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In this work we predict several new types of topological semimetals that exhibit a bulk quadrupole
moment. These semimetals are modeled with a 3D extension of the 2D quadrupole topological
insulator. One type of semimetal has bulk nodes and gapped, topological surfaces. A second type,
which we may call a higher order topological semimetal, has a gapped bulk, but harbors a Dirac
semimetal with an even number of nodes on one or more surfaces. The final type has a gapped bulk,
but harbors half of a Dirac semimetal on multiple surfaces. Each of these semimetals gives rise to
mid-gap hinge states and hinge charge, as well as surface polarization, which are all consequences
of a bulk quadrupole moment. We show how the bulk quadrupole moments of these systems can be
calculated from the momentum-locations of bulk or surface nodes in the energy spectrum. Finally,
we illustrate that in some cases it is useful to examine nodes in the Wannier bands, instead of the
energy bands, to extract the bulk quadrupole moment.

Introduction.—The recent theoretical prediction of a
new class of (higher-order) topological insulators with
quantized quadrupole moments[1] has opened a new di-
rection in the field of topological phases[2–9]. The sim-
plest quadrupole topological insulator is a 2D system
with an energy gap in the bulk and on the boundaries.
This is unusual for topological insulators as they conven-
tionally have characteristic gapless surface states[10, 11].
However, the boundaries in the quadrupole insulator are
not inert, and actually form lower-dimensional topologi-
cal phases themselves. One manifestation of the surface
topology is the existence of protected, mid-gap modes on
the corners of the system where two edges intersect[1].

In this article we turn our attention to the predic-
tion of new classes of topological semimetals (TSMs)
based on an extension of the quadrupole insulator to
a layered 3D system. The new classes of TSMs in-
clude a bulk quadrupolar TSM with gapless bulk nodes,
but without gapless surface modes, and several types of
higher-order TSMs (defined below) that are gapped in
the bulk, but harbor surface TSMs. Each of these 3D
TSMs has a quadrupole moment that can be determined
by the geometry of the bulk or surface point-node band-
crossings in the system; this is analogous to the electro-
magnetic response properties of 3D Weyl semimetals[12–
17] and 2D/3D Dirac semimetals[17] which can be de-
termined by the location of the Weyl/Dirac nodes in
energy/momentum space. While we are primarily dis-
cussing these systems in the context of electronic solid
state materials, we expect that they can also be straight-
forwardly engineered in meta-materials contexts. Topo-
logical semimetals have been designed and confirmed via
spectroscopy in meta-material systems, such as optical
lattices[18, 19], photonic crystals[20–24], and acoustic
systems[25, 26]. Given that 2D quadrupole insulator
has been realized experimentally in three independent
meta-material contexts[7–9], our proposed 3D quadrupo-
lar semimetals are not far separated from experimental
realization, and some of the predicted phenomena, espe-
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FIG. 1. (a) Tightbinding representation of the 2D topological
quadrupole insulator in Eq. 1. Each black dot represents a
single spinless electronic orbital. Each solid line represents a
tunneling term. Each dotted line corresponds to a hopping
with the same strength as a corresponding solid line, but with
a relative phase of −1 which is a gauge choice that inserts
a π-flux in each plaquette (including within the unit cell).
The ordered basis for the Γ-matrices is shown on the central
plaquette. (b) Stacking the 2D quadrupole insulator into a
3D system and coupling the layers to generate the TSM model
Eq. 3. Note that both of the vertical coupling terms χx and
χy are in every unit cell, we show them separate to avoid
clutter. The dotted lines for some of the χy coupling terms
represent a relative phase of −1 compared to the solid lines.

cially the spectroscopic features, should be observable.
Review of quadrupole model.—Let us begin by review-

ing the model of a 2D topological quadrupole insulator[1].
A tightbinding representation of the Hamiltonian is illus-
trated in Fig. 1a with four spinless orbitals per unit cell,
and includes inter- and intra-cell nearest neighbor hop-
ping. The Bloch Hamiltonian is

H(k) = (γx + λx cos kx)Γ4 + λx sin kxΓ3

+ (γy + λy cos ky)Γ2 + λy sin kyΓ1,
(1)

where Γ0 = τ3⊗I, Γk = −τ2⊗σk, Γ4 = τ1⊗I, I is the 2×2
identity matrix, and τa, σa are Pauli matrices with a basis
specified in Fig. 1a. γi and λi are intra- and inter-cell
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FIG. 2. (a) Phase diagram of the 2D quadrupole insulator
model Eq. 1 as a function of (γx/|λ|, γy/|λ|). The ordered
pair in each colored region represents the Z2×Z2 topological
class specified by the quantized Berry phases (px, py) of the
Wannier bands. Each of the four paths represents a different
type of parameterization of the TSM model in Eq. 3. (b) To
each of the four paths there is an associated set of bulk (1)
or surface (2), (3), (4) gapless nodes. Note that the horizon-
tal directions represent spatial dimensions, while the vertical
direction is kz momentum. The locations of hinge modes cor-
responding to each TSM configuration are highlighted on one
hinge of the sample. The color of the node corresponds to
the type of phase transition from which it is generated: black
nodes are bulk transitions while the blue and orange nodes
correspond to transitions in the Wannier bands when passing
from the (1/2, 1/2) class to the (1/2, 0) [orange] or (0, 1/2)
[blue] classes. Note that the actual path 3 parameterization
used in our numerics is a degenerate line similar to path 1.
We show a more open path here for illustration.

tunneling strengths. There is π-flux per plaquette, and
we have made a gauge choice for the relative phases of
the hopping terms as shown in Fig. 1a. For all values of
γi and λi the model has x and y mirror symmetries with
representation matrices m̂x = τ1⊗σ3, and m̂y = τ1⊗σ1.
Due to the π-flux, these mirror operators anticommute.
If |γx| = |γy|, and |λx| = |λy| then the model has C4

rotation symmetry with matrix representation

r̂4 =

(
0 I
−iσ2 0

)
, (2)

where we note that r̂4
4 = −1 due to the π-flux.

For our discussion of TSM phases it is important to un-
derstand the phase diagram of this model, shown in Fig.
2a, as a function of the γi and λi. To simplify the discus-
sion let us fix λx = λy = λ from now on. The model ex-
hibits a Z2×Z2 set of topological classes specified by the
polarizations (Berry-Zak phases) (px, py) of the hybrid
Wannier bands νy(kx) and νx(ky) respectively[27–31].
Throughout the phase diagram, the (px, py) Berry phases
are quantized by the pair of x, y mirror symmetries, and
take values of either 0 or 1/2 in units of 2π. The interior

(purple) square of the phase diagram represents the topo-
logical quadrupole phase having (px, py) = (1/2, 1/2)
which is the only region of the phase diagram with a
non-vanishing quadrupole moment qxy.

In addition to the mirror symmetries, the system
also has C4 symmetry along the diagonal and anti-
diagonal of the phase diagram. If C4 symmetry is en-
forced, then there is only one type of phase transition:
from the quadrupole (1/2, 1/2) phase to the fully trivial
phase (0, 0). The transition occurs when |γ| = |λ|, which
is accompanied by a gap-closing in the bulk energy spec-
trum. When C4 symmetry is relaxed, two other types
of transitions are available. When one passes from the
(1/2, 1/2) phase to the (0, 1/2) ((1/2, 0)) phase, there will
be a gap-closing in the edge energy spectrum parallel to
x̂ (ŷ), rather than the bulk energy band, which is accom-
panied by a gap-closing in the νy(kx) (νx(ky)) Wannier
bands at a value of νy = 1/2 (νx = 1/2)[1, 3]. In contrast,
transitions from the (0, 0) phase to the (1/2, 0) ((0, 1/2))
phase have a gap-closing in the hybrid-Wannier bands at
a value of νy = 0 (νx = 0), but there is not a generic gap-
closing transition in the bulk or edge energy spectrum.

Classification of topological quadrupolar semimetals—
Now let us stack the 2D quadrupole model and couple
the layers to generate a Bloch Hamiltonian (see Fig. 1b):

H(k) = (γx + χx(kz) + λ cos kx)Γ4 + λ sin kxΓ3

+ (γy + χy(kz) + λ cos ky)Γ2 + λ sin kyΓ1,
(3)

where the χj(kz) are periodic functions on the kz Bril-
louin zone (BZ) determined by the choice of inter-layer
tunneling terms. To understand why this model can gen-
erate a TSM, consider the quantities γi(kz) ≡ γi+χi(kz),
which represent maps from the kz BZ to closed paths
in the 2D phase diagram in Fig. 2a with base point
(γx/|λ|, γy/|λ|). In Fig. 2a we have illustrated four dif-
ferent types of paths, each of which has some portion of
the path within the topological quadrupole phase, and
each having a discrete set of kz at which the path is at
a transition point between different topological classes.
This is precisely what is needed for a TSM, and how we
define a TSM, i.e., there are transition points, as a func-
tion of momentum, between different topological classes.
Furthermore, for each value of kz the system has mirror
symmetries, and thus the Bloch Hamiltonian at a fixed
kz has a quantized quadrupole moment, if it is not at a
transition point. Hence, the bulk quadrupole moment of
each path can be straightforwardly calculated by sum-
ming up all of the values of kz that are mapped, via
the γi(kz), into the topological quadrupole region of the
phase diagram. We will see below how, for each path,
this calculation can be recast in terms of the momentum
space locations of the transition points, analogous to, say,
the calculation of the anomalous Hall coefficient in Weyl
semimetals which is proportional to the momentum sep-
aration of the Weyl nodes[12–17]. Let us move on to to
describe the phenomenology of each path in turn.
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FIG. 3. Surface polarization vs. kz for paths (a) 1 (b) 2
(c) 3 (d) 4 for a system size of 200 in the (real-space) x-
direction. Red and blue lines indicate polarization on oppo-
site edges. Inset in (a) shows polarization resolved vs. kz
and the spatial direction with open boundary. (e) Compari-
son of nodal separation, surface polarizations (system size 100
in the (real-space) x-direction), hinge charge per unit length,
and quadrupole moment for path 1 as the base point is varied
with γx = γy. Setting the electric charge e = 1, all quantities
have units of inverse length. Inset shows scaling of the surface
polarization at the upper end of the range of γx as system size
is increased. The results converge systematically to the ana-
lytic result. (f), (g), (h) show comparison of nodal separation
and quadrupole moment for paths 2, 3, 4 respectively as the
base points are varied with (f) γy = 1/4, (g) γx = −γy, (h)
γx = −γy.

In order to generate path 1 we need a C4 invariant
parameterization such as γi(kz) = −1 + 1/2 cos(kz), for
i = x, y, and λ = 1. This path passes through the C4

invariant phase transition point when γi(kz) = −1, i.e.,
when kz = ±π/2. The two bulk nodes are represented
by the black cones in Fig. 2b. The nodes represent a
transition, as a function of kz, between regions of the
kz BZ in a topological quadrupole phase, and regions
in the trivial phase. We can expand around one of the
nodal points, say k = (0, 0, π/2), to find the continuum
Hamiltonian Hnode = δkxΓ3 + δkyΓ1 + (1/2)δkz(Γ2 +
Γ4). This is a gapless Dirac Hamiltonian with a four-fold
degenerate Dirac point when all δki = 0. Adding terms
proportional to Γ0 or (Γ2 − Γ4) will open a gap, but
these terms are forbidden by a combination of mirror and

C4 symmetries. Hence, this TSM phase is protected by
both mirror and C4. Interestingly, preserving mirror but
not C4, e.g., adding im13Γ1Γ3, allows for a coexisting
quadrupole TSM and Weyl TSM with anomalous Hall
coefficient.

While path 1 has a similar bulk-node structure to con-
ventional TSMs, paths 2, 3, and 4 represent a completely
new type of TSM, though all paths generate gapless hinge
states and hence are higher-order TSMs. Paths 2, 3, and
4 are formed in regions of the phase diagram where only
the mirror symmetries are generically preserved. Let us
treat paths 2 and 3 first. We can parameterize path 2
via γx = 1 + 1/2 cos kz, γy = 1/4 + 1/2 sin kz, and path
3 via γx = 3/4 + 1/2 cos kz, γy = −3/4 + 1/2 cos kz. Nei-
ther path hits a transition point where the bulk band
gap closes, however there are two and four points, for
path 2 and 3 respectively, where the Wannier bands have
a gap closing when leaving the (1/2, 1/2) class (see Fig.
4a,b for path 2). Consequently, for path 2, when the
system has open boundaries there will be two values of
kz at which the surface energy spectrum has a gap clos-
ing for surfaces normal to ŷ. Alternatively we could have
oriented path 2 so it hit one of the orange phase bound-
aries in Fig. 2a, and subsequently we would find gap-
less nodes on surfaces normal to x̂. Path 3 is similar to
two copies of path 2, one copy with each orientation,
and it will have gapless points on surfaces normal to x̂
and ŷ since it intersects both types of Wannier transition
points as kz traverses the BZ. Hence, these systems are
gapped in the bulk, but have TSMs on their surfaces.
Indeed these systems have surface Dirac semimetals with
an even number of nodes (possibly zero) on each surface
normal to x̂ and/or ŷ. The gapless nodes are protected
by mirror symmetries and lie on mirror-invariant lines
in the surface BZ. As an example, we take path 2 and
extract the low-energy surface Hamiltonian on the sur-
face normal to x̂[32]. The resulting continuum Hamilto-
nian, when expanded around a surface Dirac node, reads
Hsurf-node(ky, kz) = vkzσ1 − λkyσ2, where v depends on
the particular γi and λ. If we project the mirror symme-
tries onto the surface we find the effective representation
m̂y,eff = σ1, which forbids any mass terms.

Finally, let us examine path 4. This path is topo-
logically distinct from paths 2 and 3 because it en-
closes a bulk critical point; hence paths 2 and 3 can-
not be smoothly deformed to path 4 without closing
the bulk gap. We can parameterize this path using
γx = −1 + 1/2 cos kz, γy = 1 + 1/2 sin kz. The TSM gen-
erated on this path is perhaps the most unusual because
each surface normal to x̂ or ŷ harbors half of a Dirac
semimetal. This occurs because the path intersects the
phase boundaries between the (1/2, 1/2) class and the
(1/2, 0) and (0, 1/2) classes just a single time each.
Hence, on each surface there will only be a single node in
the energy spectrum, protected by mirror symmetry, and
with a similar continuum Hamiltonian to Hsurf-node(k).
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FIG. 4. Wannier bands in x and y directions calculated for
path 2 (a),(b) and path 4 (d), (e) plotted vs. the momenta
in the transverse BZ. Note that we have used a repeated zone
scheme in the Wannier value direction for clarity. Path 2 has
Wannier nodes at νy = 1/2, but no nodes in νx. Path 4 has
nodes at νx = 0, 1/2 and at νy = 0, 1/2. Nodes at a Wannier
value of 1/2 have corresponding nodes in the surface energy
spectrum[3]. In (c), (f) we confirm that the difference in kz
momenta of the nodes at a Wannier value of 1/2 correctly
reproduce the bulk quadrupole moment for (c) path 2 and (f)
path 4 as the base points of these paths are varied identically
to Fig. 3f,h.

However, because the path intersects the phase bound-
aries between (1/2, 0) and (0, 0), and (0, 1/2) and (0,0),
there will be additional crossings in the Wannier bands
not expressed in the energy spectrum. The structure of
the Wannier band crossings is shown in Fig. 4d,e, and
interestingly this case shows spectral flow through the
Wannier band values.

Phenomenology for topological quadrupolar semimet-
als.—To calculate the quadrupole moment of topological
quadrupolar semimetals we consider the portion of the
paths that lie within the topological quadrupole phase.
Path 1 is similar to the usual Dirac and Weyl TSMs in
that there are point nodes in the bulk spectrum. Unlike
the Dirac/Weyl system, however, this TSM does not have
gapless Fermi-arc surface states. Instead, the surfaces
are generically gapped unless they intersect another sur-
face at a hinge. This is a consequence of the gapped, but
topological nature of the quadrupole insulator edge states
which have been stacked to form the surface states of the
TSM. From our discussion above, we expect this system
to have a bulk quadrupole moment qxy = e

2π bz where
2bz is the momentum space separation between the bulk
nodes. This momentum difference precisely accounts for
the portion of path 1 in the topological quadrupole re-
gion of the phase diagram. As a result, this system will
exhibit a surface polarization tangent to surfaces that are
normal to the x- or y-directions, and hinge charges/mid-
gap bound states on hinges where the polarized surfaces
intersect.

For the TSMs generated by paths 2, 3, 4, despite
the bulk being completely gapped, one expects the bulk

quadrupole moment to be qxy = e
2πBz, where 2Bz is

the momentum space separation between the two surface
Dirac nodes, on the same surface (path 2) or neighboring
surfaces (paths 3,4). In Fig. 2b we have illustrated the
hinge nodes for these configurations, and how they are
cutoff by the nodal positions.

We confirm all the above results in numerical calcu-
lations in Fig. 3. In Fig. 3a-d, we show the surface po-
larization resolved over the kz BZ, which is quantized to
1/2 in the region between the bulk nodes (path 1) or sur-
face nodes (path 2, 3, 4). In Fig. 3e, we shift path 1 by
tuning γx ∈ [−1.5,−0.5], while constraining γy = γx and
calculate the surface polarizations[3, 33], hinge charge,
and quadrupole moment qxy [1]. We similarly calculate
the quadrupole moment qxy for path 2, 3, 4 in Fig. 3f-
h. We find that they all agree with the nodal separation
formula above.

Wannier band calculation.—So far we have evaluated
the physical properties of these systems based on the lo-
cations of nodal points in the energy spectra to make
contact with the extensive previous literature. However,
from the argument above it is clear that one could tune
the surface properties of paths 2 and 3 such that all of the
surfaces are gapped, and yet there could still be a non-
vanishing bulk quadrupole moment with the same mag-
nitude [See Supplementary]. Hence, in non-ideal cases
where there have been modifications to the surface, and
even for an ideal scenario with path 4, it may not be not
obvious how to evaluate the bulk quadrupole moment
using the conventional technique based on the momen-
tum separation of energy nodes. In these cases it may be
more natural to calculate the Wannier bands and use the
Wannier nodal points to calculate the quadrupole mo-
ment. As a proof of concept, we performed this type
of calculation for paths 2 and 4 in Fig. 4, and the re-
sults match the calculations based on the nodes in the
energy spectra from Fig. 3. Specifically, we locate band
crossings in the Wannier bands that occur at a value of
ν = 1/2, as it is precisely these crossings that are associ-
ated to band-crossings in the surface energy spectra for
ideal surfaces. We shifted these paths by tuning the γi
exactly as in Fig. 3, and we find that the quadrupole mo-
ment, and the momentum differences between Wannier
nodal points match.
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