond
ên.

With the relabeling of τi matrices and the basis trans-
formation of the orbitals it is then a simple matter to
construct the orbital projection operators of Eqs. (38)
and (39). Note first that

Px,yi =
1

2
(1± êij · τi), (F3)

are projection operators which project onto the orbitals
p′ix = (pixêx + piyêy) · êij and p′iy = (pixêx + piyêy) · ê⊥ij .
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The same is true for site j: Px,yj = 1
2 (1± êij · τj). From

these we define the four projection operators Pxxij , Pyyij ,

Pxyij , and Pyxij given by

Px,y;x,y
ij =

1

4
(1± êij · τi)(1± êij · τj). (F4)

The orbital flip operators of Eqs. (40) and (41) are

defined based on the same conventions. In particular, for
two nearest neighbor sites i and j the orbital raising and
lowering operators are defined as

τ±i = e⊥ij · τi ± iτ3
i , τ±j = e⊥ij · τj ± iτ3

j . (F5)

For the case eij = en=1 this reduces to τ±i = τ2
i ± iτ3

i =
τxi ± iτ

y
i .
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