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The only unambiguous known criterion for single-parameter scaling Anderson localization relies
on the knowledge of the full conductance statistics. To date, theoretical studies have been restricted
to model systems with symmetric scatterers, hence lacking universality. We present an in-depth sta-
tistical study of conductance distributions P(g), in disordered ‘micrometer-long’ carbon nanotubes
using first principles simulations. In perfect agreement with the Dorokov-Mello-Pereyra-Kumar
scaling equation, the computed P(g) exhibits a non-trivial, non-Gaussian, crossover to Anderson
localization which could be directly compared with experiments.
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I. INTRODUCTION

Anderson localization (AL) is a fundamental mecha-
nism that drives a physical system to an insulating regime
due to disorder-induced wave interferences1. However,
despite five decades of theoretical studies of AL in elec-
tronic, photonics and phononic systems1–6, compelling
evidences of AL transition criterion in realistic materials
remains challenging2.

Our current understanding of wave transport through
disordered media is mainly founded on the hypothesis
of single-parameter scaling (SPS)8. According to the
SPS hypothesis and in absence of inelastic scattering,
the statistical properties of transport are governed by
the averaged conductance, 〈G〉 = G0〈g〉, as a single
scaling parameter (G0 = 2e2/h is the quantum of con-
ductance). Beyond the localization threshold, 〈g〉 . 1,
the Ohmic regime breaks down and 〈g〉 decreases expo-
nentially with the system size. As opposed to three-
dimensional conductors where SPS predicts a disorder-
induced metal-insulator transition, in two-dimensional
systems and quasi-one-dimensional (Q1D) wires there
is a crossover region between the metallic and insulat-
ing regimes with a smooth behavior of the conductance
mean, 〈g〉, and variance (var{g} = 〈g2〉 − 〈g〉2)9, which
makes difficult to identify the onset of the localization
regime. In contrast, statistical conductance distribu-
tions, P (g), were predicted to exhibit a non-trivial cross-
over between the diffusive and localized regimes10–12 with
a peculiar shape at the onset of the localized regime.
This corresponds to a conductance average 〈g〉 ∼ 1/2
with a marked discontinuity in the first derivative of the
distribution and a sharp cutoff beyond g = 113. These
predictions have been corroborated with numerical re-
sults on different model systems in both Q1D10,14 and

two-dimensional disordered systems15,16. Strong devia-
tions from both Gaussian and log-normal distributions
had also been observed in the metal-insulator transition
in three dimensions6,17.

However, there is still neither direct experimental ev-
idence of this crossover nor comparison with numerical
simulations based on quantum wires with realistic disor-
der, such as that introduced by foreign species and struc-
tural modifications. Although approaches combining
the accuracy of first-principles methods with the scaling
analysis of charge transport properties at the mesoscale
are allowing for improved predictions of complex sys-
tem’s behavior7, theoretical understanding of the ob-
served quantum interference phenomena is still far from
being complete.

Previous simulations on realistic models of B-
and P-doped silicon nanowires using first-principles
simulations18 showed a transition from ballistic to dif-
fusive regime where both sample-averaged conductance,
〈g〉, and sample-to-sample fluctuations19, were in good
agreement with the predictions of SPS: the statistical av-
erages where shown to only depend on the ratio s ≡ L/`
between the nanowire’s length, L, and the mean free
path, `, (which depends on the scattering properties of a
single dopant). Based on an exponential decrease of the
averaged conductance with the wire’s length, Anderson
localization was reported in irradiated nanotubes at room
temperature20 in agreement with first principles calcula-
tions of carbon nanotubes with vacancies21. However,
the identification of regions where conductance decreases
exponentially neither reveals the actual physical mecha-
nism behind this rapid drop, nor necessarily implies An-
derson localized states. Tunneling of electrons through
localized defect-induced states22–24 (or absorption chan-
nels in the case of light transport25) can also lead to an
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FIG. 1. a) Schematic representation of a disordered chan-
nel attached to two semi-infinite electrodes. Defected tube
sections (represented by HN Hamiltonian matrices) are as-
sembled in a random arrangement with clean spacer sections
(Hs). The two probe device is completed with the channel
attached to left (HL) and right (HR) electrodes. b) Ball-
stick representation of a nanotube with phenyl rings attached
to the sidewall. c) Effective model of the device where the
self-energies of the left (ΣL) and right (ΣR) electrodes are in
contact with a renormalized channel HC .

exponential drop but with statistical signatures very dif-
ferent from the SPS predictions based on the interference
between propagating scattered waves.

In this Letter, the predicted non-trivial crossover from
diffusion to Anderson localization is demonstrated with
a realistic defective quantum waveguide, such as chemi-
cally modified carbon nanotubes (CNTs), which are ex-
actly reproduced by the Dorokov-Mello-Pereyra-Kumar
(DMPK) equation26,27. A computational study of charge
transport in metallic single-walled CNTs with random
distribution of paired phenyl groups bonded to the tube
sidewalls using the Landauer-Büttiker (LB) formalism is
first presented. Specifically we consider modified metallic
armchair CNT(6,6) and CNT(10,10) tubes of varying de-
fect density. A crossover from quasi-ballistic to diffusive
and Anderson localized transport is analyzed using statis-
tical conductance distributions. The results are exactly
reproduced with highly non-trivial non-Gaussian func-
tions which unambiguously identify the precise dominat-
ing transport length scale that dictates the downscaling
behavior of the conductance.

II. RESULTS AND DISCUSSION

A. First-principles scheme

The nanowire is divided in a scattering region (de-
fective CNT), where charge carriers are backscattered
during their propagation, coupled to two semi-infinite
electrodes (pristine CNTs) with reflectionless contacts
as sketched in Fig. 1. The geometry optimizations
and electronic structure calculations were performed
with the density functional theory (DFT) based SIESTA

code28,29. A double-ζ polarized basis set within the lo-
cal density approximation approach for the exchange-
correlation functional was used. CNTs were modeled
within a supercell large enough to allow the nanotube ex-
tremes to converge to the unperturbed system, avoiding
interactions between neighboring cells. Thus, function-
alized and clean sections of CNTs can match and long
systems with perfect contact areas between the building
blocks can be built up (Fig.1a-b). Random arrangements
of modified and pristine sections mimic rotational and
translational disorder. A real-space renormalization pro-
cedure allows for finding an effective Hamiltonian repre-
sentation of the channel within the accuracy of the first-
principles calculations7,30 A set of first-principles calcu-
lations were first performed to obtain the Hamiltonians
(H) and overlap (S) matrices of CNT segments whose
wall was modified by external groups. The integration
over the Brillouin zone was performed using a Monkhorst
sampling of 1×1×4 k-points for chemically modified 14-
primitive armchair unit cell long tubes. The radial ex-
tension of the orbitals had a finite range with a kinetic
energy cutoff of 50 meV. The numerical integrals were
computed on a real-space grid with an equivalent cutoff
of 300 Ry. Atomic positions were relaxed with a force
tolerance of 0.02 eV/Å.

B. Conductance calculations

Charge transport properties of modified CNTs are ana-
lyzed within the LB formulation of the conductance30–34,
which is particularly appropriate to study charge mo-
tion along a Q1D device channels. At quasi-equilibrium
conditions, i.e. small bias voltages, the LB conductance
is given by g(EF ) =

∑
n Tn(EF ), where the sum runs

over all the propagating charge carrier channels. The
transmission coefficients Tn(EF ) give the probability of
a charge carrier at the Fermi level, EF , to be transmitted
from channel n of one electrode to the opposite electrode.
The conductance can also be written in terms of the re-
tarded (advanced) Green function G+(E) (G−(E)),

G±(E) = {E S−H− Σ±
L (E)− Σ±

R(E)}−1 (1)

where Σ±
L(R)(E) is the self-energy describing the coupling

of the channel to the left (right) electrode (Fig.1c). The
dimensionless conductance g of the system in the stan-
dard Green function formalism35 is then given by

g =

N∑
n=1

Tn(EF ) = trace
{

ΓLG+ΓRG−
}
E=EF

. (2)

Green functions associated with the H and S matrices
are used in a real-space normalization procedure to in-
clude recursively the contribution of the sections within
an O(N) scheme with respect to the tube length, and
with no loss of the first-principles accuracy.

In the absence of impurities, Tn(E) = 1, and g is quan-
tized and equal to the total integer number, N , of open
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FIG. 2. a DMPK averaged conductance 〈g〉 versus the nor-
malized CNT length s (full line) together with the DFT aver-
ages for CNTs (10,10) (circles) and (6,6) (squares) with dif-
ferent number of attached groups. Each symbol is shifted to
a value of s = L/` such that it lies on the DMPK curve. b
number of groups as a funciton of the normalized length s for
(10,10) and (6,6) CNTs (same symbols as in a). Lines are the
corresponding linear regressions for each data set

propagating modes at the energy EF . The orbitals re-
arrangement due to the covalent attachment of phenyl
groups can lead to a significant reduction of the transmis-
sion coefficients. The transmission spectrum for a broad
range of energies of CNTs with phenyl groups attached to
the sidewall has been discussed in detail7. We shall focus
on the statistical properties of the conductance as a func-
tion of the linear density of scatterers, ρ = Ng/L (Ng is
the number of attached groups). For each scatterer den-
sity, ρ, transport calculations based on the first-principles
derived model were performed over 2000 different random
distributions of groups on L = 1µm length CNTs.

C. DMPK equation and scaling theory

The expected results from SPS theory are here briefly
summarized. A quantitative description for transport
fluctuations in Q1D systems is given by the DMPK
equation26,27 and by the field-theoretic approach due
to Efetov and Larkin36 (shown to be equivalent to
DMPK37). For a general discussion about the DMPK
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FIG. 3. Conductance distributions in the DMPK model for
different values of the averaged conductance in a two propa-
gating channels disordered system.

equation the reader is referred to refs.3,5. In Figure 2(a),
〈g〉 versus s = L/` obtained from the numerical solu-
tion of the DMPK equation for N = 2 channels12,14 is
plotted. For wire’s lengths shorter than the localization
length, ξ ∼ (N + 1)` = 3` (i.e. s . 3), the conductance
drops as

〈g〉 ∼ N

1 + s
. (3)

At fixed L = 1 µm and within the LB scheme, averaged
conductances for a number of defects from Ng = 5 up
to 100 were computed. According to standard trans-
port theory, in absence of spatial correlations, `−1 =
ρ〈σ〉 = (Ng/L)〈σ〉 , where 〈σ〉 is the averaged scattering
cross section of a single scatterer which is a dimensionless
quantity in Q1D systems. This gives

s =
L

`
= 〈σ〉Ng. (4)

Assuming that 〈g〉 is the scaling parameter, the DMPK
results can be used to obtain 〈σ〉 from the LB formalism
results for 〈g〉. The expected linear behavior based on
equation (4) is demonstrated in Fig. 2(b). Our results
demonstrate that the scattering cross section of a single
scatterer in a CNT(6,6) (〈σ〉 ∼ 1/5) is 3 times stronger
than in a CNT(10,10) (〈σ〉 ∼ 1/15).

D. Conductance distributions

While the statistical averages show no trace of the
crossover region from diffusion to localization, the non-
trivial crossover can be clearly seen in the DMPK con-
ductance distributions as illustrated in Fig 3. P (g) were
calculated from a Monte Carlo sampling of the joint prob-
ability distribution of two transport eigenchannels given
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FIG. 4. Conductance distribution plots for CNTs with an increasing number (from 5 up to 100) of functional groups. Statistical
distributions were performed over 2000 random configurations. Lines correspond to the DMPK distributions.

by the DMPK model14. The conductance distributions
computed from first-principles derived model are plot-
ted in Fig. 4 together with the DMPK results obtained
for the same 〈g〉 values. There is a clear one-to-one
correspondence between the former calculations and the
DMPK predictions.

This demonstrate that transport in a quantum waveg-
uide with realistic disorder is controlled by a single
scaling parameter, i.e. the averaged conductance, and
that macroscopic transport properties can be obtained
through the scattering properties of a single defect.
CNTs with only two conducting channels were shown
to exhibit an unambiguous signature of the non-trivial
crossover from diffusion to Anderson localization regimes
as predicted from the DMPK scaling approach. Inter-
estingly, this signature differs from the one observed on
model-system wires with surface defects10.

III. CONCLUSIONS

Our results show that, in a more general case of
disorder features, a rigorous evaluation of fundamental
transport length scales (mean free path and localization
lengths) can be unequivocally determined, thus enabling
to determine the dominating transport regime for a given
material characteristics (defect density, material geome-
try,...). This should stimulate further experimental ex-
ploration of conductance statistics to access the actual
transport length scales through the Anderson localiza-
tion transition analysis.
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