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The structural relaxation of multilayer graphene is essential in describing the interesting elec-
tronic properties induced by intentional misalignment of successive layers, including the recently
reported superconductivity in twisted bilayer graphene. This is difficult to accomplish without an
accurate interatomic potential. Here, we present a new, registry-dependent Kolmogorov-Crespi type
interatomic potential to model interlayer interactions in multilayer graphene structures. It consists
of two parts representing attractive interaction due to dispersion, and repulsive interaction due to
anisotropic overlap of electronic orbitals. An important new feature is a dihedral-angle-dependent
term that is added to the repulsive part in order to describe correctly several distinct stacking states
that the original Kolmogorov-Crespi potential cannot distinguish. We refer to the new model as the
Dihedral-angle-corrected Registry-dependent Interlayer Potential (DRIP). Computations for several
test problems show that DRIP correctly reproduces the binding, sliding, and twisting energies and
forces obtained from ab initio total-energy calculations based on density functional theory. We use
the new potential to study the structural properties of a twisted graphene bilayer and the exfoliation
of graphene from graphite. Our potential is available through the OpenKIM interatomic potential
repository at https://openkim.org.

I. INTRODUCTION

Since the discovery of graphene1, two-dimensional
(2D) materials have been shown to possess remarkable
electronic, mechanical, thermal, and optical properties
with great potential for nanotechnology applications,
such as semiconductors, ultrasensitive sensors, and med-
ical devices2–5. Stacked 2D materials (or “heterostruc-
tures”) have even more unusual and novel properties that
their monolayer and 3D counterparts do not possess.6,7

For example, the electronic band gap of a graphene bi-
layer can be tuned by applying a variable external electric
field, which allows great flexibility in the design and opti-
mization of semiconductor devices such as p-n junctions
and transistors.8 A different manifestation of interesting
behavior not found in the bulk is the recently reported
superconductivity in intentionally misaligned (by a rela-
tive twist of ∼ 1.1◦) graphene bilayers9. As a prototype
of a stacked 2D material, multilayer graphene (“graphitic
structure” hereafter) exhibits strong sp2 covalent bonds
within layers and weak van der Waals (vdW) and orbital
repulsion interactions between layers. Although weak,
it is the interlayer interaction that defines the function
of nanodevices such as nanobearings, nanomotors and
nanoresonators.10

To simulate the mechanical behavior of graphitic struc-
tures it is necessary to model the interactions between

∗ Author to whom correspondence should be addressed: tad-
mor@umn.edu

the electrons and the ions, which produce the forces gov-
erning atomic motion and deformation. First-principles
approaches that involve solving the Schrödinger equation
are most accurate, but due to hardware and algorithmic
limitations, this approach is typically limited to studying
small molecular systems and crystalline materials char-
acterized by compact unit cells with an upper limit on
the number of atoms in the range of ∼ 103. Empirical
interatomic potentials are computationally far less costly
than first-principles methods and can therefore be used to
compute static and dynamic properties that are inacces-
sible to quantum calculations, such as dynamical tribo-
logical properties of large-scale graphene interfaces.11–13

There have been many efforts to produce an inter-
atomic potential that would adequately describe the
properties of graphitic structures, in particular the inter-
actions between layers. However, as we argue in detail
in this paper, the existing potentials fall short of captur-
ing key elements of the graphitic structures of interest.
Therefore, there is a pressing need to construct an accu-
rate interlayer potential that will elucidate many of the
important structural properties of these structures.

The paper is structured as follows. In Section II we
briefly review the nature of existing interatomic poten-
tials that might be applied to graphitic structures, we
explain their shortcomings, and elaborate on the need
for constructing a new potential. In Section III, the func-
tional form of the new model is presented, together with a
description of the fitting process that determines the val-
ues of all the parameters that appear in it. In Section IV,
the predictions of the new model for several canonical
properties of interest are compared with other potentials
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and results from ab initio total-energy calculations based
on density functional theory (DFT). Large-scale applica-
tions of the new model are discussed in Section V. The
paper is summarized in Section VI.

II. NEED FOR NEW GRAPHITIC POTENTIAL

A large number of interatomic potentials have been
developed to model the strong covalent bonds in carbon
systems. Among these are bond-order potentials, such as
the Tersoff14,15 and REBO16,17 potentials, which allow
for bond breaking and formation depending on the lo-
cal atomic environments. Such models have been shown
to be accurate for many problems and are widely used,
but are not suitable for layered 2D materials since they
do not include long-range weak interactions. To address
this, the AIREBO18 potential (based on REBO) added a
6-12 form of the Lennard-Jones (LJ) potential19 to model
vdW interactions. For graphitic structures, the LJ po-
tential works well in describing the overall binding char-
acteristics between graphene layers. For example, the LJ
parameterization used in AIREBO predicts an equilib-
rium layer spacing of 3.357 Å and a c-axis elastic mod-
ulus of 37.78 GPa for graphite, in good agreement with
first-principles and experimental results. The isotropic
nature of LJ, that is, the fact that it depends only on
distance between atoms and not orientation, makes it too
smooth to distinguish energy variations for different rela-
tive alignments of layers.20 Fig. 1b shows the energy vari-
ation obtained by sliding one layer relative to the other
along the armchair direction of a graphene bilayer. The
energy remains nearly constant with a maximal difference
of 0.41 meV/atom between the AA and AB stackings, a
small fraction (6.6%) of the DFT result (also shown in
the figure).

The reason that the LJ potential fails to capture the
energy variations due to interlayer sliding is that in ad-
dition to vdW, the interlayer interactions include short-
range Pauli repulsion between overlapping π orbitals of
adjacent layers. These repulsive interactions are not well
described by a simple pair potential like LJ.10,12,13 To
account for this registry effect (relative alignment of lay-
ers), Kolmogorov and Crespi (KC) developed a registry-
dependent interlayer potential for graphitic structures.10

In the KC potential, the dispersive (vdW) attraction be-
tween layers is described using the same theoretically-
motivated r−6 term as in LJ, and π orbital overlap is
modeled by a Morse21 type exponential multiplied by a
registry-dependent modifier that depends on the trans-
verse distance between atom pairs. The KC potential
has been modified and reparameterized to better fit the
energy variations between different stacking states pre-
dicted by DFT-D (DFT with dispersion corrections)22.
It has also been adapted for other 2D materials such as

h-BN12 and graphene/h-BN13,23 heterostructures.
The energy corrugation obtained by the KC potential

is in agreement with DFT as shown in Fig. 1b. However,
the forces obtained from the KC potential deviate signif-
icantly from the DFT results. This implies that equilib-
rium structures associated with energy minima will differ
as well. To illustrate this point, consider a graphene bi-
layer where one layer is rigidly rotated relative to the
other. Fig. 1c shows the force in the z-direction (perpen-
dicular to the layers) acting on the bottom atom on the
rotation axis (atom 1 in the bottom layer in Fig. 1a) as a
function of rotation angle. The force predicted by the KC
potential decreases and then increases from AA (±60◦)
to AB (0◦), whereas DFT predicts a monotonic increase
from AA to AB. In particular, the KC potential yields
the same z-force for the AA and AB stackings24, which
indicates that the KC potential cannot distinguish the
overlapping atoms at the rotation center in these states.
This is intrinsic to the KC potential. The force on the
central atom in the AA and AB states is identical, re-
gardless of the choice of KC parameters. The modified
KC potential22 has the same problem. The LJ poten-
tial does even worse (Fig. 1c) predicting a constant force
on the central atom that is independent of the rotation
angle.

In the present paper, a new registry-dependent in-
terlayer potential for graphitic structures is developed
that addresses the limitations of the KC potential de-
scribed above. A dihedral-angle-dependent term is in-
troduced into the registry modifier of the repulsive part
that makes it possible to distinguish forces in AA and
AB states. We refer to this potential as the Dihedral-
angle-corrected Registry-dependent Interlayer Potential
(DRIP). DRIP is validated by showing that it correctly
reproduces the DFT energy and forces for different slid-
ing and rotated states as well as structural and elas-
tic properties. It is then applied to study structural
relaxation in twisted graphene bilayers and exfoliation
of graphene from graphite; these representative example
are large-scale applications that cannot be studied using
DFT. The potential has been implemented as a DRIP
Model Driver25 and the parameterization in this paper
has been implemented as a Model26 at OpenKIM27,28.
(See details in Appendix A.)

III. DEFINITION OF NEW MODEL

The DRIP functional form is

V =
1

2

∑
i∈layer 1

∑
j∈layer 2

(φij + φji), (1)

where the pairwise interaction is based on the KC form
with dihedral modifications:
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FIG. 1: Energy and force variations when sliding and twisting a graphene bilayer. (a) Schematic representation of
high-symmetry graphene bilayer configurations: AA, AB, and saddle point (SP) stacking. (b) Energy variation of
sliding one layer relative to the other along the armchair direction. (c) Out-of-plane component of the force on the
atom at the rotation center (blue circle labeled 1 in the bottom layer in panel (a)). Rotation by 0◦ corresponds to
AB stacking, and rotation by ±60◦ corresponds to AA stacking. In both sliding and twisting, periodic boundary

conditions are applied and the layer spacing is fixed at 3.4 Å. Details are provided in Section IV.

φij = fc(xr)

[
e−λ(rij−z0)

[
C + f(ρij) + g(ρij , {α(m)

ij })
]
−A

(
z0
rij

)6
]
, m = 1, 2, 3. (2)

The cutoff function fc(x) is same as that used in the
ReaxFF potential29 and the interlayer potential for h-
BN12,13:

fc(x) = 20x7 − 70x6 + 84x5 − 35x4 + 1, (3)

for 0 ≤ x ≤ 1 and vanishes for x > 1, while it has zero
first and second derivatives at x = 1; in the expressions
where this function appears its argument is always non-
negative. The variable xr in Eq. (2) is the scaled pair
distance xr = rij/rcut. The use of fc(xr) ensures that

DRIP is smooth at the cutoff rcut (set to 12 Å), a feature
that the KC model does not possess.

The term with r−6ij dependence in Eq. (2) models at-

tractive vdW interactions (as in LJ), while the repulsive
interactions due to orbital overlap are modeled by the ex-
ponential term multiplied by a registry-dependent modi-
fier. The transverse distance function f(ρ) has the same
form as in KC:

f(ρ) = e−y
2 [
C0 + C2y

2 + C4y
4
]
, y =

ρ

δ
(4)

with its argument in Eq. (2) given by the expression

ρ2ij = r2ij − (ni · rij)2, (5)

in which rij is the vector connecting atoms i and j, rij
is the corresponding pair distance, and ni is the layer
normal at atom i. For example, as shown in Fig. 2, ni
can be defined as the normal to the plane determined by
the three nearest-neighbors of atom i: k1, k2 and k3:

ni =
rk1k2 × rk1k3
‖rk1k2 × rk1k3‖

. (6)

i

j

⇢ij

ni

nj⇢ji

k1 k2

k3

l1 l2
l3

⌦
k1 ijl2

rij

ejik1

eijl2

FIG. 2: Schematic representation of an atomic
geometry that defines the normal vectors ni and nj and

the dihedral angle Ωk1ijl2 .

Note that in general ρij 6= ρji because the normals ni
and nj depend on their local environments.

The dihedral angle function is given by

g(ρ, {α(m)
ij }) = Bfc(xρ)

3∑
m=1

e−ηα
(m)
ij , (7)

where α
(m)
ij is the product of the three cosines of the

dihedral angles formed by atom i (in layer 1), its mth
nearest-neighbor km, atom j (in layer 2), and its three
nearest-neighbors l1, l2 and l3:

α
(m)
ij = cos Ωkmijl1 cos Ωkmijl2 cos Ωkmijl3 (8)

cos Ωkijl = ejik · eijl (9)
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ejik =
rik × rji
‖rik × rji‖

, eijl =
rjl × rij
‖rjl × rij‖

. (10)

To understand the physical origin of the terms defined in
Eqs. (8)–(10), recall that a dihedral angle Ω is the angle
between two planes defined by four points that intersect
at a line defined by two of them as shown in Fig. 2.
Here, the intersection line is defined by atoms i and j.
The two planes are then defined by atoms (j, i, k1) and
(i, j, l2). The normals to these planes are ejik1 and eijl2 ,
respectively, defined in Eq. (10), with the corresponding
dihedral angle given by Eq. (9). The dihedral product

α
(m)
ij monotonically decreases when twisting a graphene

bilayer from AB to AA stacking, and consequently can
be utilized to construct a potential function that distin-
guishes AB and AA stacking and the intermediate stack-
ing states. The cutoff function fc(xρ) in Eq. (7) is the
same as that in Eq. (3), and xρ = ρ/ρcut, where we set

ρcut = 1.562 Å to include only a few of the computation-
ally expensive 4-body dihedral angle interactions. The
potential has a total of ten parameters, C0, C2, C4, C,
δ, λ, B, η, A, and z0, and two cutoffs rcut and ρcut.

To determine the values of all the parameters that ap-
pear in the DRIP potential, we constructed a training set
of energies and forces for graphene bilayers at different
separation, sliding, and twisting states. The training set
is generated from DFT calculations using the Vienna Ab
initio Simulation Package (VASP)30,31. The exchange-
correlation energy of the electrons is treated within the
generalized gradient approximated (GGA) functional of
Perdew, Burke and Ernzerhof (PBE)32.

Standard density functionals such as the local den-
sity approximation (LDA) and GGA accurately rep-
resent Pauli repulsion in interlayer interactions, but
fail to capture vdW forces that result from dynamical
correlations between fluctuating charge distributions.33

To address this limitation, various approximate correc-
tions have been proposed including the D2 method34,
the D3 method35, the Tkatchenko and Scheffler (TS)
method36, the TS method with iterative Hirshfeld par-
titioning (TSIHP) method37, the many-body dispersion
(MBD) method38, and the dDsC dispersion correction
method39. To select a correction for the DRIP train-
ing set, we used these dispersion correction methods to
compute a number of structural, energetic, and elas-
tic properties. The results are shown in Table I along
with experimental values and more accurate adiabatic-
connection fluctuation-dissipation theory based random-
phase-approximation (ACFDT-RPA) computations that
have been shown to provide a very accurate description of
vdW interactions40,41. The conclusion from these com-
parisons is that D2 and D3 provide inaccurate estimates
for the layer spacing of AB graphene and graphite (dAB

and dgraphite), and TS, TSIHP, and dDsC significantly
overestimate the graphite binding energy Egraphite. MBD
provides the best overall accuracy for all considered prop-
erties and is therefore the vdW correction used in this
work together with the PBE functional.

Each monolayer of the graphene bilayer is modeled as

(a) (b) (c)

FIG. 3: Primitive unit cell of a graphene bilayer: (a)
AA stacking, (b) AB stacking, and (c) unique sampling

region and sampling points.

a slab with in-plane lattice constant a = 2.46 Å, and the
supercell size in the direction perpendicular to the slab
is set to 30 Å to minimize the interaction between pe-
riodic images. The sampling grid in reciprocal space is
20 × 20 × 1, with an energy cutoff of 500 eV. A prim-
itive unit cell of a graphene bilayer consists of four ba-
sis atoms. To generate a graphene bilayer with differ-
ent translational registry, the two atoms in the bottom
layer are fixed at fractional positions b1 = (0, 0, 0) and
b2 = (1

3 ,
1
3 , 0) relative to the graphene lattice vectors

a1,a2, and c, where c is perpendicular to the plane de-
fined by a1 and a2 with length equal to the interlayer dis-
tance d. The other two atoms are located at r1 = (p, q, 1)
and r2 = (p+ 1

3 , q + 1
3 , 1). The two parameters p ∈ [0, 1]

and q ∈ [0, 1] determine the translational registry. For
example, the graphene bilayer is in AA stacking (Fig. 3a)
when p = 0 and q = 0, and in AB stacking (Fig. 3b) when
p = 1

3 and q = 1
3 . Due to the symmetry of the honey-

comb lattice, only 1/12 of the area defined by a1 and a2

needs to be sampled to fully explore all translational reg-
istry states (see the shaded region in Fig. 3c). The DRIP
training set comprised the seven states indicated in the
shaded region of Fig. 3c, specifically (p, q) = (0, 0), (0, 16 ),

(0, 26 ), (0, 36 ), ( 1
6 ,

1
6 ), ( 1

6 ,
2
6 ), ( 2

6 ,
2
6 ). These states include

all the high-symmetry states of interest, including AA,
AB, and the saddle point (SP) stacking (p = 0, q = 3

6 ).
The seven translational registry states are sampled at dif-
ferent layer spacings d, varying from 2.7 Å to 4.5 Å with
a step size of 0.1 Å. For layer spacings larger than 4.5 Å
but smaller than the cutoff rcut = 12 Å, only bilayer
graphene in AB stacking is included since the difference
between the stacking states in this range is negligible (see
discussion in Section IV). Thus 7× 19 + 75 = 208 trans-
lation configurations are included in the training set.

In addition to translation configurations, a set of
twisted bilayer configurations are included in the training
set. It is possible to construct a commensurate supercell
arbitrarily close to any twisting angle according to the
commensuration condition20,49,50

θ = cos−1
(

3n2 −m2

3n2 +m2

)
, (11)

where m and n are any two integers satisfying 0 < m < n.
As an example, considering the AB-stacked bilayer in
Fig. 4a, a commensurate bilayer can be obtained by ro-
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TABLE I: Properties obtained from various DFT vdW corrections compared with ACFDT-RPA and experimental
results. Also included are results from various empirical potentials. The properties include: equilibrium layer

spacings of bilayer graphene in AB stacking, dAB, bilayer graphene in AA stacking, dAA, and graphite, dgraphite;
optimal interlayer binding energies for bilayer graphene (binding energy at the equilibrium spacing in AB stacking),
EAB, and graphite, Egraphite; energy differences between AA-stacked and AB-stacked bilayers, ∆EAA-AB, and SP

and AB stackings, ∆ESP-AB, at a layer spacing of d = 3.4 Å; and the elastic modulus along the c-axis for graphite,
C33. All properties are computed using the in-plane lattice constant a = 2.46 Å.

dAB dAA dgraphite EAB Egraphite ∆EAA-AB ∆ESP-AB C33

(Å) (Å) (Å) (meV/atom) (meV/atom) (meV/atom) (meV/atom) (GPa)
PBE+D2 3.248 3.527 3.218 24.84 55.20 10.35 1.16 39.12
PBE+D3 3.527 3.713 3.483 21.40 47.09 3.80 0.42 35.04
PBE+TS 3.357 3.511 3.329 36.36 82.33 7.97 1.01 68.31

PBE+TSIHP 3.379 3.529 3.350 35.73 80.42 7.48 1.22 64.73
PBE+MBD 3.423 3.638 3.398 22.63 48.96 6.17 0.69 31.64
PBE+dDsC 3.447 3.639 3.410 28.04 63.00 5.53 0.74 38.43

ACFDT-RPA 3.39a 3.34b 48b 36b

Experiment 3.34c 43 ± 5d, 35 ± 10e, 52 ± 5f 7.7g 0.86g 36.5h, 38.7i

AIREBO 3.391 3.418 3.357 22.85 48.86 0.41 0.04 37.78
LCBOP 3.346 3.365 3.346 12.51 25.03 0.47 0.01 29.77

KC 3.374 3.602 3.337 21.60 47.44 6.07 0.44 34.45
DRIP 3.439 3.612 3.415 23.05 47.38 6.02 0.71 32.00

a Ref. 40.
b Ref. 41.
c Ref. 42.
d Ref. 43.
e Ref. 44.
f Ref. 45.
g Ref. 46. Values inferred from experimental data on shear mode frequencies.
h Ref. 47.
i Ref. 48.

tating one of the layers by θ = 27.8◦ (m = 3, n = 7) with
the supercell shown in Fig. 4b. Four types of twisted
bilayers with rotation angles 9.43◦, 21.79◦, 32.30◦ and
42.10◦ (corresponding to (m,n) = (1, 7), (1, 3), (1, 2) and
(2, 3)) are included in the training set. The twisted con-
figurations were evaluated at layer spacings from 3.0 Å
to 4.0 Å with a step size of 0.1 Å. Thus 4 × 11 = 44
twisted configurations are included in the training set.
This does not include rotations for θ = 0◦ and θ = ±60◦

corresponding to the AB and AA stacking states, respec-
tively, which are already included in the training set.

The parameters of the potential are optimized by min-
imizing a loss function that quantifies the difference be-
tween the interatomic potential predictions and the train-
ing set. The training set includes M configurations with
concatenated coordinates rm for m ∈ [1,M ], such that
rm ∈ R3Nm where Nm is the number of atoms in config-
uration m. The loss function is

L(ξ) =

M∑
m=1

1

2
we
m

[
Em(rm; ξ)− EDFT

m

]2
+

M∑
m=1

1

2
wf
m‖f(rm; ξ)− fDFT

m ‖2, (12)

where ξ is the set of potential parameters, Em and
f(rm; ξ) = − (∂V/∂r)|rm

∈ R3Nm are the DRIP poten-

✓ = 27.8�

(a)

(b)

FIG. 4: Example of commensuration of a graphene
bilayer. (a) The two layers are commensurate when
rotated relative to each other by cos−1( 23

26 ) = 27.8◦,
which corresponds to m = 3, n = 7 according to the

condition in Eq. (11). (b) The resulting supercell after
rotation, with 26 atoms in each layer.

tial energy and concatenated forces in configuration m,
and we

m and wf
m are the weights associated with the en-

ergy and forces of configuration m. For energy in units of
eV and forces in units of eV/Å, these weights have units
of eV−2 and (eV/Å)−2, respectively.

The DFT energy and forces used in the loss func-
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TABLE II: DRIP parameters obtained by minimizing
the loss function L(ξ) defined in (12) and preset cutoffs.

Parameter Value Parameter Value
C0 (meV) 11.598 B (meV) 7.6799
C2 (meV) 12.981 η (1/Å) 1.1432
C4 (meV) 32.515 A (meV) 22.216
C (meV) 7.8151 z0 (Å) 3.3400
δ (Å) 0.83679 rcut (Å) 12
λ (1/Å) 2.7158 ρcut (Å) 1.562

tion, Eq. (12), EDFT
m and fDFT

m , require explanation.
Since DFT provides only the total energy and forces
on atoms due to both intralayer and interlayer inter-
actions it is necessary to separate out the interlayer
contributions when constructing the training set. This
is accomplished as follows. For configuration m, first
the total energy and forces of the bilayer are obtained
from DFT: EDFT, bilayer

m , fDFT, bilayer
m . Then each mono-

layer is computed separately by removing all atoms
from the other monolayer. Thus, there will be two en-
ergies, EDFT, layer 1

m and EDFT, layer 2
m , and two forces,

fDFT, layer 1
m and fDFT, layer 2

m (although each force vec-
tor will only contain nonzero components for the atoms
belonging to its monolayer). The DFT interlayer energy
and forces appearing in Eq. (12) are then defined as:

EDFT
m = EDFT, bilayer

m − EDFT, layer 1
m − EDFT, layer 2

m ,
(13)

fDFT
m = fDFT, bilayer

m − fDFT, layer 1
m − fDFT, layer 2

m .
(14)

In the present case, the training set includes M = 252
configurations. Both the energy weight we

m and force
weight wf

m (m = 1, . . . , 252) are set to 1. The opti-
mization was carried out using the KIM-based Learning-
Integrated Fitting Framework (KLIFF)51 with a geodesic
Levenberg-Marquardt minimization algorithm52–54. The
objective is to find the set of parameters ξ that mini-
mizes L(ξ). The optimal parameter set identified by this
process and preset cutoffs are listed in Table II.

IV. TESTING OF THE NEW POTENTIAL

We performed an extensive set of calculations to test
the ability of DRIP to reproduce its training set (de-
scribed in Section III), and test its transferability to con-
figurations outside the training set. The calculations us-
ing the potential were performed with LAMMPS55,56 and
DFT calculations with VASP30,31. Periodic boundary
conditions are applied in both in-plane directions, and
the in-plane lattice constant is fixed at a = 2.46 Å. The
setup for the DFT computations is the same as that used
for generating the training set in Section III.

Fig. 5 shows the unrelaxed forces on the atoms in the
bottom layer of the twisted bilayer shown in Fig. 4 with

a layer spacing of d = 3.4 Å. There are 26 atoms in
the bottom layer. For each, the out-of-plane force (z-
component) is displayed as a bar. The plot compares
the results of LJ, KC and DRIP with DFT. For the LJ
potential, the parameterization in the AIREBO potential
is used. The DRIP forces are in very good agreement
with DFT, whereas the LJ potential yields almost zero
forces, and the KC potential greatly overestimates the
forces. (Note that the force ranges in the three panels are
different). The force on the central atom when twisting
a bilayer obtained from DRIP (denoted as 1 in Fig. 1a)
is displayed in Fig. 1c as a function of rotation. The
results are in agreement with DFT, indicating that the
dihedral modification in DRIP successfully addresses the
deficiency of the KC potential discussed in Section II.

To investigate the accuracy of the potentials in a dy-
namical setting, trajectories are generated at a tempera-
ture of 300 K using ab initio molecular dynamics (AIMD)
for bilayers in AA and AB stackings, and the twisted bi-
layer shown in Fig. 4. For each configuration along the
trajectories, the DFT forces due to interlayer interactions
are computed using the procedure defined in Eq. (14) and
explained above. Next, LAMMPS is used to compute the
LJ, KC and DRIP interlayer forces for the AIMD con-
figurations. The error in the potential forces is shown
in Fig. 6. Each dot in the plot represents one atom
pulled from one of the configurations along the AIMD
trajectories. The horizontal coordinate in the plot is the
magnitude of the in-plane component (left panels) and
out-of-plane component (right panels) of the DFT inter-
layer force acting on the atom. The force is separated in
this way because the in-plane component is significantly
smaller than the out-of-plane component. (Note that this
is only the force due to interlayer interactions. The force
due to intralayer bonding is not included.) The vertical
coordinate is the magnitude of the difference between the
potential and DFT force vectors for that atom. We see
that the in-plane force error for LJ aligns with the diag-
onal, i.e. the error equals the DFT force, which means
that LJ predicts an in-plane force close to zero. This
is because LJ provides a poor model for the anisotropic
overlap of electronic orbitals between adjacent layers and
thus has almost no barrier for relative sliding. The KC
model performs better in the sense that it predicts resis-
tance to sliding, however the overall accuracy in forces is
poor (see Section II for a discussion of the limitations of
the KC model). In contrast, DRIP provides consistently
accurate in-plane forces across the range of DFT forces
with errors less than 20 meV/Å. For the out-of-plane
component both LJ and DRIP perform comparably pro-
viding good accuracy across the range of DFT forces,
whereas the KC model again shows poor accuracy with
very large errors in some cases.

Next, we consider energetics. The interlayer binding
energy Eb of a graphene bilayer as a function of layer
spacing d is shown in Fig. 7 for AB and AA stackings
and the twisted configuration shown in Fig. 4. The LJ
potential (Fig. 7a) cannot distinguish these states and
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FIG. 5: Out-of-plane component of the forces on the 26 atoms in the bottom layer of the twisted bilayer shown in
Fig. 4 (each represented as a bar) computed from DFT and the (a) LJ potential, (b) KC potential, and (c) DRIP

model. The layer spacing is 3.4 Å.
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FIG. 6: Deviation of potential forces from DFT results
due to interlayer interactions. The configurations are

taken from three AIMD trajectories at 300 K.

gives nearly identical binding energy versus layer spac-
ing curves for all three. Both KC (Fig. 7b) and DRIP
(Fig. 7c) correctly capture the energy differences between
the three stacking states. For all three potentials, the

twisted bilayer curve lies between the other two, which
is expected since the AB and AA stackings are mini-
mum and maximum energy states. Also notable is that
at large layer spacing, the curves for all three stacking
states merge since registry effects due to π-orbital over-
lap become negligible and interactions are dominated by
vdW attraction, which are the same for all three states
and captured equally well by all three potentials.

A more complete view of the interlayer energetics is
obtained by considering the generalized stacking fault
energy (GSFE) surface obtained by sliding one layer rel-
ative to the other while keeping the layer spacing fixed.
Fig. 8 shows the results for a layer spacing of d = 3.4 Å
calculated using DRIP and DFT. DRIP is in quantita-
tive agreement with DFT results. The KC GSFE has a
similar appearance and the LJ GSFE is nearly flat. The
KC and LJ results are not included for brevity, but the
energies of the three potentials along the dashed line in
the left panel of Fig. 8 are displayed in Fig. 1b.

As a final test, Table I shows the predictions of DRIP
for a number of structural, energetic, and elastic proper-
ties. The table also includes results for the LCBOP57 and
AIREBO18 potentials, as well as DFT and experimental
results as described in Section III. The LCBOP poten-
tial uses two Morse21 type terms to model long-range
interactions, and LJ19 is used in the AIREBO potential
as discussed in Section I. The properties of the DRIP
model are in good agreement with the PBE+MBD DFT
computations with which the training set was generated.

V. APPLICATIONS

To further compare the predictions of the KC potential
and DRIP, we carried out two large-scale simulations,
beyond the capability of DFT: (1) structural relaxation
in a twisted graphene bilayer, and (2) exfoliation of a
graphene layer off graphite. In these simulations, the
interlayer interactions are modeled using either KC or
DRIP, and the REBO17 potential is used to model the
intralayer interactions.
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FIG. 7: Interlayer binding energy Eb of a graphene bilayer versus layer spacing d for AA stacking, AB stacking, and
a twisted bilayer with rotation angle θ = 27.8◦ (see Fig. 4) using (a) LJ potential, (b) KC potential, and (c) DRIP

model, compared to DFT results.

∆EAA−AB = 6. 02  ∆ESP−AB = 0. 71

SP
AB

AA

∆a1

0 1 2

∆
a 2

0

1

2DRIP

∆EAA−AB = 6. 17  ∆ESP−AB = 0. 69

SP
AB

AA

∆a1

0 1 2

∆
a 2

0

1

2DFT

0 1 2 3 4 5 6 (meV/atom)
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is −22.98 meV/atom for DRIP (on the left) and

−22.33 meV/atom for DFT (on the right). The sliding
parameters ∆a1 and ∆a2 are in units of in-plane lattice

constant a = 2.46 Å.

A. Structural relaxation of a twisted graphene
bilayer

The electronic properties of stacked 2D materials can
be manipulated by controlling the relative rotation be-
tween the layers, which in turn leads to different struc-
tural relaxation. A prototypical problem is the twisting
of a graphene bilayer. The bilayer is created by rotat-
ing one layer relative to the other by θ = 0.82◦, setting
(m,n) = (1, 81) as discussed in Section III. The out-of-
plane relaxation δ of an atom is obtained by subtracting
the mean out-of-plane coordinates of all atoms in the top
layer from the out-of-plane coordinate of that atom:

δi = zi −
1

N

N∑
j=1

zj (15)

where zi is the out-of-plane coordinate of atom i in the
top layer and N = 9842 is the number of atoms in the
top layer58.

DRIP KC

(Å)

(a)

0.00

0.04

0.08

0.12

δ
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)
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FIG. 9: Out-of-plane relaxation in a twisted bilayer
with a relative rotation of θ = 0.82◦. (a) Contour plot
obtained from the DRIP model and the KC potential,
and (b) relaxation along the diagonal indicated by the

dashed line in panel (a). The bilayers shown in the
figure corresponds to 3× 3 supercells used in the

computation, i.e. a1 and a2 are in units of in-plane
lattice constant a = 2.46 Å.

The out-of-plane relaxation of the twisted bilayer is
plotted in Fig. 9. The results of the DRIP and KC mod-
els are qualitatively similar. The bright spots correspond
to high-energy AA stacking, the long narrow ribbons cor-
respond to SP stacking, and the triangular regions cor-
respond to alternating AB and BA stacking. It has been
shown that the formation of this structure is due to local
rotation at AA domains.59 Quantitatively, however, the
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FIG. 10: (a) Schematic demonstrating the process of
peeling a graphene layer off graphite, and (b) the
normal force, fz, needed to peel the top layer as a

function of the displacement at the left end of the top
layer, d− d0. The armchair direction of graphite is
aligned with the x-axis. The initial layer spacing is

d0 = 3.35 Å.

two potentials give different out-of-plane relaxation, es-
pecially at the peaks as seen in Fig. 9b. The peak value
predicted by DRIP is 0.076 Å, which is 26% smaller than
the KC potential value of 0.103 Å. This difference at
the peaks could lead to significant differences in elec-
tronic properties because twisted graphene bilayers de-
velop highly-localized states around AA-stacked regions
for small twist angles60.

B. Exfoliation of graphene from graphite

Graphene can be prepared by exfoliating graphite. In
this process, the vdW attraction between layers is over-
come by peeling a single layer off a graphite crystal. A
method as simple as sticking scotch tape to graphite and
applying an upward force can be used.1 To simulate this
process, one edge of the top layer of a graphite crystal
is pulled up under displacement control conditions as il-
lustrated in Fig. 10a. The atoms at the left end of the
top layer are displaced in the z-direction according to
d = d0 + 0.2k, where d0 = 3.35 Å is the initial layer
spacing, and k = 0, 1, . . . , 99 is the step number. At each
step k, once the displacement is applied to the left atoms,
the remaining atoms in the top layer are relaxed. The

substrate (bottom three layers) is kept rigid during this
process. The system contains 600 atoms in each layer
of size 105.83 Å and 14.76 Å in the x and y directions,
respectively. The system is periodic in the y direction,
and non-periodic the other two directions.

The normal force, fz, needed to pull the left end of the
top layer is plotted in Fig. 10b. Both the KC and DRIP
models give qualitatively similar results. The force first
increases as the left end is pulled up and then exhibits
a sudden drop at about 3 Å. The normal force has two
contributions: (1) interlayer interactions with atoms in
the substrate; and (2) covalent-bonded interactions with
other atoms in the top layer. The former is almost un-
changed before and after the load drop, therefore the
drop is mainly due to the in-plane interactions in the top
layer. Before the load drop, the right-end of the top layer
is trapped in a local minimum created by the substrate
(similar to the one denoted as AB in Fig. 8, although
there we only consider a graphene bilayer), and conse-
quently as the left end is pulled up, the top layer experi-
ences an increasing axial strain. At about 3 Å, the right-
end of the top layer snaps into an adjacent local minimum
by moving in the negative x direction. (A movie showing
the snap-throughs associated with the load drops is pro-
vided in the Supplemental Material.61) As a result, the
axial strain in the top layer is released and the load is
reduced. The same explanation applies to the load drop
at a displacement of about 15 Å, and it is expected to
continue to occur periodically with continued pulling.

As for the results in Section V A, KC and DRIP are in
qualitative agreement, but there are quantitative differ-
ences. The KC potential predicts an initial peeling load
of about 0.65 eV/Å, which is about 75% of the 0.87 eV/Å
value predicted by DRIP. The second snap-through oc-
curs at a displacement of 16.6 Å for DRIP, and at 15.0 Å
for KC.

VI. SUMMARY

The interlayer interactions in stacked 2D materials
play an important role in determining the functional-
ity of many nanodevices. For graphitic structures, the
two-body pairwise LJ potential is too smooth to model
the energy corrugation in different stacking states. The
registry-dependent KC potential improves on this and
correctly captures the energy variation, but fails to yield
reasonable forces. In particular, the KC model does not
distinguish forces on atoms in the AA and AB stacking
states that are different in DFT calculations. The KC
model is also discontinuous at the cutoff, which can lead
to difficulties in energy minimization and loss of energy
conservation in dynamic applications.

To address these limitations, we developed a new po-
tential for graphitic structures based on the KC model.
The Dihedral-angle-corrected Registry-dependent Inter-
layer Potential (DRIP) has a smooth cutoff and includes
a dihedral-angle-dependent term to distinguish different
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stacking states and obtain accurate forces. The potential
parameters were determined by training on a set of en-
ergies and forces for a graphene bilayer at different layer
spacing, sliding and twisting, computed using GGA-DFT
calculations, augmented with the MBD dispersion correc-
tion to account for the long-range vdW interactions.

To test the quality of the potential, we employed it
to compute energetics, forces, and structural and elastic
properties for a graphene bilayer in different states and
graphite. The validation tests show that compared with
first-principles results:

1. DRIP correctly predicts the equilibrium layer spac-
ing, interlayer binding energy, and generalized
stacking fault energy of a graphene bilayer, as well
as the equilibrium layer spacing of graphite.

2. DRIP underestimates the c-axis elastic modulus
C33 of graphite by about 10% relative to ACFDT-
RPA and experiments, but this result is in good
agreement with PBE+MBD to which DRIP was
fit.

3. DRIP provides more accurate forces than the KC
model across the entire range of bilayer rotations
and in particular distinguishes the forces in the AA
and AB states that the KC potential cannot.

In two large-scale applications, not amenable to DFT
calculations, we showed that DRIP and the KC potential
agree qualitatively, but differ quantitatively by 26% in
the out-of-plane relaxation of a twisted graphene bilayer,
and by 23% in the normal force required to peel one
graphene layer off graphite.

The added four-body dihedral-angle-dependent correc-
tion in DRIP is very short-ranged (ρcut = 1.562 Å) and
therefore the computational overhead relative to KC is
small. In fact, for the large-scale applications (bilayer re-
laxation and peeling) described in Section V, DRIP was
actually faster than the KC potential in terms of the
overall computation time due to improved convergence.

Although DRIP was parameterized against a training
set consisting of graphene bilayers, it can be used to de-
scribe interlayer interactions for other systems such as
graphite and multi-walled carbon nanotubes where the
carbon atoms are arranged in layers. This potential
only provides a description of the interlayer interactions,
and therefore must be used together with a compan-
ion model that provides the intralayer interactions, such
as the Tersoff14,15 or REBO16,17 potentials. The DRIP
functional form and associated carbon parameterization
are archived in the OpenKIM repository25–27 at https:
//openkim.org. They can be used with any KIM-
compliant molecular simulation code, see Appendix A
for details.
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Appendix A: Using the Open Knowledgebase of
Interatomic Models (OpenKIM)

The Open Knowledgebase of Interatomic Models
(OpenKIM) (https://openkim.org) is an open-source,
publicly accessible repository of classical interatomic
potentials, as well as their predictions for material
properties that can be visualized and compared with
first-principles data. Interatomic potentials stored in
OpenKIM that are compatible with the KIM application
programming interface (API) are called “KIM Models.”
KIM Models will work seamlessly with a variety of ma-
jor simulation codes that are compatible with this stan-
dard including LAMMPS55,56, ASE62,63, DL POLY64,
and GULP65,66.

As an example, we describe how a KIM Model would
be used with LAMMPS. In LAMMPS, reactive inter-
atomic potentials are specified using the pair_style
command. LAMMPS has a “pair_style kim” op-
tion for using KIM Models. To use KIM Models with
LAMMPS, perform the following steps:

1. Install the KIM API (see instructions at https:
//openkim.org/kim-api/);

2. Download and install the desired potential from
https://openkim.org/ (see instructions that
come with the API);

3. Enable KIM Models in LAMMPS by typing:
“make yes-kim” and then compiling LAMMPS.

In a LAMMPS input script, a KIM Model is then selected
in the same way as other LAMMPS potentials. For ex-
ample, the potential developed in this paper can be used
with the following two commands:

pair_style kim DRIP_WenTadmor_2018_C__MO_070247075036_000

pair_coeff * * C

https://openkim.org
https://openkim.org
https://openkim.org
https://openkim.org/kim-api/
https://openkim.org/kim-api/
https://openkim.org/
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To use it together with another potential for the in-
tralayer interactions, such as Tersoff14,15 or REBO16,17,
use the LAMMPS “pair_style hybrid/overlay” com-
mand (see the LAMMPS manual for details).

The advantage of releasing a potential as a KIM Model
(as opposed to just a file compatible with LAMMPS
or another code), is that it will work with not just
LAMMPS, but other major codes as noted above. In
addition, a KIM Model has a “KIM ID” that can be
cited in publications. The KIM ID provides a unique
permanent link to the archived content and includes a
three-digit version number to track changes. For exam-
ple, a modification to the model parameters would lead
to a version upgrade (or a new forked model if appropri-
ate). Citing a KIM ID in a publication makes it possible
for the reader to download the exact potential used in
the reported simulation and to reproduce the results.
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