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We demonstrate a general pole-zero method for the design of the scattering resonances of multi-
layered nanospheres and apply it to the relevant cases of strongly dispersive light scattering from
metal-dielectric-metal and all-dielectric nanostructures. The pole-zero method is based on the full-
wave iterative solution of the Mie scattering theory of multi-layered spheres, which is valid beyond
the conventional quasi-static limit. By investigating scattering resonances in the complex frequency
plane we show how to engineer anomalous Fano-like dipolar lineshapes from complex pole-zero in-
teractions controlled by the geometrical parameters of the structures. The pole-zero method is then
applied to the design of the back-scattering and forward scattering efficiencies beyond the dipolar
approximation. The engineering of novel scattering and absorption resonances with customized line-
shapes in metal-dielectric nanostructures provides unique opportunities for active devices including
optical sensors, light emitters, and nonlinear elements.

PACS numbers: 42.25.Fx, 73.20.Mf, 41.20.Jb

I. INTRODUCTION

In 1961, Ugo Fano introduced a coupled resonance
lineshape, now known as Fano resonance, which is char-
acterized by its asymmetric profile and high Q value.1

This coupled resonance has been studied widely in classi-
cal electrodynamics, with examples in finite clusters and
photonic crystals,2,3 metamaterials,4,5 and plasmonic
nanoparticles.6,7 Recently, there has been a substantial
effort in developing ab-initio theories for the rigorous
understanding of Fano-like resonances in coupled elec-
tromagnetic nanostructures.8,9 Furthermore, nanostruc-
tures with Fano lineshapes became attractive for appli-
cations to chemical and biological sensing10,11 as well as
electro-optics.12,13 Fano lineshapes are not only observed
in the scattering of multi-particle coupled nanostructures
but also in single particles with an internal structure,
such as core-shell14 and, more generally, multi-layered
nanoparticles.15,16 In particular, the scattering spectra of
the Au-SiO2-Au nanospheres exhibit characteristic Fano
lineshapes, which are known as dipole-dipole Fano-like
resonances.17 These resonances have often been discussed
within a qualitative model that consists of three cou-
pled oscillators.17 However, it is difficult to precisely cor-
relate the geometric parameters of the particles (core
and shell radii) with the ones of the coupled oscilla-
tors. Furthermore, despite its intuitive appeal the three-
oscillator model does not allow one to fully explain dif-
ferential scattering spectra, such as the back-scattering
and the forward-scattering efficiency spectra, which are
contributed by the coherent interference of higher-order
electromagnetic multipoles. Therefore, it is of interest
to introduce a more general approach capable not only
of unveiling the nature of Fano-like resonances in multi-
layered nanostructures but also to precisely engineer the
scattering lineshapes by tuning the structural parameters
of the nanostructures.

In this work we leverage the full-vector iterative Mie
solution of arbitrary multi-layered spheres and perform
a rigorous pole-zero analysis of the dipolar Lorenz-Mie
coefficients in the complex frequency plane. This ap-
proach unveils the nature of Fano-like resonances as gen-
eral manifestations of pole-zero proximity interactions,
beyond the quasi-static limit. In addition, it enables the
predication of novel anomalous scattering lineshapes that
appear when an additional pole with a large imaginary
part overlaps a pole-zero pair. Our method is system-
atically applied to the Ag-SiO2-Ag three-layered sphere
system where we investigate how the modification of the
geometric parameters affects the location of the poles
and zeros in the complex frequency plane. By studying
this relationship, we demonstrate the ability to engineer
Fano-like resonances as well as to create novel anoma-
lous scattering lineshapes resulting from more complex
pole-zero interactions. Finally, we apply the pole-zero
method to study the back-scattering efficiency (Qbs) and
the forward-scattering efficiency (Qfd) of the Ag-SiO2-Ag
system and show that Qfd can be strongly enhanced while
Qbs is simultaneously minimized due to the interaction
with quadrupolar resonances. Finally, the flexibility of
the pole-zero approach for the engineering of anomalous
lineshapes is demonstrated by additionally applying it to
the cases of Au-SiO2-Au and fully dielectric Si-SiO2-Si
systems.

II. MIE THEORY OF MULTI-LAYERED
SPHERES

Figure 1 shows a schematic of the three-layered sphere
geometry used throughout the paper. The three geomet-
ric parameters r1, d2, d3 are the radius of the metal core
(Ag or Au), the thickness of the middle SiO2 layer, and
the thickness of the outer layer, respectively. On the
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other hand, in the fully dielectric implementation of the
multi-layered sphere system the inner and outer layers
will be replaced by Si. The electromagnetic scattering

d
2r

1

d
3

(a) (b)

FIG. 1. (a) 3D view of the Ag-SiO2-Ag three-layered sphere,
(b) 2D cross section view and geometric parameters of the
three-layered sphere

of light by core-shell spheres was studied by Bohren and
Huffman18 using the Mie scattering theory. Here the ap-
proach is extended to general m-layered spheres using
the recursive algorithm described in reference19 where
r1, r2, ...rm denote the radii of concentric spheres with r1
being the innermost sphere. Each layer has a refractive
index ni(ω) =

√
εi(ω)µi(ω) where εi(ω) and µi(ω) are

respectively the relative permittivity and relative per-
meability of the ith layer at the angular frequency ω.
Here i = 1, 2, ...m + 1, where i = 1 indicates the in-
nermost layer and i = m + 1 labels the host medium
which is assumed to be non-absorbing (air in our case).
Using the same definition of vector spherical harmonics
Mk

o1n,M
k
e1n,N

k
o1n,N

k
e1n provided in reference,18 we ex-

press the incident plane wave traveling along the z-axis
with electric field polarized along the x-axis as:
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where En = E0i
n 2n+1
n(n+1) and E0 is the incident plane

wave electric field amplitude. The scattered and internal
field expansions inside the i-layer are:
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The superscript i labels the parameters of the ith layer

(i = 1, 2 . . . ,m) and ηi =
√

µoµi

εoεi
is the impedance of the

ith layer while ηm+1 is the one of free space. The Lorenz-

Mie coefficients an, bn, cn, dn, c̃n, d̃n for the scattered and
the internal fields are determined by applying the electro-
magnetic boundary conditions that require continuity of
the tangential components of the E and H fields at each
interface (r = r1,r2,. . .,rm). After some algebraic manip-
ulations this process yields the following expressions for
the scattering coefficients:

an =
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(7)
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(8)

where R
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H and R
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E are calculated recursively using

the following expressions:
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In the equations above ki = ω
c0
ni(ω) is the wave num-

ber in the ith layer and the Riccati-Bessel functions
ψn, χn, ξn are related to the spherical Bessel functions
by ψn(z) = zjn(z), χn(z) = zyn(z), and ξn(z) = zh1n(z),
while as usual the primes indicate differentiation with
respect to the argument of the functions.

Due to the singularity of ξn at the origin, the initial

conditions for Eqs. (9)-(12) are
d(1)n

c
(1)
n

= 0,
d̃(1)n

c̃
(1)
n

= 0. Con-

sequently, we can calculate the coefficients an and bn re-
cursively starting from the innermost layer.

After obtaining an and bn, the total scattering effi-
ciency Qsca, the total extinction efficiency Qext, the to-
tal absorption efficiency Qabs, the back-scattering effi-
ciency Qbs, and the forward-scattering efficiency Qfd of
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the multi-layered sphere are computed according to the
equations18:
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The series expansions above are truncated to order N
according to the convergence criterion:

N = x+ 4.05x1/3 + 2, (18)

We considered the outer-most layer radius and the small-
est wavelength to obtain the size parameter x = 2π

λ rm for
higher accuracy. For a multi-layered sphere with the out-
most layer radius rm = 120nm, λ = 300nm we need to
consider N = 10, which results in a relative truncation
error20 smaller than 10−15.

III. SCATTERING EFFICIENCY SPECTRUM
OF THREE-LAYERED SPHERES

We now apply the method outlined in Section II to
study the scattering properties of the Ag-SiO2-Ag sphere
system embedded in free space (n4 = 1). The expres-
sion in Eq. (13) is an incoherent sum of |an|2 and |bn|2,
which are the squared moduli of the electric and mag-
netic multipoles of order 2n, respectively. Therefore, we
can perform a direct multipolar decomposition of Qsca in
order to isolate the respective contributions of the elec-
tric and magnetic dipole (n = 1), quadrupole (n = 2),
and octopole (n = 3). Since the middle dielectric layer
is thin and has a small refractive index (nSiO2

≈ 1.5)
we expect the magnetic multipoles to be weak and the
electric multipole contributions to dominate the overall
scattering lineshape.

We therefore focus our analysis only on the electric
multipole (an) contributions and subsequently validate
this assumption by direct comparison with the fully mul-
tipolar solution. Using Eq. (13) with realistic dispersion
data for SiO2

21 and Ag22, we plot in Figs. 2(a) and (b)
the scattering efficiencies computed considering the first
three electric multipoles separately and the total (N=10)
multipolar scattering efficiencies for a compact Ag sphere
and for the Ag-SiO2-Ag system with the same dimension,
respectively. We appreciate that the Ag-SiO2-Ag system
is designed to display two notable features that are not

present in the case of the compact sphere. First, there
appears a Fano-like dipole resonance at ω = 2∗1015 rad/s
and, second, we observe a small electric quadrupole peak
at ω = 3.19 ∗ 1015 rad/s.
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FIG. 2. The first three electric multipoles and the total elec-
tric scattering efficiencies of (a) the compact silver sphere with
radius r=100 nm and (b) the single three-layered sphere with
r1=60 nm and d2 = d3=20 nm. The electric field amplitude
|E| distributions are plotted at (c) the scattering peak near
the antiresonance position, (d) the antiresonance position, (e)
the small electric quadrupole peak position, (f) the large elec-
tric quadrupole peak position. These positions are indicated
by c-f in (b). The white streamlines are tangential to the
Poynting vector with arrows indicating the Poynting vector
directions

In order to better understand the behavior of these
resonances we show in Figs. 2(c)-(f) the computed elec-
tric field amplitude |E| along with the streamlines of the
Poynting vector (in white) corresponding to the resonant
frequencies of the Ag-SiO2-Ag system. The field distri-
butions are obtained using the series expansion formu-
las using Eqs. (1)-(6) once the Lorenz-Mie coefficients
are computed.18 The peak positions are labeled in panel
(b) according to the field distributions shown in the cor-
responding panels below. The field shown in panel (c)
corresponds to the resonant frequency labeled by c in
panel (b) and features the maximum of the scattering ef-
ficiency, which is due to a dipolar resonance with a nar-
row frequency width. The frequency and corresponding
wavelength scales are also shown in panels (a) and (b). In
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this case the electric field has a distinctive dipolar nature
and is strongly confined in the middle dielectric layer.
However, the Poynting vector streamlines are strongly
perturbed by the presence of the Ag-SiO2-Ag system,
which indicates strong scattering. In particular, the field
distribution shown in panel (d) corresponds to the ex-
citation of a dipolar antiresonance (position d in panel
(b)) where the scattering is completely suppressed. Such
an antiresonance behavior is a general phenomenon in
coupled-oscillator physics where a pronounced minimum
in the amplitude of one oscillator of a coupled system
at a particular frequency is accompanied by a large shift
in its oscillation phase. Antiresonances are caused by
destructive interference of different channels, for exam-
ple between an external driving force and the interaction
with another oscillator, and are the underlying physical
mechanism behind Fano-type lineshapes. At the antires-
onance frequency, the electric field is strongly confined in-
side the middle dielectric layer and shows a characteristic
dipole distribution. At this frequency, the light incident
directly upon the sphere is absorbed (no Poynting vec-
tor streamlines are present beyond the target), while the
adjacent streamlines pass the object undeflected, which
is the typical behavior of non-scattering structures.18 In
panel (e) we show the field distribution corresponding to
the electric quadrupole peak labeled by e in panel (b). A
characteristic quadrupolar field pattern can now be ob-
served strongly concentrated on the surface of the inner
metallic core. Finally, in panel (f) we show the field dis-
tribution corresponding to the electric quadrupole peak
labeled by f in panel (b). The quadrupolar field pattern is
visible largely confined on both the Ag core and the outer
Ag shell surfaces, where it shows the strongest confine-
ment. Therefore, we can see that the excitation of electric
quadrupoles at the inner and outer Ag layer surfaces is
responsible for the electric quadrupole double-peak struc-
ture observed in the scattering spectra in Fig. 2(b). In
the following section, we will show how these distinctive
resonances can be understood and controlled through the
pole-zero analysis of the electric dipole Lorenz-Mie scat-
tering coefficients in the complex frequency plane.

IV. POLE-ZERO ANALYSIS

The quasi-static method has been often used to analyze
the resonant behavior of core-shell nanospheres.9,15,23,24

However, this method is only valid for spheres which are
much smaller than the wavelength of light. In this sec-
tion, we introduce the more general pole-zero analysis of
the Lorenz-Mie coefficients of MDM spheres in the com-
plex frequency plane. Since all the coefficients can be
derived from full-wave vector Mie theory, the developed
approach has no restrictions on wavelength or size param-
eter. Using this method, we investigate the connection
between the geometric parameters of the multi-layered
sphere system and the spectral positions of the complex
zeros and poles of the Lorenz-Mie scattering coefficients.

Through a systematic study of the character (i.e., real
and imaginary parts) of the complex poles and zeros for
different geometrical parameters and materials choices we
can engineer Fano-like resonances over a desired spectral
range. Furthermore, by properly tuning the geometrical
parameters we demonstrate a novel scattering lineshape
that originates from pole-zero-pole interaction. Finally,
we show how the proposed method can be used to en-
gineer the resonant behavior of the differential forward
and backward scattering efficiencies.

A. Introduction to the pole-zero method

Pole-zero diagrams are widely used to help understand
the the transfer function properties in control systems,25

and have also been used to explain dipolar Fano-like res-
onances in finite nanoparticle clusters in the quasi-static
regime.9 In our full-vector analysis, we regard the Lorenz-
Mie coefficient an in Eq. (7) as the rational response
function of the oscillation modes associated to each mul-
tipolar order. When inserted in Eq. (13) they provide the
scattering response function of the multi-layered sphere
under plane wave excitation. Therefore we perform a sys-
tematic pole-zero analysis of the multipolar Lorenz-Mie
coefficients in order to understand the resonant and an-
tiresonant (i.e., pole-zero proximity) behavior of MDM
spheres in the complex frequency plane.

We will first focus on the pole-zero analysis of the a1
Lorenz-Mie scattering coefficient. Specifically, we con-
sider the complex frequency ω̃ = ω′ + iω′′ where the real
part ω′ approximately corresponds to the real excitation
frequency of a resonant mode by an incident electromag-
netic wave and the imaginary part ω′′ corresponds to the
decay rate of the excited resonance. A large imaginary
part represents a lossy scattering resonance with a broad
spectrum, while resonances (i.e. poles) with small imagi-
nary parts describe high-quality resonances. Likewise, all
wave numbers appearing in Eq. (7) will now be extended
to the complex plane. In the case of a single sphere the
complex frequencies introduced above are known as its
natural oscillation frequencies, or virtual frequencies due
to their complex nature.18,26 We obtain all the complex
zeros and poles of a1 from Eq. (7) by sweeping the com-
plex frequency plane in order to find the local minima of
the expressions appearing in the numerator and denomi-
nator, respectively. We will show in the next section that
the knowledge of the complex zeros and of the complex
poles of the system enables, for any choice of structural
parameters, the control of the spectral lineshapes of the
resulting optical efficiencies.

B. Pole-zero analysis of Qsca

We now show how varying the geometrical parameters
of the Ag-SiO2-Ag nanosphere affects the poles and zeros
of the a1 Lorenz-Mie coefficient and how the pole-zero
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diagrams in the complex frequency plane are very useful
tools for the engineering of the scattering lineshapes of
multi-layered nanoparticles.
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FIG. 3. (a) The electric dipole scattering efficiencies with
respect to different r1. (b) The imaginary parts of a1 zero
and a1 poles as functions of r1. (c) Pole-zero diagram of a1

for various r1. Colors correspond to the curves in (a). The
Inset shows the Fano lineshape fitting curve (black solid line)
and the electric dipolar scattering efficiency (magenta dashed
line) when r1=60 nm in (a). Figs. 3(a) and (c) share the
same frequency axis. (d) The real parts of a1 zero and poles
as functions of r1.

Fig. 3(a) shows the electric dipole scattering efficien-
cies (Qa1

sca) for several values of r1 and d2 = d3 = 20 nm.
When r1 becomes larger than 60 nm, a Fano-like asym-
metric lineshape appears in the spectrum. The origin of
this Fano-like resonance can be understood by looking at
the pole-zero digram that we computed and showed in
Fig. 3(c) for different values of r1. For each r1 there
corresponds one zero (circles) and two poles (crosses)
in the complex frequency plane. The zero always has
a small imaginary part compared to the real part, lead-
ing to a dip in the scattering spectrum. As r1 increases,
the zero shifts to smaller frequencies (red-shift) and one
of the poles moves towards the zero of a1. When the
pole starts to overlap with the zero, a distinctively asym-
metric Fano-like lineshape appears in spectrum of the
scattering efficiency of the system. On the other hand,
the second pole retains a large imaginary part and does
not interact with the other pole or zero. Its large imagi-
nary part is characteristic of a lossy scattering resonance,
which corresponds to the broad scattering lineshape that
is visible at larger frequencies in the spectrum of Fig.
3(a). In order to better characterize the observed reso-
nances in the complex frequency plane we performed a
systematic analysis of the positions of the imaginary and
real parts of the complex poles and zeros with respect
to r1, as illustrated in Figs. 3(b) and (d), respectively.

In particular, Fig. 3(b) clearly shows that when r1 ap-
proaches the value of 60 nm, the imaginary part of one of
the two poles (red line with crosses) comes in close prox-
imity with the one of the zero (black line with circles).
On the other hand, we see in Fig. 3(d) that under the
same conditions also the real parts of the same zero and
pole are brought to almost coincidence, thus giving rise
to a strongly asymmetric and sharp scattering resonance.
Moreover, the resonant lineshapes of Qa1

sca that originate
from the pole-zero overlap can be modeled using the clas-
sical Fano lineshape equation:27

Qa1
sca = A

(Fγ + ω − ω0)2

(ω − ω0)2 + γ2
(19)

where A is a scaling factor, F is the asymmetric param-
eter determined by the phase change across the tran-
sition, ω0 is the position of the resonance that in our
approach corresponds to the real part of pole-zero pair,
and γ is the width of the decay rate corresponding to the
imaginary part of the complex frequency in the pole-zero
pair. In the Inset of Figure 3(c) we show a represen-
taive spectrum of the electric dipolar scattering efficiency
Qa1

sca for the pole-zero overlap condition (magenta dashed
line) along with the Fano lineshape fitting curve (black
solid line) obtained with the parameters derived from
the complex pole-zero overlap condition. The two line-
shapes are overlapping around the resonant frequency,
which demonstrates the Fano-like nature of the pole-zero
dipolar interaction in the considered system.
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FIG. 4. (a) The electric dipole scattering efficiencies for differ-
ent d2. (b) The imaginary parts of zero and poles as functions
of d2. (c) The pole-zero diagram of a1 for various d2. The
colors correspond to curves in (a). Figs. 4(a) and (c) share
the same frequency axis. (d) The real parts of zero and poles
as functions of d2.

In order to achieve a complete characterization of the
Fano-like behavior we compute Qa1

sca as a function of d2
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for the fixed values r1 = 60 nm and d3 = 20 nm and show
our results in Fig. 4(a). Strongly dispersive Fano-like res-
onance lineshapes are clearly observed. These lineshapes
are understood looking at the corresponding complex fre-
quency pole-zero diagram shown in Fig. 4(c), where there
appear again two poles and one zero for each value of d2
in the interested Fano-like lineshape region. In this case,
when d2 is larger than 40 nm, the imaginary part of the
pole nearest to the zero increases and the pole moves
away from the zero. As the pole-zero separate with re-
spect to their imaginary parts by varying d2, as shown
in Fig. 4(b), the sharp Fano-like asymmetric lineshape
evolves into a broader one with reduced amplitude vari-
ation. In particular, Figs. 4(b) and (d) show that the
difference in both the real and the imaginary parts of
the pole (red line with crosses) and the zero (black line
with circles) increases when d2 becomes larger than 20
nm. Interestingly, the real parts begin to approach each
other again when d2 becomes larger than approximately
60 nm, though the separation of the imaginary parts re-
mains large preventing the formation of sharp Fano-like
resonances.

Next we compute Qa1
sca as a function of d3 when r1=60

nm and d2=20 nm are kept constant. The results of our
analysis are shown in Fig. 5(a). We notice that when
d3=20 nm the scattering spectrum features the Fano-like
asymmetric lineshape. However, as d3 is increased to 40
nm, a novel and strongly dispersive lineshape appears
in the spectrum. An enlarged view of this lineshape is
shown in the inset in the figure. The blue dots in the in-
set correspond to the total (multipolar) Qsca which nearly
perfectly overlaps with Qa1

sca in the interested frequency
range. This shows that controlling the scattering effi-
ciency at the dipolar level (Qa1

sca) enables the engineering
of even more complex lineshapes in Qsca. By further in-
creasing d3, the resonant dip will be drastically reduced,
as it is the case in the spectrum obtain for d3=60 nm.

In order to unveil the nature of this novel asymmetric
lineshape we analyze the pole-zero diagram in the Fig.
5(c). We notice that when d3 = 40 nm a pole-zero-pole
interaction occurs where the red pole-zero pair overlaps
in the real frequency axis with a second (red) pole with a
large imaginary frequency component. From the results
shown in Figs. 5(b) and (d) we can see that the pole
(red line with crosses) and the zero (black line with cir-
cles) strongly interact when d3 > 20 nm. Moreover, the
imaginary part of the other pole (blue line with crosses)
overlaps with the pole-zero pair when d3 ≈ 35 nm as seen
in Fig. 5(d), leading to the new three-channel interaction
(pole-zero-pole). In this case, a pole corresponding to a
lossy resonance will be excited at the same real frequency
of a pole-zero interaction, which creates a distinctively
asymmetric lineshape in both Qa1

sca and Qsca. If we fur-
ther increase d3 to d3 >50 nm only one pole remains
visible, in agreement with the familiar case of a compact
large metallic sphere. In the inset of Fig. 5(c) we plot
the electric field distribution |E| at the frequency cor-
responding to the minimum of Qsca, which is obtained
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FIG. 5. (a)The electric dipole scattering efficiencies with re-
spect to different d3, the inset shows a zoom-in view of Qsca

for d3= 40 nm at the superposition position of the novel asym-
metric lineshape. (b)The imaginary parts of the zero and the
poles as functions of d3. (c) The pole-zero diagram of scatter-
ing efficiencies shown in (a) on the complex plane, the colors
are identical to (a) for different d2, the inset shows the electric
field |E| at the antiresonance position for d3= 40 nm. Figs.
5(a) and (c) share the same frequency axis. (d) The real parts
of the zero and the poles as functions of d3.

for d3 = 40 nm. This field distribution shows a dipo-
lar character in close analogy with the results previously
shown in Figs. 2 (c) and (d). However, in this case the
involvement of the lossy pole prevents the antiresonance
condition of zero scattering, which is also consistent with
the more significant perturbation of the Poynting vec-
tor streamlines around the particle. We believe that the
strongly dispersive nature of this multi-channel resonance
in combination with the pole-zero engineering approach
provides novel opportunity for applications to active plas-
monic devices and scattering sensors.

C. Pole-zero analysis of Qbs and Qfd

In this section we will discuss the applicability of our
method to the control of differential scattering quan-
tities. When considering the engineering of Qsca it is
clear that the various multipole terms all contribute in-
dependently without interference. On the other hand,
in the case of the differential scattering efficiencies for
back-scattering Qbs and forward-scattering Qfd, defined
in Eqs. (16) and (17), the various multipole terms inter-
fere coherently, generally making the resulting lineshapes
more complicated. Nonetheless, Fano-like resonances
have been found in the spectra of plasmonic nanostruc-
tures for both Qbs and Qfd as a result of the interference
of different radiation modes.27–29 Though the presence of
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Fano resonances in these spectra can be understood us-
ing the well-established mode hybridization theory,30,31

the engineering of Fano lineshapes in more general multi-
layered systems poses significant challenges. Recently,
theoretical work that uses auxiliary eigenproblem formu-
lations with material-dependent spectral parameters has
been introduced and successfully utilized in relation to
the optical cloaking of core-shell (two-layers) spheres.32

This method enables a systematic study of the effect of

the cloaking material’s properties on back-scattering and
forward-scattering differential cross sections. However,
the development of an accurate and scalable methodol-
ogy that is suitable for the engineering of Qbs and Qfd in
complex systems with multiple geometrical and materi-
als degrees of freedom remains a very difficult task. Here
we show that a direct pole-zero approach can be utilized
to efficiently design desired forward- and back-scattering
properties over a wide range of geometrical and materials
parameters.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6. (a),(d),(g) are the total scattering efficiency Qsca, the back-scattering efficiency Qbs, and the forward-scattering
efficiency Qfd respectively as a function of r1 with d2=20nm, d3=20 nm. (b),(e),(h) are the same efficiencies as a function of
d2 with r1=60 nm and d3=20 nm. (c),(f),(i) are the same efficiencies as a function of d3 with r1=60 nm and d2=40 nm.

In Fig. 6 we display the multipolar Qsca, Qbs, and Qfd

computed with respect to the geometrical parameters r1,
d2, and d3. We focus first on panels (a)-(c) that show
Qsca in a large parameter range. Two main resonances

are visible in these plots and correspond to the dipolar
and the quadrupolar modes of the structures. The res-
onance that appears at longer wavelengths corresponds
to a dipole mode asymmetric Fano-like lineshape, as dis-
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cussed in previous sections. An expanded view of this
resonance is shown in the inset, where we can observe
clearly its antiresonance nature with a zero scattering re-
gion. A quadrupole resonance is observable for shorter
wavelengths. Panels (d)-(f) and (g)-(i) show Qbs and
Qfd, respectively. These quantities also feature an asym-
metric Fano lineshape at the dipole mode position as in
the case of Qsca. However, at the quadrupole resonance,
Qfd displays a peak while Qbs features a pronounced dip.
In order to better understand these results we consider
mutlipolar pole-zero analysis of Qbs and Qfd.
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FIG. 7. (a) The total back-scattering efficiencies (dashed line)
and the back-scattering efficiencies computed using a1 and a2

only (solid lines), (b) the total forward-scattering efficiencies
(dashed line) and the forward-scattering efficiencies computed
using a1 and a2 only (solid lines), (c) and (d) are the pole-
zero diagrams for back-scattering and forward-scattering ef-
ficiencies respectively calculated using only a1, a2 with color
indicating identical d2 as in (a) and (b).

In order to include only the necessary multipoles in our
pole-zero analysis we first compared the spectra of Qbs

and Qfd obtained using the full multipolar Mie theory

and the Q
(a1,a2)
bs and Q

(a1,a2)
fd obtained by retaining only

the first two multipolar orders. The results shown in
Fig. 7 by the solid lines are contributed only by the two
electric modes a1 and a2. The agreement with the full
multipolar theory is excellent around the spectral regions
where the Fano-like resonances appear, fully justifying a
two-multipole pole-zero approach. Therefore, expressing
Eqs. (16) and (17) in fractional form limited to only two
electric modes we can obtain the following equations for
the differential scattering efficiencies:

Q
(a1,a2)
fd =

1

(k0rm)
2 |3a1 + 5a2|2

=
1

(k0rm)
2

∣∣∣∣3an1ad2 + 5an2a
d
1

ad1a
d
2

∣∣∣∣2 (20)

Q
(a1,a2)
bs =

1

(k0rm)
2 | − 3a1 + 5a2|2

=
1

(k0rm)
2

∣∣∣∣−3an1a
d
2 + 5an2a

d
1

ad1a
d
2

∣∣∣∣2 (21)

where we denote by an1 , ad1, an2 , and ad2 the numerator of
a1, the denominator of a1, the numerator of a2, and the
denominator of a2, respectively. Since a scalar constant
does not affect the lineshapes, we set k0rm = 1 and study
the numerator and denominator of Eqs. (20) and (21) in
order to obtain their complex zeros and poles.

In Fig. 7(a) and (b) we plot respectively Qbs, Q
(a1,a2)
bs

and Qfd, Q
(a1,a2)
fd of the Ag-SiO2-Ag sphere when varying

d2 with r1 = 60 nm and d3 = 20 nm. The corresponding
pole-zero diagrams are presented in Fig. 7(c) and (d).
We can clearly observe that the Fano-like lineshape at
Re(ω) ≈ 2.2∗1015 corresponds to the proximity of a zero
and a pole. The pole-zero diagram also explains the dip
in Qbs and the peak in Qfd at the quadrupole resonance
near Re(ω) ≈ 3.2∗1015. For d2 = 20 nm, Qbs has a pole-
zero pair with the zero nearer to the real axis, resulting in
a dip in the efficiency. On the other hand, Qfd has a pole-
zero pair with the pole closer to the real axis, resulting
in a small peak instead. These features are more evident
for d2=40 nm where Qbs has a zero near the real axis and
far from the pole, resulting in a spectral dip that goes to
zero. For Qfd the pole is closer to the real axis and far
from the zero, leading to the onset of a large peak at the
quadrupole mode position.

1 2 3 4 5 6

(rad/s)/10
15 10

15

0

1

2

3

Q
a
b
s

d
2
=20nm

d
2
=40nm

1.9 0.9 0.6 0.5 0.4 0.3

( m)

1 2 3 4 5 6

(rad/s)/10
15 10

15

0

5

10

15

|E
|

d
2
=20nm

d
2
=40nm

1 2 3 4 5 6

(rad/s)/10
15 10

15

0

5

10

15

|E
|

d
2
=20nm

d
2
=40nm

1.9 0.9 0.6 0.5 0.4 0.3

( m)(a) (b)

FIG. 8. (a) The absorption cross sections and (b) the averaged
electric field amplitude of the middle dielectric layer for Ag-
SiO2-Ag spheres with the same r1, d2, and d3 in Fig. 7.

Using the same geometric parameters as in Fig. 7, we
also calculate the absorption efficiency Qabs and plot it
in Fig. 8(a). We observe a spectrally narrow resonant
lineshape in the absorption efficiency corresponding to
the antiresonance position of the scattering efficiency. A
better understanding of these peaks is obtained by plot-
ting the average electric field amplitude |E| within the
SiO2 layer as in Fig. 8(b). The peaks of Qabs correspond
to a large |E| concentration and enhancement (up to 15x)
within the middle layer of the structure, as shown in Figs.
2(c) and (e). Since the antiresonance position can be en-
gineered by tuning the sphere geometry, the absorption
efficiency position can likewise be engineered. This fea-
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ture makes the Ag-SiO2-Ag (or more generally the MDM
spherical systems) ideal candidates for realizing metama-
terials with tunable absorption. Moreover, the spectral
design Qbs and Qfd antiresonances with large absorption
enhancement could be utilized for the engineering of more
efficient detectors with nanoscale footprints. Finally, due
to the strong field concentration and enhancement within
the dielectric layer, this system could alternatively func-
tion as an efficient emitter with an appropriate active
material embedded in the dielectric layer.

In the next section we will demonstrate the flexibility
of the pole-zero analysis by applying it to the study of the
scattering resonances of the Au-SiO2-Au as well as the
fully dielectric Si-SiO2-Si three-layered sphere system.

D. MDM sphere and nhigh-nlow-nhigh whole
dielectric sphere pole-zero analyses

In the previous sections we analyzed the Ag-SiO2-Ag
system and showed that asymmetric Fano-like resonances
originate from the interaction of complex poles and ze-
ros of the Lorenz-Mie coefficient a1. The picture of the
Fano-like resonance effect is generally valid for a concen-
tric spheres geometry and does not depend on the specific
choice of the materials. In particular, our analysis of the
scattering resonances and the associated local field distri-
bution shows that the pole-zero pair corresponds to the
excitation of a plasmonic gap resonance where the electric
field is strongly localized inside the dielectric region of the
MDM system. In addition, we have shown that by tun-
ing d3 it is possible to engineer a novel asymmetric Fano-
like resonance by controlling the position of an additional
pole with large imaginary part. In order to demonstrate
the general nature of this picture we will now consider
the case of a Au-SiO2-Au three-layered sphere.

In Fig. 9(a) we show the Qa1
sca for different values of d3

with fixed r1 = 60 nm and d2 = 25 nm. We observe that
when d3=20 nm, a Fano-like resonance appears in agree-
ment with the pole-zero interaction visible in Fig. 9(c)
However, when d3=30 nm the perturbation induced by
the other complex pole starts to significantly affect the
Fano-like lineshape, similarly to the situation previously
discussed for the Ag-SiO2-Ag system. However, when d3
becomes too large then the presence of the middle di-
electric layer can be neglected resulting in only one lossy
pole (i.e. the pole with large imaginary part) as shown
in Fig. 9(c) for the case of d3= 60nm. We notice that
the pole-zero behavior as a function of the parameter
d3 in Figs. 9(b) and (d) is very similar to the one pre-
viously discussed for the Ag-SiO2-Ag system. It is clear
from this analysis that Fano-like lineshapes can be largely
controlled in general MDM concentric-sphere systems by
appropriately shifting the frequency position of complex
poles and zeros through the variation of the geometrical
parameters r1, d2, d3.

Finally, we apply the pole-zero analysis to the case of
an all- dielectric Si-SiO2-Si system, which is characterized
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FIG. 9. (a) The electric dipole scattering efficiencies for vari-
ous d3 of the Au-SiO2-Au sphere, where r1 = 60 nm, d2 = 25
nm. (b) The imaginary parts of a1 zero and a1 poles as func-
tions of d3. (c) The pole-zero diagram of a1 for different d3.
Colors correspond to curves in (a). Figs. 9(a) and (c) share
the same frequency axis. (d) The real parts of a1 zero and
poles as functions of d3.

by lower absorption losses compared to its MDM coun-
terpart. Moreover, high refractive index dielectric nanos-
tructures exhibit strong magnetic responses.33 Therefore,
we study both the the dipolar electric (Qa1

sca) and mag-
netic (Qb1

sca) scattering efficiencies for the Si-SiO2-Si sys-
tem, which are shown in Figs. 10(a) and (b).

The scattering lineshape features a sharp anomalous
transition region for the magnetic response of the sys-
tem, as shown in panel (b), due to the excitation of
Mie resonances.18,33 It is evident that even in this case
the pole-zero analysis is very instructive, as attested by
the results in Figs. 10(c) and (d) showing the pole-
zero diagram of the a1 and b1 Lorenz-Mie coefficients,
respectively. In particular, we observe that for fully-
dielectric multi-layered sphere systems there is no ad-
ditional pole with large imaginary part in both pole-zero
diagrams. This follows from the positive permittivity
of Si and SiO2 materials. However, for resonant dielec-
tric systems we expect a larger number of poles and ze-
ros compared to their MDM counterparts simply due to
their larger size parameter, as visible in Figs. 10 (c) and
(d). More importantly, also for fully-dielectric structures
we observe anomalous scattering lineshapes due to com-
plex pole-zero interactions. For instance, we see that
at ω = 2.5 ∗ 1015 rad/m the quantity Qb1

sca features an
asymmetric Fano-like lineshape, which is similar to what
previously reported in the electric-type Lorenz-Mie coef-
ficients of the MDM systems. The pole-zero diagram of
b1 is shown in Fig. 10(d), demonstrating a strong pole-
zero interaction (i.e., strong overlap) at this frequency.
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FIG. 10. (a) The electric dipole scattering efficiencies with re-
spect to different d3 of the Si-SiO2-Si sphere, where r1 = 100
nm, d2 = 100 nm. (a) The magnetic dipole scattering efficien-
cies with respect to different d3 for the same sphere. (c) The
pole-zero diagram of a1 for different d3. Colors correspond to
curves in (a). (d) The pole-zero diagram of b1 for different
d3. Colors correspond to curves in (b).

The inset in Fig. 10(b) compares the multipolar (total)
scattering efficiency (in red dashed-line) and the dipolar
scattering efficiency Qb1

sca (solid black line). We note that
while the total efficiency values are larger due to the con-
tributions of higher multipolar orders, a strongly disper-
sive and sharp lineshape also appears in total scattering
as predicted by the pole-zero interaction at the magnetic
dipole level. Therefore, the pole-zero method can be uti-
lized to unambiguously identify and design both electric
and magnetic anomalous scattering lineshapes.

V. CONCLUSIONS

In this work we used the full Mie theory solution
of multi-layered spheres to rigorously investigate the

anomalous scattering resonances of MDM and fully di-
electric systems. In particular, these structures were
found to exhibit controllable asymmetric Fano-like res-
onances that are explained as general pole-zero interac-
tions in the complex frequency plane of both electric and
magnetic dipole Lorenz-Mie coefficient. Moreover, for
MDM systems we demonstrate a novel scattering line-
shape that originates from a three-channel pole-zero-pole
interaction. We also show how to control anomalous scat-
tering resonances by shifting complex zeros and poles by
varying the geometrical parameters of the systems. We
further applied the pole-zero approach to the engineer-
ing of Qbs and Qfd where we considered the interference
between different multipolar orders. While the exam-
ples presented in this paper are limited to three-layered
spheres, our approach is general and can be naturally ex-
tended to multi-layered structures with any number of
layers and materials. The engineering of strongly dis-
persive scattering and absorption resonances with con-
trolled lineshapes in layered nanosphere structures pro-
vides unique opportunities for the demonstration of more
efficient active devices including optical sensors, light
emitters, and nonlinear optical elements with nanoscale
footprints.
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